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Abstract 

 
Understanding modern market microstructure phenomena requires large amounts of data and 

advanced mathematical tools. In this paper, we demonstrate how a machine learning algorithm can 

be applied to microstructural research. We find that simple microstructure measures designed to 

reflect frictions in a simpler market continue to provide insights into the process of price 

adjustment. We find that some of these microstructure features with apparent high explanatory 

power can exhibit low predictive power, and vice versa. We also find that some microstructure-

based measures are useful for out-of-sample prediction of various market statistics, leading to 

questions about the efficiency of markets. Our results are derived using 87 of the most liquid 

futures contracts across all asset classes. 
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Microstructure in the Machine Age  
 

 

1. Introduction 

One might have expected as markets became faster, market data became more copious, and 

technology superseded human participants, that the microstructure of markets would play an ever-

decreasing role in explaining market behavior.   The opposite is true.  When time scales shrink to 

nanoseconds, how the market is structured turns out to be critical in predicting where the market 

is going.  And when data explodes to mammoth dimensions, being able to characterize what 

variables related to market frictions can and should matter for market behavior, a particular focus 

of microstructure research, takes on even more significance.  Yet, despite this continued 

importance, microstructure research faces some daunting challenges in this new era.1 The ubiquity 

of computerized-trading, abetted by the rise of big data, has increased the complexity of trading 

strategies far beyond what is envisioned in simple microstructure models.  Similarly, the empirical 

measures that fill the microstructure “tool box” were constructed based on simple with-in market 

relationships that may no longer hold in the high frequency world of cross-market trading.  The 

problem, simply put, is that microstructure needs to evolve. 

In this paper, we demonstrate how machine learning techniques can play an important role 

in that evolution.  Much as microstructure research is often used to predict how trading will affect 

price and liquidity dynamics, machine learning can improve those predictions given complex data 

and computational constraints.  Using a random forest machine learning algorithm, we investigate 

how well some standard empirical microstructure measures (termed “features” in machine learning 

parlance) predict variables of interest to market participants.  Our focus is on a set of variables 

                                                             
1 For more discussion, see O’Hara [2015]. 
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typically used in electronic market making, dynamic market hedging strategies, and volatility 

estimation.  Our purpose here is not to provide an exhaustive examination of market data 

predictability but rather to illustrate how machine learning can bring new insights to microstructure 

research by showing what features actually work for out-of-sample predictability. In doing so, we 

also provide clear evidence of the value of some extant microstructure variables for understanding 

the new dynamics of market behavior. It is worth emphasizing that machine learning algorithms 

are often highly non-parametric and do not pre-specify a functional form. The non-parametricity 

should not be viewed as a drawback, as the algorithms are designed to be adaptive so that they can 

extract patterns in data that parametric models may not recognize. As a result, machine learning 

algorithms often provide higher predictive power and therefore are better candidates for our 

investigation of predictability based on microstructure variables. 

Our analysis draws on three generations of market microstructure models to provide specific 

measures as inputs to our machine learning investigation.  These variables include the Roll 

measure, the Roll Impact, a volatility measure, Kyle’s , the Amihud measure, and VPIN (the 

volume synchronized probability of informed trading).  We focus on predicting six important 

outcomes of market price dynamics using a one-week forecast horizon: the sign of change of the 

bid-ask spread; sign of change in realized volatility; sign of change in Jacques-Bera statistic; sign 

of change in sequential correlation of realized returns; sign of changes in absolute skewness of 

returns; sign of changes in kurtosis of realized returns.  We evaluate the importance of each feature 

using Mean-Decreased Impurity (an in-sample measure) and Mean-Decreased Accuracy (an out-

of-sample measure) methods. We use five years of tick data from the 87 most liquid futures traded 

globally (including indices, currencies, commodities, short rates, and fixed income instruments).  

This extensive sample, one of the largest ever used in a microstructure analysis, epitomizes the big 
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data that can be brought to bear in machine learning analyses.  This scale allows us to establish the 

validity and accuracy of our findings generally, and not merely for a specific contract or asset 

class. 

Our research provides a number of results.  As expected, we find that the various 

microstructure measures show different importance for in-sample and out-of-sample estimation, 

illustrating how variables that may have explanatory power in-sample need not have predictive 

power out-of-sample. Consistent with previous studies, all of the measures appear to have in-

sample explanatory power. Across the six predicted variables, the Amihud measure, VIX and 

VPIN have the best performance in-sample, while VPIN has the best out-of-sample performance.  

For example, predicting the sign of the change in the bid-ask spread, in-sample results show that 

Amihud and VPIN consistently have the largest importance across all window sizes, whereas out-

of-sample results show that VPIN predominates.  Indeed, out-of-sample prediction results show 

that VPIN is the most important predictor for five variables, with the Roll measure dominating for 

the sixth (predicting the sign of the change in sequential correlation).  We interpret these results as 

showing that simple measures designed to reflect market frictions still work in modern, complex 

markets dominated by machine-based trading. These results demonstrate not only the importance 

of particular microstructure-related variables, but also the possibility of successful prediction of 

future market dynamics.  As we discuss, such predictions have wide applicability for areas such 

as risk management, dynamic trading strategies, and electronic market making. 

Our paper joins a growing literature examining the implications of machine learning and 

big data for economic research.  Varian [2014], Abadie and Kasy [2017], and Mullainathan and 

Spiess [2017] provide excellent discussions of how machine learning can be applied to analyze 

economic problems involving big data, while recent applications of such techniques can be found 
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in Bajari, Nekipelov, Ryan and Yang [2015] and Cavallo and Rigobon [2016].  In the finance area, 

Chinco, Clarke-Joseph and Ye [2018] apply LASSO techniques to make 1-minute ahead equity 

return forecasts; Rossi [2018] uses boosted regression trees to forecast stock returns and volatility; 

Krauss, Do, and Huck [2017] use machine learning for statistical arbitrage on the S&P 500; and 

López de Prado [2018] provides extensive analyses of financial machine learning techniques and 

applications.  Gu, Kelly and Xiu [2018] applied multiple machine learning regression algorithms 

in asset pricing and find that non-linear regression methods can give rise to better R-squareds than 

econometric models. Our work contributes to this literature by showing how supervised machine 

learning techniques combined with metrics suggested by microstructure theories can help identify 

important market variables irrespective of functional form. We believe that machine learning’s 

decoupling of the search for variables from the search for specification will be important for the 

development of microstructure research.   

This paper is organized as follows.  In the next section we set out the variables we are 

interested in predicting and the microstructure variables we use as inputs in our analysis. Section 

3 provides a brief introduction to the random forest classification method and feature importance 

measures.  We discuss two such measures: Mean Decreased Impurity (MDI) and Mean Decreased 

Accuracy (MDA). We also explain how we categorize realized outcomes in terms of binary labels.  

In Section 4 we discuss the data we use, how we transform the data into units of analysis called 

bars, and the microstructure variable definitions we use in the analysis.  Section 5 then presents 

our empirical results and investigates their robustness with respect to various backward window 

sizes, alternative hyper-parameter configurations, and different bar types. Section 6 concludes by 

discussing the implications of our results for trading strategies, considers what we learn about 
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explanatory and predictive roles of microstructure variables, and suggests an agenda for future 

microstructure research in the machine age.  

2. Microstructure variables and market movements 

Microstructure models provide variables that indirectly measure the observable implications 

of market frictions. To the extent that these measures are successful they should predict the future 

values or movements in market metrics such as bid-ask spreads, volatility, and other variables 

related to the shape of the distribution of returns. Some models (which we will term “first 

generation”) use price data for this task.  Examples here are the Roll [1984] measure which uses 

price sequences to predict effective bid-ask spreads, Beckers’ [1983] volatility estimation based 

on high-low prices, and the Corwin and Schultz [2011] bid-ask spread estimator. Second 

generation models focus on price and volume data, generating metrics such as the Kyle [1985] 

lambda, the Amihud [2002] measure, and Hasbrouck’s [2009] lambda. Third generation models 

use trade data, inspiring metrics such PIN, the probability of informed trading (Easley et al [1996]) 

and VPIN, the volume-synchronized probability of informed trading (Easley et al [2011]). In our 

analysis, we evaluate the predictive power of measures representative of these three generations 

of microstructural models. 

 Being able to forecast future developments in the price process and liquidity has obvious 

importance, but less apparent is how well these standard microstructure measures work in current 

markets.  The models that produce these measures are relatively simple and were designed at a 

time when markets were less complex than they are now. Those models do not provide much 

guidance about functional forms describing the relationship between any of these measures and 

price or liquidity dynamics. So imposing a particular functional form for this relationship, even a 
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flexible one, and applying standard econometric techniques to estimate it could potentially obscure 

any relationship.2  

 Our interest is in evaluating predictability using various microstructure variables. We begin 

with data about our microstructure variables (such as illiquidity, Kyle’s lambda or VPIN) and data 

about the market measures (such as bid-ask spreads, volatility and the like) we are interested in 

predicting. However, unlike the standard approach in econometrics, we do not attempt to pre-

specify an underlying data generating process, and so we do not attempt to estimate parameters of 

a model relating our microstructure measures to market measures.  Our primary interest is in 

understanding which microstructure variables are useful for prediction and which ones are not 

useful. We are agnostic about the mechanism relating the variables in our data set to each other, 

as attempting to specify a mechanism, no matter how complex its structure or underlying 

probability space, is unnecessarily limiting for our data-exploratory purposes. We believe that this 

machine learning point of view is more powerful for the questions we want to ask; although we do 

recognize that for other interesting questions more closely related to developing an understanding 

of why one measure is a better predictor than another is, specifying a data generating process and 

applying standard econometric tools may be more productive.   

Thus, we use machine learning to investigate the efficacy of a set of microstructure measures 

for forecasting a set of variables of wide interest in the market.  We discuss in detail in Section 3 

how the random forest algorithm we use works, but it is important to stress that we use the 

algorithm to predict the sign of changes in variables, rather than to provide actual point predictions.   

                                                             
2 As Mullainathan and Spiess [2017] explain, econometric techniques are well suited for variance adjudication; 
however they often provide suboptimal forecasts. The reason is that the best forecast estimators may not be BLUE 
(best linear unbiased estimator). Unbiasedness is undoubtedly a useful property when the model is properly 
specified, however it may be a hindrance when important explanatory variables are missing or when the interaction 
between variables is not correctly modeled. 
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While this might seem of limited importance, we explain below why this is not the case and discuss 

how for our candidate variables such forecasts can be used in practice.3 

1. Sign of change of the bid-ask spread. 

When we expect the bid-ask spread to widen, an execution algorithm could use that expectation 

to increase the volume participation, thereby increasing the portion of the executed order before 

an increase in transaction costs materializes. Conversely, when we expect the bid-ask spread to 

narrow, an execution algorithm could use that expectation to decrease the volume participation 

and so execute a larger portion of the order after the fall in transaction costs takes place. The 

magnitude of the change in volume participation would be a function of our confidence in the 

forecast’s accuracy. 

2. Sign of change in realized volatility. 

When we expect realized volatility to increase, an execution algorithm could use that 

expectation to increase the volume participation, in order to reduce the uncertainty of the average 

fill price (market risk). It is not necessarily true that we would like to decrease the volume 

participation if we expect a decrease in realized volatility, because by the time the volatility 

has decreased, prices may have drifted away from our target. In general, we would like to increase 

the volume participation rate if we forecast an increase in realized volatility, and reduce the volume 

participation rate after a decrease in realized volatility has already materialized. 

3. Sign of change in Jarque-Bera statistic. 

The Jarque-Bera statistic tests for the null hypothesis that observations are drawn from a 

Normal distribution. This is relevant for risk management purposes, as many risk models assume 

                                                             
3 We consider only positive and negative changes. One could, and for an investment or trading strategy probably 
would want to, consider a finer partition of the set of changes at least taking into account a third category in which 
the change, either positive or negative, is small.  
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Normality of returns. A higher probability of non-Normal returns reduces our confidence in those 

models. For example, a risk manager may want to reduce the significance level (false positive rate, 

type I error probability) of his Gaussian models when returns are expected to be non-Normal. 

4. Sign of change in kurtosis / Sign of change in absolute skewness of returns. 

The Jarque-Bera statistic uses skewness and kurtosis to test for Normality of observations. This 

test implies a trade-off between skewness and kurtosis, in the sense that the test may not reject the 

null hypothesis of Normality when an increase in skewness is offset with a decrease in kurtosis. 

However, offsetting skewness with kurtosis is not without economic meaning.  Because skewness 

is an odd moment, it deforms the Normal distribution by shifting its probability towards one side. 

One possible reason for this deformation is the presence of informed traders, who push prices in 

an attempt to fill orders before a piece of news is widely known. In contrast, because kurtosis is 

an even moment, it deforms the Normal distribution by shifting its probability symmetrically 

towards extreme events. One possible explanation for this deformation is a reduction of liquidity, 

as market makers reduce the size of their quotes in anticipation of a news release, hence increasing 

the likelihood of extreme outcomes on either side. From an execution and portfolio management 

perspective, it is important to differentiate between these two causes of non-Normality, and to 

forecast them separately. 

5. Sign of change in sequential correlation of realized returns. 

Another common assumption of risk models (for example in value-at-risk approaches) is that 

returns are serially uncorrelated. When returns are serially correlated, trends occur with a higher 

frequency than would be otherwise expected. This leads to greater potential drawdowns and time 

underwater. Like in the non-Normal case, a higher probability of serially correlated returns reduces 

our confidence in models that assume an uncorrelated structure. It would therefore be rational to 
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reduce the significance level of this kind of risk model when returns are expected to be serially 

correlated. 

3. The random forest classification algorithm and feature importance measures 

In this section, we introduce the random forest classification algorithm and how we use it to 

evaluate the predictive power of a set of explanatory variables. In machine learning, classification 

is the practice of using explanatory variables to predict a categorical/discrete target variable. It is 

analogous to regression in that both are fitted by minimizing an error function built on the 

explanatory and target variables in the training data set. However, in our machine learning problem 

the target variable is discrete (e.g., “yes” or “no”), and so the error functions popular for regression 

(e.g. mean-squared-error) are not viable. Instead, useful error functions include measures such as 

cross-entropy and information gain. We refer to the explanatory variables as features and the 

endogenous variable as a finite set of labels.   

Among machine learning classification methods, random forest is one of the most robust and 

widely used algorithms. As Varian [2014] notes, “this method produces surprisingly good out-of-

sample fits, particularly with highly nonlinear data.”4 It consists of a number of individual 

classifiers called decision tree algorithms and uses the mean of these trees’ classifications as its 

prediction. As the number of low-correlated trees increases, the variance of the forest’s forecasting 

error becomes smaller, hence reducing the chance of the algorithm overfitting the data. 

Our machine learning algorithm is applied one futures contract at a time. So it operates on a 

data set, or sample, 1{( , )}t

T

t tx y  , consisting of observations of features (x’s) and a label ( y) for the 

selected contract, with t indexing T observations.5 The first step in creating a random forest is to 

                                                             
4 See Varian [2014] pg. 14.   This article provides a description of the random forest technique, as does López de 
Prado [2018], Chapter 6. 
5 We discuss creation of the sample in subsequent sections and the creation of a forest of trees later in this section. 
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build a decision tree by splitting the sample into two subsamples, and then splitting each of these 

subsamples into two subsamples, and so on. Graphically, the decision tree consists of numerous 

sequential splits, each of which takes the following form: 

 

 

       

 

 

 

 

To create the split we first compute for each feature the information gain that would be 

created by splitting the sample using that feature. For any split of a sample S at node n in the tree 

into two subsamples, L and R, this information gain is  

 

 𝐼𝐺(𝑆, 𝑛) = 𝐼(𝑆) −
𝑁𝐿

𝑁𝑆
𝐼(𝐿) −

𝑁𝑅

𝑁𝑆
𝐼(𝑅) 

where we use the Gini Index I(S)=∑ 𝑝𝑖(1 − 𝑝𝑖)𝑖  as our purity measure for any data set S; ip  is 

the fraction of labels of the ith class in data set S; and SN  , LN  and RN  are the number of data 

points in the sample, the Left subsample and the Right subsample.  The information gain from 

using a particular feature to split the sample is then defined to be the maximal gain that can be 

obtained by choosing a value of the feature and splitting the sample such that all data points with 

smaller values of that feature are in the Left subsample and those with larger values of that 

feature are in the Right subsample. Intuitively, the information gain is maximal when a feature is 

Sample 

Sub-sample Left Sub-sample Right 
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able to split the data into two pure subsets (subsets with a single label). If the data could be split 

using the selected feature so that each subsample was pure (contained only increases or only 

decreases in the label) then the information gain would take on its maximum possible value I(S); 

while a less pure split will produce a smaller gain.  

The actual split of sample S at node n is the one that maximizes the information gain over 

the choice of features used to create the split. This procedure is repeated for each subsample, and 

for each of the new subsamples created by any split until either a predetermined stopping 

criterion is reached or until no additional splits yield any information gain. We allow our trees to 

grow without bound; we consider the effect of bounds in the Robustness section. Although the 

information gain from alternative splits has to be computed many times, this approach is 

computationally tractable because each split is done using a greedy algorithm---there is no 

attempt to choose the split by looking ahead to implications of the current split for possible 

future information gains. 

 For each contract, and any sample for that contract, we create a random forest by modifying 

the simple procedure above in two ways. First, we create multiple decision trees and assign each 

tree a bootstrapped sample from our underlying sample. The averaging produced by bootstrapping 

reduces variance that could otherwise result from fitting a single tree to noise in the data set. 

Second, at each node in each tree we consider only two randomly selected features as candidates 

to determine the optimal split.6 This second modification is done to take into account the possibility 

that one feature dominates splits even if a second highly correlated feature would produce similar, 

                                                             
6 The number of features to consider is a parameter that can be adjusted. We use the standard rule of selecting 

int( 6) 2  features where 6 is the total number of features we consider. 
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but slightly smaller information gains. Without restricting attention to randomly selected sets of 

features, we would attribute too much importance to the first feature relative to the second one. 

For any contract, and data set for that contract, we create 100 trees in our random forest. Finally, 

given any feature vector the prediction made by our random forest for the sign of the label is 

determined by majority vote across the trees in the forest.7 

For decades, researchers have recognized the prevalence of hierarchical relationships in 

economic and financial systems. As Nobel laureate Simon [1962] put it, “the central theme that 

runs through my remarks is that complexity frequently takes the form of hierarchy, and that 

hierarchic systems have some common properties that are independent of their specific content.”  

How exactly to measure the contribution of features to the hierarchal structure of the random forest 

this feature importance is a critical issue.  In our analysis, we use two standard measures of feature 

importance – mean decreased impurity (MDI) and mean decreased accuracy (MDA).8  

(1) Mean Decreased Impurity (MDI) based feature importance 

MDI feature importance evaluates the information gain of each feature in all trees, weights 

them with the number of samples of each split, sums and then normalizes the score to be one in 

total. The importance of a feature is its contribution to the building of trees as quantified by the 

information gain on the splits.  Given some data set the MDI for feature i in that data set is 

 

: ( )

1( ) ( ) ( ) ( , )
100

n

n

N n N v s i

MDI i p t IG s n
 

     

where ( )nv s  is the feature used in the split of ns with 0s  being the initial data set. 

                                                             
7 For more detail on the creation of a random forest for financial data see Lopez de Prado [2018]. 
8 The interested reader can find a detailed explanation of these techniques in López de Prado [2018], Chapter 8.  
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(2) Mean Decreased Accuracy (MDA) based feature importance 

It is worth pointing out that MDI is an in-sample method, as it is derived from the same 

information used to fit the trees. This makes it similar to a p-value in regression analysis. In 

contrast, MDA evaluates feature importance out-of-sample, and, unlike MDI, it can be used with 

any classifier. The MDA procedure computes feature importance as follows:  (a) the data set is 

split into non-overlapping training and testing sets; (b) a classifier is trained on the training set 

using all features; (c) predictions are made on the test set, and a performance measure (e.g. 

accuracy) is recorded as 0p ; (d) values of one of the features, i, in the test set are randomly shuffled 

and predictions are re-made on the test set; (e) the performance associated with the shuffling of 

feature i is recorded as ip . The MDA feature importance of i in the given data set is then 

 0

0

( ) ip p
MDA i

p


   

Thus, MDA’s feature importance is determined by how the out-of-sample prediction worsens 

because of shuffling the values of a particular feature. The more deterioration there is in 

performance, the more important is this feature. 

 Finally, we turn to the issue of prediction accuracy.  We define accuracy to be the number 

of correct predictions divided by the total number of predictions generated from a given data set 

split into a training set and a test set.9 If we applied this idea once to our data set for a futures 

contract we would not use the information in the data set efficiently as we would lose the 

opportunity to train the random forest on all of the data. In particular, the data held out as a test set 

is not used in training. To use all of the data while still computing out-of-sample predictions we 

                                                             
9 There are other measures of accuracy, in particular, ones that treat true and false positives or negatives 
asymmetrically. To make use of our approach in an investment strategy such alternative measures (such as 
precision, recall or F1 score) may be more useful than the simple accuracy measure we use here. Our goal is more 
generic and not tied to a particular investment strategy so we treat errors symmetrically.  
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apply a 10-fold purged Cross-Validation method to train the forest and compute accuracy  Specific 

details of this approach can be found in López de Prado [2018], but summarily, we: (i) partition 

the entire data set into 10 intervals; (ii) take one as a test set; (iii) purge approximately one-week 

of data from the training set to remove observations that could contained leaked information from 

the test set (see the figure below); (iv) train the algorithm on the remaining data; and (v) make a 

prediction on the test set. This procedure is repeated 10 times (once for each test set) so the entire 

period is tested. Accuracy is computed across all the predictions from the 10 test sets.  

 

 

purged from training set purged from training set 
 
 
 
 
 

 
time 

 

4.  Data 

In this section, we turn to the data and the specific definitions of the labels and features we 

use in our analysis.  We also address a variety of implementation issues.   Our analysis uses dollar-

volume bars, so we set out how we use tick data to form bars across the various contracts in our 

sample.  Because we use futures data, our data has to “roll” across contract expirations to create a 

continuous price sequence.  We describe how we effectuate that transition using a process akin to 

creating an ETF on the contract.  Finally, we discuss measurement issues connected with viewing 

microstructure variables in volume bars as opposed to time-based units. 

 Our analysis is done on the 87 most liquid futures contracts traded globally, with specific 

details of each contract given in Table A.1 in the Appendix. We use these futures contracts for two 

training test training 
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reasons. First, we are able to examine the universe of active futures, so there is no issue of selecting 

a sample out of some larger collection of financial assets. Second, we have complete trade data 

about the trade of these assets. Our sample period begins on July 2, 2012 and ends on October 2, 

2017.  Tick level data is available for most of these contracts over a longer period, but we are 

interested in VIX as a feature and the futures contract on VIX (ticker UX1) only began trading in 

July 2012. We note that two commodity contracts in our sample (IK1 and BTS1) have shorter 

sample periods beginning in October 2015. 

A. Creating dollar-volume bars  

We obtain tick level trade data for each futures contract and aggregate the data into 

intervals, or bars, based on dollar volume. Aggregating data into bars variously defined over time 

or volume increments is standard practice in industry and in academic research (see, for example, 

Engle and Lange [2001]; Easley et al. [2012]; Chakrabarty et al. [2012]; Easley et al. [2016]; Low 

et al. [2018]). Barardehi, Bernhardt and Davies [2019] also propose a trade time approach in their 

measurement of liquidity and show that it works better than a clock time approach. Easley and 

O’Hara [1992] demonstrated that the time between trades should be correlated with the existence 

of new information, providing our basis for looking at trade time (volume) instead of clock time. 

Information arrival results in patterns in volume, essentially akin to intra-day seasonalities.10 By 

drawing a sample whenever the market exchanges a constant volume, we attempt to mimic the 

arrival to the market of news of comparable relevance. We use dollar-volume to allow 

comparability across the 87 contracts in our sample. Also, López de Prado [2018] presents 

evidence that the sampling frequency of dollar-volume bars is more stable than the sampling 

frequency of time bars or volume bars. One reason for this stability is that dollar-volume bars take 

                                                             
10 Futures often trade over a 23.75 hour day and volume patterns are very pronounced. 
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into account price fluctuations, hence normalizing the dollar-value transacted across different time 

periods. 

The 𝜏th bar is formed at tick 𝑡 when  

∑ 𝑝𝑗𝑉𝑗 ≥ 𝐿

𝑡

𝑗=𝑡0
𝜏

, 

where 𝑡0
𝜏 is the index of the first tick in the 𝜏th bar, 𝑝𝑗 is the trade price at tick j, 𝑉𝑗 is the trade 

volume at tick j, and 𝐿 is a pre-determined threshold that gives roughly 50 bars per day for the year 

2016.11 Note that because average daily trading volume differs across contracts, the dollar volume 

in each bar will differ across specific futures contracts, but the average daily number of bars will 

not (in 2016).  For each individual contract, on an active day, bars will fill faster and there can be 

more than 50 bars in a day; on an inactive day, bars will fill more slowly and there can be fewer 

than 50 bars in a day. 

 We compute each microstructure variable in our analysis at each bar 𝜏, by applying a 

rolling “lookback window” of size W. For example, at bar 𝜏 we use bars within the set {𝜏-W+1, 

𝜏-W+2, …, 𝜏-1, 𝜏} to compute the microstructure variables and labels. In our analysis, we consider 

lookback windows ranging from 25 bars to 2000 bars.   

B.  Rolling Contracts 

Since futures contracts expire, we need to “roll” the contracts (i.e. sell the expiring one and 

enter the new one) to form a price series as if it were a continuous instrument. To do so, we 

transform the price of a futures contract to the value of an ETF that perfectly tracks the futures 

with $1 initial capital.12 To understand this process, consider the following example.  

                                                             
11 We chose 2016 because it is the last full year before the end of our sample.   
12 For a detailed discussion of this technique, see López de Prado [2018]. 
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Assume we would like to take a long position in the front contract of the E-mini S&P 500 

futures (Bloomberg code: ES1 <Index>), from 01/02/2015 onwards. On 03/20/2015, the front 

month futures contract is soon to expire and we have to sell it and buy the then second month 

futures contract, hence “rolling to the next contract”. In this rolling process, there is no change in 

the value of our investment except for the tiny transaction cost. However, there is usually a 

difference in raw price between the front and second month contracts. If the front month contracts 

were trading at $2000 while the second one was at $2020, then if we simply switch the price time 

series from front month to second month there is now a 1% difference. The machine learning 

algorithm would incorrectly think that there is a sudden jump in price, and consider it as some sort 

of a signal.  

To avoid this problem, we produce a new time series we call the ETF price of the futurres 

series, which reflects the value of $1 invested in the futures contract assuming one can hold 

fractional shares. This series starts with 1, and its current value equals the investment’s cumulative 

return (see Table A.2 for an example). When the futures contract rolls, one sells the old contract 

and invests all the money in the new contract. During this event, there is no change to the 

investment assuming zero transaction cost, so the ETF price is unaffected by the artificial change 

in raw price. Figure 1 provides a plot for ES1 Index’s cumulative return and ETF price series. 

In Appendix A.2 we provide the calculation details for this process.  In the following 

analyses, for each futures contract we use the ETF-based price and the corresponding volume 

instead of the raw price and volume unless mentioned differently.  

C. Features and Labels 

As discussed in the previous section, we focus on a few well-known market microstructure 

variables. These features are all constructed from the bar data described above. One issue that 
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arises in our construction of these microstructure measures is that they initially were not defined 

using the same concepts of time periods or bars, or using lookback windows. Therefore, for each 

measure we have to adapt the original definition to our setting. We call these measures by their 

original names, but it we note that they are actually our translation of the measure to our setting.  

More specifically, we have: 

 Roll measure, given by 

𝑅𝜏 = 2 √|𝑐𝑜𝑣(𝚫𝑷𝝉 , 𝚫𝑷𝝉−𝟏)| , 

𝚫𝑷𝝉 = [∆𝑝𝜏−𝑊, ∆𝑝𝜏−𝑊+1, … , ∆𝑝𝜏] , 

 𝚫𝑷𝝉−𝟏 = [∆𝑝𝜏−𝑊−1, ∆𝑝𝜏−𝑊, … , ∆𝑝𝜏−1]   

where Δ𝑝𝜏 is the change in close price between bars 𝜏 − 1 and 𝜏, and 𝑊 is the lookback 

window size.  

 Roll impact, which is the Roll measure divided by the dollar value traded over a certain 

period, is 

�̃�𝜏 =
2 √|𝑐𝑜𝑣(𝚫𝑷𝝉 , 𝚫𝑷𝝉−𝟏)|

𝑝𝜏𝑉𝜏
 . 

We evaluate the denominator at each bar and because of our bar formulation, the 

denominator varies very little between consecutive bars. 

 

 

 Kyle’s lambda is given by 

𝜆𝜏 =
𝑝𝜏 − 𝑝𝜏−𝑊

∑ 𝑏𝑖𝑉𝑖
𝜏
𝑖=𝜏−𝑊

   

where 𝑏𝑖 = sign[𝑝𝑖 − 𝑝𝑖−1], which is computed on bar level, and 𝑊 is the lookback 

window size. 

 

 Amihud’s lambda is given by  

𝜆𝜏
𝐴 =

1

𝑊
∑

|𝑟𝑖|

𝑝𝑖𝑉𝑖

𝜏

𝑖=𝜏−𝑊+1

 , 

where 𝑟𝑖, 𝑝𝑖 , 𝑉𝑖 are the return, price and volume at bar 𝑖, and 𝑊 is the lookback window 

size. Our version of Amihud’s lambda measured using dollar volume bars is closely 

related to the Barardehi, Bernhardt and Davies [2019] trade time analogue of the Amihud 

measure. 

 

 Volume-synchronized probability of informed trading is estimated as  

𝑉𝑃𝐼𝑁𝜏 =
1

𝑊
∑

|𝑉𝑖
𝑆 − 𝑉𝑖

𝐵|

𝑉𝑖

𝜏

𝑖=𝜏−𝑊+1

,   
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Where volume is signed using the BVC method, 𝑉𝑖
𝐵 = 𝑉𝑖Z [

∆𝑝𝑖

𝜎∆𝑝𝑖

] , 𝑉𝑖
𝑆 = 𝑉𝑖 − 𝑉𝑖

𝐵, and 𝑊 is 

the look back window size. See Easley et al. [2016] for additional details. 

 

 VIX index. We use VIX’s front month futures (Bloomberg code: UX1 <Index>) tick level 

trade data to represent VIX. For each bar, we take the price of the closest tick of UX1 Index 

prior to that bar’s timestamp as VIX’s value. 

 

Table 1 provides a correlation matrix of these variables over our sample period.  As is 

apparent, while some of these variables are highly correlated, others are not, suggesting that they 

may have very different properties for forecasting purposes.  Note that these correlations are all 

calculated based on dollar-volume bars.  For VPIN, calculation in dollar-volume bars is a natural 

milieu but the other variables were traditionally derived based on fixed time intervals, such as daily 

bars.  A natural concern is that this specification may bias our results against finding significance 

for these types of variables.  As part of our robustness testing, we also calculated all variables 

using hourly time bars, and re-ran our analysis using this alternative data specification.  We discuss 

these results in Section 5.4, but we note upfront that we find slightly greater accuracy using volume 

bars instead of time bars and that measures of feature importance are largely unchanged.  

 For the classification, we are interested in predicting the sign of the change in several 

important variables.  Note that these labels are binary as their value is either positive +1 or negative 

-1, reflecting that we are forecasting the sign of changes in the relevant variable. In particular, we 

label observations according to: 

 the sign of change in bid-ask spread. The spread is computed via the Corwin-Schultz 

estimator 

𝑆𝜏 =
2(𝑒𝛼𝜏 − 1)

1 + 𝑒𝛼𝜏
 ,  

𝛼𝜏 =
√2𝛽𝜏 − √𝛽𝜏

3 − 2√2
− √

𝛾𝜏

3 − 2√2
 , 



 
 
 

22 
 

𝛽𝜏 = 𝐸 [∑ [log [
𝐻𝜏−𝑗

𝐿𝜏−𝑗
]]

21

𝑗=0

] ,  

𝛾𝜏 = [log [
𝐻𝜏−1,𝜏

𝐿𝜏−1,𝜏
]]

2

, 

where 𝐻𝜏−𝑗 and 𝐿𝜏−𝑗 are the high and low prices at 𝜏 − 𝑗, and 𝐻𝜏−1,𝜏 and 𝐿𝜏−1,𝜏 are the 

high and low prices over the 2 bars (𝜏 − 1, 𝜏). For a given forecasting horizon ℎ, the label 

is then 

sign[𝑆𝜏+ℎ − 𝑆𝜏] , 
 

and effectively we are predicting whether the estimated spread will widen or narrow. Note 

there is a window size variable in computing 𝛽𝜏. 

 

 the sign of change in realized volatility, or simply 

sign[𝜎𝜏+ℎ − 𝜎𝜏] , 
 

where 𝜎𝜏 is the realized volatility of 1-bar returns over a lookback window of size W. In 

this case we are predicting whether the realized volatility will go up or down. 

 

 the sign of change in Jarque-Bera statistics of realized returns 

sign[𝐽𝐵[𝑟𝜏+ℎ] − 𝐽𝐵[𝑟𝜏]] 

𝐽𝐵[𝑟𝜏] =
𝑊

6
(𝑆𝑘𝑒𝑤𝜏

2 +
1

4
(𝐾𝑢𝑟𝑡𝜏 − 3)2) , 

where 𝑆𝑘𝑒𝑤𝜏 is the skewness and 𝐾𝑢𝑟𝑡𝜏 is the kurtosis of realized returns over the 

lookback window of size W. This label can be viewed as a higher moment generalization 

of the realized return volatility above.  

 

 the sign of change in the first order autocorrelation of realized returns 

sign[𝐴𝑅𝜏+ℎ − 𝐴𝑅𝜏] 
𝐴𝑅𝜏 = corr[𝑟𝜏, 𝑟𝜏−1] , 

where the correlation is evaluated over the returns of the past 𝑊 bars. 

 

 the sign of change in absolute skewness of realized returns 

sign[𝑆𝑘𝑒𝑤𝜏+ℎ − 𝑆𝑘𝑒𝑤𝜏]  
 

 the sign of change in kurtosis of realized returns 

sign[𝐾𝑢𝑟𝑡𝜏+ℎ − 𝐾𝑢𝑟𝑡𝜏] 
 

In the current analysis, we fix the forecast horizon ℎ to be 250 bars ahead, which roughly 

corresponds to a week of trading. In section 5.4 we analyze a forecast horizon of 50 bars and find 

similar results. 
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5. Results and analysis  

In this section, we first set out the parameters of our random forest classification 

methodology.  We then present the main results of the paper, namely the feature importance of the 

microstructure variables. This is followed by a sensitivity analysis in which we tune the parameters 

of the random forest, and by various robustness check, including a comparison between dollar-

volume-bar and time-bar results and a comparison of our machine learning results with the results 

of a logistic regression. 

Our analysis uses a standard open-source machine learning software package, Scikit-learn 

(see Pedregosa et al. [2011]).  We begin by specifying the configuration (hyper-parameters, in 

machine learning parlance) of the random forest machine learning algorithm.  For our analysis, we 

choose the default values for the random forest’s hyper-parameters13 

 number of trees (n_estimators) = 100 

 maximal features per split (max_features) = int(√6) = 2 

 sample weight (class_weight) = inverse of total number of samples in the sample’s class 

(‘balanced’) 

The number of trees is a parameter that controls how many decision trees the random forest 

contains.  The maximal features here is square root of the total number of features, a common 

choice for random forest.  Sample weight is the weight one assigns to each sample in the training 

class, and we use a balanced approach to reduce the bias that can come from label imbalance.  We 

report results from an unregularized random forest (i.e. one in which the decision trees are allowed 

to grow without limit). In Section 5.4 we rerun the analysis using a regularized random forest to 

                                                             
13 Scikit-learn’s corresponding notations are in parenthesis.   
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check that our results are stable and robust and to allay fears that the original random forest is 

overfit. 

5.1 MDI results 

We first examine feature importance using MDI. As a reminder, MDI is an in-sample 

method that is based on the explanatory power of each feature and gives rise to normalized values 

for feature importance (all positive and sum to one). Table 2, Panels A through E, reports the MDI 

feature importance for each of the six predicted variables we consider in our analysis. Every row 

corresponds to a specific backward window size, as indicated by the first column. Each entry is 

formulated as “mean MDI feature importance score” ± “MDI feature importance score standard 

deviation”, where the mean and standard deviation are evaluated across all 87 instruments. The 

highest importance is bolded for each window size.  

To provide some intuition for how features contribute to in-sample explanation of features 

we provide in Figure 2 a scatter plot of predicted changes in spread for the ES1 index as a function 

of the VPIN and Roll measures. The random forest assigns a predicted increase or decrease in 

spread given any list of all of the features. Plotting this assignment against feature vectors produces 

a plot in 6R  which we project to 2R in Figure 2. The right angle shape in that figure indicates a 

cut for spread predictions at just below 0.002 for the Roll measure and just above 0.05 for VPIN. 

The random forest predicts decreases in spread in the north-west quadrant and increases 

elsewhere.14  

 For bid-ask spread estimation, Panel A shows that the Amihud measure has the highest 

feature importance, followed by the VPIN metric. Feature importance increases with the window 

                                                             
14 This appears noisy in the figure because we are conditioning on only two of the six features. Otherwise, there 
would be sharper regions. 
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size for Amihud, Kyle and VPIN, but not for the Roll measures or for VIX.  The differential (and 

lower) performance of VIX relative to VPIN refutes the notion that VPIN is simply picking up 

volatility effects.  The Amihud measure is also the most important for absolute skewness prediction 

(Panel E).   

 Panel B provides feature importance results for volatility prediction.  Here we find mixed 

results depending on the window size.  For both the shortest (25) and longest (greater than or equal 

to 1000) bars, VPIN dominates.  Amihud is the most important if measured over 250-500 bar 

window, while VIX prevails for the 50 bar window (although VIX and VPIN are very similar for 

the 25 bar window as well).  Feature importance for predicting the Jacques-Bera test in Panel C 

also shows mixed results. Overall, Amihud is most important, but for some windows VIX and 

VPIN predominate.  The Amihud measure also does well when using longer window sizes for 

sequential correlation prediction (Panel D), while VIX dominates for shorter windows.  

Interestingly, the Roll measures, which might have been expected to do well with correlation 

change predictions, do not fare well.  The results for kurtosis prediction again favor Amihud for 

long windows, but VIX and VPIN for shorter widows. 

 Overall, the data suggest that measured by in-sample performance the Amihud measure 

does best, with VPIN and VIX also having strong feature importance.  The Kyle lambda and Roll 

measures are never the most important measure for predicting any of the six variables. However, 

all of the measures have similar MDI results for most of the variables. Perhaps most importantly, 

these measures all provide significant in-sample explanatory power even though they are simple 

measures designed for a simpler world.15 

 

                                                             
15 It should be noted however that at each split in the trees we consider only two features. A feature that was never 
useful would have an MDI of zero, but one that sometimes is better than the single alternative it is compared with 
will have a non-zero MDI. 
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5.2 MDA results 

We next turn to evaluating MDA feature importance. Table 3 summarizes the results of 

MDA feature importance for each predicted variable. In contrast with MDI, MDA is an out-of-

sample method that captures the predictive power of each feature. Accordingly, MDA’s outputs 

are not guaranteed to be positive (some features may actually be detrimental for forecasting 

purposes), nor are they normalized. As can be seen in the table, there are several entries with 

negative yet close to zero scores, and the interpretation is that they contribute little to the out-of-

sample prediction despite the explanatory power they might have in sample. Every row 

corresponds to a specific lookback window as indicated by the first column. Each cell is formulated 

as “mean MDA feature importance score” ± “MDA feature importance score standard deviation”, 

where the mean and standard deviation are evaluated across all 87 instruments. The highest 

importance is bolded for each window size. The last column summarizes the out-of-sample 

prediction accuracy averaged across all instruments. 

For bid-ask spread prediction, VPIN has the highest feature importance for every widow 

size and it has the highest importance for 5 or 6 window sizes for kurtosis prediction and the 

Jarque-Bera test prediction.  The Roll Measure dominates for sequential correlation prediction.  

For realized volatility prediction, the Roll measure is better for shorter windows, with VPIN a 

close second.  Over longer lookback windows, however, VPIN again provides greater feature 

importance for realized volatility prediction while the Roll measure generally contributed little to 

out-of-sample prediction.  Interestingly, VIX has little out-of-sample prediction power regardless 

of the window size. Finally, for absolute skewness prediction, the feature importance results are 

mixed, with Kyle lambda, VPIN, Roll Impact, and Roll Measure each having greater importance 

for specific window sizes. 
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We interpret these results as providing support for the predictive power of microstructure 

measures that reflect frictions in the market. VPIN is generally the most important among these 

features at predicting variables that should be influenced by the presence of information-based 

trade: spread and measures of fat tails in the distribution of returns. The Roll measure is created 

from correlation in price changes and so it is not surprising that this measure has some explanatory 

power for serial correlation in returns. Finally, although we include VIX in our set of features, it 

is not intended to reflect microstructure frictions and so it is not surprising that it has little 

explanatory power for the variables we attempt to predict. 

The overall accuracy levels in Table 3 suggest that our machine learning algorithm is 

capturing something of value.  For binary financial time series classification, a classifier often 

gives accuracy around 0.5.  This standard inability to do better than random guessing is consistent 

with the efficient market hypothesis:  for liquid markets, the market is efficient most of the time 

and acts like a random walk.  So anything above 0.5 can be viewed as capturing a potential 

inefficiency of the market and so is a positive result.  With the exception of the bid-ask spread 

estimation, our out-of-sample accuracy levels reach highs ranging from 0.54 to 0.61 (depending 

on the lookback windows) which by financial machine learning standards is very good.16  The bid-

ask spread accuracy is not as good.  We conjecture that this is due to the lack of an observable bid-

ask spread in futures; we impute one using the Corwin-Schultz estimator.  It may be that the errors 

in the technique itself as applied to futures make estimation via the random forest methodology 

ineffective.  Alternatively, it may be that the dollar-volume bar approach taken here is not well 

                                                             
16 For example, see Krauss et al [2017] who in a similar binary classification problem obtain accuracy levels between 
0.50 and 0.55.  
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suited to this particular estimation.  We investigate this possibility in Section 5.4 where we re-run 

our analysis using time bars. 

5.3 Why are the MDI and MDA results so different? 

Our finding that microstructural features with good explanatory power can have poor 

predictive power, and vice versa, may be surprising at first. The reason is, in the MDI feature 

importance analysis, each tree is fit on the entire sample, and the inference is conducted on the 

output of that fit. In the MDI approach, the trees are not exposed to out-of-sample, never-seen-

before data points. As a result, MDI explains the past, even if each label was determined after the 

associated feature was observed. This is not dissimilar to the way inference is conducted in 

standard econometric approaches: A particular functional form is fit on an entire sample, and the 

estimated coefficients are subjected to a number of hypothesis tests. In a sense, MDI is an 

econometric-like feature important analysis, analogous to p-values of estimated betas. In an MDA 

analysis, the trees are not fit on the entirety of the data. Instead, each tree is fit on a fraction of the 

data, and after the fit has taken place, the tree is exposed to a never-seen-before sample. This type 

of K-fold cross-validation analysis, although commonplace in the machine learning literature, is 

less common in the market microstructure literature. 

That MDI and MDA have such different results on microstructural features should give 

researchers pause. Most of the empirical research on market microstructure has been built on in-

sample, MDI-like methods, absent of systematic cross-validation. When in-sample analyses are 

overfit to the entire sample, some features appear to be more important than they truly are for out-

of-sample prediction.  It is essential to recognize that an econometric forecasting specification, 

when fitted on the entire sample, leads to in-sample (MDI-like) results that may be overfit. In other 
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words, even though the regression’s specification attempts to forecast a variable, the resulting 

inference can be useless for forecasting purposes.  

  

5.4 Sensitivity to hyper-parameters, time periods and forecast windows 

   As the random forest algorithm is highly non-parametric and can be tuned easily, one 

should ask about the stability of the results above with respect to tuning of the model parameters. 

After all, if the feature importance changes drastically when a random forest is constructed 

differently, then the results are not consistent. For this reason, we conduct multiple sensitivity tests 

for the feature’s importance. All of our tests confirm that the feature importance score is consistent 

across different parameters, models and time.  

First, we tune two different model parameters intrinsic to all tree-based machine learning 

algorithms: maximal depth and minimal weight fraction per leaf. Changing these parameters 

transforms our unregularized random forest into a regularized random forest, and this allows us to 

check for consistency of our results. The first parameter sets a depth threshold (the maximal 

number of sequential splits) for all decision trees that compose a random forest. For instance, if 

we set the maximal depth to be 5, then each tree cannot go beyond 5 sequential splits.17 After 

adding this parameter to the random forest, we compute the MDA feature importance correlation 

between the original random forest and the regularized random forest across all 87 instruments. 

As shown in Table 4, correlation coefficients for every predicted variable and window size are 

virtually one. This indicates that the feature importance results are consistent and robust to changes 

in the tree depth hyper-parameter.   

                                                             
17 In scikit-learn library, the parameter is controlled by argument “max_depth”, and we set max_depth = 5. 



 
 
 

30 
 

 The second parameter, which controls the least sample fraction on a leaf required to stop 

splitting, has a similar functionality.18 A leaf is the name given to the node at the end of each 

branch or split.  Restricting the minimal weight fraction per leaf essentially limits how big the tree 

can grow and thus limits the chances of overfitting.  Again, we compute the MDA feature 

importance correlation between the unregularized and the regularized random forest. These results 

are given in Table 5.  Just like the case in Table 4, correlation coefficients for every predicted 

variable and window size are close to one, which further confirms the robustness of our feature 

importance analysis.  

Since our data are time series, another question is whether the feature importance is 

stationary across time. For instance, is it possible that VPIN is good at predicting realized kurtosis 

when the market is volatile, and not otherwise? To answer this, we run the MDA test presented in 

5.2 on a yearly basis. More specifically, we split the data set into 5 parts in chronological order. 

Since the total length of data in time is 5 years, each part covers a year long period. For simplicity, 

we only show the results for 250 bar lookback window in Table 6. It is evident that the feature 

importance, especially the ranking does not vary much across time, indicating that the feature 

importance is stationary. A related question is whether the feature importance is stationary across 

different instruments. This is partially proven by the small standard deviations in the feature 

importance shown in Tables 2 and 3. In addition, we include a list of feature importance for 

kurtosis prediction per instrument, with lookback window fixed at 250 bars in Table A.3.   

Finally, we ask about stability of our results with respect to the forecast window. All of our 

results are for a 250 bar forecast window and it is worth asking how feature importance changes 

as the window size varies. Table 9 provides the correlation in MDA feature importance results 

                                                             
18 In scikit-learn library, the parameter is controlled by argument “min_weight_fraction_leaf”. . 
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between a 250 bar forecast window and a 50 bar forecast window. As the table shows, most entries 

are high (particularly for short lookback windows) which indicates that the results are reasonably 

stable across different forecast scales.   

5.5 Dollar-volume-bar versus time-bar accuracy 

All of the analysis above is based on a dollar-volume bar formulation.  These bars have the 

desirable feature of aligning the sampling of data with the arrival of information, which seems an 

appropriate property for the high-frequency world characterizing futures trading.  There are, of 

course, other bar types that could be used, and in this subsection we compare the accuracy using 

dollar-volume bars with the accuracy that results from using another popular bar method, namely 

the time-bar method. A time-bar is formed when the difference between the close tick and open 

tick’s timestamps exceeds a predefined value. In particular, we formulate hourly time-bars for all 

the futures instruments and apply the same cross-validation with the same random forest 

configuration. The results of out-of-sample prediction accuracy averaged over all instruments are 

given in Table 7. 

As shown in the table, the accuracy results are very close for the two metrics.  For four of 

the metrics, dollar-volume bars have higher accuracy, while for the Jarque-Bera test and bid-ask 

spread time bars are slightly more accurate.  This similarity is important for allaying fears that 

variables originally calculated over fixed time intervals may be distorted when cast in a volume-

based metric.  Additionally, we find that even though overall the time-bar formulation has slightly 

lower accuracy, in many cases it gives rise to similar feature importance ranking with dollar-

volume bars. For example, in Figure 3 we present the MDA feature importance for both bar 

methods for kurtosis prediction using a window size of 50 bars. The similarity in feature 

importance ranking is evident.  Finally, Table 7 shows that regardless of how we measure bars, 
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the accuracy of out-of-sample bid-ask spread prediction is low.  Thus, prediction difficulties here 

are not due to bar measurement issues.  As noted earlier, we believe a more compelling explanation 

lies in the construction of this variable.   

5.5 Logistic Regression 

Next, we consider a different classification model, namely, logistic regression for a model-

based sensitivity test. A logistic regression models the logarithm of the odds of our two labels with 

a linear functional form. When the classification label is binary denoted as {0,1}, the prediction 

probability for the two classes is given by 

𝑝(0|�⃗�) =
1

1 + 𝑒−�⃗⃗⃗�∙�⃗�
,   𝑝(1|�⃗�) = 1 −   𝑝(0|�⃗�), 

where �⃗� is the feature vector and the coefficient vector �⃗⃗⃗� is obtained through a regularized 

maximum likelihood fit. For each sample, the prediction is the class label with the higher 

prediction probability. Logistic regression is another commonly used approach because of its 

simplicity and parametricity. It does not have an in-sample feature importance analysis as MDI. 

Nonetheless, we can apply MDA feature importance and compare it to the random forest result. In 

Table 8 we present the MDA feature importance correlation between logistic regression and 

random forest.19 In general, the correlation between two algorithms is high (greater than 0.6), 

although when the lookback window size is large the correlation declines. Prediction accuracy 

with the logistic is also similar to what we obtain with machine learning with the logistic approach 

typically being slightly more accurate (see Appendix A.4). 

To shed more light on the difference between the logistic regression and random forest 

approaches we provide a scatter plot in Figure 4 for the logistic regression’s predicted bid-ask 

                                                             
19 Detailed results from the logistic approach are provided in the Appendix, Table A.4. 
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spread as function of the two most important out-of-sample features, VPIN and the Roll Measure. 

Figure 2 provided a scatter plot of predictions for the random forest approach as a function of these 

two variables. The two plots are similar with the main difference being in the shape of the decision 

boundary. Both plots illustrate predictions that are in line with our intuition, e.g. higher VPIN leads 

to spread increasing.  

 We view the similarity of the results obtained with these two quite different approaches as 

further evidence that the microstructure frictions our features attempt to measure are real and that 

they have implications for the process of price adjustment. There is no apparent reason for why 

the logistic model with log odds given by a linear function of our microstructure features should 

fit the data reasonably well, but apparently it does as overall the prediction results are at least as 

strong as those we obtain with the hierarchical random forest approach. Of course, without having 

first done the random forest analysis we would not have known that the logistic model offers a 

good specification. In other words, the random forest sets a non-parametric benchmark that a 

classical model can beat by injecting structural information into the forecasting problem.  This 

exemplifies our view that machine learning algorithms do not replace classical methods, but rather 

complement the use of those classical methods by de-coupling the search for specification from 

the search for important variables.   

6. Conclusion and future directions 

 

In this study we have attempted to shed light on the importance of various microstructure 

features for explanatory and forecasting purposes. The six variables we wish to explain and predict 

are highly relevant to market makers and portfolio managers: Bid-ask spread, realized volatility, 

Normality, skewness, kurtosis and serial correlation. We apply machine learning methods in order 

to capture the complexity inherent to high-frequency data, without concerning ourselves at this 
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point with determining a parametric structure to characterize the complex relationship between 

variables. We provide clear evidence that some extant microstructure variables have value for 

predicting the new dynamics of market behavior.  At that same time, however, we find that other 

popular microstructure variables can have high explanatory power (in-sample), and yet fail to 

provide forecasting power (out-of-sample).  

We believe these findings have important implications for future microstructure research. 

Foremost among these implications is good news:  our results clearly show that market frictions 

continue to play an important role in affecting market dynamics and that extant microstructure 

measures capture (to varying extents) these dynamic effects.  Thus, despite the complexity of 

current markets, frictions such as asymmetric information, or illiquidity arising from constraints 

on market maker risk bearing, or endogenous patterns arising from algorithms programmed to hide 

in particular market structures, all continue to affect price dynamics as predicted by microstructure 

research.  More good news is that the efficacy of these microstructure variables in capturing these 

effects appears to be remarkably robust.  Our out-of-sample forecasting results are virtually the 

same whether we use time clocks or volume clocks, shorter samples or longer, regularized or 

unregularized forests, even simple logistic models versus hierarchal machine learning – the 

rankings of which variables matter most stay the same.  These findings should be helpful in 

thinking about the type of models (and measures) we need to work on to capture better market 

dynamics. 

There are other implications to consider as well.  Since most empirical research in the 

market microstructure literature follows an in-sample procedure, without out-of-sample cross-

validation, it is possible that some established empirical results are artificial.  To determine this, 

however, requires more extensive study and new empirical analytics.  The machine learning 
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approach taken here is one such direction, but there are many new approaches that seem well-

suited to analyses of complex market structures. 

At a more fundamental level, the high out-of-sample accuracy we have achieved appears 

to indicate that markets are less efficient than is generally believed.  For microstructure researchers, 

efficiency has long been a problematic concept; over short intervals, prices are not random walks, 

and even the concept of a price is tricky given that it may differ depending on whether you want 

large or small amounts, are a buyer or a seller, etc.  Our findings here, however, are more concrete 

and troubling.  Using machine learning techniques, successful forecasting of price process 

dynamics using simply past data on market microstructure features is both feasible and accurate.  

From a practical perspective, this suggests increased research on ways to exploit this information 

in profitable trading strategies.  From a broader perspective, these results highlight the changing 

role played by trading and trading strategies in affecting asset price dynamics.  Recognizing these 

trading dynamics may be particularly useful for asset pricing research. 

Finally, we suggest a fruitful direction for future machine learning microstructure research.  

In particular, while our research here draws on extensive data involving what is essentially the 

entire futures market, our analysis looks at the within-market effects of our microstructure 

variables.  That is, we look at how the various microstructure measures perform on each individual 

futures contract and then aggregate across all 87 contracts to find our results.  Yet, as noted in the 

introduction, cross-market activity (and particularly cross-market market making) is now the norm, 

suggesting that there should be important cross effects of measures such a VPIN or Amihud in one 

market or other markets.  Such an investigation seems both promising and only really feasible 

using modern machine learning techniques, and we hope to address this in future research. 
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Table 1 Correlation Matrix of Microstructure Variables 

 

 

  Roll Roll_impact 

Kyle 

lambda Amihud VPIN UX (VIX) 

Roll 1.0000 0.9275 0.0001 0.3441 0.0190 0.1574 

Roll_impact 0.9275 1.0000 0.0001 0.3255 0.0141 0.1506 

Kyle lambda 0.0001 0.0001 1.0000 0.0002 -0.0001 0.0008 

Amihud 0.3441 0.3255 0.0002 1.0000 0.0776 0.2971 

VPIN 0.0190 0.0141 -0.0001 0.0776 1.0000 0.0320 

UX (VIX) 0.1574 0.1506 0.0008 0.2971 0.0320 1.0000 
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Table 2 MDI feature importance  

 

Panel A:  MDI feature importance for bid-ask spread prediction. 

Window 

size Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN 

25 bars 0.181 ± 0.001 0.17 ± 0.001 0.155 ± 0.002 0.15 ± 0.002 0.165 ± 0.002 0.179 ± 0.001 

50 bars 0.184 ± 0.001 0.17 ± 0.001 0.153 ± 0.002 0.15 ± 0.002 0.167 ± 0.001 0.177 ± 0.0 

250 bars 0.194 ± 0.001 0.171 ± 0.001 0.15 ± 0.002 0.148 ± 0.002 0.157 ± 0.001 0.18 ± 0.001 

500 bars 0.197 ± 0.001 0.171 ± 0.001 0.149 ± 0.002 0.148 ± 0.002 0.151 ± 0.001 0.184 ± 0.001 

1000 bars 0.198 ± 0.001 0.172 ± 0.001 0.148 ± 0.003 0.148 ± 0.002 0.146 ± 0.001 0.187 ± 0.001 

1500 bars 0.197 ± 0.001 0.173 ± 0.001 0.148 ± 0.003 0.148 ± 0.002 0.145 ± 0.001 0.19 ± 0.001 

2000 bars 0.197 ± 0.001 0.172 ± 0.001 0.147 ± 0.003 0.147 ± 0.002 0.145 ± 0.001 0.192 ± 0.002 

 
Panel B:  MDI feature importance for realized volatility prediction. 

Window 

size Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN 

25 bars 0.169 ± 0.003 0.157 ± 0.002 0.149 ± 0.003 0.157 ± 0.003 0.178 ± 0.003 0.178 ± 0.004 

50 bars 0.185 ± 0.001 0.155 ± 0.001 0.135 ± 0.002 0.144 ± 0.002 0.205 ± 0.001 0.175 ± 0.003 

250 bars 0.223 ± 0.002 0.148 ± 0.001 0.098 ± 0.002 0.119 ± 0.002 0.22 ± 0.002 0.192 ± 0.002 

500 bars 0.234 ± 0.001 0.146 ± 0.001 0.089 ± 0.002 0.114 ± 0.002 0.206 ± 0.001 0.211 ± 0.002 

1000 bars 0.234 ± 0.002 0.143 ± 0.002 0.085 ± 0.002 0.117 ± 0.003 0.18 ± 0.002 0.241 ± 0.004 

1500 bars 0.23 ± 0.002 0.143 ± 0.002 0.083 ± 0.002 0.119 ± 0.003 0.168 ± 0.002 0.257 ± 0.004 

2000 bars 0.226 ± 0.002 0.142 ± 0.002 0.082 ± 0.002 0.119 ± 0.003 0.165 ± 0.002 0.267 ± 0.004 
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Table 2 (continued) 

 

Panel C:  MDI feature importance for Jarque-Bera test prediction. 

Window 

size Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN 

25 bars 0.184 ± 0.002 0.167 ± 0.002 0.14 ± 0.001 0.143 ± 0.002 0.183 ± 0.002 0.183 ± 0.004 

50 bars 0.19 ± 0.001 0.161 ± 0.001 0.13 ± 0.001 0.135 ± 0.001 0.203 ± 0.001 0.181 ± 0.003 

250 bars 0.22 ± 0.001 0.149 ± 0.001 0.098 ± 0.001 0.118 ± 0.002 0.22 ± 0.002 0.195 ± 0.002 

500 bars 0.233 ± 0.002 0.147 ± 0.001 0.091 ± 0.002 0.117 ± 0.002 0.206 ± 0.001 0.206 ± 0.002 

1000 bars 0.24 ± 0.001 0.147 ± 0.001 0.089 ± 0.002 0.121 ± 0.003 0.181 ± 0.001 0.221 ± 0.002 

1500 bars 0.241 ± 0.002 0.147 ± 0.001 0.088 ± 0.002 0.124 ± 0.003 0.168 ± 0.001 0.232 ± 0.002 

2000 bars 0.24 ± 0.002 0.144 ± 0.001 0.088 ± 0.002 0.125 ± 0.003 0.161 ± 0.001 0.241 ± 0.002 

 

 

Panel D:  MDI feature importance for sequential correlation prediction. 

Window 

size Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN 

25 bars 0.183 ± 0.002 0.163 ± 0.002 0.142 ± 0.002 0.15 ± 0.002 0.191 ± 0.003 0.171 ± 0.002 

50 bars 0.188 ± 0.002 0.159 ± 0.002 0.132 ± 0.002 0.141 ± 0.002 0.206 ± 0.002 0.174 ± 0.002 

250 bars 0.215 ± 0.002 0.146 ± 0.001 0.109 ± 0.002 0.131 ± 0.003 0.216 ± 0.002 0.184 ± 0.001 

500 bars 0.228 ± 0.001 0.146 ± 0.001 0.1 ± 0.002 0.125 ± 0.003 0.2 ± 0.001 0.201 ± 0.001 

1000 bars 0.233 ± 0.002 0.146 ± 0.001 0.099 ± 0.002 0.133 ± 0.003 0.176 ± 0.001 0.213 ± 0.002 

1500 bars 0.234 ± 0.002 0.143 ± 0.001 0.1 ± 0.002 0.139 ± 0.003 0.163 ± 0.001 0.221 ± 0.002 

2000 bars 0.232 ± 0.002 0.143 ± 0.001 0.1 ± 0.003 0.143 ± 0.003 0.156 ± 0.001 0.224 ± 0.002 
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Table 2 (continued) 

 

Panel E: MDI feature importance for absolute skewness prediction. 

Window 

size Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN 

25 bars 0.181 ± 0.002 0.172 ± 0.002 0.141 ± 0.001 0.144 ± 0.001 0.18 ± 0.002 0.181 ± 0.003 

50 bars 0.189 ± 0.001 0.169 ± 0.001 0.132 ± 0.001 0.136 ± 0.001 0.2 ± 0.001 0.174 ± 0.002 

250 bars 0.219 ± 0.001 0.155 ± 0.001 0.101 ± 0.001 0.12 ± 0.002 0.218 ± 0.001 0.187 ± 0.001 

500 bars 0.23 ± 0.001 0.152 ± 0.001 0.096 ± 0.002 0.12 ± 0.002 0.201 ± 0.001 0.201 ± 0.001 

1000 bars 0.237 ± 0.001 0.152 ± 0.001 0.092 ± 0.002 0.124 ± 0.003 0.18 ± 0.001 0.216 ± 0.001 

1500 bars 0.236 ± 0.001 0.153 ± 0.001 0.091 ± 0.002 0.127 ± 0.003 0.168 ± 0.001 0.225 ± 0.002 

2000 bars 0.238 ± 0.001 0.151 ± 0.001 0.09 ± 0.002 0.127 ± 0.002 0.161 ± 0.001 0.232 ± 0.002 

  

Panel F: MDI feature importance for kurtosis prediction. 

Window 

size Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN 

25 bars 0.181 ± 0.002 0.159 ± 0.002 0.135 ± 0.002 0.139 ± 0.002 0.182 ± 0.001 0.205 ± 0.003 

50 bars 0.188 ± 0.001 0.157 ± 0.001 0.127 ± 0.001 0.133 ± 0.001 0.202 ± 0.001 0.193 ± 0.002 

250 bars 0.219 ± 0.001 0.149 ± 0.001 0.097 ± 0.001 0.117 ± 0.002 0.221 ± 0.001 0.197 ± 0.001 

500 bars 0.233 ± 0.001 0.147 ± 0.001 0.091 ± 0.002 0.117 ± 0.002 0.206 ± 0.001 0.207 ± 0.002 

1000 bars 0.24 ± 0.001 0.146 ± 0.001 0.089 ± 0.002 0.121 ± 0.003 0.182 ± 0.001 0.221 ± 0.002 

1500 bars 0.241 ± 0.002 0.146 ± 0.001 0.088 ± 0.002 0.124 ± 0.003 0.168 ± 0.001 0.232 ± 0.002 

2000 bars 0.24 ± 0.002 0.145 ± 0.001 0.088 ± 0.002 0.125 ± 0.003 0.161 ± 0.001 0.241 ± 0.002 
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Table 3 MDA feature importance  

 

Panel A:  MDA feature importance for bid-ask spread prediction. 

 

Window 

size Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN Accuracy 

25 bars 0.0033 ± 0.00084 0.0042 ± 0.00068 -0.0031 ± 0.00108 0.0174 ± 0.00154 0.0011 ± 0.00059 0.0248 ± 0.00142 0.4535 

50 bars 0.0042 ± 0.00094 0.0045 ± 0.00078 -0.004 ± 0.00088 0.0126 ± 0.00142 0.0002 ± 0.00056 0.0167 ± 0.00117 0.4525 

250 bars 0.0048 ± 0.00125 0.0018 ± 0.00088 -0.0047 ± 0.00087 0.0031 ± 0.00124 0.0021 ± 0.0009 0.0161 ± 0.00179 0.4572 

500 bars -0.0001 ± 0.00094 -0.0003 ± 0.00082 -0.003 ± 0.00103 -0.003 ± 0.00097 0.0031 ± 0.00115 0.0268 ± 0.00214 0.4587 

1000 bars -0.002 ± 0.00106 0.0007 ± 0.00084 -0.002 ± 0.00103 -0.0033 ± 0.00108 0.0039 ± 0.00138 0.0198 ± 0.00166 0.4546 

1500 bars -0.0023 ± 0.00094 -0.0007 ± 0.00083 -0.002 ± 0.001 -0.0017 ± 0.00109 0.0053 ± 0.00133 0.015 ± 0.00114 0.4513 

2000 bars -0.0005 ± 0.00093 0.0012 ± 0.00093 0.0002 ± 0.00099 -0.0025 ± 0.00115 0.0058 ± 0.00148 0.0102 ± 0.0011 0.4498 

 
Panel B: MDA feature importance for realized volatility prediction. 

Window 

size Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN Accuracy 

25 bars 0.0013 ± 0.00289 0.0185 ± 0.00138 0.0237 ± 0.00211 0.0558 ± 0.00288 -0.0006 ± 0.00095 0.0531 ± 0.00482 0.61 

50 bars 0.0057 ± 0.0011 0.0133 ± 0.00125 0.019 ± 0.00155 0.0435 ± 0.00229 0.0004 ± 0.00093 0.0402 ± 0.00432 0.5813 

250 bars 0.0163 ± 0.00304 0.006 ± 0.00163 0.0063 ± 0.00148 0.025 ± 0.00245 0.0002 ± 0.0022 0.0172 ± 0.0037 0.5493 

500 bars 0.0133 ± 0.00373 0.0005 ± 0.00229 -0.0029 ± 0.00149 0.0028 ± 0.00231 -0.002 ± 0.00251 0.0307 ± 0.0044 0.5399 

1000 bars 0.0063 ± 0.00315 0.0024 ± 0.00265 -0.0029 ± 0.00124 -0.0002 ± 0.00251 0.01 ± 0.00288 0.0477 ± 0.0056 0.5578 

1500 bars 0.002 ± 0.00377 0.004 ± 0.00293 -0.0072 ± 0.00187 -0.0034 ± 0.0032 0.0101 ± 0.00311 0.0513 ± 0.00564 0.559 

2000 bars 0.0036 ± 0.00386 0.002 ± 0.00293 -0.0076 ± 0.00191 -0.0111 ± 0.00287 0.0187 ± 0.00418 0.056 ± 0.00544 0.5668 
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Panel C:   MDA feature importance for Jarque-Bera test prediction. 

Window 

size Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN Accuracy 

25 bars 0.0027 ± 0.00083 0.0219 ± 0.00235 0.0041 ± 0.0008 0.0095 ± 0.00122 0.0001 ± 0.00082 0.0334 ± 0.00996 0.5406 

50 bars 0.0008 ± 0.00091 0.0132 ± 0.00189 0.0032 ± 0.00086 0.0083 ± 0.00101 0.0001 ± 0.00101 0.0428 ± 0.00589 0.5416 

250 bars 0.002 ± 0.00264 -0.0006 ± 0.0018 0.0004 ± 0.00122 0.0086 ± 0.00182 -0.0024 ± 0.00192 0.0411 ± 0.00424 0.5415 

500 bars -0.0043 ± 0.00349 -0.002 ± 0.00181 -0.0013 ± 0.00145 0.002 ± 0.002 -0.0011 ± 0.00251 0.0244 ± 0.0039 0.5232 

1000 bars -0.0059 ± 0.00319 -0.003 ± 0.00257 -0.001 ± 0.00167 -0.0001 ± 0.00245 -0.0049 ± 0.0027 -0.0019 ± 0.00421 0.5066 

1500 bars -0.0051 ± 0.00382 -0.0049 ± 0.00263 -0.0007 ± 0.00182 -0.006 ± 0.0028 -0.0042 ± 0.00273 0.0026 ± 0.00421 0.5051 

2000 bars -0.0087 ± 0.00331 -0.0042 ± 0.00282 -0.0031 ± 0.00224 -0.005 ± 0.00342 -0.0025 ± 0.00342 0.0003 ± 0.00428 0.5074 

 

Panel D:   MDA feature importance for sequential correlation prediction. 

Window 

size Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN Accuracy 

25 bars 0.0048 ± 0.00112 0.0042 ± 0.00149 0.0158 ± 0.00209 0.0548 ± 0.00733 0.0012 ± 0.00134 0.0053 ± 0.00141 0.5401 

50 bars 0.005 ± 0.00135 0.0012 ± 0.00072 0.0096 ± 0.00147 0.0433 ± 0.00716 0.0007 ± 0.0011 0.0057 ± 0.00177 0.5357 

250 bars 0.0128 ± 0.00268 0.0002 ± 0.00136 0.0112 ± 0.00204 0.0391 ± 0.00671 -0.0013 ± 0.00214 0.0021 ± 0.0024 0.5394 

500 bars 0.0081 ± 0.00278 0.0017 ± 0.00186 0.0069 ± 0.00186 0.023 ± 0.0046 0.0021 ± 0.00254 0.0045 ± 0.00289 0.5265 

1000 bars 0.0031 ± 0.00287 -0.0015 ± 0.00195 0.0013 ± 0.00215 0.0129 ± 0.00343 -0.0041 ± 0.00208 -0.0008 ± 0.00336 0.5173 

1500 bars -0.0109 ± 0.00825 -0.0032 ± 0.00204 0.0019 ± 0.0022 0.0072 ± 0.00517 -0.0112 ± 0.00429 -0.0051 ± 0.00478 0.5113 

2000 bars 0.0006 ± 0.00362 -0.0033 ± 0.00212 0.0028 ± 0.00204 0.011 ± 0.00321 -0.006 ± 0.00245 0.0023 ± 0.00359 0.5113 
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Panel E: MDA feature importance for absolute skewness prediction. 

Window 

size Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN Accuracy 

25 bars 0.0013 ± 0.00074 0.0374 ± 0.00494 0.0042 ± 0.00123 0.0106 ± 0.0015 -0.0009 ± 0.0009 0.0328 ± 0.00302 0.5447 

50 bars 0.0012 ± 0.00087 0.0288 ± 0.0045 0.002 ± 0.00072 0.0047 ± 0.00094 -0.0002 ± 0.00094 0.0276 ± 0.00246 0.537 

250 bars 0.0028 ± 0.00264 0.0098 ± 0.00248 0.0001 ± 0.00117 0.0044 ± 0.0018 0.0002 ± 0.00213 0.0179 ± 0.00315 0.5264 

500 bars -0.0005 ± 0.00293 0.0073 ± 0.00221 0.0006 ± 0.0013 0.0011 ± 0.00203 -0.0018 ± 0.00217 0.0092 ± 0.00344 0.5166 

1000 bars -0.0033 ± 0.00303 -0.0012 ± 0.00269 -0.0037 ± 0.00171 -0.0082 ± 0.00272 -0.0085 ± 0.00216 -0.008 ± 0.00293 0.5024 

1500 bars -0.0096 ± 0.00398 -0.0041 ± 0.00306 -0.0028 ± 0.00165 -0.0021 ± 0.00251 -0.0039 ± 0.0024 -0.0084 ± 0.00421 0.4995 

2000 bars -0.0047 ± 0.00349 -0.0026 ± 0.00277 -0.0019 ± 0.00166 -0.0052 ± 0.00286 -0.0027 ± 0.00255 -0.0025 ± 0.00406 0.504 

 
Panel F:  MDA feature importance for kurtosis prediction. 

Window 

size Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN Accuracy 

25 bars 0.0014 ± 0.00071 0.0062 ± 0.00121 0.005 ± 0.00075 0.0114 ± 0.00134 0.0001 ± 0.00061 0.0968 ± 0.00597 0.5694 

50 bars 0.0012 ± 0.00096 0.0047 ± 0.00137 0.0032 ± 0.00088 0.0094 ± 0.00104 -0.0007 ± 0.00094 0.0844 ± 0.00482 0.5641 

250 bars 0.0022 ± 0.0024 -0.0016 ± 0.00168 -0.0007 ± 0.0012 0.0077 ± 0.00198 -0.0023 ± 0.00184 0.0461 ± 0.00421 0.5444 

500 bars -0.0039 ± 0.00315 -0.0035 ± 0.00185 -0.0018 ± 0.00156 0.0026 ± 0.00208 -0.0025 ± 0.00246 0.0258 ± 0.00416 0.5227 

1000 bars -0.0065 ± 0.00308 -0.0025 ± 0.00265 -0.0008 ± 0.00179 -0.0006 ± 0.00254 -0.0028 ± 0.00242 -0.002 ± 0.00441 0.5057 

1500 bars -0.0059 ± 0.00374 -0.0039 ± 0.0029 -0.0024 ± 0.00197 -0.0053 ± 0.00311 -0.0031 ± 0.0029 0.0023 ± 0.00369 0.5046 

2000 bars -0.0089 ± 0.00317 -0.0043 ± 0.00292 -0.0026 ± 0.0022 -0.0068 ± 0.00334 -0.0022 ± 0.00349 0.0009 ± 0.00411 0.5057 
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Table 4 MDA feature importance correlation between original random forest 
and adding max_depth=5 

Variable 25 bars 250 bars 50 bars 500 bars 1000 bars 1500 bars 2000 bars 

Kurtosis 0.998353 0.998687 0.997921 0.999611 0.999924 0.999904 0.999857 

Bid-Ask spread 0.994484 0.99634 0.997186 0.993873 0.996883 0.997981 0.997974 

Return variance 0.999724 0.99978 0.999759 0.999471 0.99923 0.999054 0.999315 

Sequential correlation 0.999838 0.999787 0.999747 0.999869 0.999924 0.999784 0.999847 

Skewness 0.999728 0.999669 0.999655 0.999896 0.99991 0.999963 0.999893 

Jarque-Bera test 0.999695 0.999104 0.999393 0.999652 0.999931 0.999869 0.999815 

 

 

 

 

 

 

Table 5 MDA feature importance correlation between original random forest 
and adding min_weight_fraction_leaf=0.01 

Variable 25 bars 250 bars 50 bars 500 bars 1000 bars 1500 bars 2000 bars 

Kurtosis 0.99845 0.999174 0.998438 0.99976 0.999984 0.999891 0.999861 

Bid-Ask spread 0.996369 0.998045 0.998327 0.99646 0.998141 0.99838 0.998313 

Return variance 0.999759 0.999895 0.999845 0.999754 0.999666 0.999218 0.999587 

Sequential correlation 0.999918 0.999892 0.999823 0.999928 0.999867 0.999945 0.999906 

Skewness 0.999677 0.999788 0.999632 0.999895 0.99996 0.999955 0.999968 

Jarque-Bera test 0.999644 0.999318 0.999532 0.999794 0.999982 0.999899 0.999812 
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Table 6 Yearly feature importance, lookback window is fixed at 250 bars. 

Panel A:  MDA feature importance for bid-ask spread prediction. 

Period Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN Accuracy 

2012-2013 0.0013 0.0002 -0.0051 0.0014 0.0033 0.0142 0.4555 

2013-2014 0.0034 -0.0012 -0.0067 -0.0008 0.0020 0.0174 0.4578 

2014-2015 0.0035 -0.0003 -0.0040 0.0020 0.0009 0.0142 0.4480 

2015-2016 0.0023 -0.0013 -0.0094 -0.0044 0.0038 0.0128 0.4549 

2016-2017 0.0006 0.0008 -0.0038 -0.0005 0.0032 0.0083 0.4516 

 

Panel B: MDA feature importance for realized volatility prediction. 

Period Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN Accuracy 

2012-2013 0.0079 0.0001 0.0034 0.0170 -0.0015 0.0128 0.5479 

2013-2014 0.0117 -0.0027 0.0048 0.0141 -0.0046 0.0198 0.5507 

2014-2015 0.0001 -0.0003 0.0105 0.0215 -0.0139 -0.0003 0.5337 

2015-2016 0.0098 0.0012 0.0088 0.0174 -0.0092 0.0058 0.5431 

2016-2017 -0.0032 0.0023 0.0040 0.0143 -0.0105 0.0171 0.5526 

 

Panel C:   MDA feature importance for Jarque-Bera test prediction. 

Period Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN Accuracy 

2012-2013 -0.0056 -0.0024 -0.0045 -0.0010 -0.0042 0.0186 0.5333 

2013-2014 0.0040 0.0018 0.0025 0.0080 0.0038 0.0372 0.5556 

2014-2015 -0.0130 -0.0031 0.0000 0.0033 -0.0111 0.0131 0.5319 

2015-2016 -0.0049 -0.0039 -0.0045 -0.0008 -0.0162 0.0269 0.5382 

2016-2017 -0.0155 0.0032 -0.0027 0.0006 -0.0125 0.0057 0.5326 

 

Panel D:   MDA feature importance for sequential correlation prediction. 

Period Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN Accuracy 

2012-2013 -0.0039 -0.0012 0.0057 0.0313 -0.0114 -0.0047 0.5435 

2013-2014 -0.0069 -0.0018 0.0005 0.0245 -0.0091 -0.0056 0.5370 

2014-2015 -0.0023 -0.0035 -0.0086 0.0092 -0.0077 -0.0158 0.5332 

2015-2016 0.0003 -0.0033 0.0054 0.0200 -0.0067 -0.0144 0.5332 

2016-2017 -0.0033 -0.0055 -0.0054 0.0194 -0.0112 -0.0144 0.5322 

 

Panel E: MDA feature importance for absolute skewness prediction. 

Period Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN Accuracy 

2012-2013 -0.0015 -0.0035 -0.0030 -0.0021 0.0013 0.0033 0.5215 
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2013-2014 0.0052 0.0033 -0.0012 0.0008 -0.0043 0.0090 0.5309 

2014-2015 -0.0049 0.0033 0.0013 0.0000 -0.0122 -0.0041 0.5137 

2015-2016 -0.0028 0.0033 0.0000 -0.0017 -0.0066 0.0105 0.5208 

2016-2017 -0.0083 0.0027 -0.0028 -0.0075 -0.0100 -0.0081 0.5165 

 

Panel F:  MDA feature importance for kurtosis prediction. 

Period Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN Accuracy 

2012-2013 -0.0032 -0.0012 -0.0023 0.0004 -0.0019 0.0215 0.5355 

2013-2014 0.0028 -0.0022 -0.0016 0.0031 0.0030 0.0358 0.5568 

2014-2015 -0.0066 -0.0007 0.0021 0.0055 -0.0070 0.0269 0.5378 

2015-2016 -0.0062 -0.0012 0.0001 0.0027 -0.0138 0.0325 0.5423 

2016-2017 -0.0144 0.0004 -0.0010 0.0005 -0.0177 0.0070 0.5343 

 

 

Table 7 Performance comparison between Dollar-Volume bars and Time bars. 

 

Variable 

Average accuracy 

DV bar Time bar 

Bid-ask spread 0.4539 0.4699 

Jarque-Bera test 0.5237 0.5269 

Kurtosis 0.5309 0.5304 

Return variance 0.5663 0.5609 

Sequential correlation 0.5259 0.5252 

Skewness 0.5187 0.5142 
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Table 8 MDA feature importance correlation between logistic regression and 
random forest  

Variable 25 bars 50 bars 250 bars 500 bars 1000 bars 1500 bars 2000 bars 

Kurtosis 0.9818 0.9779 0.9602 0.9489 -0.1058 0.5929 0.6807 

Bid-Ask spread 0.6478 0.5756 0.0999 0.1582 -0.0639 0.0177 0.1712 

Return variance 0.9312 0.9223 0.8830 0.8264 0.9366 -0.3209 0.9492 

Sequential correlation 0.9808 0.9929 0.9719 0.9268 0.9561 0.6887 0.9506 

Skewness 0.9983 0.9809 0.8963 0.8058 0.6231 0.2737 0.7509 

Jarque-Bera test 0.8611 0.9375 0.9589 0.9377 -0.0275 0.5359 0.7963 

 

 

Table 9 MDA feature importance correlation between 50 bars forward window 
and 250 bars forward window   

Variable 25 bars 50 bars 250 bars 500 bars 1000 bars 1500 bars 2000 bars 

Kurtosis 0.9984 0.9987 0.9685 0.5405 0.3060 0.8690 0.5939 

Bid-Ask spread 0.9951 0.9828 0.8229 0.9810 0.9612 0.8946 0.9459 

Return variance 0.9911 0.9584 0.4131 0.9197 0.9801 0.9956 0.9864 

Sequential correlation 0.9973 0.9979 0.8768 0.9415 0.9032 0.8292 0.9677 

Skewness 0.9984 0.9947 0.6333 0.9140 -0.0871 0.3896 0.1941 

Jarque-Bera test 0.9946 0.9945 0.8864 0.6871 0.2597 0.8482 0.7291 
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Figure 1: ES1 Index's cumulative return and ETF price. 
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Figure 2: Scatter plot of predicted changes in spread as a function of the VPIN and Roll 

measures.  The plot is for the ES1 Index with a lookback window of 25 bars. 
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Figure   3: MDA feature importance for kurtosis prediction with window size = 50 bars. Left: 
time-bar. Right: dollar-volume-bar. 
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Figure 4: Scatter plot of predicted changes in spread as a function of the VPIN and Roll 

measures for the logistic regression.  The plot is for the ES1 Index with a lookback window 

of 25 bars. 
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Appendix A.1 - Data 
 

 

Table A.1 Data summary of 87 futures contracts. 

This table lists and data and sources used in this paper.  The data are futures contracts and each 

contract is identified by its ticker simple and general asset class.  The data is divided into dollar volume 

bars.  The sample period is from July 2, 2012 – October 2, 2017. 

Instrument Data Source Size Sample Period 

AD1_Curncy TickWrite 72553 Bars  2012-07-02 - 2017-10-02 

BO1_Comdty TickWrite 72306 Bars  2012-07-02 - 2017-10-02 

BP1_Curncy TickWrite 67939 Bars  2012-07-02 - 2017-10-02 

BTS1_Comdty TickWrite 30756 Bars  2015-10-01 - 2017-10-02 

BZ1_Index TickWrite 68054 Bars  2012-07-02 - 2017-10-02 

CC1_Comdty TickWrite 55568 Bars  2012-07-02 - 2017-10-02 

CD1_Curncy TickWrite 69808 Bars  2012-07-02 - 2017-10-02 

CF1_Index TickWrite 71056 Bars  2012-07-02 - 2017-10-02 

CL1_Comdty TickWrite 63875 Bars  2012-07-02 - 2017-10-02 

CN1_Comdty TickWrite 52872 Bars  2012-07-03 - 2017-10-02 

CO1_Comdty TickWrite 87235 Bars  2012-07-02 - 2017-10-02 

CT1_Comdty TickWrite 65074 Bars  2012-07-02 - 2017-10-02 

C_1_Comdty TickWrite 75564 Bars  2012-07-02 - 2017-10-02 

DM1_Index TickWrite 57993 Bars  2012-07-02 - 2017-10-02 

DU1_Comdty TickWrite 79664 Bars  2012-07-02 - 2017-10-02 

DX1_Curncy TickWrite 72221 Bars  2012-07-02 - 2017-10-02 

EC1_Comdty TickWrite 73491 Bars  2012-07-02 - 2017-10-02 

EC1_Curncy TickWrite 85801 Bars  2012-07-02 - 2017-10-02 

ED1_Comdty TickWrite 48863 Bars  2012-07-02 - 2017-10-02 

EE1_Curncy TickWrite 83571 Bars  2012-07-02 - 2017-10-02 



 
 
 

54 
 

EO1_Comdty TickWrite 89594 Bars  2012-07-02 - 2017-10-02 

EO1_Index TickWrite 60815 Bars  2012-07-02 - 2017-10-02 

ER1_Comdty TickWrite 98910 Bars  2012-07-02 - 2017-06-28 

ES1_Index TickWrite 58347 Bars  2012-07-02 - 2017-10-02 

FA1_Index TickWrite 64184 Bars  2012-07-02 - 2017-10-02 

FC1_Comdty TickWrite 71374 Bars  2012-07-02 - 2017-10-02 

FV1_Comdty TickWrite 66428 Bars  2012-07-02 - 2017-10-02 

GC1_Comdty TickWrite 61138 Bars  2012-07-02 - 2017-10-02 

GX1_Index TickWrite 65780 Bars  2012-07-02 - 2017-10-02 

G_1_Comdty TickWrite 58371 Bars  2012-07-02 - 2017-10-02 

HG1_Comdty TickWrite 72404 Bars  2012-07-02 - 2017-10-02 

HI1_Index TickWrite 47631 Bars  2012-07-02 - 2017-09-29 

HO1_Comdty TickWrite 106393 Bars  2012-07-02 - 2017-10-02 

IB1_Index TickWrite 69305 Bars  2012-07-02 - 2017-10-02 

IK1_Comdty TickWrite 24956 Bars  2015-10-01 - 2017-10-02 

IR1_Comdty TickWrite 95442 Bars  2012-07-02 - 2017-10-02 

JA1_Comdty TickWrite 110637 Bars  2012-07-02 - 2017-10-02 

JB1_Comdty TickWrite 73579 Bars  2012-07-02 - 2017-10-02 

JE1_Curncy TickWrite 47231 Bars  2012-07-02 - 2017-10-02 

JG1_Comdty TickWrite 74719 Bars  2012-07-02 - 2017-10-02 

JO1_Comdty TickWrite 60186 Bars  2012-07-02 - 2017-10-02 

JY1_Curncy TickWrite 69056 Bars  2012-07-02 - 2017-10-02 

KC1_Comdty TickWrite 57345 Bars  2012-07-02 - 2017-10-02 

LB1_Comdty TickWrite 81342 Bars  2012-07-02 - 2017-10-02 

LC1_Comdty TickWrite 77021 Bars  2012-07-02 - 2017-10-02 

LH1_Comdty TickWrite 91351 Bars  2012-07-02 - 2017-10-02 

L_1_Comdty TickWrite 87387 Bars  2012-07-02 - 2017-06-28 

MFS1_Index TickWrite 49722 Bars  2012-07-02 - 2017-10-02 
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NG1_Comdty TickWrite 79717 Bars  2012-07-02 - 2017-10-02 

NI1_Index TickWrite 73209 Bars  2012-07-02 - 2017-10-02 

NK1_Index TickWrite 63739 Bars  2012-07-02 - 2017-10-02 

NQ1_Index TickWrite 62864 Bars  2012-07-02 - 2017-10-02 

NX1_Index TickWrite 63741 Bars  2012-07-02 - 2017-10-02 

OAT1_Comdty TickWrite 25815 Bars  2015-10-01 - 2017-10-02 

OE1_Comdty TickWrite 62944 Bars  2012-07-02 - 2017-10-02 

O_1_Comdty TickWrite 111309 Bars  2012-07-02 - 2017-10-02 

PA1_Comdty TickWrite 74167 Bars  2012-07-02 - 2017-10-02 

PE1_Curncy TickWrite 62434 Bars  2012-07-02 - 2017-10-02 

PT1_Index TickWrite 57267 Bars  2012-07-03 - 2017-10-02 

QS1_Comdty TickWrite 104888 Bars  2012-07-02 - 2017-10-02 

RR1_Comdty TickWrite 82241 Bars  2012-07-02 - 2017-10-02 

RTA1_Index TickWrite 73603 Bars  2012-07-02 - 2017-10-02 

RX1_Comdty TickWrite 63887 Bars  2012-07-02 - 2017-10-02 

SB1_Comdty TickWrite 58299 Bars  2012-07-02 - 2017-10-02 

SF1_Curncy TickWrite 88162 Bars  2012-07-02 - 2017-10-02 

SI1_Comdty TickWrite 65028 Bars  2012-07-02 - 2017-10-02 

SM1_Comdty TickWrite 69252 Bars  2012-07-02 - 2017-10-02 

SM1_Index TickWrite 58143 Bars  2012-07-02 - 2017-10-02 

SP1_Index TickWrite 121578 Bars  2012-07-02 - 2017-10-02 

ST1_Index TickWrite 58630 Bars  2012-07-02 - 2017-10-02 

S_1_Comdty TickWrite 68785 Bars  2012-07-02 - 2017-10-02 

TP1_Index TickWrite 60620 Bars  2012-07-02 - 2017-10-02 

TU1_Comdty TickWrite 58332 Bars  2012-07-02 - 2017-10-02 

TW1_Index TickWrite 67037 Bars  2012-07-02 - 2017-10-02 

TY1_Comdty TickWrite 64273 Bars  2012-07-02 - 2017-10-02 

UB1_Comdty TickWrite 42292 Bars  2012-07-02 - 2017-10-02 



 
 
 

56 
 

US1_Comdty TickWrite 71814 Bars  2012-07-02 - 2017-10-02 

VG1_Index TickWrite 61495 Bars  2012-07-02 - 2017-10-02 

VH1_Index TickWrite 80617 Bars  2012-07-02 - 2017-10-02 

W_1_Comdty TickWrite 77511 Bars  2012-07-02 - 2017-10-02 

XB1_Comdty TickWrite 98004 Bars  2012-07-02 - 2017-10-02 

XG1_Comdty TickWrite 134784 Bars  2012-07-02 - 2017-10-02 

XM1_Comdty TickWrite 52167 Bars  2012-07-02 - 2017-10-02 

XP1_Index TickWrite 63842 Bars  2012-07-02 - 2017-10-02 

YM1_Comdty TickWrite 74597 Bars  2012-07-02 - 2017-10-02 

YS1_Comdty TickWrite 172029 Bars  2012-07-02 - 2017-10-02 

Z_1_Index TickWrite 60405 Bars  2012-07-02 - 2017-10-02 

 

Table A.2  A snippet of ES1 Index data 

This table shows a selection of data for ES1 which is the ticker symbol for the CME 

E-mini S&P 500 front-month continuous contract. 

Time Open Symbol Close Ticks Volume High Low ETF Price 

7/1/2003 9:45 971.75 ESU03 Index 968.25 7691 69823 975 966.25 1 

7/1/2003 10:05 968.25 ESU03 Index 962 5946 70143 969.75 962 0.993545 

7/1/2003 10:19 962 ESU03 Index 963 5558 70304 964.25 960.25 0.994578 

7/1/2003 10:39 963 ESU03 Index 963.5 4936 70188 965.75 962.5 0.995094 

7/1/2003 11:17 963.5 ESU03 Index 964.5 5766 70171 965.25 961.75 0.996127 

7/1/2003 12:34 964.5 ESU03 Index 964 7571 70050 967 963 0.995611 

7/1/2003 13:27 964 ESU03 Index 970.75 6956 70024 970.75 962.75 1.002582 

7/1/2003 14:20 970.75 ESU03 Index 972.25 8294 69783 972.25 968.5 1.004131 

7/1/2003 14:42 972.25 ESU03 Index 976.75 6282 69424 977.25 971.75 1.008779 

 

 

http://www.premiumdata.net/support/futurescontinuous.php
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Table A.3  MDA feature importance for kurtosis prediction per instrument, 
lookback window = 250 bars 

Instrument Amihud 
Kyle 

Lambda 
Roll 

Impact 
Roll 

Measure VIX VPIN Accuracy 

GC1_Comdty 0.0246 0.0000 0.0044 0.0341 -0.0158 0.0124 0.5386 

FC1_Comdty -0.0428 0.0000 -0.0299 -0.0375 -0.0217 0.0834 0.5352 

HG1_Comdty 0.0394 0.0000 0.0127 0.0344 0.0077 0.0442 0.5650 

JE1_Curncy 0.0463 0.0000 -0.0078 0.0319 0.0072 0.0454 0.5678 

EC1_Comdty -0.0091 0.0000 0.0014 -0.0102 -0.0066 0.0424 0.5367 

EC1_Curncy -0.0093 -0.0001 0.0044 0.0206 -0.0155 -0.0091 0.5063 

EE1_Curncy 0.0148 0.0000 -0.0042 -0.0196 -0.0138 -0.0090 0.5235 

JA1_Comdty 0.0208 0.0000 -0.0086 -0.0021 0.0131 0.1045 0.5676 

Z_1_Index 0.0133 0.0001 0.0201 0.0185 -0.0081 0.0365 0.5391 

PA1_Comdty -0.0564 0.0000 0.0025 0.0117 -0.0081 0.0100 0.5195 

C_1_Comdty 0.0076 0.0000 -0.0004 0.0536 -0.0137 -0.0072 0.5127 

NQ1_Index -0.0209 0.0000 -0.0034 -0.0051 0.0015 0.0306 0.5324 

JG1_Comdty 0.0373 0.0003 -0.0022 -0.0016 0.0229 0.0680 0.5553 

QS1_Comdty -0.0072 0.0000 0.0045 -0.0019 -0.0151 0.0461 0.5361 

BO1_Comdty 0.0077 0.0000 0.0039 0.0284 0.0202 0.0553 0.5381 

PT1_Index -0.0171 0.0000 -0.0033 0.0029 0.0088 0.0436 0.5465 

SF1_Curncy -0.0166 0.0000 0.0002 0.0221 -0.0060 0.0407 0.5329 

SB1_Comdty -0.0015 -0.0073 0.0032 0.0022 -0.0336 0.0722 0.5372 

NX1_Index -0.0167 0.0000 0.0015 0.0079 0.0028 0.0089 0.5263 

YS1_Comdty -0.0024 0.0000 0.0082 0.0456 0.0384 0.0213 0.5397 

S_1_Comdty 0.0004 0.0001 0.0053 0.0206 -0.0110 0.0575 0.5343 

HO1_Comdty 0.0236 0.0000 0.0131 0.0146 0.0101 0.1053 0.5895 

PE1_Curncy 0.0319 0.0000 -0.0051 0.0032 0.0012 0.0614 0.5470 

IK1_Comdty 0.0075 -0.0001 -0.0125 0.0045 -0.0175 -0.0237 0.5155 

LC1_Comdty -0.0025 0.0000 -0.0106 -0.0201 -0.0114 0.0557 0.5329 

ED1_Comdty 0.0048 -0.0031 -0.0089 0.0078 0.0023 0.0151 0.5309 

LH1_Comdty -0.0260 0.0000 -0.0182 -0.0162 -0.0296 0.0237 0.5168 

FV1_Comdty 0.0253 0.0000 -0.0072 -0.0054 -0.0017 0.0450 0.5414 

OE1_Comdty 0.0199 0.0108 -0.0008 0.0228 0.0075 0.0519 0.5600 

SM1_Index -0.0425 0.0000 -0.0269 -0.0244 0.0003 0.0223 0.5158 

SI1_Comdty 0.0052 0.0000 -0.0008 0.0452 0.0044 0.0056 0.5378 

JO1_Comdty -0.0250 0.0000 -0.0157 -0.0330 -0.0022 -0.0102 0.4875 

KC1_Comdty 0.0041 0.0000 0.0028 0.0068 0.0024 0.0579 0.5245 

AD1_Curncy 0.0171 0.0000 0.0074 0.0166 0.0100 0.0532 0.5586 

DX1_Curncy 0.0216 0.0000 0.0066 0.0289 -0.0044 0.0138 0.5332 
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DM1_Index -0.0006 0.0000 -0.0277 -0.0186 0.0168 -0.0034 0.5166 

RR1_Comdty 0.0153 0.0000 0.0108 0.0158 0.0121 0.0910 0.5596 

ST1_Index -0.0126 0.0000 0.0039 -0.0068 -0.0118 0.0614 0.5403 

NG1_Comdty -0.0154 0.0039 -0.0042 -0.0056 -0.0442 0.0353 0.5237 

US1_Comdty 0.0056 -0.0059 -0.0028 -0.0021 0.0087 0.0023 0.5229 

EO1_Index -0.0200 0.0000 -0.0122 -0.0138 -0.0080 0.0220 0.5130 

XB1_Comdty -0.0010 0.0000 0.0006 -0.0048 0.0117 0.1128 0.5797 

ER1_Comdty 0.0148 0.0000 -0.0032 0.0290 0.0041 0.1174 0.5955 

GX1_Index -0.0084 0.0000 -0.0152 -0.0006 -0.0192 0.0656 0.5395 

RTA1_Index -0.0151 0.0001 0.0073 0.0087 0.0185 0.0662 0.5583 

BZ1_Index 0.0215 0.0000 -0.0160 -0.0111 -0.0026 0.0605 0.5517 

L_1_Comdty 0.0086 0.0000 0.0065 0.0141 -0.0003 0.1527 0.6042 

SM1_Comdty 0.0189 0.0031 0.0007 -0.0091 0.0043 0.0088 0.5233 

VH1_Index -0.0077 0.0000 0.0011 0.0204 -0.0102 0.0889 0.5591 

RX1_Comdty 0.0555 0.0014 -0.0117 0.0183 -0.0175 0.0506 0.5684 

IR1_Comdty 0.0169 0.0000 -0.0072 0.0103 0.0280 0.1125 0.5930 

G_1_Comdty -0.0083 0.0026 0.0122 0.0166 -0.0221 0.0319 0.5365 

TP1_Index -0.0252 -0.0088 0.0064 0.0522 -0.0139 0.0305 0.5545 

FA1_Index 0.0326 0.0000 0.0008 0.0132 0.0291 0.0874 0.5762 

W_1_Comdty 0.0162 -0.0226 0.0059 0.0106 0.0015 0.0164 0.5213 

XP1_Index 0.0280 0.0000 0.0091 0.0065 0.0310 0.1105 0.5787 

JY1_Curncy 0.0141 0.0001 0.0030 0.0130 0.0053 0.0185 0.5441 

BP1_Curncy 0.0092 0.0000 0.0266 0.0203 -0.0187 0.0463 0.5395 

VG1_Index -0.0038 -0.0128 0.0051 0.0022 -0.0114 0.0605 0.5509 

XM1_Comdty 0.0104 0.0001 -0.0173 -0.0350 -0.0367 0.0093 0.5008 

IB1_Index -0.0045 -0.0207 0.0127 -0.0006 -0.0282 0.0113 0.5215 

XG1_Comdty 0.0081 0.0000 0.0008 0.0152 0.0103 0.0275 0.5371 

O_1_Comdty -0.0003 0.0000 -0.0099 -0.0047 0.0144 0.1078 0.5725 

NK1_Index 0.0529 0.0000 0.0128 0.0268 0.0071 0.0839 0.5791 

SP1_Index 0.0413 0.0000 -0.0174 -0.0184 -0.0378 0.0319 0.5281 

TY1_Comdty 0.0004 -0.0022 0.0030 0.0233 -0.0168 -0.0076 0.5253 

HI1_Index -0.0082 -0.0108 -0.0144 -0.0159 0.0039 0.0343 0.5346 

JB1_Comdty 0.0033 0.0000 -0.0164 -0.0061 -0.0104 0.0526 0.5373 

TU1_Comdty 0.0288 0.0688 -0.0015 0.0094 -0.0014 0.0326 0.5758 

OAT1_Comdty -0.0456 0.0055 0.0560 0.0529 -0.0298 0.0374 0.5241 

CN1_Comdty 0.0021 0.0001 0.0034 0.0235 0.0359 0.0599 0.5628 

CD1_Curncy 0.0299 0.0000 -0.0020 0.0097 0.0200 0.0387 0.5639 

DU1_Comdty -0.0175 0.0003 -0.0037 0.0007 -0.0024 0.0108 0.5159 

MFS1_Index -0.0091 -0.0027 -0.0188 -0.0080 -0.0137 0.0289 0.5215 

CF1_Index 0.0168 0.0000 0.0140 0.0129 0.0083 0.0713 0.5384 
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BTS1_Comdty -0.0589 0.0000 -0.0108 0.0298 -0.0024 -0.0275 0.5188 

EO1_Comdty -0.0239 0.0000 0.0032 0.0105 -0.0156 0.0396 0.5390 

CC1_Comdty -0.0023 0.0000 -0.0017 0.0102 0.0121 0.0396 0.5312 

YM1_Comdty -0.0057 0.0153 0.0102 0.0290 -0.0083 -0.0041 0.5367 

ES1_Index -0.0234 -0.0136 -0.0098 -0.0039 0.0115 0.0278 0.5291 

LB1_Comdty 0.0010 0.0000 -0.0113 0.0058 0.0067 0.1094 0.5727 

CT1_Comdty 0.0208 0.0000 -0.0078 -0.0084 0.0043 0.0468 0.5419 

UB1_Comdty 0.0260 0.0000 -0.0051 -0.0024 0.0179 0.0938 0.5726 

CL1_Comdty 0.0212 0.0045 0.0353 0.0129 -0.0079 0.0500 0.5864 

CO1_Comdty 0.0056 0.0000 0.0113 -0.0010 -0.0028 0.0155 0.5283 
 

 

 

 

Table A.4 MDA feature importance for logistic regression  

 

Panel A:  MDA feature importance for bid-ask spread prediction. 

Window 

size Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN Accuracy 

25 bars 0.001 ± 0.0004 0.0033 ± 0.0024 0.0467 ± 0.0056 0.113 ± 0.0053 0.0021 ± 0.0011 0.0404 ± 0.0023 0.4737 

50 bars 0.0019 ± 0.0005 -0.0 ± 0.0 0.0467 ± 0.0065 0.1044 ± 0.006 0.0005 ± 0.0002 0.0308 ± 0.0018 0.4705 

250 bars 0.0056 ± 0.0013 -0.0 ± 0.0 0.0339 ± 0.0035 0.0703 ± 0.0035 0.006 ± 0.0013 0.0342 ± 0.0023 0.4754 

500 bars 0.004 ± 0.0009 -0.0 ± 0.0 0.0602 ± 0.0063 0.0677 ± 0.0062 0.0083 ± 0.0017 0.0561 ± 0.0026 0.4792 

1000 bars 0.0082 ± 0.0018 0.0 ± 0.0 0.0625 ± 0.0067 0.0604 ± 0.0068 0.0139 ± 0.0028 0.0462 ± 0.002 0.4662 

1500 bars 0.0155 ± 0.0026 -0.0001 ± 0.0001 0.0528 ± 0.0065 0.049 ± 0.0067 0.0189 ± 0.0038 0.0394 ± 0.0021 0.4551 

2000 bars 0.0187 ± 0.0028 -0.0 ± 0.0 0.0412 ± 0.0059 0.0369 ± 0.0063 0.0207 ± 0.004 0.0349 ± 0.0025 0.4465 

 

Panel B: MDA feature importance for realized volatility prediction. 

Window 

size Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN Accuracy 

25 bars 0.003 ± 0.0006 0.0006 ± 0.0006 0.0167 ± 0.0042 0.1206 ± 0.0071 0.0 ± 0.0003 0.0611 ± 0.0064 0.6269 

50 bars 0.0055 ± 0.0011 0.0 ± 0.0 0.0213 ± 0.0049 0.108 ± 0.0063 0.0004 ± 0.0004 0.0486 ± 0.0057 0.6083 



 
 
 

60 
 

250 bars 0.0279 ± 0.0038 0.0 ± 0.0 0.0075 ± 0.004 0.0937 ± 0.0065 -0.0012 ± 0.0012 0.016 ± 0.0038 0.5759 

500 bars 0.03 ± 0.0042 -0.0 ± 0.0 0.005 ± 0.0023 0.0445 ± 0.0054 0.0064 ± 0.0023 0.061 ± 0.0052 0.5746 

1000 bars 0.0165 ± 0.0052 -0.0001 ± 0.0 0.0091 ± 0.0032 0.0222 ± 0.0048 0.0109 ± 0.0031 0.0867 ± 0.0079 0.5922 

1500 bars -0.2528 ± 0.2774 -0.0001 ± 0.0001 0.0109 ± 0.0031 0.0165 ± 0.0045 -0.044 ± 0.0662 -0.1378 ± 0.2459 0.6102 

2000 bars 0.0179 ± 0.0034 -0.0 ± 0.0 0.0103 ± 0.0032 0.0135 ± 0.004 0.0298 ± 0.0052 0.0984 ± 0.0065 0.6221 

 

Panel C:   MDA feature importance for Jarque-Bera test prediction. 

Window 

size Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN Accuracy 

25 bars 0.0004 ± 0.0004 0.0003 ± 0.0003 0.0103 ± 0.0042 0.0366 ± 0.0048 0.0007 ± 0.0004 0.0441 ± 0.0081 0.5388 

50 bars 0.0007 ± 0.0006 -0.0 ± 0.0 0.0091 ± 0.0019 0.038 ± 0.0035 0.0004 ± 0.0005 0.0683 ± 0.0072 0.5604 

250 bars 0.0159 ± 0.0024 -0.0 ± 0.0 0.007 ± 0.0015 0.043 ± 0.0053 0.002 ± 0.001 0.0789 ± 0.0057 0.5817 

500 bars 0.0115 ± 0.0031 0.0001 ± 0.0001 0.0065 ± 0.0031 0.0228 ± 0.0039 0.0 ± 0.0011 0.0534 ± 0.006 0.5516 

1000 bars 0.0008 ± 0.003 -0.0 ± 0.0 -0.0053 ± 0.0026 0.0026 ± 0.0041 0.0004 ± 0.0026 0.0015 ± 0.0039 0.5119 

1500 bars -0.0079 ± 0.0035 -0.0001 ± 0.0 -0.003 ± 0.002 -0.016 ± 0.0053 -0.0039 ± 0.0036 0.0019 ± 0.0042 0.5109 

2000 bars -0.0096 ± 0.0032 0.0 ± 0.0 -0.0082 ± 0.0043 -0.0128 ± 0.0044 -0.0005 ± 0.0034 0.0117 ± 0.0047 0.5195 

 

Panel D:   MDA feature importance for sequential correlation prediction. 

Window 

size Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN Accuracy 

25 bars 0.0042 ± 0.0009 -0.0002 ± 0.0002 0.0127 ± 0.0032 0.108 ± 0.0083 0.0038 ± 0.0022 0.0091 ± 0.0022 0.5683 

50 bars 0.0066 ± 0.0014 0.0 ± 0.0 0.0069 ± 0.0017 0.0921 ± 0.0087 0.001 ± 0.0005 0.01 ± 0.0023 0.5586 

250 bars 0.0285 ± 0.0034 0.0 ± 0.0 0.0019 ± 0.0024 0.0688 ± 0.0106 -0.0006 ± 0.0012 0.0044 ± 0.0027 0.5641 

500 bars 0.0206 ± 0.0037 0.0 ± 0.0 -0.0005 ± 0.0022 0.0404 ± 0.0077 -0.0035 ± 0.0014 0.0078 ± 0.0033 0.5456 

1000 bars 0.0107 ± 0.0027 -0.0 ± 0.0 -0.0004 ± 0.0026 0.0281 ± 0.0067 -0.005 ± 0.0025 0.008 ± 0.0043 0.5333 

1500 bars 0.0048 ± 0.0026 -0.0001 ± 0.0001 -0.0012 ± 0.0028 0.0178 ± 0.0048 -0.0063 ± 0.0022 0.011 ± 0.0043 0.5267 

2000 bars 0.0034 ± 0.0032 0.0 ± 0.0 0.0004 ± 0.0022 0.0162 ± 0.0056 -0.0085 ± 0.0029 0.0015 ± 0.0046 0.5178 
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Panel E: MDA feature importance for absolute skewness prediction. 

Window 

size Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN Accuracy 

25 bars 0.0022 ± 0.0007 -0.0005 ± 0.0005 0.0097 ± 0.0017 0.0283 ± 0.0038 0.0 ± 0.0009 0.0604 ± 0.0031 0.5491 

50 bars 0.0028 ± 0.0011 0.0 ± 0.0 0.0122 ± 0.0027 0.0289 ± 0.0029 0.0002 ± 0.0004 0.0608 ± 0.0036 0.5496 

250 bars 0.014 ± 0.0029 -0.0 ± 0.0 0.0042 ± 0.0017 0.0261 ± 0.004 0.0015 ± 0.0013 0.0432 ± 0.0044 0.5513 

500 bars 0.0043 ± 0.0023 0.0 ± 0.0 0.0012 ± 0.0023 0.0105 ± 0.0034 -0.0016 ± 0.0017 0.0255 ± 0.0057 0.531 

1000 bars -0.0007 ± 0.0027 -0.0 ± 0.0 -0.0045 ± 0.0027 -0.0028 ± 0.0031 -0.002 ± 0.0022 -0.0034 ± 0.0031 0.5059 

1500 bars -0.008 ± 0.0026 -0.0001 ± 0.0001 -0.0056 ± 0.0023 -0.0097 ± 0.004 -0.0049 ± 0.0031 -0.0034 ± 0.0033 0.5047 

2000 bars -0.0052 ± 0.0022 0.0001 ± 0.0001 -0.0029 ± 0.0026 -0.0026 ± 0.0034 -0.0019 ± 0.0031 -0.0013 ± 0.0033 0.509 

 

Panel F:  MDA feature importance for kurtosis prediction. 

Window 

size Amihud Kyle Lambda Roll Impact Roll Measure VIX VPIN Accuracy 

25 bars 0.0024 ± 0.0004 -0.0009 ± 0.0009 0.0202 ± 0.0051 0.0437 ± 0.0055 0.0015 ± 0.0004 0.1431 ± 0.0055 0.6027 

50 bars 0.0005 ± 0.0004 0.0 ± 0.0 0.0101 ± 0.0022 0.0429 ± 0.0037 0.0011 ± 0.0006 0.1313 ± 0.005 0.5992 

250 bars 0.0161 ± 0.0025 -0.0 ± 0.0 0.0067 ± 0.0017 0.0429 ± 0.0053 0.0024 ± 0.0012 0.0899 ± 0.0054 0.5874 

500 bars 0.0102 ± 0.0029 0.0001 ± 0.0001 0.004 ± 0.0032 0.021 ± 0.0039 -0.0012 ± 0.0014 0.0569 ± 0.006 0.5524 

1000 bars 0.0002 ± 0.0032 0.0 ± 0.0 -0.006 ± 0.0026 0.0001 ± 0.0043 -0.0009 ± 0.0025 -0.0001 ± 0.004 0.5104 

1500 bars -0.0077 ± 0.0035 -0.0 ± 0.0 -0.0018 ± 0.002 -0.0152 ± 0.0052 -0.0041 ± 0.0036 0.0015 ± 0.0043 0.5096 

2000 bars -0.009 ± 0.0031 -0.0 ± 0.0 -0.0084 ± 0.0044 -0.013 ± 0.0044 0.0004 ± 0.0034 0.0125 ± 0.0047 0.5199 
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Appendix A.2 --- Creating the ETF from the raw data series 

 

The calculation details are as follows.   

 𝑜𝑡 is the raw open price at bar 𝑡 = 1, … , 𝑇. 

 𝑝𝑡 is the raw open price at bar 𝑡 = 1, … , 𝑇. 

 ℎ𝑡 is the fractional number of shares invested in the instrument at 𝑡 = 1, … , 𝑇. 

 𝐾𝑡 is ETF price, which is the value of the initial $1 investment in the instrument at 𝑡 =

1, … , 𝑇. By definition 𝐾0 = 1. 

 𝐵 is the subset of bars when the contract rolls. 𝑡 ∈ 𝐵 means the contract rolls at time 𝑡. 

 

Then 

ℎ𝑡 = {

𝐾𝑡

𝑜𝑡+1
      if 𝑡 ∈ 𝐵 

ℎ𝑡−1     otherwise

 

 

𝛿𝑡 = {
𝑝𝑡 − 𝑜𝑡      if (𝑡 − 1) ∈ 𝐵 

∆𝑝𝑡        otherwise
 

 

𝐾𝑡 = 𝐾𝑡−1 + ℎ𝑡−1𝛿𝑡 . 

 

 


