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Abstract

Existing literature on financial frictions argue that firms reduce investment in a crisis due to a

lack of credit. However, U.S. public firms, which together accounted for 89 percent of the decline in

investment during the Great Recession, experienced no drop in borrowing. Instead of investing, they

borrowed to expand their stock of safe assets; that is, they borrowed to save. I model borrowing to

save as an optimal portfolio choice when firms face gradually resolving uncertainty. In a quantitative

general equilibrium model with heterogeneous firms, I show that this mechanism can simultaneously

generate a sharp downturn and a slow recovery.
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1 Introduction

Table 1: Annual Growth Rates of Total Debt, Liquid Assets and Investment During the
2007-09 Financial Crisis

All Public Non-Public

[1] ∆ Debt −1.4% +0.6% −8.2%
[2] ∆ Investment −6.1% −8.3% −2.9%
[3] ∆ Liquid Assets +2.0% +4.3% −1.9%

% of decline in aggregate investment 89.0% 11.0%

Note: This table presents the annual growth rates of total debt, liquid assets, and real investment between 2007 and 2009 for each of the
three samples: all non-financial corporate businesses in the US (the Flow of Funds), publicly traded non-financial firms (Compustat), and
others (the difference between the two). Total debt (the sum of short-term and long-term debt) captures the amount of funds actively raised
by the public firms through debt contracts. Real investment is the sum of capital expenditures and acquisitions, less sales of property,
plants and equipment. Liquid assets are the cash and marketable securities. See Appendix A for detailed data description.
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How does the supply of credit affect investment? Existing literature on financial frictions
argue that firms reduce investment in a crisis due to a lack of credit. However, evidence from
the Great Recession, as shown in Table 1, raises questions on the relevance of this channel.
U.S. public firms – which together accounted for 89 percent of the decline in aggregate
investment between 2007 and 2009 – experienced no drop in borrowing. By contrast, private
firms were short of credit, but their contraction in real investment was much milder. Instead
of investing, public firms borrowed to expand their stock of safe assets. Motivated by this
evidence, this paper formalizes “borrowing to save” as an optimal portfolio choice when
firms face gradually resolving uncertainty. In a quantitative general equilibrium model with
heterogeneous firms, I evaluate the relevance of this channel in accounting for the sharp
downturn in 2008 as well as the slow recovery thereafter. With its emphasis on firms’ asset
allocations, this paper challenges the conventional wisdom on how financial frictions drive
business cycle fluctuations.

The Great Recession has led to a recent macro literature that uses quantitative business
cycle models to explain how financial frictions affect investment in a crisis – whether it
originates from a negative first-moment shock to the credit constraint (see, for example, the
work of Jermann and Quadrini (2012); Perri and Quadrini (2018)), or a positive shock to
the volatility of idiosyncratic productivity (Arellano, Bai, and Kehoe (2018)).1 This paper
contributes to the literature in two ways. First, existing studies predict a strong positive
co-movement between firms’ real activity and their ability to borrow, but this is not in line
with the evidence in Table 1. This paper develops a model in which the shock structure
plays an important role – as argued by Cao, Lorenzoni, and Walentin (2018) – that can
rationalize public firms’ borrowing to save behavior at a time when credit spreads are high
and the risk-free rate is depressed. Through the lens of the model, I show that a tightening
in financial conditions can have significant real impact by affecting not only how much
firms can borrow, but also how they allocate the credit. Second, while existing studies can
generate large fluctuations, they have limited explanatory power on the subject of the slow
recovery. I show that the borrowing to save channel can simultaneously account for both,
even without adjustment frictions.

In standard investment models with debt financing, firms issue one-period debt contracts
and may default in equilibrium. Even if one introduces savings as an additional choice vari-
able, firms would not borrow to accumulate safe assets, as the presence of external finance
premium implies that marginal cost of borrowing is always at least as high as the marginal
return on savings. As a result, firms only borrow to invest, and the level of borrowing and
investment would always move in the same direction. Any savings or cash holdings are
typically modeled as negative borrowing, or are financed by equity issues (Alfaro, Bloom,

1Closely related work also includes quantitative general equilibrium models which study the impact of financial fric-
tions on households’ consumption and employment in a credit crisis, such as Guerrieri and Lorenzoni (2017); Jones,
Midrigan, and Philippon (2018).
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and Lin (2018); Eisfeldt and Muir (2016)).
To generate the divergence between borrowing and investment at the firm-level, I utilize

three key ingredients that are typically missing in the standard debt financing models. First,
firms adjust their asset portfolios much more frequently than the level of borrowing, as
observed in the data (see Table A.1 in Appendix). Second, firms face gradually resolving
uncertainty in the form of sequential shocks. Third, recessions are driven by shocks with a
negative first moment and a positive second moment (Bloom, Floetotto, Jaimovich, Saporta-
Eksten, and Terry (2018)).

The model has a continuum of heterogeneous firms that produce differentiated products.
In each period, these firms choose how much to borrow, and how to allocate funds between
capital for production and a safe asset. Production is subject to an idiosyncratic productivity
shock, followed by a demand shock that captures the gradual resolution of uncertainty. The
two shocks are independent of each other, but both affect the profitability of a firm and
hence its default probability.2 Capital yields a higher expected return than the safe asset,
but it is riskier and less liquid. Borrowing decision is risky, as it takes place before the firm
learns about its productivity or demand, and it can only issue state-uncontingent debt. After
observing the productivity shock, the firm cannot issue any new debt, but it can adjust their
asset portfolios (at a cost) before the demand shock occurs. Firms default if they cannot pay
for their debt at the end of a period, and the cost of default is the lost future expected profits.

In a typical debt financing model, firms issue one-period debt only to invest (and pay the
operating costs), whereas in this model, they issue one-period debt for liquidity, but such
liquidity could be used to either invest or accumulate assets, depending on the realization
of uncertainty. The borrowing to save mechanism is best explained by backward induction.
Upon observing their productivity draws, firms can adjust their asset portfolios by trading
off growth against self-insurance. For each unit of debt issued, investing it in safe assets
yields a weakly lower return than the cost of debt repayment, but it allows the firm to trans-
fer resources from the repayment states to default states after the realization of demand. As
firms are forward-looking, they choose how much to borrow before knowing their produc-
tivity draws, taking into account their expected asset allocations. If the productivity shock
becomes more volatile, the magnitudes of both upside potential and downside risk increase.
Importantly, as firms know that they are protected on the downside by the opportunity to
adjust their asset portfolios before demand realization, they choose to continue borrowing
despite the higher credit spreads associated with higher volatilities.

The calibrated theory can generate the observed behavior of public firms in a recession
modeled as a second moment shock to idiosyncratic productivity and a negative first moment
“financial shock” to firms’ ability to borrow, à la Jermann and Quadrini (2012). The negative

2Having two independent shocks is a simplifying assumption, and not crucial for the mechanism. One can rewrite the
model with only one shock, and firms receive an interim signal before its realization. As long as firms face gradually
resolving uncertainty and can adjust their asset portfolio upon observing the signal, the mechanism still goes through.
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financial shock increases the deadweight loss in default, and hence the credit spread per
unit of borrowing. For any given level of debt, the likelihood of default increases as the
repayment burden is higher. In response, firms channel a larger fraction of the debt into safe
assets to prevent costly default. Without the second-moment shock, firms would decrease
borrowing and investment simultaneously. An increase in the volatility of idiosyncratic
productivity shocks would encourage firms to increase borrowing ex ante (i.e. before the
productivity draw), as the upside potential becomes more attractive. At the same time, it
also strengthens firms’ incentive to save ex post, since a higher level of debt and higher
credit spreads amplify the probability of default.3.

Besides explaining the borrowing to save behavior of public firms, the model can also
generate a slow recovery after transitory aggregate shocks. An obvious reason for firms’
gradual adjustment in asset portfolios is the presence of adjustment costs. A more subtle
and interesting reason relates asset choices to the rate of firm growth. Equity growth is
slower in this model compared to one where firms only borrow to invest in capital, because
firms loaded with safe assets make less profit conditional on survival. Moreover, since the
accumulation of safe assets reduces default probabilities and hence the cost of borrowing,
firms can sustain more debt and operate at a greater optimal scale. Slower growth and
greater optimal scale both imply that it takes longer for firms to grow out of their borrowing
constraints. As a result, compared to the standard models where firms only borrow to invest,
the effects of financial frictions are more persistent in a recession, even in the absence of
adjustment costs.

The quantitative model can successfully reproduce the main variables at both the micro
and macro level; in other words, the aggregate implications are derived from a framework
consistent with micro-level data. I use firm-level data on liquidity ratios, leverage ratios,
credit spreads, and the time variation in the cross-sectional dispersion of investment rates,
to calibrate the parameters governing the magnitude of financial frictions, the idiosyncratic
productivity and demand shock processes. Subsequently I show that the resulting model pre-
dictions for the cross-sectional moments are consistent with micro-level data. At the macro
level, the model can generate business cycle features of both real and financial variables,
and provides a structural framework for analyzing aggregate investment fluctuations. I show
that the borrowing to save channel can explain 28 percent of the total decline in investment
during the Great Recession, and the rest is due to reductions in firm borrowing as finan-
cial conditions tighten. Since the model is calibrated to the sample of public firms, which
were responsible for 89 percent of the decline in aggregate investment (public and private
firms), a back-of-the-envelope calculation suggests that borrowing to save can explain about
25 percent of the decline in aggregate investment during the recession.

3The timing of the uncertainty shock is crucial to the borrowing to save mechanism: If the volatility of the demand
shock increases, firms would unambiguously borrow less ex ante, as there is no opportunity to change their asset portfolios
after all uncertainties are resolved (e.g. Arellano, Bai, and Kehoe (2018))
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It is worth noting that on average borrowing and investment of U.S. public firms have
diverged in each recession over the past 30 years, and the liquid asset ratio is strongly coun-
tercyclical, as shown in Figure 1. Hence, borrowing to save appears to be a cyclical phe-
nomenon, although the impact was stronger in the Great Recession. Part of the reason was
the magnitude of the financial shock and the heightened uncertainty at the beginning of the
crisis, but the fact that a significant fraction of firms substituted from bank loans to bonds
during the crisis also played an important role. Since bonds are less flexible than bank loans
(Crouzet (2018); De Fiore and Uhlig (2015)), being forced to substitute to bonds when banks
tighten credit supply exposes firms to higher default risks, which strengthen the incentive
of firms loaded with debt to save rather than invest. I show that with debt substitution, the
borrowing to save mechanism can explain almost 30 percent of the decline in aggregate
investment, and the effect of the transitory shocks lasts longer.

Figure 1: Borrowing to Save Over the Business Cycle

(a) Debt Financing and Real Investment (b) Liquid Assets to Total Assets

Note: Panel (a) plots the mean levels of total debt and real investment between 1988 and 2012 for non-financial public firms in the US.
Plot (b) plots the mean liquidity ratio and its cyclical component after applying an HP filter (with lambda = 100). The mean in each year
is calculated after removing outliers, by winsorizing each variable of interest at the 1st and 99th percentiles. Data is from Compustat; see
Appendix A for detailed description.

In analyzing why firms accumulate safe assets on their balance sheets, this paper is
related to Kiyotaki and Moore (2012), which emphasizes the value of liquidity. In their
model, firms issue equity to accumulate cash because it provides liquid funds that can be
easily devout to invest when an opportunity arises. Guerrieri and Lorenzoni (2009) show
why consumers hoard liquid assets in recessions, and how this amplifies aggregate volatil-
ities. This paper shares the emphasis on liquidity, as the firms borrow for liquidity, and
accumulate safe assets to prevent default. Differently from the existing literature, I focus on
explaining why firms would borrow and save simultaneously when it is costly to do so.

This paper contributes to a growing body of work using heterogeneous firms to study
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business cycle fluctuations. Besides the papers aforementioned, Khan and Thomas (2013)
show that shocks directly to the collateral constraint can lead to long-lasting recessions
through disruptions on the real side when firms face investment adjustment costs. Buera
and Moll (2015) share the focus on collateral constraints, and emphasize the importance
of modeling heterogeneity in quantitative business cycle models. Unlike these studies, I
build a model with endogenous firm defaults, which lead to fluctuations in credit spreads
and investment dynamics. This feature is shared by Gilchrist, Sim, and Zakrajšek (2014)
and Arellano, Bai, and Kehoe (2018), which study how financial frictions can generate
large amplifications from uncertainty shocks. This paper differs in three ways. First, their
amplification is via a contraction in the level of borrowing when uncertainty is high, whereas
this paper emphasizes the allocation of credit to safe assets.4 Second, model simulations here
suggest that credit crises are best modeled with a combination of first- and second-moment
shocks. Third, I show that unlike the credit contraction mechanism, borrowing to save can
also generate a slow recovery. Thus this paper is complementary to the existing literature.

2 Adding Borrowing to Save to a Standard Debt Finance Model

This section presents a two-period partial equilibrium model of firm borrowing and asset
allocation decisions, which can explain the borrowing to save behavior by the public firms.
The model shares all the key features of a standard macro model with debt finance by firms
(e.g. Covas and Den Haan (2012); Arellano, Bai, and Zhang (2012)), including a risk-neutral
firm with decreasing returns to scale technology, endogenous default in equilibrium, ineffi-
cient liquidation, perfectly competitive lenders, and forward-looking debt prices determined
before any shock realization.

In addition to the standard features aforementioned, the setting here adds two new fea-
tures that generate the borrowing to save behavior. First, the firm experiences a sequence
of two shocks, so uncertainty is resolved gradually rather than at once. Second, after the
first shock is realized, the firm can adjust its asset portfolio, for a given liability structure. I
present empirical evidence for these two assumptions, and I illustrate below how these two
features give rise to a “risk taking ex-ante, precautionary savings ex-post” mechanism, which
turns out to be a quantitatively important channel for the transmission of aggregate shocks
for public firms.

4In the sovereign risk literature, Bianchi, Hatchondo, and Martinez (2018) show that it is optimal for governments
to issue debt accumulate reserves to reduce rollover risk. However, their model set-up and mechanism for governments’
precautionary savings differ from the set-up and mechanism for firms. In their model, governments issue debt for the
purpose of accumulating reserves, whereas in my model, firms issue debt for liquidity, and save for precautionary reasons
as profitable investment opportunities do not arise. Moreover, in the sovereign risk model, the assumptions of long-term
debt and risk averse lenders are crucial for generating precautionary savings. By contrast, I show why risk-neutral firms
choose to issue one-period debt and accumulate safe assets, despite that the marginal return on saving is dominated by the
marginal cost of borrowing.
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Debt Choice

choose b
at rb

given net worth e

shock z1

Asset Allocation

choose a,k
taking b as given

shock z2 returns on
assets realized:

r and z1z2kα

debt settlement:
repay rb

or
default and liquidate

Figure 2: Timing in the static model

2.1 Model Setup

Production and asset allocation A firm with net worth e produces output (y) using a
production technology that has decreasing returns to capital (k), subject to two productivity
shocks z1 and z2 sequentially:

y = z1z2kα , 0 < α < 1.

Capital depreciates at rate δ ∈ [0,1]. As in standard models of firm investment, decreasing
returns to scale guarantees that firms have a finite optimal scale of production. The firm can
finance investment in capital k from two sources: internal equity e, with which it is initially
endowed, and external debt b. Besides investing in physical capital, the firm can also allocate
its resources N into a safe asset a. Therefore, the resulting balance sheet constraint is:

k+a = e+b.

While the return on physical capital is subject to the two productivity shocks, the safe asset
earns a constant return r, which is exogenously given here, and endogenously determined in
Section 3.

Timing Figure 2 summarizes the timing of the firm’s problem. At the beginning of the
period, the firm chooses how much to borrow b at a repayment rate rb, which is endoge-
nously determined. The two productivity shocks z1 and z2 are independent and identically
distributed, and importantly, they are realized sequentially.5 After z1 is observed and before
z2 is realized, the firm chooses how to allocate its resources between investment and sav-
ings, taking b and rb as given. For simplicity, I assume here that the asset allocation decision
only occurs after the realization of z1, but this is not necessary for the borrowing to save
mechanism. I show in the quantitative model in Section 3 that the firm can also choose asset
allocation at the same time that the borrowing decision is made, as long as the firm can ad-
just its asset portfolio more easily than its liabilities as uncertainty resolves. This motivates
the first key assumption of the model:

5One can also assume that the two shocks are correlated, or that z1 could be a signal of the realization of z2. Since
signal extraction plays no role here, I assume for simplicity that the two shocks are independently distributed.
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Assumption 1. (Portfolio adjustment) The firm can adjust its asset portfolio, but not liabilities,

after the first shock z1.

In other words, leverage is chosen based on the expectation of z1, whereas assets are chosen
based on its realization. Since the latter clearly has more variation, and cash holdings re-
spond to the latter, one testable implication of this assumption is that the variations in cash
holdings are larger than the variations in leverage ratios. Using Compustat, I find that for
non-financial firms with non-trivial debt amounts (book leverage above 5%), the coefficient
of variation (standard deviation divided by the mean) for cash is consistently higher than the
correlation of variation for debt, across all definitions of debt and all quartiles of firms, and
the differences are significant at the 1% level (see Table A.1 in Appendix).

Debt settlement and pricing The cash flow of the firm after returns on both assets are
realized is given by:

π(z1,z2) = z1z2kα +(1−δ )k+(1+ r)a. (1)

Default happens when π(z1,z2) falls below the amount of repayment (1+ rb)b, where rb was
agreed between the firm and the lender at the beginning of the period. Therefore, for every
realization of z1, the net worth based default rule implicitly defines an endogenous default
threshold z2, whereby the firm defaults if z2 ≤ z2(z1), and repays otherwise:

z1z2kα +(1−δ )k+(1+ r)a = (1+ rb)b. (2)

In the dynamic setting, a net worth based default rule implies that the firm defaults when
temporary declines in cash flow may leave the firm unable to repay its debt, even when the
equity value of the firm is positive (Arellano, Bai, and Kehoe (2018); Gilchrist, Sim, and
Zakrajšek (2014)).6 Due to credit market frictions, the distressed firm cannot raise necessary
external financing to honor its financial obligations. Consequently, insufficient balance sheet
liquidity may result in default, even if the equity value of the firm is positive. To capture this
effect in the two-period model, I assume that when a firm defaults, it loses an exogenous
continuation value V in its end-of-period payoff.

In liquidation, the firm is shut down and the lenders can only seize a fraction χ of the
firm’s end-of-period resources π(z1,z2); in other words, liquidation entails a deadweight
loss when χ < 1. This is a common assumption in many models in which the underlying
financial friction is limited liability; it captures the fact that bankruptcy proceedings are
typically costly and involve fire sales of assets and loss of sales (e.g. Jermann and Quadrini

6This class of models assumes that default is primarily “liquidity-driven”, as opposed to “value-driven” whereby firms
may find it optimal to continue operating with negative net worth, as long as the option value of equity is high enough to
keep the firm alive. In “value-driven” models of risky debt, a firm defaults when the equity value of the firm falls below a
certain threshold (e.g. Cooley and Quadrini (2001)). Empirically, which of these two views is more suitable for credit risk
modeling is unclear, as there is sparse evidence on the role of insolvency versus illiquidity in triggering default. It may be
unclear even to the firms and creditors at the time.
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(2012); Covas and Den Haan (2012)). Therefore, the second key assumption of the model
is the presence of financial frictions, which makes liquidation inefficient:

Assumption 2. (Financial frictions) Default occurs if a firm’s cash flow falls short of debt repay-

ment. Upon default, the liquidation value of the firm is given by χπ , where 0≤ χ < 1.

Recall that the cost of borrowing rb determined at the beginning of the period is forward-
looking and not contingent upon either z1 and z2. Assuming perfectly competitive lenders,
then rb is determined endogenously by equating the expected return from lending to the
lenders’ cost of funds:

∫
z1

∫
z2(z1)

(1+ rb)bdF(z2)dF(z1)︸ ︷︷ ︸
Repay

+
∫

z1

∫ z2(z1)

χπ(z1,z2)dF(z2)dF(z1)︸ ︷︷ ︸
Default

= (1+ r)b, (3)

where π(z1,z2) is defined in (1) and the default threshold z2 is given by (2), which depends
on the level of z1 realized, and the cumulative distribution functions of z1 and z2 are denoted
as F(z1) and F(z2).

2.2 The Firm’s Problem

The firm’s problem can be solved by backward induction in two steps. The first step is to
solve for the optimal asset allocation before the realization of z2, for any given debt level b

and any realization of z1. Define s = a
b+e as the fractions of a firm’s total resources allocated

to the safe asset a. At the asset allocation stage, a firm with net worth e solves:

max
s(b,z1,e)

Ez2Π(z1,b,e) =
∫

z2(z1,b,s,e)

[
z1z2(1− s)αNα +(1−δ )(1− s)N +(1+ r)sN− (1+ rb)b

]
dF(z2)

+

z2(z1,b,s,e)∫
−V dF(z2), (4)

subject to the default threshold (2) for z2, the debt pricing equation (3) for rb, and N ≡ b+ e.
In the second step, I substitute the optimal solution s∗(b,z1,e) into the firm’s beginning-of-
period problem, which determines the optimal amount of borrowing b∗ ex-ante, by a firm
with an internal finance level e:

max
b(e)

Ez2,z1Π(e) =
∫
z1

∫
z2(z1,b,s∗,e)

[
z1z2(1− s∗(b,z1))

αNα +(1−δ )(1− s∗(b,z1))N

+(1+ r)s∗(b,z1)N− (1+ rb)b
]
dF(z2)dF(z1)+

∫
z1

z2(z1,b,s∗,e)∫
−V dF(z2)dF(z1),

(5)
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Figure 3: Precautionary savings (s∗) and borrowing (b∗) by firm e

(a) Precautionary Savings
(Asset Allocation Stage)

(b) Optimal Leverage
(Debt Choice Stage)

Note: This figure shows the numerical solutions to a firm’s backward induction problem. First, it solves for the optimal asset allocation
(equation 4), given any level of borrowing and realization of the first shock (panel (a)). Then it substitutes the optimal asset choices back
to the beginning-of-period problem (equation 5) to determine the optimal level of borrowing (panel (b)).

subject to the default threshold (2) for z2 and the debt pricing equation (3) for rb.

2.3 Mechanism

Since there is no closed-form solution, in the rest of this section, I use numerical simulations
to illustrate the key forces at play.7 Although it is only a two-period model, it contains the
key ingredients to highlight the interaction between credit market frictions and asset choices
that are crucial to explaining the propagation of financial shocks in the dynamic model in
Section 3.

Borrowing to Save A risk-neutral firm with limited liability finds it optimal to accumulate
safe assets with a lower return because (1) default is costly, and (2) firms cannot adjust the
asset- and liability-sides of their balance sheets simultaneously at all times. In the absence
of either condition, firms would not choose to issue costly debt to finance the accumulation
of safe assets. I call this “precautionary savings” by firms, as they trade off higher profits
conditional on survival against the higher probability of survival after the first shock has
realized, for a given level of debt.

Panel (a) of Figure 3 plots s∗, the optimal amounts of “precautionary saving” as a frac-
tion of a firm’s total resources at the asset allocation stage (equation (4)), for different levels

7The key parameters pertaining to assumptions 1 and 2 are χ , V , the distributions of z1 and z2, and δ . Here I set χ equal
to µχ (see Table 2), and V to be the loss of continuation value averaged across exiting firms in the quantitative model. I
assume that z1 and z2 are drawn from independent lognormal distributions, and set µz1 =−0.05, σz1 = 0.25, µz2 =−0.15,
and σz2 = 0.2, similar to the parameters governing the distributions of z and ψ in the quantitative model. I set δ = 0.2 to
capture two features of the quantitative model that are missing here: one is the illiquidity of capital; the other is the cost of
operation as a function of capital Fok. The results are qualitatively similar for a wide range of parameter values.
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of debt b and realized values of the first productivity shock z1. Despite that capital yields a
higher expected return, the safe asset enables the firm to transfer resources from the repay-
ment states to default states after the realization of z2. Therefore, after the firm observes its
z1, the opportunity to adjust its asset portfolio allows it to trade-off higher profits conditional
on survival against the higher probability of survival. For any given firm, the optimal frac-
tion of safe assets s∗ is decreasing in the realized level of z1 and increasing in leverage ( b

N ),
as the probability of default is higher when z1 is low and b is high.

Panel (b) of Figure 3 plots the optimal level of borrowing (b∗) as a fraction of total
assets (N), solved from the second step of the firm’s problem (equation (5)). In standard
firm financing models with defaultable debt, uncertainty is resolved at once, and the level
of borrowing is decreasing in the level of uncertainty. By contrast, the most important
observation from panel (b) is that the uncertainty levels of the two sequential shocks have
asymmetric impact on the optimal level of debt: b∗ is increasing in the volatility of the first
shock, and decreasing in the volatility of the second shock.

If the volatility of the first shock is high, there is a probability that the firm may receive a
very favorable productivity draw, which encourages the firm to increase its level of borrow-
ing ex ante, so that it will have enough funds for investment later on. Of course, there is also
an equal probability that z1 may be very low, but the firm can still insure itself against such
risk by optimizing – or reoptimizing (in the case of the dynamic model) – its asset allocation
after z1 is observed. After z2 is realized, the firm no long has the means to insure itself, so
the external finance premium associated with default risk discourages firms from borrowing
if the volatility of z2 is high.

Therefore, the firm borrows to save as a “risk taking ex ante, and precautionary savings
ex post” strategy. When the firm knows that uncertainty resolves gradually, it would increase
borrowing ex ante to capture the potential upside risk, and after the first unfavorable shock
is realized, it insures itself against potential default by accumulating safe assets. The higher
level of initial borrowing, the greater the risk of default, and the larger fraction of assets
saved at a given level of z1 to prevent default.

Slower Rate of Firm Growth In standard models of financial frictions, as firms accumulate
internal funds over time, they can quickly grow out of their financial constraint, especially
the more productive firms. As a consequence, these firms will not be affected by financial
frictions, as they no longer require external finance.

In this model, two related forces – as a result of the endogenous asset allocation problem
– imply that firms do not grow out of the financial constraint as quickly as in standard
models where firms only borrow to invest. First, the accumulation of safe assets in a firms
portfolio reduces its default probability, which reduces the cost of borrowing and implies a
greater optimal scale of operation. I illustrate this point in Panel (a) of Figure 4, where I plot
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Figure 4: Slower Firm Growth in Model with Safe Assets

(a) Expected Profit (b) Profit Conditional on Survival

Note: Panel (a) plots the expected profit Ezπ as a function of the level of borrowing b, for a firm with net worth e, before any shock
realization. The red dotted line shows the solutions in the model described in the section, whereas the black solid line indicates the
solutions in a counterfactual model without the asset allocation stage. Panel (b) plots the firm’s profit π as a function of debt, conditional
on survival.

the expected profit of a firm as a function of the level of borrowing b in the model described
above (with safe assets), compared to that in a counterfactual model where firm only borrows
to invest. As the probability of default is lower in the model with safe assets, the expected
profit at the beginning of the period Ezπ (red dotted line) is higher – for every level of
borrowing – than in a counterfactual model without safe assets (black solid line). Since the
firm chooses its leverage based on the expected profit, the optimal level of borrowing in this
model b∗ exceeds the level in a model without safe assets b̂.

Second, equity growth is slower in the model with safe assets, since part of the net
worth is invested in safe assets. I revisit this in the dynamic model, but Panel (b) of Figure 4
illustrates the reason in this static example: Conditional on survival, the firm with safe assets
would make less profit at the end of the period. If the firm’s problem were dynamic, it would
reinvest its end-of-period profit. Therefore, it takes longer for the firm to build its net worth
in the model with safe assets. To sum up, the key takeaway from Figure 4 is as follows:
Slower growth and a greater optimal scale both imply that firms rely on debt financing for
longer, and hence the impact of financial frictions would be longer lasting.

I come back to this point in Section 4, where I show that by adding safe assets to a firm’s
portfolio, its investment takes longer to recover after a negative shock that reduces the firm’s
net worth. Since there is no exogenous adjustment cost in the static model, it gives a cleaner
illustration of how adding safe assets to a firm’s portfolio can endogenously generate slower
firm growth out of financial constraints.
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3 A Quantitative Model in General Equilibrium

This section outlines the set-up of a quantitative dynamic model with the borrowing to save
mechanism. The aim of the model is to examine whether it can explain the observed diver-
gence between debt financing and investment by public firms in recessions, and to quantity
the significance of this channel in explaining the sizable contraction in aggregate economic
activity during the Great Recession.

The model features a representative household, continuums of intermediate goods and
final goods firms, and perfectly competitive financial intermediaries. The household lends
to the intermediate goods firms via the financial intermediaries, and is the owner of all
firms. The final goods firms are competitive and have a technology that converts intermedi-
ate goods into a final good that is consumed by the household. The intermediate goods firms
are the key agents, who optimize their asset portfolio and leverage by maximizing the eq-
uity value subject to the household’s stochastic discount factor. They are monopolistically
competitive and use capital to produce differentiated products. Crucially, as in the static
model, they experience two independent idiosyncratic shocks sequentially: the first one is a
productivity shock (z), and the second one is a demand shock (ψ) from the final goods firms,
and they can reoptimize their assets – but not the liabilities – in between the shocks.8

There are two standard aggregate shocks in the model. The first is a financial shock
modeled as an unexpected change in the recovery rate in default (Jermann and Quadrini
(2012)). The second is the standard second-moment shocks considered in the literature –
that is, shocks to the dispersion of the idiosyncratic productivity shock (e.g. Bloom (2009);
Bachmann and Bayer (2013); Basu and Bundick (2017); Bloom, Floetotto, Jaimovich,
Saporta-Eksten, and Terry (2018)). Both shocks are realized before the opportunity to reop-
timize firms’ asset portfolio. The timing of the uncertainty shock is crucial, as it determines
whether the amount of borrowing is increasing or decreasing in volatility (Figure 3). Sim-
ulation results show that both shocks are required to successfully model the behavior of
public firms in a recession.

3.1 Asset Portfolio Reoptimization

Figure 5 summarizes the timing of each intermediate good firm’s problem. At the beginning
of each period, shocks pertaining to the production and borrowing decisions are realized.
This includes the level of idiosyncratic productivity (z), the recovery rate in default (χ), and
the variance of innovations to the productivity process (σz). Before production, firms can re-
optimize their allocation of assets between capital and safe assets, subject to the intra-period
resource constraint:

k̂+ â f +g(k̂,k)≤ k+a f , (6)

8These two shocks play the roles of z1 and z2 in the static model.
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Figure 5: Overview and Timing of Intermediate Goods Firms’ Problem

This constraint embodies Assumption 1, in that the firm cannot issue new debt to finance
additional assets and the cost of adjusting capital g(k̂,k):

g(k̂,k) =
Fk1,t

2

( k̂− k
k

)2
k, (7)

where
Fk1,t ≡ p+k ×1(k̂−k)>0 + p−k ×

(
1−1(k̂−k)<0

)
.

Fk1,t captures costly reversible investment, whereby the purchase price of capital p+k is greater
than the liquidation value of capital p−k . This friction is important for the quantitative impli-
cations of the model by increasing the riskiness of investment in capital. As a result, firms
may not invest even if a favorable shock occurs, as it is very expensive to disinvest later on,
especially if the future is uncertain and firms are highly leveraged.

Firms then produce output y from intra-temporal capital k̂ using a decreasing returns to
scale technology: y = zk̂α with α < 1, and pay an operating cost that is proportional to their
capital stock, Fok̂. Production is subject to an idiosyncratic productivity shock z, that follows
an AR(1) process:

logz′ = µ
′
z +ρz logz+σz logε

′
z; ε

′
z ∼ N(0,1). (8)

I allow the variance of innovations to the productivity process σz to vary over time according
to a two-state Markov chain. Setting µ ′z =−0.5σ2

z ensures that the mean z across firms does
not fluctuate with σz.

3.2 Demand from Final Goods Firms

Final goods firms buy the products from intermediate goods firms, and produce the final
good Y via the technology:9

Y =
(∫ ∫

ψy(z, k̂,x)
ζ−1

ζ dF(ψ)dµ(z, k̂,x)
) ζ

ζ−1
, (9)

9In the model, the final goods producer has no value added, and hence this producer is a simple device to aggregate
the output of the heterogeneous firms—referred to as intermediate goods firms—into a single value. Equivalently, one can
think of these heterogeneous firms as final goods producers, and equation (9) reflects agents’ preferences over these final
goods.
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where y denotes the intermediate goods produced by a firm with state (z, k̂,x), ζ > 1 is the
elasticity of substitution across goods, and ψ is an i.i.d. idiosyncratic demand shock from
a lognormal distribution with mean µψ and standard deviation σψ .10 The final goods firms
choose the intermediate goods to solve:

max
y(z,k̂,x)

Y −
∫ ∫

p(ψ,z, k̂,x)y(z, k̂,x)dF(ψ)dµ(z, k̂,x), (10)

subject to (9), and p is the price of intermediate good y(z, k̂,x) relative to the price of the final

good, which is the numeraire. This yields the demand for an intermediate good: y=
(

ψ

p

)ζ

Y .
Each intermediate firm decides on the price of its product after the demand shock has

been realized. Since firms face demand curves with an elasticity larger than 1, they always
choose prices to sell all of their output. Therefore, the price of intermediate good y follows

p = ψ

(
Y

zk̂α

) 1
ζ and can be eliminated as a choice variable.

3.3 Debt Pricing

An intermediate goods firm can issue one-period, zero-coupon bonds b′ to finance its oper-
ational expenses, and investment in capital and safe assets. In the subsequent period after
all shocks have been realized, the firm decides whether to fulfill its debt obligations depend-
ing on its net worth (e.g. Gilchrist, Sim, and Zakrajšek (2014); Arellano, Bai, and Kehoe
(2018)):

n′ = p′y′+ p−k (1−δ )k̂′−Fok̂′+ â′f −b′ (11)

= π
′−b′,

where π ′ = p′y′+ p−k (1− δ )k̂′−Fok̂′+ â′f denotes the firm’s current assets. A firm can only
fully repay its debt if the price of its output p(ψ) is high enough, such that π ′ ≥ b′. Otherwise
it is liquidated and its assets π ′ are passed onto creditors.

In general equilibrium, lenders receive deposits a′h from the household and a′f from firms,
and subsequently use them to extend credit to firms. Asset prices are forward-looking and
each lender faces perfect competition, so their expected total profits are driven down to zero
in each period. Assuming that lenders cannot cross-subsidize firms, lenders must earn zero

10The assumption of demand shocks are i.i.d. is a simplification to reduce the number of state variables; it is not crucial
to the mechanism. Even in the case of an AR(1) shock, whether a non-defaulting firm defaults tomorrow depends on the
i.i.d. component of demand realized in the next period.
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profit on each loan. The price of debt is thus given by:

qb(k̂′,b′, â′f ,z,s) = E

[
λ (s,s′)

(∫
ε ′z

∫
ψ ′

1dF(ε ′z|σz)dF(ψ ′)︸ ︷︷ ︸
repay

+
∫

ε ′z

∫
ψ ′ χ ′π ′

b′
dF(ε ′z|σz)dF(ψ ′)︸ ︷︷ ︸
default

)∣∣∣∣∣z,s
]
,

(12)

and the default threshold ψ ′(z′,s′) is implicitly defined by:

p
(
ψ
′)y(z′, k̂′) = b′+Fok̂′− â′f − p−k (1−δ )k̂′. (13)

The aggregate financial shock is captured by χ ′, which follows an AR(1) process:

log χ
′ = µχ +ρχ log χ +σχ logε

′
χ ; ε

′
χ ∼ N(0,1). (14)

ε ′χ denotes the shock to recovery rate, or the efficiency of the financial intermediation pro-
cess.

3.4 Intermediate Goods Firms’ Recursive Problem

At the end of a period, non-defaulting firms that survive the exit shock pay their sharehold-
ers, the household, dividends d that must be nonnegative:11

d = p(ψ)y(z)−Fok̂−g(k′, k̂)− b̃+ â f −qaa′f +qbb′

= x−g(k′, k̂)+qbb′−qaa′f ≥ 0, (15)

where x is the non-defaulting firm’s net liquid asset position: x ≡ p(ψ)y(z, k̂)−Fok̂+ â f − b.
The price of the risk-free asset qa follows:

qa(s) = E
[
λ (s,s′)

∣∣∣s]. (16)

The capital adjustment cost g̃(k′, k̂) has the same functional form as g(k̂,k), which is the cost
of reoptimizing a firm’s asset portfolio in the middle of a period (7), except that g̃(k′, k̂) takes
into account of capital depreciation (at the rate δ ), which occurs at the end of a period:

g̃(k′, k̂) =
Fk1,t

2

(k′− (1−δ )k̂
k̂

)2
k̂ (17)

where Fk1,t ≡ p+k ×1(k′−(1−δ )k)>0 + p−k ×1(k′−(1−δ )k)<0.

11This prevents firms from issuing equity instead of debt as a means to avoid costly default associated with debt financ-
ing. I assume that firms cannot issue equity here in order to focus on the relation between debt market frictions and firms’
asset allocation. Nevertheless, this assumption is not necessary for the borrowing to save mechanism. A version of the
model that simultaneously allows debt and equity financing can be found in Appendix B.2.
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Let V 0(x, k̂,z;s) denote the value of a non-defaulting firm before the exit shock (1−η)
in period t, and V 1(x, k̂,z;s) denote its value after surviving the shock. The idiosyncratic
states include the firm’s productivity z, reoptimized level of capital k̂, and its net liquid
asset position x. The aggregate state s = (χ,σz,ah,µ) includes the current aggregate shocks,
household’s savings, and the distribution over idiosyncratic states. The dynamic problem of
a non-defaulting firm that survives the exit shock in period t consists of choosing the asset
portfolio (a′f ,k

′) and debt level b′ for the following period to maximize:

V 1(z, k̂,x;s) = max
d,k′,b′,a′f

{
d +E

[
λ (s,s′)V̂ 0(a′f ,k

′,b′,z′;s′)

∣∣∣∣∣s
]}

(18)

subject to the nonnegative dividend constraint (15), the cost of adjusting capital (17), the
price of debt (12) and risk-free asset (16), and the aggregate law of motion s′ = Γ(s), which
I describe below. In the following period, after observing z′ and s′, the firm can reoptimize
its asset portfolio by choosing (â′f , k̂

′) to maximize:

V̂ 0(a′f ,k
′,b′,z′;s′) = max

k̂′,â′f

[∫
∞

ψ ′
V 0(x′, k̂′,z′;s′)dF(ψ ′)

]
(19)

subject to the intra-period resource constraint (6), capital adjustment cost (7), and the defini-
tion of default threshold ψ ′ (13). V 0(x, k̂,z;s) is the value of a non-defaulting firm after debt
settlement, before the exit shock, such that:

V 0(x′, k̂′,z′;s′) = (1−η)n(x′, k̂′)+ηV 1(x′, k̂′,z′;s′) (20)

where 1− η is the exogenous exit rate, and n(x′, k̂′) is the realized net worth defined in
(11). Firms hit by the exogenous exit shock must leave the economy immediately and any
remaining profits are paid to the households as dividends.

There is a continuum of potential entrants, each endowed with â0, which is set to be
a fixed fraction υ of the steady-state level of assets held by an average incumbent: â0 =
υ

N
∫
(â f + k̂)dµss(z,x, k̂). The potential entrants first observe the aggregate shocks (γ∗,σz), and

then each draws a signal s about its future productivity z′ from a Pareto distribution with
parameter ξ . The transition between signal and future productivity follows (8), with z = s.
Entry decision takes place at the end of period t, and requires the payment of a fixed cost fe.
Firms can use their cash on hand â0 as well as debt financing to pay for fe. Hence, becoming
public is only feasible for a firm with signal s if max

(
qb(s,b′,a′f ,k

′;s)b′
)
≥ fe− â0. Among

the feasible set, a subset of firms is randomly chosen to ensure that the number of exiting
firms equals the number of entering firms (Arellano, Bai, and Kehoe (2018)). An entering
firm solves the same dynamic problem as an incumbent firm, V 1(s,0,x;s), with x =− fe + â0.
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3.5 Households

The representative household has a utility function u(c)= c1−θ

1−θ
, and solves a standard consumption-

savings problem:12

W (s) = max
c,a′h

{
u(c)+βE

[
W (s′)

∣∣∣s]}, (21)

subject to : c+qa(s)a′h ≤ ah +
∫ [

d +Fok̂
]
dµ(z,x, k̂)

The household receives payoff from the risk-free asset ah and dividends d from the interme-
diate goods firms, and uses it to consume c, purchase new risk-free assets a′h. Moreover, it
receives the intermediate goods firms’ fixed costs of operation Fok̂ as a lump-sum.

3.6 Recursive Competitive Equilibrium

Given an initial firm distribution µ0, safe asset a0, and aggregate shocks (χ0,σz,0), a recur-
sive competitive equilibrium in this economy consists of (1) policy functions d(z,x, k̂;s),
b′(z,x, k̂;s), k′(z,x, k̂;s), a′f (z,x, k̂;s), k̂′(z,x, k̂;s), â′f (z,x, k̂;s), c(s), a′h(s); (2) value functions
V 1(z,x, k̂;s), W (s); (3) prices qb(k̂′, â′f ,b

′,z;s), qa(s), such that for all t:

1. Given λ (s,s′), b′(z,x, k̂;s), d(z,x, k̂;s), k′(z,x, k̂;s), a′f (z,ψ,x, k̂;s), k̂′(z,x, k̂;s), â′f (z,x, k̂;s)

and V 1(z,x, k̂;s) solve the intermediate goods firms problem (18);

2. c(s), a′h(s), and W (s) solve the household’s problem (21);

3. Given λ (s,s′), the financial intermediaries determine the optimal debt price qb(k̂′, â′f ,b
′,z;s)

according to the zero profit condition (12);

4. Goods market clears:

c(s) =
(∫ ∫

ψy(z, k̂,x)
ζ−1

ζ dF(ψ)dµ(z, k̂,x)
) ζ

ζ−1 −
∫

g̃
(
k̂,k′(z,x, k̂;s)

)
dµ(z,x, k̂)

5. Financial market clears:

ah +
∫

â f dµ(z,x, k̂) =
∫

R̃bdµ(z,x, k̂)

such that intermediaries use the debt repayments by firms (including the seizure of
assets in case of default) to pay household and firms on their safe asset holdings.

12Unlike the partial equilibrium framework in section 2 where firms are risk neutral, the owner of the firms is risk averse
here, so in principle firms may save and borrow simultaneously even in the absence of Assumption 1, but this effect is not
quantitatively significant under reasonable parameterization of household’s risk aversion.
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6. The measure of firms evolves according to µ ′ = Γ(x′,z′, k̂;σ ′z,χ
′,s), such that

Γ(x′,z′, k̂;σ
′
z,χ
′,s) =

∫
Π
(
x′,z′, k̂′,x,z, k̂

∣∣σz,s
)
dµ(z,x, k̂)+µe(σ

′
z,χ
′,s)

where Π
(
x′,z′, k̂′,x,z, k̂

∣∣σ ,s
)

is the probability that an incumbent firm with state (x,z, k̂)

transits to a state (x′,z′, k̂′) in which it does not default. µe(σ
′
z,χ
′,s) is the measure of

new entrants in t +1, which equals to the total measure of exiting firms Ω(σ ′z,χ
′,s):

Ω(σ ′z,χ
′,s) =

∫
z′,z,x,k̂

[
F
(

ψ
′(b′, k̂′, â′f )

)
︸ ︷︷ ︸

Default

+(1−η)
(

1−F
(
ψ
′(b′, k̂′, â′f )

))
︸ ︷︷ ︸

Exogenous exits

]
dµ(z,x, k̂).

4 Quantitative Analysis

This section explores the quantitative implications of the model. I begin with a description
of how the model is parameterized and an outline of the solution method, followed by a
discussion on the optimal policy functions and the moments generated by the model. Then
I analyze the effects of aggregate shocks in the model. In particular, I highlight which
model ingredients are necessary for generating the diverging pattern of debt financing and
investment observed during the recessions.

4.1 Calibration

There are two groups of parameters in the quantitative model. The first group are the exoge-
nously calibrated parameters, most of which follow the commonly used calibrations in the
literature. The second group are set in a moment-matching exercise. Each period reflects
one quarter.

Predefined Parameters Starting from the household’s preferences, the discount factor is
set to β = 0.99, so the annual interest rate is 4%, and θ is set to one which implies that the
household has log preferences in consumption. Next, {α,δ ,ρz, p−k ,ζ} govern the production
side of the economy. The intermediate goods firms have a decreasing returns to scale tech-
nology with α = 0.7, which is within the range of estimates in the literature. The quarterly
depreciation rate δ is 0.025. The firm-specific productivity has a serial autocorrelation of
ρz = 0.95, as in Alfaro, Bloom, and Lin (2018). Following the estimates in Bloom (2009), I
set the liquidation value of capital p−k to be 0.57 while the purchased price of capital p+k is
normalized to one, so the investment resale loss is 43%. The elasticity of substitution in the
final goods production function ζ is set to 5, which generates a 25% markup.
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{υ ,η} are the exogenously calibrated parameters governing the entry and exit dynam-
ics. For simplicity, I set υ = 0.1, and pick { fe,ξ} to match the relative investment rate and
leverage of entrants. η is set to 0.98, so that 2 percent of non-defaulting intermediate firms
are hit by the exogenous exit shock in every quarter, which is within the range used in the
literature.

The aggregate financial shock χ is a credit supply shock, which affects the fraction of
assets seized by lenders when a firm defaults in the model. I obtain the autoregressive coef-
ficient ρχ and standard deviation σχ from an AR(1) regression of the excess bond premium
of Gilchrist and Zakrajšek (2012) between 1988 and 2010. This yields ρχ = 0.85, which
implies a half-life of four quarters, and σχ = 0.06.

Parameters from Moment-Matching The last ten parameters are calibrated to jointly target
moments in the data:

{
σH , σL, πHH , πLL, Fo, µχ , µψ , σψ , fe, ξ

}
.

All data moments, except those on credit spreads, are constructed from the quarterly Com-
pustat sample for US non-financial public firms between 1988 and 2012. Due to data limi-
tation, the moments on credit spreads are constructed from a shorter sample between 1997
and 2012. Firm-quarter observations are included if total assets, cash and marketable secu-
rities, debt in current or long-term liabilities, capital expenditures, and net property, plant
and equipment are non-missing. For the entrants, I consider only firms that start appearing
in the database since 1988, and I use the first two years’ data to construct the entrant-related
moments.

The first four moments are computed from firms’ investment rates, defined as (I/K)i,t =

Ii,t/(0.5(Ki,t +Ki,t−3)) for firm i at time t following Bloom (2009).13 I first compute the in-
terquartile range of investment rates across firms for each quarter, and subsequently calculate
the mean, standard deviation, autocorrelation, and skewness of the IQR. The mean and dif-
ference in volatility levels affect the mean and standard deviation, respectively, of the IQR.
Thus together they pin down σH and σL in the model. The autocorrelation and skewness are
mostly affected by the transition probabilities πHH and πLL, such that high volatility shocks
are relatively low probability events.

The next two moments are related to the balance sheet policies of public firms, focusing
on their borrowing and saving behavior. The book value of leverage in the model corre-
sponds to b/π, and is given total debt divided by asset in the data. The median leverage
ratio is most affected by the mean recovery rate µχ in liquidation. The median cash-to-

13Capital stock Ki,t is calculated by the perpetual inventory method: Ki,t = (1− δ )Ki,t−3(Pt/Pt−3)+ Ii,t , which is ini-
tialized using the net book value of capital, and Ii,t is the net capital expenditures on plant, property and equipment. To
remove seasonality in the data, the growth rates of investment are computed across four quarters.
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Table 2: Parameters from Moment Matching

Parameter Description Statistic (%) Target Moment

σH = 0.32, σL = 0.21 Volatility levels Invest IQR mean & std. 20 & 3.2 16 & 3.4
πHH = 0.86, πLL = 0.95 Transition probabilities Invest IQR auto. & skew. 83 & 19 88 & 15
Fo = 0.41 Operating cost Cash to asset median 7.3 6.9
µχ = 0.71 Financial shock (mean) Leverage median 23 26
µψ =−0.12 Demand shock (mean) Spread median 3.0 2.5
σψ = 0.19 Demand shock (std.) Spread median std. 1.5 0.9
fe = 10.61 Entry cost Entrants lev (rel.) 65 58
ξ = 2.94 Pareto distribution Entrants invest (rel.) 1.8 1.4

Note: This table presents the parameters from the moment-matching. All data moments, except those on credit spreads, are constructed
from the quarterly Compustat sample for US non-financial public firms between 1988 and 2012. Credit spreads data come from The
Bank of America Merrill Lynch Indicators between 1997 and 2012. Firm-quarter observations are included if total assets, cash and
marketable securities, debt in current or long-term liabilities, capital expenditures, and net property, plant and equipment are non-missing.
For the entrants, I consider only firms that start appearing in the database since 1988, and I use the first two years’ data to construct the
entrant-related moments. See Appendix A for detailed variable definitions.

asset ratio, â f /π, is largely determined by the operating cost Fo. Next, parameters governing
the demand shock, {µψ ,σψ}, have the most effect on the median and standard deviation of
corporate bond spreads. Lacking firm-level spread data, I use the Bank of America Mer-
rill Lynch corporate bond spread for a particular rating in each period as a proxy for the
spread of firms with the same rating, and construct the median and standard deviation of the
sample.14

The last two parameters { fe, ξ} govern the leverage and investment of the entrants rela-
tive to the incumbents. Since the entry decision here amounts to the decision of a firm to go
public, I first compute the leverage and investment rates of firms whose initial public offering
dates are within the sample period, in the periods when IPO took place. Then I calculate the
median leverage (investment) of the entrants, relative to the median leverage (investment) of
the incumbents. Table 2 reports the target moments in the data and the moment, as well as
the parameters used in the moment-matching exercise.

4.2 Algorithm Overview

The numerical algorithm used to solve this model closely follows Khan and Thomas (2013)
and Bachmann, Caballero, and Engel (2013). Here I provide an overview of the algorithm,
and the detailed description is in Appendix B.1.

Recall that the aggregate state vector in the model is s = (χ,σz,ah,µ). The evolution of
the aggregate equilibrium is fully characterized by two mappings: p = Γp(χ,σz,ah,µ), and
µ ′ = Γµ(χ,σz,ah,µ), where p is the marginal utility of the representative household. I follow
Krusell and Smith (1998) and approximate the intractable cross-sectional distribution µ with

14The Compustat sample consists of firms with ratings between AAA and D. The Bank of America Merrill Lynch
Indicators report the US corporate AAA, AA, A, BBB, BB, B, CCC (and below) yields since 1997. I construct the spread
between each yield and the 10-year Treasury yield.
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the current aggregate capital level K, the current aggregate debt level B, and the lagged
uncertainty state σ−1. I approximate the equilibrium mappings Γp and Γµ by the following
log-linear rules Γ̂p, Γ̂K , and Γ̂B:

log p

log K̂′

log B̂′

= A(σ ,σ−1)+B(σ ,σ−1)

[
log K̂

log B̂

]
+C(σ ,σ−1)

[
log χ

logz

]
,

in which I allow the coefficients to depend not only on the current realization of uncer-
tainty, but also on its value in the previous period. As usual with this procedure, the explicit
forms chosen for equilibrium mappings are assumptions, and are verified that they are good
approximations to the actual mapping (see Appendix B).

The algorithm begins with guessing the initial coefficients and initializing the forecast
rules Γ̂

(1)
p , Γ̂

(1)
K , and Γ̂

(1)
B . Then the model is solved with two loops. In the inner loop, I solve

for the idiosyncratic firm problem using value function iteration on V 1 and Gauss-Hermitian
numerical integration, taking as given Γ̂

(1)
p , Γ̂

(1)
K and Γ̂

(1)
B . The value functions in between

grid points are interpolated using a multidimensional tensor product spline approximation.
In the outer loop, based on the firm value V 1(1) computed in the inner loop, I first simulate
the economy for T periods, and find the equilibrium quantities and prices (pt ,Kt ,Bt) for
t = 1,2, ...,T . Then the equilibrium mappings are updated using an OLS regression on a
subset of the simulated data, resulting in Γ̂

(2)
p , Γ̂

(2)
K , and Γ̂

(2)
B . The procedure is repeated until

the approximated equilibrium mappings have converged.

4.3 Bond Pricing and Policy Functions

To illustrate the forces at play, I begin the quantitative analysis by studying how the policy
functions shift with different aggregate conditions in a comparative static exercise. Figure
6 presents the bond pricing function as a function of borrowing (b′), and the decision rules
for borrowing and investment as a function of its net liquid asset position (x), for a given
level of productivity z and capital k̂. Moreover, I show how each function shifts with the
efficiency of financial intermediation χ , which is a proxy for credit market conditions, and
aggregate volatility (σz), so there are four lines in each panel, which correspond to four pairs
of aggregate conditions: high credit-low volatility (χH , σL), low credit-low volatility (χL,
σL), high credit-high volatility (χL, σH), and low credit-high volatility (χL, σH). In the low
(high) volatility regimes, I set σz equal to σL (σH). In the high credit supply regimes, χ

equals to its mean µχ ; in the low credit regimes, χ is set to two standard deviations below
the mean.

Panel (a) of Figure 6 plots the price of debt as a function of leverage, for a median level
of z and χ , holding capital level k̂ constant. As expected, the price of debt is decreasing in
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leverage, as the probability of default increases with the level of debt. Moreover, the default
mechanism implies that the price of debt is unambiguously increasing in the efficiency of
financial intermediation, and decreasing in aggregate volatility. As a result, an aggregate
state with low volatility and good credit conditions generates, for any given leverage, the
lowest default probability and hence the highest price of debt.

Figure 6: Debt Pricing Function and Policy Functions

(a) Price of Debt

(b) Borrowing (c) Investment

Note: This figure plots the debt pricing function qb as a function of borrowing b′ (panel (a)), and policy functions for borrowing b′ (panel
(b)) and investment i = k′− (1−δ )k̂ (panel (c)) as a function of net liquid assets x≡ py−Fok̂−b+ â f , at a given level of productivity z
and capital k̂. In each panel, I consider four pairs of aggregate conditions: high credit supply & low volatility (black solid line), low credit
supply & low volatility (black dashed line), high credit supply & high volatility (red solid line), low credit supply & high volatility (red
dashed line).

Panel (b) illustrates the states of the world in which firms do not cut back on debt financ-
ing, despite the lower debt prices. If firms know that they can adjust their asset portfolio as
uncertainties resolve gradually, they may be willing to borrow more – despite the lower debt
prices – when aggregate volatility is high (red lines in panel (b)). This is because firms are
willing to take more risks by front-loading on debt, such that in case favorable conditions
occur, they have sufficient funds to invest and grow. Importantly, this mechanism only works
when the volatility shock hits early on. If, instead, the demand shock becomes more volatile,
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the optimal level of borrowing would be unambiguously lower. This is because firms would
not have any means for self-insurance after the realization of the demand shock, and hence
they would be less willing to take risks ex-ante.

Lastly, panel (c) shows, for different aggregate states, the investment function of a firm
with an average productivity draw. Before the productivity draw, it would have borrowed
more if aggregate uncertainty is high. Nevertheless, the actual level of capital invested
after the productivity draw may not be higher in a more volatile state than a less volatile
one: Unlike in panel (b), the red solid (dashed) line is not uniformly above the black solid
(dashed) line in panel (c). Put differently, the aggregate states in which a firm borrows more
may not be the ones in which it also invests more.

This arises because two forces affect investment in the model. One is the level of total
credit available (leverage effect), and the other is the allocation of credit between investment
and safe asset holdings (asset allocation effect). Although higher uncertainty ex-ante moti-
vates firms to take on risks and issue more debt, they may end up channeling only a small
fraction of the credit to investment at the asset reoptimization stage. This is often the case if
the ex-ante high volatility does not lead to a very favorable productivity draw, but has driven
the firm to take on a large amount of debt, which increases its default probability.

Holding the credit supply condition constant, which of the two effects dominates de-
pends mostly on the productivity draw that the firm receives, and its net liquid asset position,
so the level of investment may be higher or lower in the higher uncertainty states. In a high
volatility state with low χ (bad credit conditions), which makes borrowing more expensive
and default more likely, it is more likely that the asset allocation effect would dominate the
leverage effect. As a result, investment could be hit hard at a time when borrowing remains
relatively high (red dotted line in (b) and (c)).

4.4 Model Fit

Cross-Sectional Moments To examine the firm distribution generated by the model, Table
3 displays the cross-sectional moments, which were not explicitly targeted. For each period,
I compute the medians within each asset class, and Table 3 reports the time series medians
of the variables of interest.

Investment rates are concave in firm size, as in the data. Although smaller firms have
higher incentives to invest due to the decreasing returns to scale assumption, their debt ca-
pacity is lower so their investment is constrained by their ability to borrow. Next consider
the cash to asset ratio, which is decreasing in size in both the data and the model. Smaller
firms hold proportionally more safe assets in the steady state as their default probabilities
are higher. Having a safer asset portfolio thus lowers their cost of borrowing and hence
increases their debt capacity. The model can also capture the cross-sectional patterns of
leverage, whereby larger firms have higher levels of leverage than smaller firms.
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Table 3: Cross-Sectional Moments

Asset Investment (%) Cash/Asset (%) Leverage (%)
Percentile Data Model Data Model Data Model

0−25% 17 14 13 9.6 19 15
25−50% 20 16 8.4 7.2 22 26
50−75% 19 15 5.2 4.0 25 31
75−100% 15 13 3.0 2.1 31 35

Note: This table presents the cross-sectional moments in the data and the corresponding moments generated by the model. For each
variable, I first calculate the median for each group of firms (defined by size) for each quarter. The median of each time series is reported
in the table. Data are from Compustat (1988Q1–2012Q4). See Appendix A for variable definitions.

Firm-Level Correlation Between Spreads and Cash Holdings An important firm-level mo-
ment related to this study is the correlation between bond spread and cash holdings. This
moment was not targeted, and as a check on the model fit, I compute the correlation by cal-
culating first the correlation across time for each firm, and then the median correlation across
firms. The correlation coefficent is 33% in the data, and 47% in the model, and both are sta-
tistically significant at the 5 percent level. This echoes an important finding by Acharya,
Davydenko, and Strebulaev (2012), that firms with higher cash holdings are robustly asso-
ciated with higher credit spreads in the data. This finding may seem counterintuitive at first:
If cash holdings reduce the risk of default, why do “safer” firms with higher cash holdings
have higher spreads? The answer is that asset choices are endogenous in the model, and
safe and liquid assets are more valuable for riskier firms. In contrast, Acharya, Davydenko,
and Strebulaev (2012) show that exogenous variations in cash holdings are negatively (and
significantly) related to bond spreads. To test this hypothesis in the model, I compute a
counterfactual model in which firms can only choose how much to borrow, but not the al-
location of assets. Each firm is endowed with an exogenous level of safe assets, and this
level is randomly drawn from the distribution of safe assets in the baseline model. The
correlation between cash-to-asset and spread becomes significantly negative (−19%) in the
counterfactual model. Therefore, the positive correlation between cash holdings and credit
spreads can be interpreted as evidence for precautionary savings by firms, and emphasizes
the importance of modeling firm’s asset allocation problem.

Business Cycle Moments Lastly, in Table 4 I report the business cycle moments of the
firm balance sheet variables aggregate across all public firms. Specifically, I focus on the
aggregate investment rate, total cash held by public firms to total assets, and total debt to
total assets. Each series corresponds to the four-quarter rolling growth in the data as well as
the model. I compute the correlation of each variable with the growth rate of output, as well
as their standard deviations relative to output.
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Table 4: Business Cycle Moments

Corr. with Output (%) Relative Std. Dev.
Data Model Data Model

Investment (%) 71 94 2.7 5.1
Cash to Asset (%) -14 -30 5.0 5.4
Leverage (%) -18 -25 0.7 1.9

Note: This table reports the correlations of investment, cash to asset, and leverage with output, and the standard deviations of the series
relative to output, in the data as well as the model. Each series corresponds to the four-quarter rolling growth. Data are from BEA (output)
and Compustat (all other variables), aggregated across all non-financial public firms between 1988Q1 and 2012Q4. See Appendix A for
variable definitions.

Unlike traditional business cycle studies, the data sample here consists of only public
firms. Nonetheless, as expected, investment is strongly positively correlated with output,
and approximately three times as volatile. Both cash to asset and leverage ratios are coun-
tercyclical, but the cash ratio is much more volatile than the leverage ratio. This validates
the key assumption in the model, that it is easier for firms to adjust the asset-side of their
balance sheets than the liability-side.

In the model, the cyclical patterns of borrowing and savings are similar to the patterns
in the data, without exogenously imposing financing costs or returns to safe assets that are
time-varying. The relative standard deviations are somewhat higher in the model than in the
data, especially for investment and leverage. For investment in capital, there are two margins
of adjustments: before any shock realization and before the demand shock. For leverage, it
could be because that debt contracts are one-period and they are the only source of external
financing, which are simplifying assumptions to facilitate computation. Nevertheless, the
model is capable of generating the correct ranking of volatilities among these three variables.

4.5 Impulse Response Functions

Next I study the impulse response functions for firms’ borrowing, savings, investment, and
output at the aggregate level, in response to a combination of one-time financial and uncer-
tainty shocks.15 I illustrate the importance of the borrow-to-save mechanism by contrasting
the responses in the baseline model to the ones in a counterfactual model without optimal
asset choices. Then I show that the mechanism helps to generate a much slower recovery
than in a standard debt finance model where firms only borrow to invest. Lastly, I show why
both financial and uncertainty shocks are required to generate the public firms’ financing
and investment patterns observed in the data.

Borrowing to Save I simulate an economy of 3,000 firms for 10 years at the quarterly
frequency, and I repeat the procedure 50,000 times. In each simulation the model is hit with

15See Appendix B for the computation of the impulse response functions.
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an uncertainty shock (σt = σH) in the 5th quarter, and simultaneously, a financial shock of
about three standard deviations, so the aggregate investment rate (I/K)t declines by approx-
imately 25 percent upon impact. This matches the percentage decline in investment rate
by the non-financial public firms between 2008Q4 and 2009Q1.16 Figure 7 compares the
impulse response functions in the baseline model (black solid lines) with those in a counter-
factual model in which firms do not choose their asset portfolios endogenously (blue dotted
lines). For the latter, the level of liquid assets held by each firm is exogenously fixed at the
pre-shock level. The main difference between the two models is that investment and bor-
rowing diverge in the baseline, but not in the counterfactual. This is the borrowing to save
mechanism illustrated in Section 2.

An unexpected increase in the volatility of the idiosyncratic productivity shocks, ce-

teris paribus, increases borrowing by firms, if they have the opportunity to adjust their asset
allocations. A negative financial shock affects firms’ ability to borrow by decreasing the
amount of assets that investors can seize upon default. This implies higher costs of bor-
rowing, which reduce the default thresholds, for any given level of debt. Together with an
increase in borrowing, firms’ default probabilities increase as a result of the two shocks.
With the opportunity to optimize their asset portfolios, firms increase holdings of liquid as-
sets for insurance, as they trade-off higher profits against higher probabilities of survival.
As illustrated in Figure 6, the financial shock plays an important role in determining which
effect dominates quantitatively, and whether investment decreases despite the increase in
borrowing.

If firms do not have the opportunity to optimize their asset portfolios after the shocks,
both investment and borrowing fall in response to higher uncertainty and credit tightening
– as is the case in the counterfactual model – so the shocks propagate to the real side via a
contraction in the quantity of credit. While this mechanism is quantitatively significant and
matches the Flow of Funds data for US firms as a whole, it is not adequate for explaining
the behavior of public firms during the recession (see Table 1).

Quantitatively, the decline in investment in the baseline model is 28% (= 1− 17.3
24 ) greater

than in the counterfactual model, which is the size of the borrow-to-save mechanism in the
model. Since the model is calibrated to the sample of public firms, which were responsible
for 89% of the decline in aggregate investment (public and private firms), a back-of-the-
envelope calculation suggests that borrowing to save can explain about 25%(= 0.28× 0.89)
of the decline in aggregate investment at the height of the recession.

Propagation Mechanism & Slow Recovery Figure 8 illustrates how adding optimal portfolio
choice helps to generate a slower recovery from temporary shocks. While the half-lives of
the volatility and financial shocks are about 4.5 quarters, the half-life of output is 7.5 quarters

16This is calculated from the quarterly Compustat database for all non-financial corporate businesses.
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Figure 7: Baseline Model
Impulse Response Functions to a Financial Shock

Combined with an Uncertainty Shock Before Asset Reoptimization

(a) Investment (b) Debt

(c) Output (d) Liquid Assets

Note: This figure shows the impulse response functions to a temporary financial shock about three standard deviations in the 5th quarter,
and simultaneously, the economy switches to the high volatility regime with σ = σH . The black solid lines depict the baseline model,
whereas the blue dotted lines show the responses in a counterfactual model in which the level of liquid assets held by each firm is
exogenously fixed at the pre-shock level.
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Figure 8: Slower Recovery
Impulse Response Functions to a Financial Shock

Combined with an Uncertainty Shock Before Asset Reoptimization

(a) Investment (b) Debt

(c) Output (d) Liquid Assets

Note: This figure shows the impulse response functions to a temporary financial shock about three standard deviations in the 5th quarter,
and simultaneously, the economy switches to the high volatility regime with σ = σH . The black solid lines depict the baseline model. The
green solid lines show the responses in a counterfactual model without adjustment costs (but firms still choose their allocations between
safe assets and capital). The red dotted lines show the responses in a counterfactual model without portfolio choice, i.e. firms only borrow
to invest in capital, as in a standard debt financing model.
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in the baseline model with safe assets. In addition, I plot the impulse response functions from
two counterfactual models: a version of the baseline model without adjustment costs, and
another version in which firms do not have the option to accumulate safe assets; that is, only
borrow to invest.17 The slower rate of adjustment back to the pre-shock level is partly due
to the additional adjustment frictions at the portfolio reoptimization stage. However, even
in the model without adjustment costs (green solid lines), the transition is slower than the
model without asset choices (red dotted lines).

This shows that the propagation of a negative credit shock is much slower in a model
where firms hold safe assets. In both worlds (with or without safe assets), the negative fi-
nancial shock reduces firms’ profits and hence net worth. However, it takes longer for their
net worth to grow back in the world with safe assets. I illustrate the reason for the slower
growth of net worth in Figure 4 of Section 2: In any given period, a firm with safe assets
make less profit than a firm with the same amount of capital but no safe asset. Since safe
asset accumulation slows down equity growth, it takes longer for firms to grow out of their
borrowing constraints, so the effect of a financial shock lasts for longer, even in the absence
of external adjustment frictions.

Why These Two Shocks? Figure 9 illustrates why a combination of first- and second-
moment shocks is most suitable for mapping the model to data on public firms. An increase
in the uncertainty level before asset reoptimization encourages firms to take more risks and
increase borrowing. Ceteris paribus, a more indebted firm with a higher default probability
also saves more. However, with more funds available, the level of investment in capital
may or may not be lower. A negative financial shock ensures that there is a substantial
reallocation from capital to safe assets, which dominates the effect of having more funds
available for investment.

Nonetheless, for the borrowing to save mechanism, the negative first moment shock
does not have to be a financial shock. For instance, if one replaces the idiosyncratic demand
shock after asset reoptimization with an aggregate demand shock, and models the crisis
as a reduction in demand combined with an increase in uncertainty, the borrowing to save
mechanism would still be present, since the negative demand shock would also motivate
firms to reallocate their assets from productive capital to safe assets. Here I chose to model
the negative aggregate shock as a financial shock following the evidence from Adrian, Colla,
and Shin (2012), that the Great Recession originated from a credit supply shock in the
banking sector.

It is important to point out that the timing of the uncertainty shock is crucial to this
mechanism. If the increase in uncertainty happens after firms have the chance to reoptimize

17This is slightly different from the counterfactual exercise in Figure 7, in which firms still hold safe assets in their
portfolio, although the levels are fixed at the pre-shock levels.
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Figure 9: Impulse Response Functions to Different Shocks

(a) Investment (b) Debt

(c) Output (d) Liquid Assets

Note: This figure shows the impulse response functions in three versions of the model: the black solid lines denote the baseline model
with a one-period financial shock (of three standard deviations) and volatility shock; the green lines denote a counterfactual model with
a one-period financial shock (of three standard deviations) only; the red dotted lines denote another counterfactual model with only the
volatility shock.
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their asset portfolios – or, if there is no asset allocation problem altogether – then firms would
be discouraged from risk-taking, resulting in lower debt issuance and output simultaneously,
echoing the findings in Arellano, Bai, and Kehoe (2018). The asymmetric impact of the
volatilities of the first and second shock was demonstrated in Panel (b) of Figure 3.

5 Extended Model: Adding Debt Substitution

In this paper, I argue that the borrow-to-save mechanism has a cyclical nature, and is not
specific to the Great Recession. Recall from Figure 1 that borrowing and investment by the
US public firms have diverged in each recession since 1990. Nonetheless, the impact of
the mechanism was much more significant during the Great Recession than in earlier crises.
Part of the reason was the magnitude of the financial shock and the heightened uncertainty at
the beginning of the crisis. Moreover, as shown by Becker and Ivashina (2014) and Adrian,
Colla, and Shin (2012), a significant fraction of public firms substituted from bank loans
to bonds during the crisis. I illustrate in this section that, due to the trade-offs between
loans and bonds, adding debt substitution into the model can amplify the borrow-to-save
mechanism, resulting in a longer-lasting recession.

5.1 Adding Debt Substitution to the Quantitative Model

The model set-up remains the same as in Section 3, with two exceptions. First, the inter-
mediate good firms now choose not only the level of debt, but also the composition of debt.
There are two types of debt: bank debt (b) and market debt (m). I model the trade-off be-
tween bank debt (b) and market debt (m) and the debt settlement process following Crouzet
(2018). Specifically, on the one hand, bank debt is more flexible than market debt as only
the former can be restructured when a firm is at the risk of default. On the other hand, the
cost of intermediation per unit of lending is always higher for bank lenders (γb) than for
market lenders (γm), due to the more costly bank-specific activities such as screening and
borrowing.

Second, here I model the Great Recession as an asymmetric “financial” shock to the
supply of bank debt, but not market debt, following the argument of Adrian, Colla, and Shin
(2012). Bond issuance is only indirectly affected, as public firms took advantage of their
access to the bond market and issued bonds in large quantities. Specifically, I define the
wedge between the intermediation costs as γ∗ = γb− γm, and use this instead of the recovery
rate in default χ as the financial shock in the extended model. Similar to χ , γ∗ follows an
AR(1) process:

logγ
∗′ = γ̄

∗+ργ logγ
∗+σγε

′
γ ; ε

′
γ ∼ N(0,1).

The main difference from the baseline model is that now the firm has three options
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at the debt settlement stage (see Figure 5): full repayment, debt restructuring, or default.
If it chooses to restructure its debt to avoid default, it enters a debt-renegotiation process
with the bank lenders. Following the debt restructuring procedure in Crouzet (2018), two
sets of possible equilibria arise, such that restructuring may occur in one (R-contract) and
never occurs in the other (NR-contract), and the latter arises when the stake of the flexible
creditors, b′, is too small for restructuring to bring about sufficient gains for the firm to avoid
default on market debt.

As a result, instead of having one debt price in the baseline (12), there are four debt prices
(two for each type of debt) in the extended model. If m′

1−χ
> b′

χ
(NR-contract), restructuring

never occurs, and the debt prices are:

qb
NR + γ

b = E

[
λ (s,s′)

(∫
ε ′z

∫
ψ ′NR

dF(ε ′z|σz)dF(ψ ′)+
∫

ε ′z

∫
ψ ′NR χπ ′

b′
dF(ε ′z|σz)dF(ψ ′)

)∣∣∣∣∣z,s
]
,

qm
NR + γ

m = E

[
λ (s,s′)

(∫
ε ′z

∫
ψ̄ ′NR

dF(ε ′z|σz)dF(ψ ′)+
∫

ε ′z

∫
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dF(ε ′z|σz)dF(ψ ′)
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]
.

If m′
1−χ
≤ b′

χ
(R-contract), restructuring may occur, and the debt prices are:

qb
R + γ

b = E

[
λ (s,s′)

(∫
ε ′z

∫
ψ̄ ′R

dF(ε ′z|σz)dF(ψ ′)+
∫

ε ′z

∫
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[
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(∫
ε ′z

∫
Ψ
′
R

dF(ε ′z|σz)dF(ψ ′)
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]
.

π ′ denotes the firm’s current assets, as previously defined, and the expressions for the four
thresholds (ψ ′

NR
, ψ̄ ′NR,ψ

′
R
, ψ̄ ′R) are in Appendix B.3. Importantly, the timing of an interme-

diate goods firm’s problem is exactly the same as in the baseline model (see Figure 5), and
so is the problem of the entrants. The value functions of the incumbent intermediate goods
firms are written out in Appendix B.3.

5.2 Calibration and Model Fit

Compared to the baseline model, the additional parameters are {γ̄∗,σγ ,ργ ,γ
m}, whereas

{ρχ ,σχ}, which were externally calibrated, no longer apply here. Among the new parame-
ters, γm is exogenously calibrated; {σγ ,ργ} are estimated from data; and γ̄∗ is calibrated with
the rest of the parameters to jointly target moments.

Since the financial shock in the extended model is an unexpected tightening of credit sup-
plied by banks, I use data from the Federal Reserve’s Senior Loan Officer Opinion Survey
of Bank Lending Practices (SLOOS) to calibrate {σγ ,ργ}. This survey queries participating
banks to report whether they have changed their standards during the survey period. To
identify the component of the change in lending standards that is orthogonal to the determi-
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Table 5: Parameters from Moment Matching in Extended Model

Parameter Description Statistic (%) Target Moment

σH = 0.28, σL = 0.19 Volatility levels Invest IQR mean & std. 15 & 2.7 13 & 2.9
πHH = 92, πLL = 93 Transition probabilities Invest IQR auto. & skew. 87 &−4.8 93 & 1.2
Fo = 0.48 Operating cost Cash to asset median 10 7.6
χ = 0.64 Recovery rate Leverage median 25 29
µψ =−0.17 Demand shock (mean) Spread median 3.3 2.8
σψ = 0.23 Demand shock (std.) Spread std. 1.8 1.4
γ̄∗ = 0.03 Wedge (mean) Frac of bonds (median) 58 64
fe = 10.42 Entry cost Entrants lev (rel.) 65 61
ξ = 2.87 Pareto distribution Entrants invest (rel.) 1.8 1.5

Note: This table presents the parameters from the moment-matching in the extended model. All data moments, except those on credit
spreads, are constructed from the quarterly Compustat sample for US non-financial public firms with data available on debt compositions
from Capital IQ between 2006 and 2014. Credit spreads data come from The Bank of America Merrill Lynch Indicators. Firm-quarter
observations are included if total assets, cash and marketable securities, debt in current or long-term liabilities, capital expenditures, net
property, plant and equipment, and debt compositions are non-missing. See Appendix A for detailed variable definitions.

nants of loan demand, I estimate a VAR(1) specification with quarterly data on macroeco-
nomic variables—including log real GDP, log GDP deflator, the shadow federal funds rate
of Wu and Xia (2016) —and the net percent of banks reporting tightening standards between
2006Q1 and 2014Q4. The credit variable is ordered after the macro variables. This yields
ργ = 0.94 and σγ = 0.07, which are within the range reported in the literature.

As a proxy for the intermediation cost of market debt, I use existing estimates of under-
writing fees for corporate bond issuances, and set γm = 0.01, as in Crouzet (2018). Instead of
measuring analogously intermediation costs of banks – for example from operating expenses
reported in income statements of commercial banks – I calibrate the wedge in intermediation
costs γ̄∗ by matching the average fraction of bank debt among non-financial corporations in
the US.18 All targeted moments in the extended model are reported in Table 5. The data
moments are computed from a subset of firms included in the baseline model calibration,
including all non-financial US firms with data available on debt compositions from Capi-
tal IQ. As the focus is on the Great Recession, the sample period is between 2006Q1 and
2014Q4.

To check the model fit, Table 6 reports the cross-sectional moments in the model and
the data. Compared to Table 3, the new moment here is the fraction of bonds for each asset
class. In the data, smaller firms (<50%) have lower fractions of bonds than larger firms,
which is also the case in the model, since smaller firms are more likely to default so would
value the flexibility of bank loans more than larger firms. Similar to the baseline model,
the extended model can also capture the cross-sectional patterns of investment rates, cash to
asset ratios, and leverage ratios.

18It is difficult to obtain a clean measure of banks’ intermediation cost from the data directly as operating expenses of
banks can be associated with other non-lending activities.
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Table 6: Cross-Sectional Moments in Extended Model

Asset Investment (%) Cash/Asset (%) Leverage (%) Bond Frac. (%)
Percentile Data Model Data Model Data Model Data Model

0−25% 13 12 15 11 21 25 48 54
25−50% 18 14 13 8.4 23 26 41 57
50−75% 18 13 8.2 7.1 26 29 65 64
75−100% 16 11 6.9 6.3 28 31 87 71

Note: This table presents the cross-sectional moments in the data and the corresponding moments generated by the model. For each
variable, I first calculate the median for each group of firms (defined by size) for each quarter. The median of each time series is reported
in the table. Data are from Compustat and Capital IQ (2006Q1–2014Q4). See Appendix A for variable definitions.

5.3 Amplification of the Borrow to Save Mechanism

Figure 10 presents the impulse response functions in the extended model, for firms’ bor-
rowing, savings, investment, and output in response to a combination of one-time financial
and uncertainty shocks. Contrary to the baseline model where the financial shock is an un-
expected tightening of all firms’ borrowing capacity, here the financial shock is unexpected
increase in the wedge between bank and bond intermediation costs. This facilitates the
switch from bank finance to bond finance, as we observed during the crisis (see Figure 2 in
Adrian, Colla, and Shin (2012)). The financial shock is approximately two standard devia-
tions in size, such that the decline in investment in the first quarter is similar to the decline
in the data between 2008Q4 and 2009Q1.

Like in Figure 7, Figure 10 compares the impulse responses in the extended model as
described (black solid lines) with those in a counterfactual model (blue dotted lines) holding
the fraction of liquid assets constant at the pre-shock level, i.e. firms cannot choose their
asset portfolios optimally. If firms can adjust the compositions of both their assets and
liabilities (extended model), both of their borrowings and liquid asset holdings increase by
more than if they can only adjust the composition of their assets (baseline model). As the
financial shock only directly affects the bank lenders and firms can substitute into bonds, it
is straightforward to see why firms would increase borrowings by more when uncertainty
resolves gradually. The impact on liquid asset holdings is more subtle, and arises because
of the interaction between debt substitution and asset reallocation. In the extended model,
when the cost of bank debt increases unexpectedly, a significant fraction of firms switch
from a NR-contract with mixed debt to an R-contract with only bonds, and consequently,
they lose the ability to restructure debt when they are at risk of default. As a result, debt
substitution amplifies the importance of precautionary savings.19

19The switch to R-contract resembles the outcome in Crouzet (2018), but the consequence of the switch has different
implications here. In Crouzet (2018), firms reduce their level of borrowing by more when they substitute into bonds than
when they cannot substitute, as they take into account that they no longer have the option to restructure debt. In this
model, firms decrease their borrowing by less when they substitute into bonds. This difference arises because of the shock
structure here. When firms know that they can reoptimize their asset portfolios, they prefer to switch to bonds and maintain
their level of debt ex ante than to cut borrowing straightaway. Unlike the setting in Crouzet (2018), this framework shows
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Figure 10: Extended Model (With Debt Substitution)
Impulse Response Functions to a Financial Shock

Combined with an Uncertainty Shock Before Asset Reoptimization

(a) Investment (b) Debt

(c) Output (d) Liquid Assets

Note: This figure shows the impulse response functions to a temporary shock to the relative supply of bank credit (modeled by the wedge
γ∗) in the 5th quarter, and simultaneously, the economy switches to the high volatility regime with σ = σH . The size of the financial shock
is approximately two standard deviations. The black solid lines depict the responses in the extended model (with debt substitution as well
as asset optimization); the blue dotted lines show the responses in a counterfactual version of the extended model, with debt substitution
but no asset optimization.
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Overall, the counterfactual (without borrowing to save) here can account for two-thirds
of the decline in the extended model, compared to 72 percent in the baseline model. This
shows that adding debt substitution can amplify the impact of the borrowing to save channel.
Recall that public firms accounted for 89% of the total decline, this extended model suggests
that the borrowing to save channel can explain up to 30% of the total decline in investment at
the height of the recession. Since firms have a higher fraction of safe assets in the extended
model than in the baseline, firm growth and the transition back to the pre-shock level are
also slower than in the baseline model. The aggregate shocks have a half-life of about 11
quarters, whereas the half-life of output – when firms choose their asset portfolios optimally
– is about 19 quarters.

6 Concluding Remarks

This paper argues that fluctuations in investment are not necessarily driven by fluctuations
in the quantity of credit. Evidence from the Compustat sample shows that the borrowing
and investment decisions of U.S. public firms, on average, diverged in each recession over
the past 30 years. Instead of investing, they borrow to finance the accumulation of safe
assets. Existing models of financial frictions cannot account for this, as firms only borrow
to invest in these models, so changes in investment and borrowing are typically one-for-one.
Since the sample of firms accounted for 70 percent of the total investment of the universe of
U.S. non-financial corporate businesses reported in the Flow of Funds in 2007, and almost
90 percent of its decline between 2007 and 2009, it is important to study the investment
behaviors of public firms for understanding a great deal of business cycle fluctuations.

Motivated by such evidence, this paper proposes an incomplete-markets model to ex-
plain why firms would borrow to save at a time when credit spreads are high and the risk-
free rate is depressed. Instead of borrowing to invest, firms borrow for liquidity, but such
liquidity could be used to either invest or increase assets, depending on the realization of
their uncertainty. Since firms are loaded with debt, any financial shock that increases their
costs of borrowing and hence default probabilities will incentivize them to accumulate safe
assets to avoid costly default. Moreover, adding safe assets to firms’ portfolios implies that
conditional on survival, firms earn less profit and hence equity growth is slower. Hence with
borrowing to save, the effects of financial frictions and financial shocks are amplified, and
more persistent, in recessions.

The quantitative framework developed in this paper can be extended in several dimen-
sions. For example, I show how adding debt substitution, as we observed during the Great
Recession, can amplify the borrowing to save mechanism due to the trade-off of bonds and
loans. Finally, a missing element in the analysis is policy. An interesting extension would

that the bond market can act as a “spare tire” when the banking sector is impaired (results available upon request).
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be to examine the role of monetary policy that may potentially change the mix of assets held
by the firms.
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A Data Appendix

A.1 Data Sources and Variable Definitions

• Table 1: Data for all US non-financial corporate businesses are from the (annual) Fi-
nancial Accounts Z.1: Debt is the sum of commercial papers, municipal securities,
corporate bonds, loans, depository institution loans n.e.c., and other loans and ad-
vances; Real Investment is total capital expenditures; Liquid Assets are the sum of check-
able deposits and currency, total time and saving deposits, money market fund shares,
commercial paper, Treasury securities, municipal securities, mutual fund shares, and
security repurchase agreements. Data for public firms are from the annual Compustat
database. The sample consists of US non-financial firms (excluding SIC codes 6000-
6999) with non-missing and positive total assets, and non-missing firm characteristic
variables considered in the study between 1988 and 2012. Debt is the sum of debt
in current liabilities and long-term debt; Real Investment is the sum of capital expen-
ditures and acquisitions, less sales of property, plants and equipment; Liquid Assets

are cash and marketable securities. The series for non-public firms are constructed
as the difference between the two samples. The annual growth rate of each series is
computed as the difference in logs between 2007 and 2009.

• Figure 1: This figure plots the mean levels of Debt, Real Investment, and Liquid Asset

Ratio from the Compustat sample described above, after winsorizing each variable
at the 1st and 99th percentiles. The cyclical component of the Liquid Asset Ratio is
extracted from an HP filter (with lambda = 100).

• Tables 2 & 3: All data moments, except those on credit spreads, are constructed from
the quarterly Compustat database for all US non-financial public firms between 1988

∗Correspondence: Jasmine.Xiao@nd.edu.
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and 2012. Firm-year observations are included if total assets, cash and marketable
securities, debt in current or long-term liabilities, capital expenditures, and net prop-
erty, plant and equipment are non-missing. Following Bloom (2009), Investment for
firm i at time t is defined as (I/K)i,t = Ii,t/(0.5(Ki,t +Ki,t−3)), where capital Ki,t is calcu-
lated by the perpetual inventory method: Ki,t = (1− δ )Ki,t−3(Pt/Pt−3)+ Ii,t , initialized
using the net book value of capital. Leverage is the ratio of total debt (the sum of debt
in current liabilities and long-term debt) to total assets. Cash to Asset is the ratio of
cash and marketable securities to total assets. Credit spreads data are from The Bank
of America Merrill Lynch Indicators between 1997 (the earliest available) and 2012.
This dataset gives the bond spread for each rating in a particular quarter. To obtain
the data moments on Spread, I first merge the Compustat sample with the Capital IQ
database to obtain firm ratings, and then merge it with the BofAML data on the spread
for each rating.

• Table 4: Data for Investment, Cash to Asset, and Leverage are from Compustat (de-
fined above), aggregated across all non-financial public firms with non-missing and
positive total assets, and non-missing firm characteristic variables between 1988 and
2012. Data for output are from the BEA. I calculate the year-on-year growth rates of
investment, cash to asset, and leverage, respectively, and compute the correlations of
each with the growth rate of output for Correlations with Output, or the ratio of each to
the growth rate of output for Relative Standard Deviations.

• Tables 5 & 6: The construction of variables follows the same procedure as for Table
2, but the sample is different. The sample here is a subset of the sample for Table 2: I
include all quarterly observations in Compustat with data available on debt composi-
tions from Capital IQ between 2006 and 2014. Firm-quarter observations are included
if total assets, cash and marketable securities, debt in current or long-term liabilities,
capital expenditures, net property, plant and equipment, and debt compositions are
non-missing. Fraction of Bonds is the ratio of bonds to the sum of bonds and loans.
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A.2 Evidence for Assumption 1 (Portfolio Adjustment)

To test the validity of assumption 1, I compute, for the median firm of each quartile of firms
by assets, the coefficient of variation (standard deviation divided by the mean) for: (i) cash
as a proportion of total assets (column (1)), (ii) total capital expenditures as a proportion of
total assets (columns (2)), (iii) total debt as a proportion of total assets (columns (3)), using
the annual Compustat dataset for US non-financial firms with non-missing and positive total
assets, book leverage above 5 percent, and non-missing firm characteristic variables between
1988 and 2012. The results are reported in Table A.1, which shows that the coefficient of
variation (standard deviation divided by the mean) for cash is consistently higher than the
correlation of variation for debt, across all definitions of debt and all quartiles of firms, and
the differences (columns (4) and (5)) are significant at the 1 percent level.

Table A.1: Variations in Cash Holdings, Capital Expenditures, and Debt Financing

Asset
Percentile

Cash Capex Debt Cash−Debt Capex−Debt

(1) (2) (3) (4) (5)

[0,100] 0.6688 0.5537 0.3455 0.3233 0.2081
[0,25] 0.7128 0.7683 0.5005 0.2122 0.2678
[25,50] 0.5272 0.5248 0.3387 0.1885 0.1861
[50,75] 0.5628 0.4179 0.2450 0.3179 0.1730
[75,100] 0.6665 0.3558 0.2047 0.4619 0.1511

Note: The data sample includes all Compustat firm-year observations from 1988 to 2012 with positive values for the book value of total
assets, except for financial firms (SIC code 6000-6999) and firms with book leverage below 5% or missing firm characteristic information
(on cash, investment, or debt). Columns (1)–(3) report the coefficient of variation (standard deviation divided by the mean) for cash-to-
asset, capital expenditures-to-asset, and debt-to-asset, respectively, for the median firm in the corresponding sample. Column (4) reports
the difference between cash-to-asset (1) and debt-to-asset (3). Column (5) reports the difference between capital expenditures-to-asset (2)
and debt-to-asset (3). Each row reports the statistics for the sample defined by the asset percentile. Differences significant at 1 percent are
in bold.
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B Model Appendix

B.1 Computation

The model is solved using the algorithm developed by Krusell and Smith (1998), in two
loops: an inner and an outer loop. The algorithm begins with guessing the initial coeffi-
cients and initializing the forecast rules Γ̂

(1)
p , Γ̂

(1)
K , and Γ̂

(1)
B . In the inner loop, I solve each

firm’s optimization problem iteratively until convergence, taking as given Γ̂
(1)
p , Γ̂

(1)
K and Γ̂

(1)
B .

In the outer loop, based on the converged decisions from the inner loop and an initial distri-
bution of firms µ0(z,x, k̂), I simulate the economy for T periods and obtain firms’ borrowing,
default, investment, and saving decisions in each period. Based on the simulated data and
the market clearing conditions, I update the forecast mappings to obtain Γ̂

(2)
p , Γ̂

(2)
K , and Γ̂

(2)
B .

The procedure is repeated until the approximate mappings converge.
I discretize the state space of the idiosyncratic firm problem before solving the inner

loop. As noted in the main text, I assume a two-state Markov process for uncertainty σ , and
the intractable cross-sectional distribution µ is approximated with the current aggregate cap-
ital level K, the current aggregate debt level B, and the lagged uncertainty state σ−1, so the
aggregate state vector s is approximated by (χ,σ ,ah,σ−1,B,K). Using the Gaussian quadra-
ture method, the exogenous aggregate state variable χ is discretized into 4 grid points, and
the exogenous idiosyncratic productivity process z is discretized into 5 grid points for each
level of volatility σ−1. I discretize the endogenous idiosyncratic state x into 15 endogenous
grids that depend on the shock z and the aggregate state vector s, and the other endogenous
state k̂ has 40 gridpoints. The demand shock ψ , which is not a state variable, is discretized
into 100 gridpoints for evaluating the integrals in the firm’s value. Given this discretization,
the value functions are computed with Howard’s improvement step. The value functions in
between grid points are interpolated using a multivariate tensor product spline approxima-
tion.

In the outer loop, I simulate an economy for T = 2,000 quarters. For each period t, each
firm’s policy functions (b′,k′,a′f , k̂

′, â′f ) must be consistent with the market clearing, which
occurs when the consumption level C implied by the market-clearing marginal utility price p̃

is equal to 1/ p̃. To ensure this when the excess demand function may contain discontinuities,
I employ the market-clearing algorithm outlined in the Appendix of Bloom et al. (2018).
First, define a grid for the marginal utility price p̃, and compute firms’ policy functions and
consumption level C for each of the 30 grid points of p̃. For prices outside the initial grid, I
approximate the consumption values C̃ with shape-preserving piecewise cubic interpolation,
and I use this to define a continuous excess demand function e(p̃) = 1/p̃− C̃(p̃), which is
used to solve for the market-clearing price p∗ that generates e(p∗) = 0. The next period’s
firm distribution µ ′ and aggregate capital K′ are updated in a way that is consistent with the
construction of the excess demand function (see Bloom et al. (2018)).
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These simulated series are conditioned upon the equilibrium mappings Γ̂
(1)
p , Γ̂

(1)
K , and

Γ̂
(1)
B . To update the mapping coefficients A(σ ,σ−1), B(σ ,σ−1), and C(σ ,σ−1) for each dis-

crete pair (σ ,σ−1), I run the following OLS regressions on a subset of the simulated data,
after discarding the first 100 quarters to remove the influence of the initial conditions:

log p

log K̂′

log B̂′

= A(σ ,σ−1)+B(σ ,σ−1)

[
log K̂

log B̂

]
+C(σ ,σ−1)

[
log χ

logz

]
.

The procedure is repeated until the forecast mapping has converged, which is when the
change in the accuracy of the forecast system is less than a predefined tolerance (see Den Haan
(2010)).

Having obtained the solution to the model, I compute the impulse responses to an aggre-
gate uncertainty shock, and simultaneously, an aggregate financial shock, by simulating an
economy for N = 3000 (firms) and T = 40 (quarters). To remove the effect of sampling vari-
ation associated with the idiosyncratic technology shock, I repeat the procedure M = 50,000

times. The aggregates evolve normally until the shock period Tshock = 5. In the shock period,
the economy switches to the high uncertainty state, and simultaneously, I impose a negative
aggregate financial shock of approximately three standard deviations. The aggregate shocks
are then allowed to die out according to the specified laws of motion over the remainder of
the impulse response horizon. Denote the period t response of an aggregate variable X to
the aggregate shocks as X̂t . It is computed as the percentage deviations from the pre-shock
level:

X̂t = 100× log

[
X̄t

X̄Tshock−1

]
, for t = 1,2, ...,T,

with X̄t =
1
N

1
M ∑

M
m=1 ∑

N
n=1 Xm,n,t denoting the average level of the series in period t, and X̄Tshock−1 =

1
N

1
M ∑

M
m=1 ∑

N
n=1 Xm,n,Tshock−1 denoting the average level of the series in the pre-shock period.

As usual with the Krusell-Smith approach, I check the accuracy of the forecasting system
using two standard metrics: Table B.1 reports the R2 of each predictive regression for p, K̂′, B̂′

(for each pair (σ ,σ−1)) and the percentage root mean standard errors of the predictions. As
shown in the table, the forecasting rules are fairly accurate, as evidenced by the R2 close to
1 and the root mean standard errors not higher than 0.524%. According to these metrics,
the solution of the model is likely to be a good approximation of the model’s true rational
expectations equilibrium.

Furthermore, I also consider the dynamic forecast accuracy metrics following Den Haan
(2010). Specifically, the forecasted value of p for period t is used to forecast a value for
period t + 1, and I iterate this procedure forwards to any desired horizon, using only the
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Table B.1: Internal Accuracy Statistics for the Approximate Equilibrium Mappings

log p log K̂′ log B̂′

(σ ,σ−1) R2 RMSE(%) R2 RMSE(%) R2 RMSE(%)

(1,0) 0.9975 0.27 0.9891 0.45 0.9954 0.31
(0,1) 0.9981 0.21 0.9925 0.37 0.9967 0.29
(0,0) 0.9748 0.52 0.9913 0.39 0.9921 0.37
(1,1) 0.9962 0.31 0.9874 0.48 0.9881 0.46

Note: Each row in the table above displays the performance of the equilibrium mapping conditional upon a subsample of the data
characterized by a given (σ ,σ−1). RMSE represents the root mean squared error of the indicated rule’s one-period ahead forecasts, and
the R2 measure is computed from the log-linear regression on the appropriate subsample of simulated data.

realized values of exogenous aggregate states. Table B.2 reports the Den Haan accuracy
statistics for p at various horizons, including the mean and maximum errors in the dynamic
forecasts, which are given by:

εmax = 100×max
∣∣ log(pDH

t )− log(pt)
∣∣

εmean = 100× 1
T −1

T

∑
t=2

∣∣ log(pDH
t )− log(pt)

∣∣.
The average forecasting error for price at a horizon of 3 years is 0.72%. This is fairly com-
parable to the dynamic forecast errors in other investment models with multiple shocks. For
instance, Khan and Thomas (2013) report a mean dynamic forecast error of 0.8%; Bloom
et al. (2018) report a mean error of 0.63%.

Table B.2: Dynamic Forecast Accuracy Statistics

Den Haan statistic (%) 3 Years 4 Years 5 Years 6 Years

εmean 0.72 0.85 0.94 1.03
εmax 1.50 1.72 1.98 2.23

Note: This table reports the Den Haan (2010) accuracy statistics for the forecasting system for the market-clearing marginal utility price
p. The statistics, εmax and εmean, are based on forward iteration of the forecasting system for marginal utility to a specific future horizon
(3/4/5/6 years), substituting n-period ahead forecasts as inputs for n+1-period ahead forecasts.
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B.2 Adding Equity Financing

In order to focus on debt financing, the model in the main text is abstract from equity fi-
nancing. This section assesses how equity financing affects the borrowing to save channel.
Firms can now raise two types of external financing: debt and equity. To motivate trade-
offs between equity and debt, I assume that equity issuance is costly, such that the value of
existing shares is reduced by more than the amount of newly issued shares. This is known
as “equity dilution cost” and is typically modeled as a constant marginal cost of equity is-
suance (see, for instance, Cooley and Quadrini (2001)). The loss in the value of existing
shares associated with the amount e of newly issued equity is given by:

ξ̄ (e) = e+ξ max{e,0} (B.1)

where ξ measures the degree of frictions in the stock market, and e denotes either the value
of newly issued shares (e > 0) or the value of share repurchases (e < 0), which are equiva-
lent to dividend payments. Firms face a minimum dividend constraint, which captures the
prevalence of dividend-smoothing policies in the data:

d ≥ d ≥ 0. (B.2)

The firm’s dividend can now be written as:

d = p(ψ)y(z(σ−1))−Fok̂−b+ â f −υg(k′, k̂)+qbb′−qaa′f + e

= x−υg(k′, k̂)+qbb′−qaa′f + e.

The firm’s recursive problem (after the exogenous exit shock) now becomes:

V 1(z, k̂,x;s) = max
d,e,k′,b′,a′f

{
d− ξ̄ (e)+E

[
λ (s,s′)V̂ 0(a′f ,k

′,b′,z′;s′)

∣∣∣∣∣s
]}

,

subject to (B.1), (B.2), the cost of adjusting capital (17), the price of debt (12) and risk-free
rate (16), and the aggregate law of motion s′ = Γ(s).

As the model is in general equilibrium, the addition of equity financing also affects the
household’s problem, who solves:

W (ah;s) = max
c,a′h

{
u(c)+βE

[
W (a′h;s′)

∣∣∣s]},
subject to a new budget constraint:

c+qa(s)a′h +
∫

pss′dµ(z,x, k̂)≤ ah +
∫ [(

d + p̃s
)
s+Fok̂

]
µ(z,x, k̂)
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where ps is the ex-dividend value of equity, p̃s is the current market value of equity, and
0≤ s≤ 1 is the fraction of outstanding shares owned by the household. The equity valuation
terms are linked by the accounting identity: p̃s = ps− ξ̄ (e), where ξ̄ (e) ≥ e is the cost of
issuing new shares. Equity prices are pinned down by household’s first order conditions:

ps(z, k̂,x;s) = E
[
λ (s,s′)

(
d′− ξ̄ (e′)+ p′s(z

′, k̂′,x′;s′)
)∣∣∣s].

The estimates of the cost of seasoned equity issuance vary substantially in the litera-
ture, from a low of 0.08 (Gomes (2001)) to a high of 0.30 (Cooley and Quadrini (2001)).
I recalibrate the baseline model plus equity financing (without debt substitution), following
the procedure described in Section 4, and use each of these estimates for ξ in turn. For
each calibration, I introduce the same aggregate shocks (financial plus uncertainty) of the
same magnitudes as described in Section 4. Figure B.1 displays the impulse response func-
tions, for high (left panels) and low costs (right panels) of equity issuance, respectively. To
quantify the borrowing to save channel, I perform the same counterfactual exercise as in the
baseline model, fixing exogenously the level of liquid assets held by each firm at the steady
state level.

In the baseline model, a negative financial shock would expose firms to higher default
risks due to the higher costs of borrowing. As long as firms rely on debt as the only external
source of financing for growth, the default risks can only be partially mitigated by the accu-
mulation of safe assets. This also implies that if firms have an alternative external source of
financing, such as equity, they can substitute from debt to equity when the debt markets are
impaired. As a result, the need for precautionary savings may be lower as equity helps to
alleviate the incomplete-market frictions.

Comparing the impulse response functions in the baseline model (Figure 7 of the main
text) and in the extended model (Figure B.1), debt falls in the model with equity, as firms
prefer to issue equity – instead of borrowing – for liquidity when the cost of borrowing is
high. Liquid assets still rise in response to the shocks, but to a lesser degree. With equity
substitution, aggregate investment also falls by less compared to the baseline model, in
response to shocks of the same magnitudes. Nevertheless, the borrowing to save mechanism
is still present. As long as equity issuance is costly, firms would continue to borrow for
liquidity ex ante, and save for self-insurance ex post. Under the calibrations of ξ = 0.08 and
ξ = 0.30, borrowing to save can explain 21 percent and 16 percent, respectively, of the total
decline in investment.
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Figure B.1: Extended Model with Equity Financing
Impulse Response Function of Investment to a Financial Shock

Combined with an Uncertainty Shock Before Asset Reoptimization

(a) Investment (ξ = 0.30) (b) Investment (ξ = 0.08)

(c) Debt (ξ = 0.30) (d) Debt (ξ = 0.08)

(e) Liquid Assets (ξ = 0.30) (f) Liquid Assets (ξ = 0.08)

Note: This figure shows the impulse response functions to a temporary financial shock about three standard deviations in the 5th quarter,
and simultaneously, the economy switches to the high volatility regime with σ = σH . The magnitudes of the shocks are the same in both
panels (as well as in the baseline model in the main text). The black solid lines depict the model with the borrowing to save channel,
whereas the blue dotted lines show the responses in a counterfactual model in which the level of liquid assets held by each firm is
exogenously fixed at the steady state level.
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B.3 Extended Model with Debt Substitution

B.3.1 Default Thresholds

The trade-off between bank debt (b′) and market debt (m′) results in two sets of debt con-
tracts – NR-contract and R-contract – such that restructuring only arises in the latter case.
Following Crouzet (2018), two additional assumptions are made, which together determine
whether a firm repays, restructures, or defaults at the end of each period: (1) bank debt is
more senior than market debt; (2) if a firm renegotiates for a lower amount of repayment
with bank lenders, it enters a two-stage Nash bargaining game and moves first. Given these
assumptions, I outline below the default thresholds and lenders’ payoffs in each type of con-
tracts.

NR-contract If m′
1−χ

> b′
χ

, the firm repays its liabilities in full if π ′≥ b′+m′; partially defaults
(i.e. repays the more senior bank debt but defaults on market debt) if b′

χ
≤ π ′ < b′+m′; and

defaults on both types of debt if π ′ < b′
χ

. Hence one can define a pair of thresholds for
the demand shock (ψ ′NR, ψ ′

NR
)—conditional on s′ and (k̂′,b′,m′,a′f ,z

′)—such that the firm
defaults fully in the next period if ψ ′ < ψ ′

NR
, and defaults partially if ψ ′

NR
≤ ψ ′ < ψ

′
NR:

ψ
′
NR(b

′,m′, k̂′, â′f ,z
′) =

b′+m′+Fok̂′− p−k (1−δ )k̂′− â′f(
Y ′
(
z′k̂′α

)ζ−1
) 1

ζ

, (B.3)

ψ
′
NR

(b′, k̂′, â′f ,z
′) =

b′
χ
+Fok̂′− p−k (1−δ )k̂′− â′f(

Y ′
(
z′k̂′α

)ζ−1
) 1

ζ

.

The payoffs to the bank and market lender (R̃ ′b,NR and R̃ ′m,NR) are :

R̃ ′b,NR =

{
b′ if ψ ′ ≥ ψ ′

NR

χπ ′ if ψ ′ < ψ ′
NR

,

and

R̃ ′m,NR =


m′ if ψ ′ ≥ ψ

′
NR

χπ ′−b′ if ψ ′
NR
≤ ψ ′ < ψ

′
NR

0 if ψ ′ ≤ ψ ′
NR

.

R-contract If m′
1−χ
≤ b′

χ
, one can also define a pair of thresholds for the prices (ψ ′R,

ψ ′
R
)—conditional on s′ and (k̂′,b′,m′,a′f ,z

′)—such that the firm defaults if ψ ′ < ψ ′
R
, and re-
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structures if ψ ′
R
≤ ψ ′ < ψ

′
R, and repays if ψ ′ > ψ

′
R:

ψ
′
R(b
′, k̂′, â′f ,z

′) =

b′
χ
+Fok̂′− p−(1−δ )k̂′− â′f(

Y ′
(
z′k̂′α

)ζ−1
) 1

ζ

, (B.4)

ψ
′
R
(m′, k̂′, â′f ,z

′) =

m′
1−χ

+Fok̂′− p−(1−δ )k̂′− â′f(
Y ′
(
z′k̂′α

)ζ−1
) 1

ζ

.

The payoffs to the bank and market lender in an R-contract (R̃ ′b,R and R̃ ′m,R) are given by:

R̃ ′b,R =

{
b′ if ψ ′ ≥ ψ

′
R

χπ ′ if ψ ′ < ψ
′
R,

and

R̃ ′m,R =

{
m′ if ψ ′ ≥ ψ ′

R

0 if ψ ′ < ψ ′
R
.

B.3.2 Intermediate Good Firms’ Recursive Problem

The definition of dividend in the model with two types of debt contracts is given by:

dl =



p(ψ)y(z)−g(k′, k̂)−b−m+ â f −qaa′f +qb
l b′+qm

l m′,

if firm repays both b and m

p(ψ)y(z)−g(k′, k̂)−bR−m+ â f −qaa′f +qb
l b′+qm

l m′,

if firm restructures b and repays m
(B.5)

where the subscript l ∈ {NR,R} denotes whether the firm chooses a NR-contract or an R-
contract for the next period, which has implications for the prices of debt, and bR is the
restructured amount of bank debt, bR = χπ, as shown in Crouzet (2018), and π = p(ψ)zk̂α −
Fok̂+ p−(1−δ )k̂+ â f . The net liquid asset position of the firm (x) is now given by:

x≡

{
p(ψ)y(z)−Fok̂−b−m+ â f , if firm repays both b and m

p(ψ)y(z)−Fok̂−bR−m+ â f , if firm restructures b and repays m

so the firm’s dividend (B.5) can be rewritten as: d = x−g(k′, k̂)+qbb′+qmm′−qaa′f .
The intermediate goods firms’ problem can be written recursively, following the se-

quence of events outlined in the timeline (Figure 5 of main text). Let V 1(x, k̂,z;s) denote the
value function of the firm at the dividend issuance stage (after the exit shock), V 0(x, k̂,z;s)

denote the value function of at the debt settlement stage, and V̂ 0(x, k̂,z;s) denote the value
function of at the asset reallocation stage.
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Asset reallocation stage Upon observing the productivity and financial shocks, and given
the amount and composition of its liabilities (b,m), a firm can reoptimize its asset portfolio
by maximizing:

V̂ 0(k,a f ,z;s) = max
k̂,â f

V 0(x, k̂,z;s) (B.6)

subject to the intra-period resource constraint, and capital adjustment cost, both of which
are defined in the main text. Again, the constraint here implies that the firm cannot issue
additional debt (of either type) during the asset allocation stage. If the firm chooses not to
reallocate its assets, it proceeds to production and subsequently debt settlement with value
function V 0(x, k̂,s;s), with k̂ = k, and â f = a f in the net liquid asset position x.

Debt settlement stage This is where the extended model differs mostly from the baseline
model. If the firm had chosen an R-contract in the previous period, with m

1−χ
≤ b

χ
, it has three

options at this period’s debt settlement stage: liquidation, restructuring, and full payment of
its liabilities, depending on the price of the good, and hence the net worth of the firm; in
other words,

V 0(x, k̂,z;s) =


V 0

P (x, k̂,z;s) if ψ ≥ ψR

V 0
R (xR, k̂,z;s) if ψ

R
≤ ψ < ψR

0 if ψ ≤ ψ
R
.

(B.7)

where V 0
P and V 0

R denote, respectively, the value function of a firm that repays and restructures
its liabilities today. The thresholds for repayment and restructuring are defined in (B.4). By
assumption, firm that liquidates exits with its resources being passed to its creditors, so its
continuation value in liquidation is 0. Moreover, the firm knows that with probability 1−η

that it is not going to survive until the next period and with probability η it survives and has
value V 1 (defined below). Thus, today’s value of the firm—depending on if the firm repays
or restructures its liabilities—is either:

V 0
P (z, k̂,x;s) = (1−η)n+ηV 1(z, k̂,x;s), (B.8)

or
V 0

R (z, k̂,xR;s) = (1−η)nR +ηV 1(z, k̂,xR;s), (B.9)

where n(R) is the realized net worth, n(R) = π−b(R)−m.
If the firm had chosen an NR-contract, it would only have two options at debt settlement:

liquidation or full repayment, as both partial and full defaults involve the seizure of assets
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by the creditors. Therefore,

V 0(z, k̂,x;s) =

{
V 0

P (z, k̂,x;s) if ψ ≥ ψNR

0 if ψ ≤ ψNR,
(B.10)

and V 0
P (z, k̂,x;s) is also defined by (B.8). The thresholds for partial and full default are de-

fined in (B.3).

Dividend issuance stage Firms that do not default in period t and survive the exit shock can
choose between a NR-contract and an R-contract – depending on the relative amounts of b′

and m′ chosen – with value functions V 1
i,NR and V 1

i,R respectively:

V 1(z, k̂,x;s) = max
{

V 1
NR(z, k̂,x;s),V 1

R (z, k̂,x;s)
}
. (B.11)

The optimization problem for the firm that chooses a NR-contract (b′
χ
< m′

1−χ
) takes the fol-

lowing form:

V 1
NR(z, k̂,x;s) = max

k′,b′,m′,a′f

{
dNR +E

[
λ (s,s′)V̂ 0(k′,a′f ,ψ

′,z′;s′)

]}
(B.12)

= max
k′,b′,m′,a′f

{
dNR +E

[
λ (s,s′)max

k̂′,â′f

V 0(z′, k̂′,x′;s′)

]}
,

subject to (B.5), (B.7), (B.8), the non-negative dividend constraint, the capital adjustment
costs, the NR-contract debt prices described in the main text, and s′ = Γ(s). For a firm that
chooses an R-contract (b′

χ
≥ m′

1−χ
), the Bellman equation becomes:

V 1
R (k̂,x,z;s) = max

k′,b′,m′,a′f

{
dR +E

[
λ (s,s′)V̂ 0(k′,a′f ,ψ

′,z′;s′)

]}
(B.13)

= max
k′,b′,m′,a′f

{
dR +E

[
λ (s,s′)max

k̂′,â′f

V 0(k̂′,x′,z′;s′)

]}

subject to (B.5), (B.10), (B.8), the non-negative dividend constraint, the capital adjustment
costs, the R-contract debt prices described in the main text, and s′ = Γ(s).
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