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1 Introduction

A large and growing body of work analyzes the ‘misallocation’ of productive resources across
firms – usually measured by dispersion in the static average products of inputs (e.g., value-
added/input ratios) – and the resulting adverse effects on aggregate productivity and output.
A number of recent studies examine the role of specific factors hindering period-by-period
equalization of input productivity ratios. Examples of such factors include adjustment costs,
imperfect information, financial frictions, as well as firm-specific ‘distortions’ stemming from
economic policies or other institutional features. The importance of disentangling the role of
these forces is self-evident. For one, a central question, particularly from a policy standpoint, is
whether observed variation in input products stems largely from efficient sources, e.g., techno-
logical factors like adjustment costs or heterogeneity in production technologies, or inefficient
ones, such as policy-induced distortions or markups. Similarly, understanding the exact nature
of distortions – e.g., the extent to which they are correlated with firm characteristics – is essen-
tial to analyze their implications beyond static misallocation, for example, on firm entry and
exit decisions and investments that influence future productivity.1

In this paper, we develop and implement a tractable methodology to distinguish various
sources of dispersion in average revenue products of capital (arpk) using observable data on
value-added and inputs. Our analysis proceeds in two steps. First, we augment a standard
general equilibrium model of firm dynamics with a number of forces that contribute to ex-post
dispersion in the static arpk, specifically (i) capital adjustment costs, (ii) informational fric-
tions, in the form of imperfect knowledge about firm-level fundamentals (e.g., productivity or
demand) and (iii) other firm-specific factors, meant to capture all other forces influencing invest-
ment decisions, including unobserved heterogeneity in markups and/or production technologies,
financial frictions, or institutional/policy-related distortions. In this first part of our analysis,
rather than take a stand on the exact nature of these factors, we adopt a flexible specification
that allows for time-variation and correlation with firm characteristics. The environment is an
extension of the canonical Hsieh and Klenow (2009) framework to include dynamic considera-
tions in firms’ investment decisions. The main contribution of this part is an empirical strategy
that precisely measures the contribution of each force to observed arpk dispersion using widely
available firm-level data.

In the second part of our analysis, we explore various candidates for the firm-specific fac-
tors in (iii) above. First, we extend our methodology to investigate the extent to which the
observed dispersion in arpk could stem from unobserved heterogeneity in markups and produc-
tion technologies. Next, we analyze policies that restrict the size of firms and study a model

1See Restuccia and Rogerson (2017) for an in-depth discussion of these margins.
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of financial/liquidity considerations. We show how these two forces can manifest themselves as
firm-specific factors similar to those considered in the first part.

Our key innovation is to explore the sources of arpk dispersion within a unified framework
and thus provide a more robust decomposition. In contrast, focusing on particular sources while
abstracting from others – a common approach in the literature – is potentially problematic.
When the data reflect the combined influence of a number of factors, examining them one-by-one
can lead to biased assessments of their severity and contributions to the observed dispersion.

To understand the measurement difficulty, consider, as an example, convex adjustment
costs. When they are the only force present, there is an intuitive, one-to-one mapping to a
single moment, e.g., investment variability – the more severe the adjustment friction, the less
volatile is investment. Now, suppose that there are other factors that also dampen investment
volatility (e.g., a distortion correlated with productivity or size). In this case, using the variance
of investment alone to draw inferences about adjustment costs leads to an upward bias. As a
second example, consider the effects of firm-level uncertainty, which reduces the contemporane-
ous correlation between investment and productivity. However, a low correlation could also be
the result of other firm-specific factors (e.g., markups) that are uncorrelated with productivity,
making this single moment an inadequate measure of the quality of information.

Our strategy for disentangling these forces is based on a simple insight: although each
moment is a complicated function of multiple factors, making any single one insufficient for
identification, combining the information in a wider set of moments can be extremely helpful
in disentangling these factors. Indeed, we show that allowing these forces to act in tandem is
essential to reconcile a broad set of moments from the covariance matrix of firm-level investment
and value-added. We formalize this intuition using a tractable special case – when firm-level
productivity follows a random walk. In this case, we derive analytic expressions for the moments
and prove that a set of four carefully chosen moments, namely, (1) the variance of investment,
(2) the autocorrelation of investment, (3) the correlation of investment with past productivity,
and (4) the covariance of arpk with productivity together uniquely identify adjustment costs,
uncertainty and the magnitude and correlation structure of other firm-specific factors.

The intuition behind this result is easiest to see in a simple pairwise analysis. As an
example, consider the challenge described earlier of disentangling adjustment costs from other
idiosyncratic factors that dampen the response of investment to productivity. Both forces
depress the variability of investment. However, they have opposing effects on its autocorrelation
– convex adjustment costs create incentives to smooth investment over time and so increase
its serial correlation. A distortion that reduces the responsiveness to productivity, on the
other hand, raises the relative weight of other, more transitory considerations in the investment
decision, lowering the serial correlation. Thus, holding all else fixed, these two moments allow
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us to separate the two forces. Similar arguments can be developed for the remaining factors
as well. In our quantitative work, where we depart from the polar random walk case, we
demonstrate numerically that the same intuition carries through.

This logic also underlies the second part of our analysis, where we dig deeper into factors
other than adjustment/information frictions. For example, we use moments of labor and ma-
terials usage to investigate the role of unobserved heterogeneity in markups and technologies
(specifically, capital elasticities). Under the assumption that the choice of materials is distorted
only by market power, markup dispersion is pinned down by the dispersion in materials’ share
of revenues. Technology dispersion can be bounded from above using the observed covariance
between the average products of capital and labor. Intuitively, holding returns to scale fixed, a
high production elasticity of capital implies a low labor elasticity, so this type of heterogeneity
is a source of negative covariance between capital and labor products. The more positively
correlated these are in the data, the lower the scope for arpk dispersion from this channel.

We apply our methodology to data on manufacturing firms in China over the period 1998-
2009. We find that adjustment and informational frictions play economically significant roles in
influencing observed investment dynamics. However, they account for only a relatively modest
fraction of arpk dispersion among Chinese firms – about 1% and 10%, respectively – leading to
losses in aggregate total factor productivity (TFP) of 1% and 8% (relative to the undistorted
first-best). This implies that a substantial portion of arpk dispersion in China is due to other
firm-specific factors. In particular, we find a large role for factors correlated with productivity
and ones that are essentially permanent. These account for about 47% and 44% of overall arpk
dispersion, respectively, leading to TFP losses of 38% and 36%.2 These findings are driven in
large part by two observations – first, firm-level investment is neither extremely volatile nor
highly serially correlated. The latter bounds the potential for convex adjustment costs, which
create incentives to smooth investment over time. In combination with the former, this leads
us to ascribe a large role to correlated distortions, which reduce investment volatility without
increasing the serial correlation. Importantly, as we discuss below, these insights continue
to hold even when we introduce non-convexities in the adjustment cost function. Second,
uncertainty over future productivity, while significant, is simply not large enough to account
for the majority of arpk dispersion observed in the data.

We also apply the methodology to data on publicly traded firms in the US. Although the
two sets of firms are not directly comparable, the US numbers serve as a useful benchmark to
put our results for China in context.3 As one would expect, the overall degree of arpk dispersion

2Our method also allows for distortions that are transitory and uncorrelated with firm characteristics.
However, our estimation finds them to be negligible.

3We also report results for Chinese publicly traded firms as well as Colombian and Mexican manufacturing
firms. The results regarding the role of various factors in driving observed dispersion are quite similar to our
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is considerably smaller for publicly traded US firms. More interestingly, a larger share (about
11%) of the observed dispersion is accounted for by adjustment costs, which depress aggregate
TFP by about 2%. Uncertainty plays a smaller role than among Chinese firms, as do other
correlated factors – these account for about 7% and 14% of overall arpk dispersion, respectively,
reducing aggregate TFP by 1% and 3%. However, even for these firms, firm-specific fixed
factors, although considerably smaller in absolute magnitude than in China, generate a large
share of the observed dispersion in arpk, accounting for about 65% of the total, with associated
TFP losses of 13%. In other words, even in the US, factors other than technological and
informational frictions play a significant role in determining capital allocations.

What are these firm-specific factors? First, we find modest scope for unobserved variation
in markups or production technologies in China – together, they account for at most 27% of
arpk dispersion (4% and 23%, respectively). Intuitively, we do not see much variation in ma-
terials’ share of revenues in China, suggesting only small markup dispersion, and the average
products of labor and capital are highly correlated, limiting the potential for heterogeneity in
capital intensities. In contrast, for US publicly traded firms, variation in markups/technologies
can explain as much as 58% of arpk dispersion (14% and 44%, respectively). These results
suggest that unobserved heterogeneity is a promising explanation for much of the observed
‘misallocation’ in the US, but that the predominant drivers among Chinese firms lie elsewhere
e.g., additional market frictions or institutional/policy-related distortions. For example, we
show that our estimates of size/productivity-dependent factors could be picking up the ef-
fects of size-dependent government policies and certain forms of financial market imperfections.
However, disentangling these two forces from other sources of correlated factors requires data
beyond value-added and inputs (e.g., firm-level financial data).

We show that these patterns – in particular, the contributions of the various forces to
observed arpk dispersion – are robust to a number of variations of our baseline setup. First,
they are largely unchanged when we allow for non-convex adjustment costs. The main insight
that underlies our baseline estimates emerges here as well – examining moments in isolation
can paint a distorted picture of the forces driving investment dynamics. For example, the
low serial correlation of investment in the data by itself might seem to indicate large non-
convexities, but high fixed costs of adjustment also tend to make firm-level investment more
volatile and induce substantial ‘inaction’ (i.e., periods with little or no investment), patterns
which are inconsistent with the data. Models with only adjustment costs, even those with
sophisticated specifications, struggle to simultaneously match these patterns and can produce
very different estimates depending on the choice of target moments. For example, targeting
investment variability and inaction (and ignoring the serial correlation, as in, e.g., Asker et al.

baseline findings for Chinese manufacturers.
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(2014)) results in much larger estimates for convex costs relative to a strategy of targeting the
serial correlation (and ignoring variability/inaction, as in, e.g., Cooper and Haltiwanger (2006)),
which instead produces substantial fixed costs. This underscores the value of a strategy like ours,
which targets a broad set of moments with a more flexible model. Our estimation reconciles
these seemingly inconsistent data patterns by ascribing an important role to other firm-specific
factors, particularly when it comes to generating arpk dispersion.

Next, we show that distortions in the labor choice do not alter our main conclusions. A
version of our model in which labor is subject to the same frictions and distortions as capital
leads to a very similar decomposition of arpk dispersion. However, since both inputs are affected
by each of the forces, the associated implications for aggregate TFP are much larger. Lastly,
we show that our main results remain valid across a number of robustness exercises aimed at
addressing measurement-related issues, sectoral heterogeneity and parameter choices.

The paper is organized as follows. Section 2 describes our model of frictional investment.
Section 3 spells out our identification strategy using the analytically tractable random walk case,
while Section 4 details our numerical analysis and presents our quantitative results. Section
5 further investigates the potential sources of firm-specific idiosyncratic factors. Section 6
explores a number of variants on our baseline approach. We summarize our findings and discuss
directions for future research in Section 7.

Related literature. Our paper relates to several branches of literature. We bear a direct
connection to the large body of work measuring and quantifying the effects of resource misallo-
cation.4 Following the seminal work of Hsieh and Klenow (2009) and Restuccia and Rogerson
(2008), recent attention has shifted toward analyzing the roles of specific factors. Important
contributions include Asker et al. (2014) on adjustment costs, Buera et al. (2011), Moll (2014),
Gopinath et al. (2017) and Midrigan and Xu (2014) on financial frictions, David et al. (2016) on
uncertainty and Peters (2016) on markup dispersion. Several recent papers analyze subsets of
these factors in combination. For example, Gopinath et al. (2017) study the interaction of cap-
ital adjustment costs and size-dependent financial frictions in determining the recent dynamics
of capital allocation in Spain. Kehrig and Vincent (2017) combine financial and adjustment
frictions to investigate misallocation within firms, while Song and Wu (2015) estimate a model
with adjustment costs, permanent distortions and heterogeneity in markups/technologies.

Our primary contribution is to develop a unified framework that encompasses many of these
factors and devise an empirical strategy based on observable firm-level data to disentangle them.
Our results, both analytical and quantitative, highlight the importance of studying a broad set
of forces in tandem. This breadth is partly what distinguishes us from the work of Song and

4Restuccia and Rogerson (2017) and Hopenhayn (2014) provide recent overviews of this line of work.
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Wu (2015), who abstract from time-variation in firm-level distortions (as well as in firm-specific
markups/technologies), ruling out, by assumption, any role for so-called ‘correlated’ or size-
dependent distortions.5 Many papers in the literature – e.g., Restuccia and Rogerson (2008),
Bartelsman et al. (2013), Hsieh and Klenow (2014) and Bento and Restuccia (2017) – emphasize
the need to distinguish such factors from those that are orthogonal to productivity. This
message is reinforced by our quantitative findings, which reveal a significant role for correlated
factors (in addition to uncorrelated, permanent ones), particularly in developing countries such
as China. Our modeling of these factors as implicit taxes correlated with productivity follows
the approach taken by, e.g., Restuccia and Rogerson (2008), Guner et al. (2008), Bartelsman
et al. (2013), Buera et al. (2013), Buera and Fattal-Jaef (2016) and Hsieh and Klenow (2014).

Our methodology and findings also have relevance beyond the misallocation context, notably,
for studies of adjustment and informational frictions. A large literature has examined the
implications of adjustment costs, examples of which include Cooper and Haltiwanger (2006),
Khan and Thomas (2008) and Bloom (2009). Our analysis shows that accounting for other firm-
specific factors acting on firms’ investment decisions is potentially crucial in order to accurately
estimate the severity of these frictions and reconcile a broader set of micro-level moments. A
similar point applies to recent work on quantifying firm-level uncertainty, for example, Bloom
(2009), Bachmann and Elstner (2015) and Jurado et al. (2015).

2 The Model

We consider a discrete time, infinite-horizon economy, populated by a representative house-
hold. The household inelastically supplies a fixed quantity of labor N and has preferences over
consumption of a final good. The household discounts time at rate β. The household side of
the economy is deliberately kept simple as it plays a limited role in our study. Throughout the
analysis, we focus on a stationary equilibrium in which all aggregate variables remain constant.

Production. A continuum of firms of fixed measure one, indexed by i, produce intermediate
goods using capital and labor according to

Yit = K α̂1
it N

α̂2
it , α̂1 + α̂2 ≤ 1 . (1)

5We also differ from Song and Wu (2015) in our explicit modeling (and measurement) of information frictions
and in our approach to quantifying heterogeneity in markups/technologies.
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These intermediate goods are bundled to produce the single final good using a standard CES
aggregator

Yt =

(∫
ÂitY

θ−1
θ

it di

) θ
θ−1

,

where θ ∈ (1,∞) is the elasticity of substitution between intermediate goods and Âit represents
a firm-specific idiosyncratic component in production/demand. This is the only source of
fundamental uncertainty in the economy (i.e., we abstract from aggregate risk).

Market structure and revenue. The final good is produced frictionlessly by a representa-
tive competitive firm. This yields a standard demand function for intermediate good i:

Yit = P−θit Â
θ
itYt ⇒ Pit =

(
Yit
Yt

)− 1
θ

Âit ,

where Pit denotes the relative price of good i in terms of the final good, which serves as
numeraire. Revenues (here, equal to value-added) for firm i at time t are

PitYit = Y
1
θ
t ÂitK

α1
it N

α2
it ,

where
αj =

(
1− 1

θ

)
α̂j, j = 1, 2 .

This framework accommodates two alternative interpretations of the idiosyncratic component,
Âit: as a firm-specific shifter of either quality/demand or productive efficiency.

Input choices. In our baseline analysis, we assume that firms hire labor period-by-period
under full information and in an distorted fashion at a competitive wage, Wt.6 At the end of
each period, firms choose capital for the following period. Investment is subject to quadratic
adjustment costs, given by

Φ (Kit+1, Kit) =
ξ̂

2

(
Kit+1

Kit

− (1− δ)
)2

Kit , (2)

6We relax this assumption later in the paper in two separate exercises. First, in Appendix E.1, we introduce
labor market distortions in the form of firm-specific ‘taxes’ and show that this formulation changes the interpre-
tation of our measure of productivity, but does not affect our identification strategy or conclusions about the
sources of arpk dispersion. Second, in Section 6.2, we subject the labor choice to all the frictions that distort
investment – adjustment costs, informational frictions and other distortionary factors. This setup also leads to
a very similar problem with suitably re-defined productivity and curvature parameters.
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where ξ̂ parameterizes the severity of the adjustment cost and δ is the rate of depreciation.7

Investment decisions are likely to be affected by a number of additional factors (other than
productivity/demand and the level of installed capital). These could originate from distor-
tionary government policies (e.g., taxes, size restrictions or regulations, or other features of the
institutional environment), from other market frictions that are not explicitly modeled (e.g.,
financial frictions) or from un-modeled heterogeneity in markups/production technologies. For
now, we do not take a stand on the precise nature of these factors and, following, e.g., Hsieh
and Klenow (2009), model them as firm-specific proportional ‘taxes’ on the flow cost of capital.
We denote these by TKit+1 and, in a slight abuse of terminology, refer to them as ‘distortions’ or
wedges throughout the paper, even though they may partly reflect efficient factors (for exam-
ple, heterogeneity in production functions).8 In Section 5, we demonstrate how progress can be
made in further disentangling some of these sources.

The firm’s problem in a stationary equilibrium can be represented in recursive form as (we
suppress the time subscript on all aggregate variables)

V (Kit, Iit) = max
Nit,Kit+1

Eit
[
Y

1
θ ÂitK

α1
it N

α2
it −WNit − TKit+1Kit+1 (1− β (1− δ))− Φ (Kit+1, Kit)

]
+ βEit [V (Kit+1, Iit+1)] ,

where Eit [·] denotes expectations conditional on Iit, the firm’s information set at the time
it chooses Kit+1 (described in more detail below). Note that the wedge TKit+1 (which applies
to 1 − β(1 − δ), the per-unit user cost of capital) distorts both the capital decision and the
capital-labor ratio. In other words, it is both a ‘scale’ and ‘mix’ distortion.9

After maximizing over Nit, this becomes

V (Kit, Iit) = max
Kit+1

Eit
[
GAitK

α
it − TKit+1Kit+1 (1− β (1− δ))− Φ (Kit+1, Kit)

]
(3)

+ Eitβ [V (Kit+1, Iit+1)] ,

where α ≡ α1

1−α2
is the curvature of operating profits (value-added less labor expenses) and

Ait ≡ Â
1

1−α2
it is the firm-specific profitability of capital. In a slight abuse of terminology, we

refer to Ait simply as firm-specific productivity. The term G ≡ (1− α2)
(
α2

W

) α2
1−α2 Y

1
θ

1
1−α2 is a

constant that captures the effects of aggregate variables.
7We generalize this specification to include non-convex costs in Section 6.1 and show that our main quanti-

tative results continue to hold.
8The timing convention implies that the wedge TKit+1 affects the firm’s choice of Kit+1.
9In Section 6.2, when the firm’s labor choice is assumed to be subject to the same frictions/distortions as

its investment decision, the wedge is a pure scale distortion, i.e., it does not distort the capital-labor ratio.
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Equilibrium. We can now define a stationary equilibrium in this economy as (i) a set of value
and policy functions for the firm, V (Kit, Iit) , Nit (Kit, Iit) and Kit+1 (Kit, Iit) , (ii) a wage W
and (iii) a joint distribution over (Kit, Iit) such that (a) taking as given wages and the law of
motion for Iit, the value and policy functions solve the firm’s optimization problem, (b) the
labor market clears and (c) the joint distribution remains constant through time.

Characterization. We use perturbation methods to solve the model.10 In particular, we log-
linearize the firm’s optimality conditions and laws of motion around Ait = Ā (the unconditional
average level of productivity) and TKit = 1 (i.e., no distortions). Appendix A.1 derives the
following log-linearized Euler equation:11

kit+1 ((1 + β)ξ + 1− α) = Eit [ait+1 + τit+1] + βξEit [kit+2] + ξkit , (4)

where ξ and τit+1 are re-scaled versions of the adjustment cost parameter, ξ̂, and the distortion,
log TKit+1, respectively.

Stochastic processes. We assume that the productivity, Ait, follows an AR(1) process in
logs with normally distributed i.i.d. innovations, i.e.,

ait = ρait−1 + µit, µit ∼ N
(
0, σ2

µ

)
, (5)

where ρ is the persistence and σ2
µ the variance of the innovations.12

For the distortion, τit, we adopt a specification that allows for a rich correlation structure,
both over time as well as with firm-level productivity. Specifically, τit takes the form:

τit = γait + εit + χi, εit ∼ N
(
0, σ2

ε

)
, χi ∼ N

(
0, σ2

χ

)
, (6)

where the parameter γ controls the extent to which τit co-moves with productivity. If γ < 0,
the distortion discourages (encourages) investment by firms with higher (lower) productivity
– arguably, the empirically relevant case. The opposite is true if γ > 0. The uncorrelated
component of τit has both permanent and iid (over time) components, denoted χi and εit,
respectively. Thus, the severity of these factors is summarized by 3 parameters: (γ, σ2

ε , σ
2
χ).13

10The results in Section 6.1, where we solve a version of the model with non-convexities without linearization,
suggest that the perturbation yields reasonably accurate estimates.

11We use lower-case to denote natural logs, a convention we follow throughout, so that, e.g., xit = logXit.
12Appendix I.2 extends the analysis to allow for firm fixed-effects in the process for ait. This has no effect on

our analytical results in Section 3 (where we work exclusively with growth rates) and Section 5. Our quantitative
results regarding the sources of arpk dispersion are very similar with these effects.

13Appendix I.2 considers a more flexible process for τit. Our results there confirm the highly persistent nature
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Information. Next, we spell out Iit, the information set of the firm at the time of choos-
ing Kit+1. This includes the entire history of productivity realizations through period t, i.e.,
{ait−s}∞s=0. Given the AR(1) assumption, this can be summarized by the most recent observa-
tion, namely, ait. The firm also observes a noisy signal of the following period’s innovation:

sit+1 = µit+1 + eit+1, eit+1 ∼ N
(
0, σ2

e

)
,

where eit+1 is an i.i.d., mean-zero and normally distributed noise term. This is in essence an
idiosyncratic ‘news shock,’ since it contains information about future productivity. Finally,
firms also perfectly observe the uncorrelated transitory component of distortions, εit+1, at the
time of choosing period t investment (as noted above, the distortion is indexed by the date it
influences the firm’s capital choice, so that, e.g., εit+1 is in the firm’s information set at date
t and affects its choice of kit+1). Firms also observe the fixed component of the distortion, χi.
They do not see the correlated component, but are aware of its structure, i.e., they know γ.

Thus, the firm’s information set is given by Iit = (ait, sit+1, εit+1, χi). Direct application of
Bayes’ rule yields the conditional expectation of productivity, ait+1:

ait+1|Iit ∼ N (Eit [ait+1] ,V) where

Eit [ait+1] = ρait +
V
σ2
e

sit+1, V =

(
1

σ2
µ

+
1

σ2
e

)−1

.

There is a one-to-one mapping between the posterior variance V and the noisiness of the signal,
σ2
e (given the volatility of productivity, σ2

µ). In the absence of ‘news’, i.e., σ2
e = ∞, we have

V = σ2
µ, that is, posterior uncertainty is simply the variance of the innovation. This corresponds

to a standard one period time-to-build assumption with Eit [ait+1] = ρait. At the other extreme,
σ2
e = 0 implies V = 0, so the firm is perfectly informed about ait+1. It turns out to be more

convenient to work directly with the posterior variance, V, as the measure of uncertainty.

Law of motion. In Appendix A.1, we solve the Euler equation in (4) to obtain:

kit+1 = ψ1kit + ψ2 (1 + γ)Eit [ait+1] + ψ3εit+1 + ψ4χi , (7)

where ξ
(
βψ2

1 + 1
)

= ψ1 ((1 + β)ξ + 1− α) (8)

ψ2 =
ψ1

ξ (1− βρψ1)
, ψ3 =

ψ1

ξ
, ψ4 =

1− ψ1

1− α
.

of the uncorrelated component, suggesting that the simpler specification here with fixed and iid elements largely
captures the time-series properties of the distortion.
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The coefficients ψ1–ψ4 depend only on production (and preference) parameters, including the
adjustment cost, and are independent of assumptions about information and distortions. The
coefficient ψ1 is increasing and ψ2-ψ4 decreasing in the severity of adjustment costs, ξ. If there
are no adjustment costs (i.e., ξ = 0) , ψ1 = 0 and ψ2 = ψ3 = ψ4 = 1

1−α . At the other extreme,
as ξ tends to infinity, ψ1 → 1 and ψ2-ψ4 vanish. Intuitively, as adjustment costs become large,
the firm’s choice of capital becomes more autocorrelated and less responsive to productivity and
distortions. Our empirical strategy essentially identifies the coefficients in the policy function,
ψ1 and ψ2 (1 + γ), from observable moments. Given values of α and β, the estimate of ψ1 pins
down ξ from (8). Given ξ, β and ρ, we can use the estimate of ψ2 (1 + γ) to recover γ.

Aggregation. In Appendix A.2, we show that aggregate output can be expressed as

log Y ≡ y = a+ α̂1k + α̂2n ,

where k and n denote the (logs of the) aggregate capital stock and labor inputs, respectively.
Aggregate TFP, denoted by a, is given by

a = a∗ − (θα̂1 + α̂2) α̂1

2
σ2
arpk

da

dσ2
arpk

= −(θα̂1 + α̂2) α̂1

2
, (9)

where a∗ is aggregate TFP if static capital products (arpkit) are equalized across firms and σ2
arpk

is the cross-sectional dispersion in (the log of) the static average product of capital (arpkit =

pityit−kit). Thus, aggregate TFP monotonically decreases in the extent of dispersion in capital
productivities, summarized in this log-normal world by σ2

arpk. The effect of σ2
arpk on aggregate

TFP depends on the elasticity of substitution, θ, and the relative shares of capital and labor
in production. The higher is θ, that is, the closer we are to perfect substitutability, the more
severe the losses from dispersion in capital products. Similarly, fixing the degree of overall
returns to scale in production, for a larger capital share, α̂1, a given degree of dispersion has
larger effects on aggregate outcomes.14

In our framework, a number of forces – adjustment costs, information frictions, and distor-
tions – will lead to arpk dispersion. Once we quantify their contributions to σ2

arpk, equation (9)
allows us to directly map those contributions to their aggregate implications.

Measuring the contribution of each factor is a challenging task, since all the data moments
confound all the factors (i.e., each moment reflects the influence of more than one factor). As
a result, there is no one-to-one mapping between individual moments and parameters – to
accurately identify the contribution of any factor, we need to explicitly control for the others.

14Aggregate output effects are larger than TFP losses by a factor 1
1−α̂1

. This is because dispersion in capital
products also reduces the incentives for capital accumulation and therefore, the steady-state capital stock.
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In the following section, we overcome this challenge by exploiting the fact that these forces have
different implications for different moments.

3 Identification

In this section, we lay out our identification strategy – specifically, we provide a methodology to
tease out the role of adjustment costs, informational frictions and other factors using observable
moments of firm-level value-added and investment. We use a tractable special case – when
productivity follow a random walk, i.e., ρ = 1 – to derive analytic expressions for key moments,
allowing us to prove our identification result formally and make clear the underlying intuition.
When we return to the more general model (with ρ < 1) in the following section, we will
demonstrate numerically that this intuition applies there as well.

We assume that the preference and technology parameters – the discount factor, β, the cur-
vature of the profit function, α, and the depreciation rate, δ – are known to the econometrician
(e.g., calibrated using aggregate or industry-level data). The remaining parameters of interest
are the costs of capital adjustment, ξ, the quality of firm-level information (summarized by V),
and the severity of distortions, parameterized by γ, σ2

ε and σ2
χ.

Our methodology uses a set of carefully chosen elements from the covariance matrix of
firm-level capital and productivity (the latter can be measured using data on value-added and
capital, along with an assumed curvature, α). Note that ρ = 1 implies non-stationarity in
levels, so we work with moments of (log) changes. This means that we cannot identify σ2

χ, the
variance of the fixed component.15 Here, we focus on the four remaining parameters, namely ξ,
γ, V and σ2

ε . Our main result is to show that these are exactly identified by the following four
moments: (1) the autocorrelation of investment, denoted ρk,k−1 , (2) the variance of investment,
σ2
k, (3) the correlation of period t investment with the innovation in productivity in period t−1,

denoted ρk,a−1 and (4) the coefficient from a regression of ∆arpkit on ∆ait, denoted λarpk,a.
Several of these moments have been used in the literature to quantify the various factors

in isolation. For example, ρk,k−1 and σ2
k are standard targets in the literature on adjustment

costs – see, e.g., Cooper and Haltiwanger (2006) and Asker et al. (2014). The responsiveness
to lagged fundamentals, ρk,a−1 , is used by Klenow and Willis (2007) to quantify information
frictions in a price-setting context. The covariance of arpk with productivity – which we proxy
with λarpk,a – is highlighted in the misallocation literature as suggestive of correlated distortions,
e.g., Bartelsman et al. (2013) and Buera and Fattal-Jaef (2016). The tractable random walk
special case will shed light on the value of analyzing these moments/factors in tandem (and the

15For our numerical analysis in Section 4, we use a stationary model (i.e., with ρ < 1) and use σ2
arpk, a

moment computed using levels of capital and productivity, to pin down σ2
χ.
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potential biases from doing so in isolation).
Our main result is stated formally in the following proposition:

Proposition 1. The parameters ξ, γ, V and σ2
ε are uniquely identified by the moments ρk,k−1,

σ2
k, ρk,a−1 and λarpk,a.

3.1 Intuition

The proof of Proposition 1 (in Appendix A.3) involves tedious, if straightforward, algebra.
Here, we provide a more heuristic argument for the intuition behind the result. We do this
by analyzing parameters in pairs and showing that they can be uniquely identified by a pair
of moments, holding the other parameters fixed. To be clear, this is a local argument – our
goal here is simply to provide intuition about how the different moments can be combined to
disentangle the different forces. The identification result in Proposition 1 is a global one and
shows that there is a unique mapping from the four moments to the four parameters.

Adjustment costs and correlated distortions. We begin with adjustment costs, param-
eterized by ξ, and correlated distortions, γ. The relevant moment pair is the variance and
autocorrelation of investment, σ2

k and ρk,k−1 . Both of these moments are commonly used to
estimate quadratic adjustment costs – for example, Asker et al. (2014) target the former and
Cooper and Haltiwanger (2006) (among other moments), the latter. In our setting, these mo-
ments are given by:

σ2
k =

(
ψ2

2

1− ψ2
1

)
(1 + γ)2 σ2

µ +
2ψ2

3

1 + ψ1

σ2
ε (10)

ρk,k−1 = ψ1 − ψ2
3

σ2
ε

σ2
k

, (11)

where ψ1−ψ3 are as defined in equation (8). Our argument exploits the fact that the two forces
have similar effects on the variability of investment, but opposing effects on the autocorrelation.
To see this, recall that ψ1 is increasing and ψ2 and ψ3 decreasing in adjustment costs, but all
three are independent of γ. Thus, holding all other parameters fixed, σ2

k is decreasing in both
the severity of adjustment costs (higher ξ) and correlated factors (more negative γ).16 The
autocorrelation, ρk,k−1 , on the other hand, increases with ξ but decreases as γ becomes more
negative (through its effect on σ2

k). Intuitively, while both forces dampen the volatility of
investment, they do so for different reasons – adjustment costs make it optimal to smooth

16The latter is true only for γ > −1, which is the empirically relevant region.
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investment over time (increasing its autocorrelation) while correlated factors reduce sensitivity
to the serially correlated productivity process (reducing the autocorrelation of investment).

The top left panel of Figure 1 shows how these properties help identify the two parameters.
The panel plots a pair of ‘isomoment’ curves: each curve traces out combinations of the two
parameters that give rise to a given value of the relevant moment, holding the other parameters
fixed. Take the σ2

k curve: it slopes upward because higher ξ and lower γ have similar effects
on σ2

k – if γ is relatively small (in absolute value), adjustment costs must be high in order to
maintain a given level of σ2

k. Conversely, a low ξ is consistent with a given value of σ2
k only

if γ is very negative. An analogous argument applies to the ρk,k−1 isomoment curve: since
higher ξ and more negative γ have opposite effects on ρk,k−1 , the curve slopes downward. As a
result, the two curves cross only once, yielding the unique combination of the parameters that
is consistent with both moments. By plotting curves corresponding to the empirical values of
these moments, we can uniquely pin down the pair (ξ, γ) (holding all other parameters fixed).
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Figure 1: Pairwise Identification - Isomoment Curves

The graph also illustrates the potential bias introduced when examining these forces in
isolation. For example, estimating adjustment costs while ignoring correlated distortions (i.e.,
imposing γ = 0) puts the estimate on the very right-hand side of the horizontal axis. The
estimate for ξ can be read off the vertical height of the isomoment curve corresponding to the
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targeted moment. Because the σ2
k curve is upward sloping, targeting this moment alone leads to

an overestimate of adjustment costs (at the very right of the horizontal axis, the curve is above
the point of intersection, which corresponds to the true value of the parameters).17 Targeting
ρk,k−1 alone leads to a bias in the opposite direction – since the ρk,k−1 curve is downward sloping,
imposing γ = 0 yields an underestimate of adjustment costs.

The remaining panels in Figure 1 repeat this analysis for other combinations of parameters.
Each relies on the same logic as shown in the top left panel.

Uncertainty and correlated distortions. To disentangle information frictions from corre-
lated factors (the top right panel), we use the correlation of investment with past innovations
in productivity, ρk,a−1 , and the regression coefficient λarpk,a. These moments can be written as:

ρk,a−1 =

[
V
σ2
µ

(1− ψ1) + ψ1

]
σµψ2 (1 + γ)

σk
(12)

λarpk,a = 1− (1− α) (1 + γ)ψ2

(
1− V

σ2
µ

)
. (13)

A higher V implies a higher correlation of investment with lagged productivity innovations.
Intuitively, the more uncertain is the firm, the greater the tendency for its actions to reflect
productivity with a 1-period lag. In contrast, a higher (more negative) γ increases the relative
importance of transitory factors in the firm’s investment decision, reducing its correlation with
productivity. Therefore, to maintain a given level of ρk,a−1 , a decrease in V must be accom-
panied by a less negative γ, i.e., the isomoment curve slopes downward. On the other hand,
higher uncertainty and a more negative gamma both cause arpk to covary more positively with
contemporaneous productivity, a, leading to an upward sloping λarpk,a curve. Together, these
two curves pin down V and γ, holding other parameters fixed.

As before, the graph also reveals the direction of bias when estimating these factors in
isolation. Assuming full information (V = 0) and using λarpk,a to discipline the strength of
correlated distortions – e.g., as in Bartelsman et al. (2013) and Buera and Fattal-Jaef (2016)
– overstates their importance. Using the lagged responsiveness to productivity to discipline
information frictions while abstracting from correlated factors understates uncertainty.

Transitory and correlated distortions. To disentangle correlated and uncorrelated fac-
tors, consider λarpk,a and ρk,k−1 . The former is increasing in the severity of correlated distortions,
but independent of transitory ones, implying a vertical isomoment curve. The latter is decreas-
ing in both types of distortions – a more negative γ and higher σ2

ε both increase the importance
17This approach would also predict a counterfactually high level of the autocorrelation of investment.
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of the transitory determinants of investment, yielding an upward sloping isomoment curve.

Uncertainty and adjustment costs. Finally, the bottom right panel shows the intuition for
disentangling uncertainty from adjustment costs. An increase in the severity of either of these
factors contributes to sluggishness in the response of actions to productivity, i.e., raises the
correlation of investment with past productivity shocks ρk,a−1 . However, the autocorrelation of
investment ρk,k−1 is independent of uncertainty and determined only by adjustment costs (and
other factors). Thus, holding those other factors fixed, the two moments, ρk,a−1 and ρk,k−1 ,
jointly pin down the magnitude of adjustment frictions and the extent of uncertainty.

4 Quantitative Analysis

The analytical results in the previous section showed a tight relationship between the moments(
ρk,a−1 , ρk,k−1 , σ

2
k, λarpk,a

)
and the parameters (V, ξ, σ2

ε , γ) for the special case of ρ = 1. In this
section, we use this insight to develop an empirical strategy for the more general case where
productivity follows a stationary AR(1) process and apply it to data on Chinese manufacturing
firms. This allows us to quantify the severity of the various forces and their impact on arpk

dispersion and economic aggregates. For purposes of comparison, we also provide results for
publicly traded firms in the US.18 In Section 5, we extend our methodology to explore some
specific candidates for firm-specific factors other than adjustment/informational frictions.

4.1 Parameterization

We begin by assigning values to the more standard preference and production parameters
of our model. We assume a period length of one year and accordingly set the discount factor
β = 0.95. We use an annual depreciation rate of δ = 0.10. We keep the elasticity of substitution
θ common across countries and set its value to 6, roughly in the middle of the range of values in
the literature.19 We assume constant returns to scale in production, but allow the parameters
α̂1 and α̂2 to vary across countries. In the US, we set these to standard values of 0.33 and
0.67, respectively, which implies α = 0.62.20 For China, we set a higher capital share, namely,

18The two sets of firms are not directly comparable due to their differing coverage. For example, the Chinese
data include many more small firms. Similarly, there may be selection biases when using data on publicly traded
firms. To partly address this concern, in Appendix J, we repeat the analysis on Chinese publicly traded firms.
We find patterns that are quite similar to those for Chinese manufacturing firms, suggesting that cross-country
differences in frictions and distortionary factors are quite significant. This conclusion is further supported by
results for two additional countries, Colombia and Mexico, also presented in Appendix J.

19In Appendix I.3, we report results for θ = 3, the value used in Hsieh and Klenow (2009).
20This is very close to the estimate of 0.59 in Cooper and Haltiwanger (2006). We also estimated α following

the indirect inference approach in, e.g., Cooper et al. (2015). Specifically, we find the value of α so that the
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α̂1 = α̂2 = 0.5, in line with evidence from a number of recent papers, for example, Bai et al.
(2006). These values imply an α equal to 0.71 in China.21

Next, we turn to the parameters of the productivity process, ait: the persistence, ρ, and
the variance of the innovations, σ2

µ. Under our assumptions, firm-level productivity is directly
given by (up to an additive constant) ait = vait − αkit where vait denotes the log of value-
added.22 Controlling for industry-year fixed effects to isolate the firm-specific component, we
use a standard autoregression to estimate the parameters ρ and σ2

µ.
To pin down the remaining parameters – the adjustment cost, ξ, the quality of information,

V, and the size of other factors, γ and σ2
ε – we follow a strategy informed by the results in the

previous section. Specifically, we target the correlation of investment growth with lagged inno-
vations in productivity (ρι,a−1), the autocorrelation of investment growth (ρι,ι−1), the variance of
investment growth (σ2

ι ) and the correlation of the average product of capital with productivity
(ρarpk,a).23 Finally, to infer σ2

χ, the variance of the fixed component in (6), we match the overall
dispersion in the average product of capital, σ2

arpk, which is clearly increasing in σ2
χ. Thus, by

construction, our parameterized model will match the observed arpk dispersion in the data,
allowing us to decompose the contribution of each factor. Appendix C describes our numerical
estimation procedure in detail. We summarize our empirical approach in Table 1.

4.2 Data

The data on Chinese manufacturing firms are from the Annual Surveys of Industrial Production
conducted by the National Bureau of Statistics. The surveys include all industrial firms (both
state-owned and non-state owned) with sales above 5 million RMB (about $600,000). We use
data spanning the period 1998-2009.24 The original data come as a repeated cross-section.

coefficient from an OLS regression of value-added on capital using model-simulated data matches its counterpart
from an identical regression in the data. This procedure also yields α = 0.62.

21Using the same capital share for both countries yields a very similar decomposition of observed σ2
arpk. More

generally, the curvature of the profit function, α, plays a key role in determining the TFP/output implications
of a given degree of σ2

arpk, but does not materially change the estimated contributions of various factors, the
main focus of this paper. See also Section 6.2 (where labor distortions leads to a higher α), Appendix I.3 (where
a lower elasticity of substitution leads to a lower α), as well as Section 6.4 (sectoral heterogeneity in α).

22 An alternative strategy is to measure the true productivity directly, i.e., âit = vait − α1kit − α2nit, and
construct the implied ait = 1

1−α2
âit. The two approaches are equivalent under an undistorted labor choice, but

Appendix E.1 shows that more generally, firm-specific capital profitability, ait, is a combination of productivity
and a labor distortion. As a result, inferring ait from âit without adjusting for a potentially distorted labor
choice can lead to biased estimates, while the strategy of directly measuring ait, as we do here, remains valid.

23We use investment growth to partly cleanse the data of firm-level fixed-effects, which have been shown to
play a significant role in firm-level investment data (in the analytical cases studied earlier, we used the level of
investment). See Morck et al. (1990) for more on this issue. Appendix I.4 shows that our results are largely
unchanged if we use the autocorrelation and variance of investment in levels, rather than growth rates.

24Industrial firms correspond to Chinese Industrial Classification codes 0610-1220, 1311-4392 and 4411-4620,
which includes mining, manufacturing and utilities. Early vintages of the NBS data did not report all variables
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Table 1: Parameterization - Summary
Parameter Description Target/Value

Preferences/production
θ Elasticity of substitution 6
β Discount rate 0.95
δ Depreciation 0.10
α̂1 Capital share 0.33 US/0.50 China
α̂2 Labor share 0.67 US/0.50 China

Productivity/frictions
ρ Persistence of productivity

}
ρa,a−1

σ2
µ Shocks to productivity σ2

a

V Signal precision

ρι,a−1

ξ Adjustment costs ρι,ι−1

γ Correlated factors ρarpk,a
σ2
ε Transitory factors σ2

ι

σ2
χ Permanent factors σ2

arpk

A panel is constructed following almost directly the method outlined in Brandt et al. (2014),
which also contains an excellent overview of the data for the interested reader. The Chinese
data have been used multiple times and are by now familiar in the misallocation literature –
for example, Hsieh and Klenow (2009) – although our use of the panel dimension is rather new.
The data on US publicly traded firms comes from Compustat North America. We use data
covering the same period as for the Chinese firms.

We measure the firm’s capital stock, kit, in each period as the value of fixed assets in China
and of property, plant and equipment (PP&E) in the US.25 Value-added is estimated as a
constant fraction of revenues using a share of intermediates of 0.5. We measure the average
product of capital as arpkit = vait − kit. Net investment and productivity growth are obtained
by first differencing kit and ait, respectively. To isolate the firm-specific variation in our data
series, we extract a time-by-industry fixed-effect from each and use the residual. In both
countries, industries are classified at the 4-digit level. This is equivalent to deviating each firm
from the unweighted average within its industry in each period and also eliminates aggregate

for the full set of firms in the years after 2007. Although this does not seem to be an issue in our sample (all
the variables we use are well populated in all years), we have also redone our analysis using data only through
2007. The estimates are very similar (as noted below, the moments are fairly stable over time).

25Our baseline measure of the capital stock uses reported book values. In Section 6.4 (details in Appendix
I.5), we construct the capital stock using the perpetual inventory method for the US firms and re-estimate the
model. This yields slightly different point estimates, but very similar patterns for the role of various factors.
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components. After eliminating duplicates and problematic observations (for example, firms
reporting in foreign currencies), outliers, observations with missing data etc., our final sample
consists of 797,047 firm-year observations in China and 34,260 in the US. Appendix B provides
further details on how we build our sample and construct the moments, as well as summary
statistics from 2009.26

Table 2 reports the target moments for both countries.27 The first two columns show
the productivity moments, which have similar persistence but higher volatility in China. The
remaining columns show that, in China, investment growth is more correlated with past shocks,
more volatile and less autocorrelated. The Chinese data also show a higher correlation between
productivity and arpk and substantially larger dispersion in arpk. These patterns will lead us
to significantly different estimates of the severity of various factors across the two sets of firms.

Table 2: Target Moments

ρ σ2
µ ρι,a−1 ρι,ι−1 ρarpk,a σ2

ι σ2
arpk

China 0.91 0.15 0.29 −0.36 0.76 0.14 0.92
US 0.93 0.08 0.13 −0.30 0.55 0.06 0.45

4.3 Identification

Before turning to the estimation results, we revisit the issue of identification. Although we
no longer have analytical expressions for the mapping between moments and parameters, we
use a numerical experiment to show that the intuition developed in Section 3 for the random
walk case applies here as well. In that section, we used a pairwise analysis to demonstrate how
various moments combine to help disentangle the sources of observed arpk dispersion. Here,
we repeat that analysis by plotting numeric isomoment curves in Figure 2, using the moments
and parameter values for US firms (from Tables 2 and 3, respectively). They reveal the same
patterns as Figure 1, indicating that the logic of that special case goes through here as well.28

26We have also examined the moments year-by-year. They are reasonably stable over time.
27We report bootstrapped standard errors for the moments in Table 9 in Appendix C. Given the large sample

sizes (almost 800,000 in China and 35,000 in the US), the estimates of the moments are extremely precise.
28The differences in the precise shape of some of the curves in the two figures come partly from the departure

from the random walk case and also from the fact that they use slightly different moments (Figure 2 works with
changes in investment and ρarpk,a while Figure 1 used changes in k and λarpk,a).
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Figure 2: Isomoment Curves - Quantitative Model

4.4 The Sources of ‘Misallocation’

Table 3 contains our baseline results. In the top panel we display the parameter estimates.29

In the second panel of Table 3, we report the contribution of each factor to arpk dispersion,
which we denote ∆σ2

arpk.30 These are calculated under the assumption that only the factor of
interest is operational, i.e., in the absence of the others, so that the contribution of each one
is measured relative to the undistorted first-best.31 The third panel expresses this contribution
as a percentage of the total arpk dispersion measured in the data, denoted

∆σ2
arpk

σ2
arpk

. Because of
interactions between the factors, there is no a priori reason to expect these relative contributions
to sum to one. In practice, however, we find that the total is reasonably close to one, allowing

29Table 9 in Appendix C reports standard errors and compares the model-simulated moments (at the esti-
mated parameters) to their empirical counterparts. The parameters are quite precisely estimated (again, both of
our firm-level datasets have a relatively large number of observations) and the model matches the five moments
almost exactly in both countries.

30For adjustment costs, we do not have an analytic mapping between the severity of these costs and σ2
arpk,

but this is a straightforward calculation to make numerically; for each of the other factors, we can compute
their contributions to arpk dispersion analytically.

31An alternative would be to calculate the contribution of each factor holding the others constant at their
estimated values. It turns out that the interactions between the factors are small at the estimated parameter
values, so the two approaches yield similar results. Table 10 in Appendix D shows that the effects of each factor
on arpk dispersion in the US are close under either approach. Interaction effects are even smaller in China.
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us to interpret this exercise as a decomposition of total observed dispersion. In the bottom
panel of the table, we compute the implied losses in aggregate TFP, again relative to the
undistorted first-best level, i.e., ∆a = a∗ − a. Once we have the contribution of each factor to
arpk dispersion, computing these values is simply an application of expression (9).

Table 3: Contributions to ‘Misallocation’

Other Factors

Adjustment Costs Uncertainty Correlated Transitory Permanent

Parameters ξ V γ σ2
ε σ2

χ

China 0.13 0.10 −0.70 0.00 0.41
US 1.38 0.03 −0.33 0.03 0.29

∆σ2
arpk

China 0.01 0.10 0.44 0.00 0.41
US 0.05 0.03 0.06 0.03 0.29

∆σ2
arpk

σ2
arpk

China 1.3% 10.3% 47.4% 0.0% 44.4%
US 10.8% 7.3% 14.4% 6.3% 64.7%

∆a
China 0.01 0.08 0.38 0.00 0.36
US 0.02 0.01 0.03 0.01 0.13

Adjustment costs. Our results show evidence of economically significant adjustment fric-
tions. For example, the estimate of 1.38 for ξ in the US implies a value of 0.2 for ξ̂ in the
adjustment cost function.32 This puts us in the middle of previous estimates of convex costs
in the literature, though differences in data and empirical strategies complicate direct com-
parisons. For example, using US manufacturing data, Asker et al. (2014) estimate a convex
adjustment cost of 8.8 in a monthly model, which translates to an annual ξ̂ = 0.73, roughly a
factor of four above our estimate.33 Our estimate is closer to, and slightly higher than, Cooper
and Haltiwanger (2006), who find ξ̂ = 0.05 for US manufacturing plants.

What leads us to find different estimates? The answer lies primarily in the fact that our
model explicitly includes additional factors that may act on the investment decision – e.g.,
distortions – and consequently, our empirical strategy is designed to match a broader set of

32The mapping between ξ and ξ̂ is in equation (22) in Appendix A.1.
33 To interpret this difference, a firm that doubles its capital stock in a year would incur an adjustment cost

equal to 11% of the value of the investment according to our estimate, but equal to 60% at the Asker et al.
(2014) estimate.
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moments.34 The papers mentioned above abstract from these factors and focus on matching
different moments. For example, Asker et al. (2014) target the variability of investment (among
other moments), but do not try to match the autocorrelation, while Cooper and Haltiwanger
(2006) do the reverse. As we saw in Section 3, in the presence of correlated factors, the first
strategy overstates the true extent of adjustment costs, while the second understates it. It turns
out that this bias can be quite large: an adjustment cost-only model (i.e., ignoring other factors)
estimated to match the volatility of investment growth yields an estimate of ξ̂ about 60% higher
than our baseline estimate, but predicts a counterfactually high autocorrelation of investment
growth: −0.17 vs −0.30 in the data. A strategy targeting only the serial correlation leads to
the opposite conclusion – a lower estimate of ξ̂, but at the cost of excessively high variability
compared to the data. These patterns are exactly in line with the arguments developed in
Section 3. More broadly, these exercises can partly explain the wide range of adjustment cost
estimates in the literature – when adjustment costs are estimated without explicitly controlling
for other factors, the results can be quite sensitive to the particular moments chosen.35 Indeed,
our results suggest that explicitly accounting for these additional factors is essential in order to
reconcile a broad set of moments in firm-level investment dynamics.

The estimated value of ξ is lower in China. Investment growth in China is both more volatile
and less serially correlated than for US firms, which (together with the other moments), leads
the estimation to find a lower degree of adjustment frictions. Importantly, as in the US, one
would reach a very different conclusion from examining a model with only adjustment costs:
for example, estimating such a model by targeting σ2

ι in China yields an estimate for ξ of about
1.5, roughly 10 times larger than the one in Table 3.

Perhaps most importantly for purposes of our analysis, in both countries, the estimated
adjustment costs do not contribute significantly to arpk dispersion. If adjustment costs were
the only friction in China, σ2

arpk would be 0.01 (the observed level is 0.92). The higher estimate
of ξ in the US implies a slightly higher, though still modest, contribution (by themselves,
adjustment costs lead to σ2

arpk = 0.05 or 11% of the observed dispersion). The corresponding
aggregate TFP losses are 1% and 2% in the two countries, respectively.

This does not mean that adjustment costs are irrelevant for understanding firm-level invest-
ment dynamics. Setting adjustment costs to zero in the US while holding the other parameters

34There are a few other differences between our approach and these papers: (i) they have convex and non-
convex (fixed) adjustment costs. In Section 6.1, we show that our estimates of ξ̂ change little when we introduce
a fixed cost; (ii) they use moments of investment in levels while we work with growth rates. In Appendix I.4,
we show that targeting the variance and autocorrelation of investment in levels changes the estimate of ξ̂ only
slightly; (iii) Asker et al. (2014) follow a different strategy to estimate the process for profitability, ait: they
directly measure productivity âit and use the implied ait. See footnote 22. As we show in Appendix E.1, this
strategy can overstate the volatility of ait, i.e., σ2

µ, and bias adjustment cost estimates upward.
35Bloom (2009) points out the wide variation in these estimates, ranging from 0 to 20 (Table IV).
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at their estimated values causes the variance of investment growth to spike to 1.68 (compared to
0.06 in the data) and the autocorrelation to plummet to −0.62 (data: −0.30). However, σ2

arpk

falls only modestly, from 0.45 to 0.41. Re-estimating the model without adjustment costs (and
dropping the autocorrelation as a target) also leads to a counterfactually low autocorrelation
(−0.50).36 In other words, while adjustment frictions are an important determinant of invest-
ment dynamics, they do not generate significant dispersion in average products of capital.37

Uncertainty. Table 3 shows that firms in both countries make investment decisions under
considerable uncertainty, with the information friction more severe for Chinese firms. As a share
of the prior uncertainty, σ2

µ, residual uncertainty,
V
σ2
µ
, is 0.42 in the US and 0.63 in China.38

In an environment where imperfect information is the only friction, we have σ2
arpk = V, so

the contribution of uncertainty alone to observed arpk dispersion can be directly read off the
second column in Table 3 – namely 0.10 in China and 0.03 in the US. These represent about
10% and 7% of total arpk dispersion in the two countries, respectively. The implications for
aggregate TFP are substantial in China – losses are about 8% – and are lower in the US, about
1%. Note, however, that imposing a one period time-to-build assumption where firms install
capital in advance without any additional information about innovations in productivity, i.e.
setting V = σ2

µ, would overstate uncertainty (and bias the estimates of adjustment costs and
other parameters). Indeed, doing so yields estimates of V that are about 55% higher in China
and a factor of 2.5 times higher in the US.

‘Distortions’. The last three columns of Table 3 show that other, potentially distortionary,
factors play a significant role in generating the observed arpk dispersion in both countries.
Turning first to the correlated component, the negative values of γ suggest that they act to
disincentivize investment by more productive firms and especially so in China. The contribution
of these distortions to arpk dispersion is given by γ2σ2

a, which amounts to 0.44 in China, or
47% of total dispersion. The associated aggregate consequences are also quite sizable – TFP

36The estimates for other parameters also change: notably, a more negative γ is needed to match σ2
ι .

37Asker et al. (2014) make a similar observation – across various specifications of adjustment costs (including
one with zero adjustment costs and a one period time-to-build), their model’s performance in capturing disper-
sion in arpk is not dramatically altered, even though the implications for other moments (e.g., the variability
of investment) are quite different. See Table 9 and the accompanying discussion in that paper.

38Our values for V
σ2
µ
are similar to those in David et al. (2016), who find 0.41 and 0.63 for publicly traded

firms in the US and China, respectively. The estimates of V are different but are not directly comparable –
David et al. (2016) focus on longer time horizons (they analyze 3-year time intervals). This might lead one
to conclude that ignoring other factors – as David et al. (2016) do – leads to negligible bias in the estimate
of uncertainty. But, this is not a general result and rests on the fact that adjustment costs and uncorrelated
distortions are estimated to be modest. Then, as Figure 2 shows, the sensitivity of actions to signals turns out
to be a very good indicator of uncertainty. If, on the other hand, adjustment costs and/or uncorrelated factors
were much larger, the bias from estimating uncertainty alone can be quite significant.
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losses from these sources are 38%. In contrast, the estimate of γ in the US is significantly less
negative than in China, suggesting that these types of correlated factors are less of an issue for
firms in the US, both in an absolute sense – the arpk dispersion from these factors in the US is
0.06, less than one-seventh that in China – and in relative terms – they account for only 14% of
total observed arpk dispersion in the US. The corresponding TFP effects are also considerably
smaller for the US - losses from correlated sources are only about 3%.

Next, we consider the role of distortions that are uncorrelated with firm productivity. Table
3 shows that purely transitory factors (measured by σ2

ε) are negligible in both countries, but
permanent firm-specific factors (measured by σ2

χ) play a prominent role. Their contribution to
arpk dispersion, which is also given by σ2

χ, amounts to 0.41 in China and 0.29 in the US. Thus,
their absolute magnitude in the US is considerably below that in China, but in relative terms,
these factors seem to account for a substantial portion of measured arpk dispersion in both
countries. The aggregate consequences of these types of distortions are also significant, with
TFP losses of 36% in China and about 13% in the US.

In sum, the estimation results point to the presence of substantial distortions to investment,
especially in China, where they disproportionately disincentivize investment by more productive
firms. Section 6 and Appendix I show that these results are robust to a number of modifications
to our baseline setup, e.g., allowing for non-convex adjustment costs, a frictional labor choice,
richer stochastic processes on productivity and distortions, curvature assumptions and additive
measurement error. Further, we have applied the methodology to data on Colombian and
Mexican firms (in addition to the set of publicly traded firms in China) – the results resemble
those for Chinese manufacturing firms, in that they point to a substantial role for correlated
factors, as well as fixed ones (details are in Appendix J).

What patterns in the data lead us to this conclusion? In both countries, we see considerable
dispersion in arpk, which tends to be correlated with firm productivity. The fact that investment
growth is not very correlated through time and responds only modestly to past shocks limits
the role of adjustment and informational frictions and assigns a substantial role to other factors.
The high correlation of arpk with productivity, particularly in China, suggests that these factors
vary systematically with productivity. In both countries, large fixed distortions, uncorrelated
with productivity, are necessary to rationalize the total observed dispersion in arpk. In the
next section, we explore some candidates for these firm-specific factors.

5 Firm-Specific Factors: Some Candidates

Our results suggest a large role for firm-specific ‘distortions’ in explaining the observed arpk

dispersion. In this section, we extend our baseline framework and empirical methodology to
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investigate three potential sources – heterogeneity in markups and production technologies,
size-dependent policies and financial considerations.

5.1 Heterogeneity in Markups and Technologies

In our baseline setup, all firms within an industry (1) operated identical production technolo-
gies and (2) were monopolistically competitive facing CES demand curves and therefore, had
identical markups. As a result, any firm-level heterogeneity in technologies and/or markups
would show up in our estimates of other factors (note also that this type of variation would
drive a wedge between arpk and the true marginal product of capital, implying that dispersion
in the former is not necessarily a sign of misallocation). Here, we explore this possibility using
a modified version of our baseline model. This requires more assumptions and additional data,
but allows us to provide an upper bound on the contribution of these elements.

We begin by generalizing the production function from Section 2 to include intermediate
inputs and to allow for (potentially time-varying) heterogeneity in input intensities. Specifically,
the output of firm i is now given by

Yit = K α̂it
it N

ζ̂it−α̂it
it M1−ζ̂it

it ,

where Mit denotes intermediate or materials input. The price of these inputs, potentially firm-
specific, is denoted PM

it . Throughout this section, we abstract from adjustment/information
frictions in firms’ input decisions. This is largely for simplicity, but is also supported by the
relatively modest role played by these dynamic considerations in our baseline estimates.39

Capital and labor choices are assumed to be subject to a factor-specific ‘distortion’ (in
addition to the markup), denoted TKit and TNit , respectively, but the choice of intermediates is
undistorted except for the markup. Since the method remains valid even with unobserved firm-
specific variation in the price of intermediate goods, it does allow for distortions in the market
for intermediate inputs, so long as they are reflected in prices. Formally, these assumptions
imply that the firm’s optimal choices solve the following cost minimization problem:

min
Kit,Nit,Mit

RtT
K
it Kit +WtT

N
it Nit + PM

it Mit s.t. Yit ≤ K α̂it
it N

ζ̂it−α̂it
it M1−ζ̂it

it .

The contribution of markup dispersion. To quantify the contribution of markup disper-
sion, we use the powerful methodology of De Loecker and Warzynski (2012), which allows us to

39It is possible to extend the identification methodology from Section 3 to explicitly incorporate these
forms of heterogeneity. Although this would require more assumptions (e.g., on the correlation structure of
markups/technologies with productivity and over time) and make the intuition more complicated, the basic
insights should still go through.
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measure firm-level markups without taking a stand on the nature of competition/demand. To do
so, we assume a common materials elasticity across firms within an industry, i.e., ζ̂it = ζ̂t ∀ i.40

Cost minimization then implies the following optimality condition (we suppress the time sub-
script on ζ, though the method remains valid with arbitrary time-variation):

PM
it = MCit

(
1− ζ̂

) Yit
Mit

⇒ PM
it Mit

PitYit
= (1− ζ̂)

MCit
Pit

, (14)

where MCit is the marginal cost of the firm. This condition states that, at the optimum, the
firm sets the materials share in gross output equal to the inverse of the markup, MCit

Pit
, multiplied

by the materials elasticity 1− ζ̂.
Expression (14) suggests a simple way to estimate the cross-sectional dispersion in markups.

The left-hand side is materials’ share of revenue – the within-industry dispersion in this object
(in logs) maps one-for-one into (log) markup dispersion. Data on materials expenditures are
directly reported in the Chinese data. In the US, we follow, e.g., De Loecker and Eeckhout
(2017) and İmrohoroğlu and Tüzel (2014) and calculate intermediate expenditures as total
expenses less labor expenses. The former are defined as sales less operating income and the
latter are imputed using number of employees and the average industry wage, from the NBER-
CES Manufacturing Industry Database.41

The results of applying this procedure are reported in Table 4. The variance of the share of
materials in revenue (the first row in the top panel) is about 0.06 in the US Compustat data and
0.05 in China. This accounts for about 14% of σ2

arpk among the US firms, but only about 4%
among Chinese manufacturing firms. Thus, markup heterogeneity composes a non-negligible
fraction of observed arpk dispersion among US publicly traded firms but seems to be an almost
negligible force in China.

Can markup variation help explain the large role for correlated distortions in Section 4? In
theory, yes – markups that increase with size would be consistent with the patterns uncovered
in that section. Quantitatively, however, this does not seem to hold much promise. In China,
this is clear simply from the rather modest dispersion in markups – the contribution of markups
to arpk dispersion is much smaller (0.05) than the estimated total contribution of correlated
factors (0.44). In the US, where dispersion in markups is more substantial, the data suggest
they are largely independent of firm size. For example, projecting the measured markup on

40In Appendix F, we allow the materials elasticity to vary across firms within an industry (our baseline
calculation already allows for variation across industries). Under certain orthogonality assumptions, we show
that the covariance of the materials share with arpk and arpn (average product of labor) pins down the dispersion
in markups. This approach yields very similar (if slightly lower) estimates of markup dispersion in both countries.

41Details of these calculations are provided in Appendix B. In an earlier version of this paper, we also used
the reported wage bill, available for a smaller subset of firms. The results were broadly similar, though the
share of both markup and technology dispersion was somewhat higher (28% and 62 % of σ2

arpk for those firms).
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revenues yields a statistically significant, yet economically small, coefficient of 0.01 (the raw
correlation between markups and revenues is 0.07).

The contribution of technology dispersion. Cost minimization also implies that the
average revenue products of capital and labor are given by:42

arpkit ≡ log

(
PitYit
Kit

)
= log

Pit
MCit

− log α̂it + τKit + Constant (15)

arpnit ≡ log

(
PitYit
Nit

)
= log

Pit
MCit

− log(ζ̂ − α̂it) + τNit + Constant (16)

≈ log
Pit
MCit

+

(
ᾱ

ζ̂ − ᾱ

)
log α̂it + τNit + Constant , (17)

where τKit and τNit denote (the logs of) the capital and labor wedges TKit and TNit , respectively,
and ᾱ is the average capital elasticity. Average revenue products are combinations of firm-
specific production elasticities, markups and wedges. Note that the capital elasticity, α̂it, has
opposing effects on the average products of capital and labor: firms with a high α̂it will, ceteris
paribus, have a low arpk and a high arpn. In other words, this form of heterogeneity acts like
a ‘mix’ distortion (as opposed to ‘scale’ factors, which distort all input decisions in the same
direction). We will make use of this property to derive an upper bound for variation in α̂it

using the observed covariance of arpk and arpn. Let

ãrpkit ≡ log

(
PitYit
Kit

)
− log

(
Pit
MCit

)
ãrpnit ≡ log

(
PitYit
Nit

)
− log

(
Pit
MCit

)
denote the markup-adjusted average revenue products of capital and labor. Appendix F proves
the following result:

Proposition 2. Suppose log α̂it is uncorrelated with the distortions τKit and τNit . Then, the
cross-sectional dispersion in log α̂it satisfies

σ2(log α̂it) ≤
σ2

ãrpk
σ2
ãrpn
− cov

(
ãrpk, ãrpn

)2

2 ᾱ

ζ̂−ᾱcov
(
ãrpk, ãrpn

)
+
(

ᾱ

ζ̂−ᾱ

)2

σ2

ãrpk
+ σ2

ãrpn

. (18)

The bound in (18) is obtained by setting the correlation between τKit and τNit to 1. Given
the observed second moments of

(
ãrpkit, ãrpnit

)
, this maximizes the potential for variation in

42See Appendix F for details. The third equation is derived by log-linearizing (16) around α̂it = ᾱ.
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α̂it, which, as noted earlier, is a source of negative correlation between ãrpkit and ãrpnit. The
expression for the bound reveals the main insight: the more positive the covariance between(
ãrpkit, ãrpnit

)
, the lower is the scope for heterogeneity in α̂it.

To compute this bound for the two countries, we set ζ̂, the share of materials in gross output,
to 0.5. The results, along with the moments used, are reported in Table 4. They show that
heterogeneity in technologies can potentially account for a substantial portion of σ2

arpk in the
US – as much as 44% – and a more modest, though still significant, fraction in China, about
23%.43 In other words, a substantial portion of measured arpk dispersion in both countries
may not be a sign of misallocated resources at all. This is most striking in the US, where the
average products of capital and labor covary less positively than in China.44

Table 4: Heterogeneous Markups and Technologies

China US
Moments
σ2
(

log PitYit
PMt Mit

)
0.05 0.06

cov
(
ãrpkit, ãrpnit

)
0.41 0.23

σ2
(
ãrpkit

)
1.37 0.52

σ2
(
ãrpnit

)
0.76 0.35

Estimated ∆σ2
arpk

Dispersion in Markups 0.05 (3.8%) 0.06 (13.6%)
Dispersion in log α̂it 0.30 (23.1%) 0.18 (44.4%)
Total 0.35 (26.9%) 0.24 (58.1%)

Notes: The values in parentheses in the bottom panel are the contributions to arpk disper-
sion expressed as a fraction of total σ2

arpk.

An alternative approach to assessing the potential for technology dispersion is discussed in
Hsieh and Klenow (2009), in which all the variation in firm-level capital-labor ratios is attributed
to heterogeneity in α̂it. This amounts to assuming that τKit = τNit , which implies:

kit − nit = arpnit − arpkit ≈
ζ̂

ζ̂ − ᾱ
log α̂it ⇒ σ2 (kit − nit) =

(
ζ̂

ζ̂ − ᾱ

)2

σ2(log α̂it) .

This procedure yields estimates for σ2 (log α̂it) that are quite close to those in Table 4: 0.27
43There is some evidence that the share of intermediates may be higher in China than the US, see, e.g., Table

1 in Brandt et al. (2014). We re-computed the bound with ζ̂ = 0.25 and obtained very similar results. We also
verified the accuracy of the approximation by working directly with (16) instead of the log-linearized version in
(17). This yielded slightly lower bounds: 38% and 17% of σ2

arpk in the US and China, respectively.
44In Appendix F, we derive an analogous bound in the case with within-industry variation in the materials

elasticity. The results are very similar.
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(compared to 0.30) for China and 0.16 (compared to 0.18) in the US.
In sum, unobserved heterogeneity in markups and technologies seem to be promising can-

didates for firm-specific factors, which drive most of the arpk dispersion in the data. This is
particularly true for the US, where they can explain as much as 58% of the observed dispersion
in the US. In China, their role is more modest, but still meaningful, at 27%.

5.2 Size-Dependent Policies

Our results show a significant role for factors correlated with firm-level productivity – especially
in China – in explaining the observed variation in arpk across firms. Here, we show how policies
that affect or restrict the size of firms can lead to a correlated factor of this form. A number of
papers have pointed out the prevalence of distortionary size-dependent policies across a range
of countries, for example, Guner et al. (2008). These policies often take the form of restrictions
(or additional costs) associated with acquiring capital and/or other inputs. To be clear, our
goal is not to explore the role of a particular policy in China or the US. Rather, we show how
policies that are common in a number of countries can generate patterns that are, in a sense,
isomorphic to factors correlated with productivity.

Towards this end, we generalize our baseline specification of firm-specific factors in equation
(6) to allow for a component that varies with the chosen level of capital. Formally,

τit = γkkit + γait + εit + χi ,

where the parameter γk indexes the severity of this additional component. The empirically
relevant case is γk < 0, which implicitly penalizes larger firms. This specification captures the
essence of the policies discussed above in a tractable way (e.g., it allows us to continue to use
perturbation methods). With this formulation, the log-linearized Euler equation takes the form

kit+1 ((1 + β)ξ + 1− α− γk) = (1 + γ)Eit [ait+1] + εit+1 + χi + βξEit [kit+2] + ξkit . (19)

Expression (19) is identical to expression (4), but with α + γk taking the place of α. It is
straightforward to derive the firm’s investment policy function and verify that the same adjust-
ment goes through, i.e., expressions (7) and (8) hold, with α everywhere replaced by α + γk.
Intuitively, the size-dependent component, γk, changes the effective degree of curvature in the
firm’s investment problem – although the curvature of the profit function remains α, the firm
acts as if it is α + γk. If γk < 0, the distortion dampens the responsiveness of investment to
shocks. If γk > 0, the responsiveness of investment is amplified.

Importantly, these effects are broadly similar to those coming from γ: indeed, if γk were
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the only factor distorting investment choices, the implied law of motion for kit is identical
(up to a first-order) to one with only productivity-dependent factors, where γ = γk

1−α−γk
. The

implication of this isomorphism is that we cannot distinguish the two factors using observed
series of capital and value-added alone. This challenge also applies to the case when other
factors are present, though the mapping between the two is more complicated (and affects the
other parameters as well). We detail this mapping in Appendix G.

What about the contribution to arpk dispersion? Table 5 reports the results for Chinese
firms for two values of γk, namely -0.18 and -0.36 (these values imply effective curvatures α+γk

equal to one-quarter and one-half of the true α, respectively). The table shows two key results:
first, a more negative γk reduces the estimated γ (i.e., makes it less negative), suggesting that
our baseline estimates of correlated factors could be picking up such size-dependent policies.
The total contribution of both types of distortions is quite stable, ranging between 40% and 47%.
Second, the estimates of adjustment costs remain modest over this wide range of curvature.

Table 5: Size vs Productivity-Dependent Factors

Correlated Factors

Size-Dependent Prod.-Dependent Total Adj. Costs
γk γ ξ

α + γk = 0.71 (baseline)
Parameters 0.00 −0.70 0.13
∆σ2

arpk

σ2
arpk

0.0% 47.4% 47.4% 1.3%

α + γk = 0.54
Parameters −0.18 −0.51 0.21
∆σ2

arpk

σ2
arpk

14.2% 25.4% 39.6% 2.3%

α + γk = 0.36
Parameters −0.36 −0.33 0.29
∆σ2

arpk

σ2
arpk

29.6% 10.2% 39.8% 3.2%

5.3 Financial Frictions

In this section, we show that liquidity considerations can lead to size-dependent distortions of
the form analyzed in the previous subsection. We assume that firms face a cost Υ (Kit+1, Bit+1),
where Bit+1 denotes holdings of liquid assets, which earn an exogenous rate of return R < 1

β
.

The cost is increasing (decreasing) in Kit+1 (Bit+1). This specification captures the idea that
firms need costly liquidity in order to operate (e.g., to meet working capital needs). Using a
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continuous penalty function rather than an occasionally binding constraint allows us to continue
using perturbation methods. Note also that this differs from the standard borrowing constraint
used widely in the literature on financial frictions. Our firms are not constrained in terms of
their ability to raise funds. This implies that self-financing, which often significantly weakens
the long-run bite of borrowing constraints, plays no role here.45

We use the following flexible functional form for the liquidity cost:

Υ (Kit+1, Bit+1) = ν̂
Kω1
it+1

Bω2
it+1

,

where ν̂, ω1 and ω2 are all positive parameters. The marginal liquidity cost of capital, after
optimizing over the choice of Bit+1 is given by (derivations in Appendix H)

Υ1,t+1 ≡
dΥ (Kit+1, Bit+1)

dKit+1

= ν (1− βR)
ω2
ω2+1 Kω

it+1 , (20)

where ν and ω are composite parameters. The former is always positive, while the latter is
of indeterminate sign. If ω is positive (negative), the marginal cost of liquidity is increasing
(decreasing) in Kit+1.

The log-linearized Euler equation takes the same form as (19), with

γk = −ω
(

Ῡ1

Ῡ1 + κ

)
, (21)

where Ῡ1 is the marginal cost of liquidity in the deterministic steady state and κ = 1− β(1−
δ) + ξ̂δ(1 − β(1 − δ

2
)). Intuitively, the fraction Ῡ1

Ῡ1+κ
is the steady state share of liquidity in

the total marginal cost of capital. Thus, liquidity considerations manifest themselves as a size-
dependent factor of the form described in Section 5.2. The sign depends on the sign of ω: if
ω > 0, then γk < 0, so costly liquidity dampens incentives to adjust capital in response to
productivity (since the liquidity cost is convex). The opposite happens if ω < 0.

Thus, liquidity considerations are a promising candidate for correlated and/or size-dependent
factors. Cross-country differences in liquidity requirements (summarized by the parameters ν
and ω) and/or costs (i.e., 1− βR) will translate into variation in the severity of our measures
of correlated firm-specific factors. However, our results here also highlight the difficulty in sep-
arating them from other factors using production-side data alone. One would need additional
data, e.g., on firm-level liquidity holdings, to disentangle the role of liquidity from other forces.

45See, for example, Midrigan and Xu (2014) and Moll (2014). Gopinath et al. (2017) show that a richer
variant of the standard collateral constraint can have important implications during a period of transition, even
if it generates only modest amounts of arpk dispersion in the long-run.
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In sum, our findings in sections 5.1-5.3 provide some guidance on the factors beyond ad-
justment and information frictions that influence investment decisions. For US publicly traded
firms, observed dispersion in value-added/capital ratios could be driven to a significant extent
by unobserved heterogeneity in production technologies and therefore, as we emphasized above,
may not be a sign of misallocated capital. On the other hand, the scope for this type of het-
erogeneity appears limited among Chinese manufacturing firms, suggesting a greater role for
inefficient factors like size-dependent policies or financial imperfections.

6 Robustness and Extensions

In this section, we explore a number of variants on our baseline approach. We generalize our
specification of adjustment costs to include a non-convex component. We also use this exercise
to assess the accuracy of the log-linearized solution, since this case requires nonlinear solution
techniques. We consider the implications of a frictional labor choice. We also explore a number
of measurement concerns, including the potential for measurement error. Appendix I contains
additional extensions and robustness exercises – alternative stochastic processes on productivity
and distortions, different assumptions on the elasticity of substitution and variants on the set
of target moments. Our main conclusions about the relative contribution of various factors to
observed arpk dispersion is robust across these exercises.

6.1 Non-Convex Adjustment Costs

Our baseline specification with only convex adjustment costs allowed us to use perturbation
techniques to solve and estimate the model, which yielded both analytical tractability for our
identification arguments and computational efficiency. However, it raises two questions: one,
how well does the log-linearized version approximate the true solution? And two, are the results
robust to allowing for non-convex adjustment costs? In this section, we address both of these
concerns. We modify the adjustment cost function to include a non-convex component:

Φ (Kit+1, Kit) =
ξ̂

2

(
Kit+1

Kit

− (1− δ)
)2

Kit + ξ̂fI {Iit 6= 0} π (Ait, Kit) ,

where Iit = Kit+1 − (1− δ)Kit denotes period t investment and I {·} the indicator function.
The adjustment cost is now composed of two components: the first is a quadratic term, the
same as before. The second is a fixed cost, which is parameterized by ξ̂f , the fraction of profits
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that must be incurred if the firm undertakes any non-zero investment.46

Due to the fixed cost, we can no longer use perturbation methods. We therefore solve the
model by value function iteration and re-estimate the parameters using simulated method of
moments. Note that there is an additional parameter in this version relative to the baseline,
ξ̂f . To pin this down, we add a new target moment: inaction, defined as the fraction of firms
with (gross) investment rates of less than 5% in absolute value. This value is equal to 20% of
firms in the Chinese data and 18% of firms in the US.47 Formally, we estimate the model by
searching over the six parameters, ξ̂, ξ̂f ,V, γ, σ2

ε and σ2
χ, to find the combination that minimizes

the equally-weighted sum of squared deviations of the model-implied values for the six target
moments – the five moments from Table 2 and inaction – from their empirical counterparts.48

The results are reported in Table 6. The estimated value for the fixed cost, ξ̂f , is modest in
both countries, about 0.2% of annual profits. The other parameters and their contributions to
σ2
arpk are quite close to the baseline estimates. These results demonstrate that (1) allowing for

non-convex adjustment costs does not alter our main conclusions regarding the sources of arpk
dispersion and (2) the perturbation approach produces reasonably accurate estimates.49

Table 6: Non-Convex Adjustment Costs

Parameters ξ̂ (ξ) ξ̂f V γ σ2
ε σ2

χ

China 0.075 (0.51) 0.002 0.09 −0.64 0.00 0.44

US 0.250 (1.70) 0.002 0.03 −0.30 0.02 0.29
∆σ2

arpk

σ2
arpk

China 6.5% 0.8% 10.1% 35.6% 0.0% 47.7%

US 13.0% 1.1% 7.1% 11.5% 4.4% 64.4%

Notes: The second column (in parentheses) reports the value of the normalized adjust-
ment cost parameter, ξ, for purposes of comparison to Table 3. The mapping between
ξ and ξ̂ is given in expression (22).

Our estimates for the fixed adjustment cost are lower than many previous estimates in the
literature.50 The primary reason for this difference is the fact that we explicitly control for other

46The scaling with profits is a common formulation in the literature – see, e.g., Asker et al. (2014) – and
ensures that the fixed cost does not become negligible for large firms.

47Appendix I.1 shows the results are robust to using alternative moments to pin down the non-convex
component, for example, investment ‘spikes.’

48We provide further details of the estimation technique and results in Appendix I.1. Table 12 in that
appendix reports the fit of the model with respect to both targeted moments and non-targeted moments.

49Note that if ξ̂ = ξ̂f = 0, there is no approximation involved under the perturbation approach, i.e., the
model is exactly log-linear. This property, along with the modest estimates for adjustment costs, is the main
reason why the approximation works reasonably well in this region of the parameter space.

50For example, Bloom (2009) estimates a fixed adjustment cost of 1% of annual sales for US Compustat
firms. Asker et al. (2014) and Cooper and Haltiwanger (2006) work with data on US manufacturing firms and
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factors and target a broader set of moments – indeed, our results here further underscore the
importance of doing so. In Appendix I.1, we explore this finding in greater depth by estimating
a number of variants of our model with only adjustment costs, i.e., abstracting from other
factors. This typically yields larger estimates of these costs, but at the expense of counterfactual
implications for other, non-targeted moments. For example, a strategy which fits the low serial
correlation of investment (e.g., Cooper and Haltiwanger (2006)) yields much larger fixed costs
(and smaller convex ones), but implies counterfactually high levels of investment variability and,
even more strikingly, inaction. Importantly, however, even under this approach, adjustment
costs generate only modest dispersion in arpk. Conversely, a strategy which matches the low
variability of investment growth (along the lines of Asker et al. (2014)) implies larger convex
costs but significantly over-predicts the autocorrelation of investment (and similarly leaves
much of the arpk dispersion unexplained). Finally, a strategy that jointly fits both the serial
correlation and variability yields larger costs of both types, but misses widely on other moments:
for example, the predicted degree of inaction is extremely high relative to the data.

These patterns lead our estimation to ascribe an important role to other distortionary fac-
tors, even after allowing for non-convexities – these factors reduce investment volatility without
increasing its serial correlation and so reconcile these two moments. Further, in conjunction
with the estimated level of adjustment costs, the model still performs well on additional mo-
ments such as inaction and investment spikes (see Appendix I.1 for details).

6.2 Frictional Labor

Our baseline analysis makes the rather stark assumption of no adjustment or information fric-
tions in labor choice, making it a static decision with full information. Although not uncommon
in the literature, this may not be a good description of labor markets. Here, we depart from
this assumption and assume that labor is subject to the same forces as capital – adjustment
and informational frictions and other factors. In Appendix E.2, we show that, under these
conditions, the firm’s investment problem takes the same form as in expression (3), but with a
modified curvature parameter of α = α1 + α2 (and appropriately re-defined G and Ait). With
this re-definition, our identification strategy goes through unchanged. Table 7 reports results
for Chinese firms under this specification. The top panel shows the target moments recomputed
under this assumption. A comparison to Table 2 reveals that assuming frictional labor raises
the correlation of investment with lagged shocks as well as the correlation of the arpk with
productivity. The second panel reports the associated parameter estimates. They imply higher
adjustment costs, greater uncertainty and more severe correlated distortions. As a result, a

estimate this parameter at 12.5% of annual output and 4% of the capital stock, respectively.
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lower level of the permanent factor, σ2
χ, is needed to match σ2

arpk.
The bottom panel of Table 7 reports the contribution of each factor to total arpk dispersion

and computes the implications for aggregate TFP. There is a noticeable increase in the impact of
adjustment costs from the baseline case – now, they account for almost 13% of arpk dispersion
in China (compared to 1% above). There is also a slight increase in the impact of uncertainty
(from 10% to 11%). Further, the effects on aggregate productivity are much larger than in
the baseline scenario – here, these forces distort both inputs into production. Adjustment
costs and imperfect information now lead to TFP losses of about 36% and 32%, respectively.
Thus, this version of our model illustrates the potential for large aggregate consequences of
adjustment/information frictions. However, despite the increased impact of these forces (in
both relative and absolute terms), the results also confirm a key finding from before, namely,
the important role of other correlated and permanent factors. Indeed, these factors compose
about 80% of the measured arpk dispersion, leading to TFP gaps relative to the first-best of
about 144% and 90%, respectively.

Table 7: Frictional Labor - China

Moments ρ σ2
µ ρι,a−1 ρι,ι−1 ρarpk,a σ2

ι σ2
arpk

0.92 0.16 0.33 −0.36 0.81 0.14 0.94

Parameters ξ V γ σ2
ε σ2

χ

0.78 0.11 −0.68 0.04 0.30

Aggregate Effects
∆σ2

arpk 0.12 0.11 0.48 0.04 0.30
∆σ2

arpk

σ2
arpk

12.8% 11.3% 51.2% 4.0% 32.2%

∆a 0.36 0.32 1.44 0.11 0.90

6.3 Measurement Error

Measurement error is an important and challenging concern for the misallocation literature
more broadly. In an important recent contribution, Bils et al. (2017) propose a method to
estimate the role of additive measurement error. Here, we apply their methodology to our
data. It essentially involves estimating the following regression:

∆vait = Φarpkit + Ψ∆kit −Ψ (1− λ) arpkit ·∆kit +Djt + εit ,

where ∆vait and ∆kit denote changes in (log) value-added and capital respectively, Djt is a
full set of industry-year fixed effects and arpkit is (the log of the) average revenue product of
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capital. The key object is the coefficient on the interaction term. Bils et al. (2017) show that,
under certain assumptions, λ is the ratio of the true dispersion in the arpk to its measured
counterpart (and inversely, 1 − λ is the contribution of measurement error to the observed
σ2
arpk). Intuitively, to the extent measured arpk deviations are due to additive measurement

error, value-added of firms with high observed arpk will display a lower elasticity w.r.t. capital.
Estimating this regression in our data yields estimates for λ of 0.92 in China and 0.88 in

the US. These values suggest that, in both countries, only about 10% of the observed σ2
arpk can

be accounted for by additive measurement error. Of course, it must be pointed out that this
method is silent about other forms of measurement error (e.g., multiplicative).51

6.4 Additional Measurement Concerns

In this subsection, we address two other measurement-related issues. The first stems from
our use of book values for capital. Although this is a common approach in the misallocation
literature, e.g., Hsieh and Klenow (2009) and Gopinath et al. (2017), other papers use the
perpetual inventory method along with data on investment good price deflators to construct an
alternative measure for capital. To address this concern, we compute firm-level capital stocks
for US firms, where data on the relevant price indices are readily available, using the approach
outlined in Eberly et al. (2012). The results from re-estimating the model using these measures,
presented in Appendix I.5, are broadly in line with our baseline findings. They point to a
somewhat larger role for adjustment costs (the autocorrelation of investment growth is higher
under this method and the variance lower, leading to a higher estimate of ξ), which account
for about 27% of total σ2

arpk (compared to 11% under our baseline approach). The contribution
of uncertainty is essentially unchanged at about 6%. Importantly, other firm-specific factors
continue to play a key role in generating the observed arpk dispersion.

The second concern relates to sectoral heterogeneity in the structural parameters. We
have estimated our model separately for US firms for the 9 major sectors of the industrial
classification (e.g., manufacturing, construction, services, etc.). Specifically, we allowed for
sector-specific parameters in production (we infer sector-specific α’s using sectoral labor shares
obtained from the BEA), adjustment frictions, uncertainty, as well as other factors. The details
of this procedure are outlined in Appendix I.6 and the results are presented in Table 20 in that
appendix. Although there is some variation across sectors, the overall patterns in the role of
various factors (bottom panel of that table) are similar to those from our baseline analysis. The
contribution of adjustment costs to observed arpk dispersion is generally modest – the highest

51There are a few approaches in the literature to deal with multiplicative measurement error, e.g. Collard-
Wexler and De Loecker (2016) and Song and Wu (2015) make some progress on this dimension after imposing
additional structure.
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contribution is about 20% of σ2
arpk in Manufacturing and the lowest is 2% in Finance, Insurance

and Real Estate. Uncertainty accounts for 5-10% across sectors, leaving the bulk of observed
arpk dispersion within each sector to be accounted for by other factors.

7 Conclusion

In this paper, we have laid out a model of investment featuring multiple factors that interfere
with the equalization of static capital products, along with an empirical strategy to disentangle
them using widely available firm-level production data. Figure 3 summarizes our results on
the sources of arpk dispersion in China (left panel) and the US (right panel). They show that
much of the arpk dispersion stems not from adjustment and informational frictions, but from
other firm-specific factors, either systematically correlated with firm productivity/size or almost
permanent. Moreover, unobserved heterogeneity in demand and production technologies can
potentially account for a significant portion of observed arpk dispersion in the US, but not
in China, where size-dependent policies and/or financial imperfections may be more fruitful
avenues to pursue. Crucially, analyzing these forces in isolation would have led to very different
conclusions, highlighting the value of using a unified framework and empirical approach.

China US Compustat

1%
10%

5%17%

67%

Adjustment Costs
Information
Markups
Technology
Other

11%
7%14%

38%

30%

Notes: The numbers for the contribution of technological dispersion denote the upper
bound as calculated in footnote 43.

Figure 3: The Sources of ‘Misallocation’

There are several promising directions for future work. A key message of our analysis is that
although various frictions/distortions/policies may all generate dispersion in input products,
they often have different effects on various moments of the data, helping to tease out their
individual contributions. This insight, along with our quantitative findings, should be useful
both in identifying candidate factors driving that dispersion and in guiding empirical strategies
to measure their impact. For example, policies and/or frictions that introduce persistent wedges
into firms’ investment decisions would be very promising; ones that are transitory, particularly
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those unrelated to firm size/productivity, less so. On the empirical side, our formulation and
findings on these factors point to a strategy for investigating specific forces even while controlling
for others – thereby reaching more accurate estimates of their contributions – in a tractable,
albeit reduced-form, way. For example, one recent paper that builds on our results – both
methodological and substantive – is David, Schmid, and Zeke (2018). First, they propose a
theory of firm-level risk premia that delivers a firm-specific fixed wedge in the capital choice.
Second, they verify that their identification strategy is robust to the presence of other distortions
of the same form as we lay out here.

Our analysis focused primarily on capital allocation, but a natural extension is to use similar
methods to study the allocation of labor. Such an analysis holds much promise, both for
understanding the role of various forces (e.g., adjustment, informational or other) in explaining
observed dispersion in labor products, and further, in narrowing the list of candidate factors
driving input allocations more broadly. As we showed in Section 5.1, combining data on multiple
inputs can help shed light on the nature of distortionary factors – for example, the correlation
between capital and labor products can be very useful in disciplining the potential for ‘scale’
factors that distort all input products in the same direction vs ‘mix’ factors that distort the
capital-ratio ratio.

Our findings have implications beyond static arpk dispersion. Midrigan and Xu (2014)
show that the same factors behind static variation in input products can have larger effects
on aggregate outcomes by influencing entry and exit decisions. Similarly, a number of recent
papers examine the impact of distortions on the life-cycle of the firm and the distribution of
productivity itself, e.g., Hsieh and Klenow (2014), Bento and Restuccia (2017) and Da-Rocha
et al. (2017). An important insight from these papers is that the exact nature of the underlying
distortions (e.g., their correlation with firm productivity or demand) is key to understanding
their dynamic implications. An ambitious next step would be to use an empirical strategy like
the one in this paper to analyze richer environments featuring some of these elements.
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Appendix: For Online Publication

A Baseline Model

This appendix provides detailed derivations and proofs for our baseline model.

A.1 Solution

The first order condition and envelope conditions associated with (3) are, respectively,

TKit+1 (1− β (1− δ)) + Φ1 (Kit+1, Kit) = βEit [V1 (Kit+1, Iit+1)]

V1 (Kit, Iit) = Π1 (Kit, Ait)− Φ2 (Kit+1, Kit)

and combining yields the Euler equation

Eit
[
βΠ1 (Kit+1, Ait+1)− βΦ2 (Kit+2, Kit+1)− TKit+1 (1− β (1− δ))− Φ1 (Kit+1, Kit)

]
= 0

where

Π1 (Kit+1, Ait+1) = αGAit+1K
α−1
it+1

Φ1 (Kit+1, Kit) = ξ̂

(
Kit+1

Kit

− (1− δ)
)

Φ2 (Kit+1, Kit) = −ξ̂
(
Kit+1

Kit

− (1− δ)
)
Kit+1

Kit

+
ξ̂

2

(
Kit+1

Kit

− (1− δ)
)2

=
ξ̂

2
(1− δ)2 − ξ̂

2

(
Kit+1

Kit

)2

In the undistorted
(
T̄K = 1

)
non-stochastic steady state, these are equal to

Φ̄1 = ξ̂δ

Φ̄2 =
ξ̂

2
(1− δ)2 − ξ̂

2
Π̄1 = αḠĀK̄α−1

Log-linearizing the Euler equation around this point yields

Eit
[
βΠ̄1π1,it+1 − βΦ̄2φ2,it+1 − τKit+1 (1− β (1− δ))− Φ̄1φ1,it

]
= 0
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where τKit+1 = log TKit+1 and

Π̄1π1,it+1 ≈ αḠĀK̄α−1 (ait+1 + (α− 1) kit+1)

Φ̄1φ1,it ≈ ξ̂ (kit+1 − kit)

Φ̄2φ2,it+1 ≈ −ξ̂ (kit+2 − kit+1)

Rearranging gives

kit+1 ((1 + β)ξ + 1− α) = Eit [ait+1 + τit+1] + βξEit [kit+2] + ξkit

where

ξ =
ξ̂

βΠ̄1

, τit+1 = −1− β (1− δ)
βΠ̄1

τKit+1

which is expression (4) in the text. Using the steady state Euler equation,

β(Π̄1 + 1− δ)− βΦ̄2 = 1 + Φ̄1 ⇒ αβḠĀK̄α−1 = 1− β (1− δ) + ξ̂δ

(
1− β

(
1− δ

2

))
we have

ξ =
ξ̂

1− β (1− δ) + ξ̂δ
(
1− β

(
1− δ

2

)) (22)

τit+1 = − 1− β (1− δ)
1− β (1− δ) + ξ̂δ

(
1− β

(
1− δ

2

))τKit+1

To derive the investment policy function, we conjecture that it takes the form in (7). Then,

kit+2 = ψ1kit+1 + ψ2 (1 + γ)Eit+1ait+2 + ψ3εit+2 + ψ4χi

Eit [kit+2] = ψ1kit+1 + ψ2 (1 + γ) ρEit [ait+1] + ψ4χi

= ψ1 (ψ1kit + ψ2 (1 + γ)Eit [ait+1] + ψ3εit+1 + ψ4χi) + ψ2 (1 + γ) ρEit [ait+1] + ψ4χi

= ψ2
1kit + (ψ1 + ρ)ψ2 (1 + γ)Eit [ait+1] + ψ1ψ3εit+1 + ψ4 (1 + ψ1)χi

where we have used Eit [εit+2] = 0 and Eit [Eit+1 [ait+2]] = ρEit [ait+1]. Substituting and rear-
ranging,

(1 + βξψ4 (1 + ψ1))χi + (1 + βξψ1ψ3) εit+1

+ (1 + βξ (ψ1 + ρ)ψ2) (1 + γ)Eit [ait+1] + ξ
(
1 + βψ2

1

)
kit

= ((1 + β) ξ + 1− α) (ψ1kit + ψ2 (1 + γ)Eit [ait+1] + ψ3εit+1 + ψ4χi)

44



Finally, matching coefficients gives

ξ
(
βψ2

1 + 1
)

= ψ1 ((1 + β)ξ + 1− α)

1 + βξ (ψ1 + ρ)ψ2 = ψ2 ((1 + β)ξ + 1− α)⇒ ψ2 =
1

1− α + βξ (1− ψ1 − ρ) + ξ

1 + βξψ1ψ3 = ψ3 ((1 + β)ξ + 1− α)⇒ ψ3 =
1

1− α + (1− ψ1) βξ + ξ

1 + βξψ4 (1 + ψ1) = ψ4 ((1 + β)ξ + 1− α)⇒ ψ4 =
1

1− α + ξ (1− βψ1)

A few lines of algebra yields the expressions in (8).

A.2 Aggregation

To derive aggregate TFP and output, substitute the firm’s optimality condition for labor

Nit =

(
α2Y

1
θ

W
ÂitK

α1
it

) 1
1−α2

into the production function (1) to get

Yit =

(
α2Y

1
θ

W

) α̂2
1−α2

Â
α̂2

1−α2
it K

α̂1
1−α2
it

and using the demand function, revenues are

PitYit = Y
1
θ

1
1−α2

(α2

W

) α2
1−α2 AitK

α
it

Labor market clearing implies

∫
Nitdi =

∫ (
α2Y

1
θ

W

) 1
1−α2

AitK
α
itdi = N

so that (α2

W

) α2
1−α2 =

(
N∫

AitKα
itdi

1

Y
1
θ

1
1−α2

)α2

⇒ PitYit = Y
1
θ

AitK
α
it(∫

AitKα
itdi
)α2

Nα2

By definition,

ARPKit =
AitK

α−1
it(∫

AitKα
itdi
)α2

Y
1
θNα2
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so that

Kit =

(
Y

1
θAit

ARPKit

) 1
1−α (

N∫
AitKα

itdi

) α2
1−α

and capital market clearing implies

K =

∫
Kitdi =

(
Y

1
θ

) 1
1−α
(

N∫
AitKα

itdi

) α2
1−α
∫
A

1
1−α
it ARPK

− 1
1−α

it di

The latter two equations give

Kα
it =

 A
1

1−α
it ARPK

− 1
1−α

it∫
A

1
1−α
it ARPK

− 1
1−α

it di
K

α

Substituting into the expression for PitYit and rearranging, we can derive

PitYit =

A
1

1−α
it ARPK

− α
1−α

it(∫
A

1
1−α
it ARPK

− 1
1−α

it di

)α ∫
A

1
1−α
it ARPK

− α
1−α

it di(∫
A

1
1−α
it ARPK

− 1
1−α

it di

)α
α2

Y
1
θKα1Nα2

Using the fact that Y =
∫
PitYitdi, we can derive

Y =

∫
PitYitdi = Y

1
θAKα1Nα2

where

A =


∫
A

1
1−α
it ARPK

− α
1−α

it di(∫
A

1
1−α
it ARPK

− 1
1−α

it di

)α


1−α2

or in logs,

a = (1− α2)

[
log

(∫
A

1
1−α
it ARPK

− α
1−α

it

)
− α log

(∫
A

1
1−α
it ARPK

− 1
1−α

it

)]
The first term inside brackets is equal to

1

1− α
a− α

1− α
arpk +

1

2

(
1

1− α

)2

σ2
a +

1

2

(
α

1− α

)2

σ2
arpk −

α

(1− α)2σarpk,a
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and the second,

α

1− α
a− α

1− α
arpk +

1

2
α

(
1

1− α

)2

σ2
a +

1

2
α

(
1

1− α

)2

σ2
arpk −

α

(1− α)2σarpk,a

Combining,

a = (1− α2)

[
a+

1

2

1

1− α
σ2
a −

1

2

α

1− α
σ2
arpk

]
and

y =
1

θ
y + (1− α2) ā+

1

2

1− α2

1− α
σ2
a −

1

2
α

1− α2

1− α
σ2
arpk + α1k + α2n

=
θ

θ − 1
(1− α2) ā+

θ

θ − 1

1

2

1− α2

1− α
σ2
a −

θ

θ − 1

1

2
α

1− α2

1− α
σ2
arpk + α̂1k + α̂2n

= a+ α̂1k + α̂2n

where, using ait = 1
1−α2

âit, σ2
a =

(
1

1−α2

)2

σ2
â and α = α1

1−α2
,

a =
θ

θ − 1
¯̂a+

1

2

θ

θ − 1

1

1− α1 − α2

σ2
â −

1

2
(θα̂1 + α̂2) α̂1σ

2
arpk

= a∗ − 1

2
(θα̂1 + α̂2) α̂1σ

2
arpk

which is equation (9) in the text.
To compute the effect on output, notice that the aggregate production function is

y = α̂1k + α̂2n+ a

so that

dy

dσ2
arpk

= α̂1
dk

da

da

dσ2
arpk

+
da

dσ2
arpk

=
da

dσ2
arpk

(
1 + α̂1

dk

da

)
In the stationary equilibrium, the aggregate marginal product of capital must be a constant,
denote it by R̄, i.e., log α̂1 + y − k = r̄ so that

k =
1

1− α̂1

(log α̂1 + α̂2n+ a− r̄)
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and
dk

da
=

1

1− α̂1

Combining,
dy

dσ2
arpk

=
da

dσ2
arpk

(
1 +

α̂1

1− α̂1

)
=

da

dσ2
arpk

1

1− α̂1

A.3 Identification

In this appendix, we derive analytical expressions for the four moments in the random walk
case, i.e., when ρ = 1, and prove Proposition 1.

Moments. From expression (7), we have the firm’s investment policy function

kit+1 = ψ1kit + ψ2 (1 + γ)Eit [ait+1] + ψ3εit+1 + ψ4χi

and substituting for the expectation,

kit+1 = ψ1kit + ψ2 (1 + γ) (ait + φ (µit+1 + eit+1)) + ψ3εit+1 + ψ4χi

where φ = V
σ2
e
so that 1− φ = V

σ2
µ
. Then,

∆kit+1 = ψ1∆kit + ψ2 (1 + γ) ((1− φ)µit + φµit+1 + φ (eit+1 − eit)) + ψ3 (εit+1 − εit)

We will use the fact that

cov (∆kit+1, µit+1) = ψ2 (1 + γ)φσ2
µ

cov (∆kit+1, eit+1) = ψ2 (1 + γ)φσ2
e

cov (∆kit+1, εit+1) = ψ3σ
2
ε

Now,

var (∆kit+1) = ψ2
1var (∆kit) + ψ2

2 (1 + γ)2 (1− φ)2 σ2
µ

+ ψ2
2 (1 + γ)2 φ2σ2

µ + 2ψ2
2 (1 + γ)2 φ2σ2

e + 2ψ2
3σ

2
ε

+ 2ψ1ψ2 (1 + γ) (1− φ) cov (∆kit, µit)− 2ψ1ψ2 (1 + γ)φcov (∆kit, eit)

− 2ψ1ψ3cov (∆kit, εit)
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where substituting, rearranging and using the fact that the moments are stationary gives

σ2
k ≡ var (∆kit) =

(1 + γ)2 ψ2
2σ

2
µ + 2 (1− ψ1)ψ2

3σ
2
ε

1− ψ2
1

which can be rearranged to yield expression (10). Next,

cov (∆kit+1,∆kit) = ψ1var (∆kit) + ψ2 (1 + γ) (1− φ) cov (∆kit, µit)

− ψ2 (1 + γ)φcov (∆kit, eit)− ψ3cov (∆kit, εit)

= ψ1var (∆kit)− ψ3cov (∆kit, εit)

= ψ1σ
2
k − ψ2

3σ
2
ε

so that
ρk,k−1 ≡ corr (∆kit,∆kit−1) = ψ1 − ψ2

3

σ2
ε

σ2
k

which is expression (11). Similarly,

cov (∆kit+1,∆ait) = cov (∆kit+1, µit)

= ψ1cov (∆kit, µit) + ψ2 (1 + γ) (1− φ)σ2
µ

= ψ1ψ2 (1 + γ)φσ2
µ + ψ2 (1 + γ) (1− φ)σ2

µ

= (1− φ (1− ψ1))ψ2 (1 + γ)σ2
µ

and from here it is straightforward to derive

ρk,a−1 ≡ corr (∆kit,∆ait−1) =

[
V
σ2
µ

(1− ψ1) + ψ1

]
σµψ2 (1 + γ)

σk

as in expression (12).
Finally,

arpkit = pit + yit − kit = Const + ait + αkit − kit = Const + ait − (1− α) kit

so that
∆arpkit = ∆ait − (1− α) ∆kit = µit − (1− α) ∆kit

which implies
cov (∆arpkit, µit) = (1− (1− α) (1 + γ)ψ2φ)σ2

µ
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and

λarpk,a ≡
cov (∆arpkit, µit)

σ2
µ

= 1− (1− α) (1 + γ)ψ2φ

= 1− (1− α) (1 + γ)ψ2

(
1− V

σ2
µ

)
which is expression (13).

To see that the correlation ρarpk,a is decreasing in σ2
ε , we derive

var (∆arpkit) = σ2
µ + (1− α)2 σ2

k − 2 (1− α) cov (∆kit, µit)

= σ2
µ + (1− α)2

(
ψ2

2 (1 + γ)2 σ2
µ + 2 (1− ψ1)ψ2

3σ
2
ε

1− ψ2
1

)
− 2 (1− α)ψ2 (1 + γ)φσ2

µ

=
1

1− ψ2
1

(((
1− ψ2

1

)
(1− 2 (1− α) (1 + γ)ψ2φ) + (1− α)2 (1 + γ)2 ψ2

2

)
σ2
µ

)
+

1

1− ψ2
1

(
2 (1− α)2 (1− ψ1)ψ2

3σ
2
ε

)
so

ρarpk,a =
(1− (1− α) (1 + γ)ψ2φ)σµ

√
1− ψ2

1√(
(1− ψ2

1) (1− 2 (1− α) (1 + γ)ψ2φ) + (1− α)2 (1 + γ)2 ψ2
2

)
σ2
µ + 2 (1− α)2 (1− ψ1)ψ2

3σ
2
ε

Proof of Proposition 1. Write the variance of investment as

σ2
k = ψ2

1σ
2
k + (1 + γ)2 ψ2

2σ
2
µ + 2 (1− ψ1)ψ2

3σ
2
ε

We can rewrite the last term as a function of an observable moment, the autocovariance of
investment, which is given by

σk,k−1 = ψ1σ
2
k − ψ2

3σ
2
ε . (23)

Substituting,
σ2
k = ψ2

1σ
2
k + (1 + γ)2 ψ2

2σ
2
µ + 2 (1− ψ1)

(
ψ1σ

2
k − σk,k−1

)
(24)

To eliminate the second term, use the equation for λarpk,a to solve for

(1 + γ)ψ2φ =
1− λarpk,a

1− α
= λ̃ (25)

where λ̃ is a decreasing function of λarpk,a that depends only on the known parameter α.
Substituting into the expression for the covariance of investment with the lagged shock, σk,a−1 ,
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and rearranging yields
(1 + γ)ψ2 =

σk,a−1

σ2
µ

+ λ̃ (1− ψ1) (26)

which is an equation in ψ1 and observable moments. Substituting into (24) gives

σ2
k = ψ2

1σ
2
k +

(
σk,a−1

σ2
µ

+ λ̃ (1− ψ1)

)2

σ2
µ + 2 (1− ψ1)

(
ψ1σ

2
k − σk,k−1

)
and rearranging, we can derive

0 =
(
λ̂2 − 1

)
(1− ψ1)2 + 2

(
λ̂ρk,a−1 − ρk,k−1

)
(1− ψ1) + ρ2

k,a−1
(27)

where
λ̂ =

σµ
σk
λ̃ =

σµ
σk

(
1− λarpk,a

1− α

)
Equation (27) represents a quadratic equation in a single unknown, 1− ψ1, or equivalently, in
ψ1. The solution features one positive root and one negative. The positive root corresponds to
the true ψ1 that represents the solution to the firm’s investment policy. The value of ψ1 pins
down the adjustment cost parameter ξ as well as ψ2 and ψ3. We can then back out γ from (26),
φ (and so V) from (25) and finally, σ2

ε from (23).

B Data

Our Chinese data are from the Annual Surveys of Industrial Production conducted by the
National Bureau of Statistics. The data span the period 1998-2009 and are built into a panel
following quite closely the method outlined in Brandt et al. (2014). We measure the capital
stock as the value of fixed assets and calculate investment as the change in the capital stock
relative to the preceding period. We construct firm productivity, ait, as the log of value-added
less α multiplied by the log of the capital stock and (the log of) the average product of capital,
arpkit as the log of value-added less the log of the capital stock. We compute value-added from
revenues using a share of intermediates of 0.5 (our data does not include a direct measure of
value-added in all years). Investment growth and changes in productivity are the first differences
of the investment and productivity series (in logs) respectively.

To extract the firm-specific variation in our variables, we regress each on a year by time fixed-
effect and work with the residual. Industries are defined at the 4-digit level. This eliminates
the industry-wide component of each series common to all firms in an industry and time period
(as well the aggregate component common across all firms) and leaves only the idiosyncratic
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variation. To estimate the parameters governing firm productivity, i.e., the persistence ρ and
variance of the innovations σ2

µ, we perform the autoregression implied by (5), again including
industry by year controls. We eliminate duplicate observations (firms with multiple observations
within a single year) and trim the 3% tails of each series. We additionally exclude observations
with excessively high variability in investment (investment rates over 100%). Our final sample
in China consists of 797,047 firm-year observations.

Our US data are from Compustat North America and also spans the period 1998-2009.
We measure the capital stock using gross property, plant and equipment. We treat the data
in exactly the same manner as just described for the set of Chinese firms. We additionally
eliminate firms that are not incorporated in the US and/or do not report in US dollars. Our
final sample in the US consists of 34,260 firm-year observations.

Table 8 reports a number of summary statistics from one year of our data, 2009: the number
of firms (with available data on sales), the share of GDP they account for, and average sales
and capital.

Table 8: Sample Statistics 2009

No. of Firms Share of GDP Avg. Sales ($M) Avg. Capital ($M)

China 303623 0.65 21.51 8.08
US 6177 0.45 2099.33 1811.35

Materials and labor expenses. For the analyses in Section 5.1, labor input is measured as
the wage bill. The wage bill is directly reported in the Chinese data. For the US, we follow,
e.g., Keller and Yeaple (2009) and impute a measure of the wage bill as the number of em-
ployees multiplied by the average industry wage, calculated using data from the NBER-CES
Manufacturing Industry Database (available at http://www.nber.org/nberces/; the average
industry wage is calculated as total industry-wide payroll divided by total employees). Ex-
penditures on intermediate inputs are reported in the Chinese data. In the US, we construct
a measure of intermediates following the method in, e.g., De Loecker and Eeckhout (2017)
and İmrohoroğlu and Tüzel (2014). Specifically, intermediate expenditures are calculated as
total expenses less labor expenses, where total expenses are calculated as sales less operating
income (before depreciation and amortization, Compustat series OIBDP) and labor expenses
are measured as described earlier. We can then calculate all the series used in Section 5.1, i.e.,
the raw and ‘markup-adjusted’ average revenue products of capital, labor and materials (the
inverse of materials’ share of revenues). We isolate the firm-specific variation in these series
following a similar procedure as described above, i.e., by extracting a full set of industry by
time fixed-effects and working with the residual. We trim the 1% tails of each series.
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C Computation and Estimation of Baseline Model

In this appendix, we provide details of our numerical estimation procedure and results. We
estimate the model via method of moments using the following procedure. For a given set of
parameters, we compute the cross-sectional moments of interest using the steady state distri-
bution. To do so, we cast the law of motion (7) in matrix form:

BXit = CXit−1 +DUit where

Xit =


kit

ιit

ait

Eit−1ait

 Uit =


µit

eit

εit

χi



B =


1 0 0 −ψ2(1 + γ)

−1 1 0 0

0 0 1 0

0 0 0 1

 C =


ψ1 0 0 0

−1 0 0 0

0 0 ρ 0

0 0 ρ 0

 D =


0 0 ψ3 ψ4

0 0 0 0

1 0 0 0

1− V
σ2
µ

1− V
σ2
µ

0 0

 .

Pre-multiplying by B−1 yields

Xit = B−1CXit−1 +B−1DUit = C̃Xit−1 + D̃Uit .

The steady state covariance matrix ofXit, denoted ΣX , is then obtained by solving the Lyapunov
equation:

ΣX = C̃ΣXC̃
′ + D̃ΣUD̃

′ ,

where ΣU denotes the covariance matrix of Uit. It is straightforward to compute other second
moments. For example, to obtain the covariance matrix of ∆Xit = Xit −Xit−1, note that

∆Xit = (C̃ − I)Xit−1 + D̃Uit ⇒ Σ∆X = (C̃ − I)ΣX(C̃ − I)′ + D̃ΣUD̃
′ .

We then use a non-linear solver to search over the parameter vector (ξ,V, γ, σ2
ε , σ

2
χ) to minimize

the equally-weighted distance between the model and data values for the targeted moments.
Table 9 displays the details of our baseline estimation. In the top panel, we report the

target moments computed from the data, along with standard errors (in parentheses) and
the simulated model counterparts. The estimated parameter vector is shown in the bottom
panel along with standard errors and confidence intervals. The model is able to match the full
set of target moments quite closely in both countries (in China, the fit is essentially exact)
and the standard errors and confidence intervals indicate that the estimates are quite precise.
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Standard errors and confidence intervals are calculated using the following bootstrap procedure:
we draw 1,000 random samples (with replacement) from the data (these are block-boostraps,
i.e., we resample entire histories of firms). For each re-sampled dataset, we re-calculate the
target moments and re-estimate the model parameters. Standard errors are computed as the
standard deviations of the resulting distribution of estimated moments and parameters. 95%
confidence intervals for the parameters are computed as the 2.5th and 97.5th percentiles of the
distributions of the parameter estimates.

D Interactions Between Factors

In the main text (specifically, Table 3), we measured the contribution of each factor in isolation,
i.e., setting all other forces to zero. The top panel of Table 10 reproduces those estimates
(labeled ‘In isolation’) and compares them to the case where all the other factors are held fixed
at their estimated levels (labeled ‘Joint’). The table shows some evidence of interactions, but
since adjustment and informational frictions are modest, the numbers are quite similar under
both approaches.

E Labor Market Distortions

This appendix presents two tractable versions of our model with labor market distortions. In
the first, these are modeled as firm-specific ‘taxes’ with an arbitrary correlation structure. The
second describes the environment from Section 6.2 in the main text, where all the factors
acting on investment – adjustment, informational and other – are assumed to apply to the
labor decision as well. Under both specifications, the profit function takes the same form as
in the baseline analysis with suitably re-defined productivity and curvature. This implies that
our identification arguments and empirical strategy go through exactly. More importantly,
quantifying the sources of arpk dispersion still requires only data on value-added and capital
as before.

E.1 Firm-Specific Labor Taxes

Here, we introduce labor market distortions in the form of firm-specific taxes on the cost of labor.
These distortions change the interpretation of the profitability shifter, Ait, which has implica-
tions for the correct measurement strategy of this term. But, apart from this re-interpretation,
they do not change our estimates/conclusions about the drivers of arpk dispersion.
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Table 10: Interactions Between Factors - US

Other Factors

Adj Costs Uncertainty Correlated Transitory Permanent

In isolation
∆σ2

arpk 0.05 0.03 0.06 0.03 0.29
∆σ2

arpk

σ2
arpk

10.8% 7.3% 14.4% 6.3% 64.7%

Joint
∆σ2

arpk 0.04 0.03 0.08 0.00 0.29
∆σ2

arpk

σ2
arpk

8.0% 5.7% 17.4% 0.3% 64.7%

With firm-specific labor taxes, denoted TNit , the firm’s problem becomes

V (Kit, Iit) = max
Nit,Kit+1

Eit
[
Y

1
θ ÂitK

α1
it N

α2
it −WTNit Nit − TKit+1Kit+1 (1− β (1− δ))− Φ (Kit+1, Kit)

]
+ βEit [V (Kit+1, Iit+1)] .

The labor choice satisfies the first order condition:

Nit =

(
α2
Y

1
θ ÂitK

α1
it

WTNit

) 1
1−α2

.

Substituting, we can derive operating profits (value-added net of total wages) as

PitYit −WTNit Nit = Y
1
θ
t ÂitK

α1
it

(
α2Y

1
θ
t

ÂitK
α1
it

WTNit

) α2
1−α2

−WTNit

(
α2Y

1
θ
t

ÂitK
α1
it

WTNit

) 1
1−α2

= (1− α2)
(α2

W

) α2
1−α2 Y

1
θ

1
1−α2

Â
1

1−α2
it

(TNit )
α2

1−α2

K
α1

1−α2
it

= GAitK
α
it ,

where

Ait ≡

(
Âit

(TNit )
α2

) 1
1−α2

. (28)

Thus, the profit function (and therefore, the firm’s investment problem) takes the same form
as in the baseline version, except that Ait now incorporates the effect of the labor distortion
as well. With this re-interpretation, our identification strategy remains valid, so long as Ait is
correctly measured.
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Measuring profitability. Recall that our empirical strategy in the baseline analysis mea-
sured profitability shocks using ait = vait−αkit. Expression (28) shows that this is the correct
measure of profitability even with distortions to labor. This result implies that, apart from
issues of interpretation, our quantitative analysis is not affected at all. In other words, our
empirical strategy requires neither data on labor inputs nor taking a stand on the extent of
labor distortions.

This is not the case for an alternative strategy that directly estimates the true productivity,
âit ≡ log Âit = vait − α1kit − α2nit, and uses it to construct the implied profitability term
as ait = 1

1−α2
âit, i.e., without controlling for labor distortions. It is easy to see that when

there are firm-specific labor distortions, this approach leads to an incorrect measure of ait, and
therefore, to biased estimates of (ρ, σ2

µ) and the other parameters. In particular, consider the
empirically relevant case where the labor distortion is positively correlated with productivity:
using a measure of Ait inferred from the estimated Âit without adjusting for TNit will overstate
the variability in profitability. Quantitatively, this bias can be very large: in our data, this
strategy produces estimates of (ρ, σµ) of (0.90, 0.28) and (0.88, 0.35) for the US and China,
respectively, compared to our baseline estimates of (0.93, 0.08) and (0.91, 0.15). In other words,
it overstates the volatility of shocks by a factor of almost 3.

This is essentially the strategy followed by Asker et al. (2014) and contributes to the dif-
ference between our estimates and theirs. To get a sense of the magnitude, a model with only
convex adjustment costs estimated to match the variability of investment growth would yield
an adjustment cost parameter, ξ, that is about 3 times higher in both countries under this more
volatile shock process than under the baseline process (i.e., using a profitability measure that
does account for labor distortions). This, in turn, would imply arpk dispersion from adjustment
costs alone that exceeds the total observed dispersion in the US (and is about 60% of the total
in China).

E.2 Frictional Labor

Here, we provide detailed derivations for the case of frictional labor in Section 6.2.
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E.2.1 Model Solution

When labor is chosen under the same frictions as capital, the value function takes the form

V (Kit, Nit, Iit) = max
Kit+1,Nit+1

Eit
[
Y

1
θ ÂitK

α1
it N

α2
it

]
(29)

− Eit [Tit+1Kit+1 (1− β (1− δ)) + Φ (Kit+1, Kit)]

− Eit [Tit+1WNit+1 (1− β (1− δ)) +WΦ (Nit+1, Nit)]

+ Eit [βV (Kit+1, Nit+1, Iit+1)]

where the adjustment cost function Φ (·) is as defined in (2). Because the firm makes a one-time
payment to hire incremental labor, the cost of labor W is now to be interpreted as the present
discounted value of wages. Capital and labor are both subject to the same adjustment frictions,
the same distortions, denoted Tit+1, and are chosen under the same information set, though the
cost of labor adjustment is denominated in labor units.

The first order and envelope conditions yield two Euler equations:

Eit [Tit+1 (1− β (1− δ)) + Φ1 (Kit+1, Kit)] = Eit
[
βα1Y

1
θ Âit+1K

α1−1
it+1 N

α2
it+1 − βΦ2 (Kit+2, Kit+1)

]
WEit [Tit+1 (1− β (1− δ)) + Φ1 (Nit+1, Nit)] = Eit

[
βα2Y

1
θ Âit+1K

α1
it+1N

α2−1
it+1 − βWΦ2 (Nit+2, Nit+1)

]
To show that this setup reduces to a Bellman equation of the same form as (3), we guess

– and verify – that there exists a constant η such that the firm’s labor policy takes the form
Nit+1 = ηKit+1.

Under this conjecture, we can rewrite the firm’s problem in (29) as

Ṽ (Kit, Iit) = max
Kit+1

Eit
[

ηα2

1 +Wη
Y

1
θ ÂitK

α1+α2
it − Tit+1Kit+1 (1− β (1− δ))

]
+ Eit

[
−Φ (Kit+1, Kit) + βṼ (Kit+1, Iit+1)

]
Let {K∗it} be the solution to this problem. By definition, it must satisfy:

Eit
[
Tit+1 (1− β (1− δ)) + Φ1

(
K∗it+1, K

∗
it

)]
= Eit

[
β

(α1 + α2)Y
1
θ Âit+1K

∗α1+α2−1
it+1 ηα2

1 +Wη

]
(30)

− Eit
[
βΦ2

(
K∗it+2, K

∗
it+1

)]
Now substitute the conjecture N∗it = ηK∗it into the optimality condition for labor from the
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original problem and rearrange to get:

Eit
[
Tit+1 (1− β (1− δ)) + Φ1

(
K∗it+1, K

∗
it

)]
= Eit

[
β
α2Y

1
θ Âit+1K

∗α1+α2−1
it+1 ηα2

Wη

]
(31)

− Eit
[
βΦ2

(
K∗it+2, K

∗
it+1

)]
If η satisfies

α1 + α2

1 +Wη
=

α2

Wη
⇒ Wη =

α2

α1

(32)

then (31) is identical to (30). In other words, under (32), the sequence {K∗it, N∗it} satisfies the
optimality condition for labor from the original problem. It is straightforward to verify that
this also implies that {K∗it, N∗it} satisfy the optimality condition for capital from the original
problem:

Eit
[
Tit+1 (1− β (1− δ)) + Φ1

(
K∗it+1, K

∗
it

)]
= Eit

[
βα1Y

1
θ Âit+1K

∗α1+α2−1
it+1 ηα2 − βΦ2

(
K∗it+2, K

∗
it+1

)]
= Eit

[
β
α2Y

1
θ Âit+1K

∗α1+α2−1
it+1 ηα2

Wη
− βΦ2

(
K∗it+2, K

∗
it+1

)]

Thus, this version can be solved following the same steps as the baseline setup. The firm’s
problem takes the same form as expression (3), with α = α1 + α2, G = ηα2Y

1
θ

1+Wη
and Ait = Âit.

E.2.2 Aggregation

To derive aggregate output and TFP for this case, we use Nit = ηKit where η = α2

α1W
. Substi-

tuting into the revenue function gives

PitYit = Y
1
θ Âitη

α2Kα1+α2
it = Y

1
θ Âitη

α2Kα
it

By definition,
ARPKit = Y

1
θ Âitη

α2Kα−1
it

so that

Kit =

(
Y

1
θ Âitη

α2

ARPKit

) 1
1−α
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so that

PitYit = Y
1
θ ηα2Âit

(
Y

1
θ ηα2Âit

ARPKit

) α
1−α

= Y
1
θ

1
1−αη

α2
1−α Â

1
1−α
it ARPK

− α
1−α

it

and
Y =

∫
PitYitdi = Y

1
θ

1
1−αη

α2
1−α

∫
Â

1
1−α
it ARPK

− α
1−α

it di

or, rearranging,

Y = Y
1
θ
α̂1+α̂2
1−α η

α̂2
1−α

(∫
Â

1
1−α
it ARPK

− α
1−α

it di

) θ
θ−1

Capital market clearing implies

K =

∫
Kitdi = Y

1
θ

1
1−α

t η
α2
1−α

∫
Â

1
1−α
it ARPK

− 1
1−α

it di

so that

K α̂1N α̂2 = Y
1
θ
α̂1+α̂2
1−α

t ηα̂2+
α2
1−α (α̂1+α̂2)

(∫
Â

1
1−α
it ARPK

− 1
1−α

it di

)α̂1+α̂2

Aggregate TFP is

A =
Y

K α̂1N α̂2
=

(∫
Â

1
1−α
it ARPK

− α
1−α

it di

) θ
θ−1

(∫
Â

1
1−α
it ARPK

− 1
1−α

it di

)α̂1+α̂2

Following similar steps as in the baseline case, we can derive

a = a∗ − 1

2

θ

θ − 1

α

1− α
σ2
arpk

Under constant returns to scale in production, this simplifies to

a = a∗ − 1

2
θσ2

arpk

The output effects of σ2
arpk are the same as in the baseline case.
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F Heterogeneity in Markups/Technologies

Baseline approach. The firm’s cost minimization problem is

min
Kit,Nit,Mit

RtT
K
it Kit +WtT

N
it Nit + PM

it Mit s.t. Yit ≤ K α̂it
it N

ζ̂−α̂it
it M1−ζ̂

it

The first order condition on Mit gives

PM
it =

(
1− ζ̂

) Yit
Mit

MCit ⇒ PM
it Mit

PitYit
=
(

1− ζ̂
)MCit

Pit

where MCit is the Lagrange multiplier on the constraint (i.e., the marginal cost). Rearranging
gives expression (14). In logs,

log
Pit
MCit

= log
(

1− ζ̂
)

+ log
PitYit
PM
it Mit

⇒ σ2

(
log

Pit
MCit

)
= σ2

(
log

PitYit
PM
it Mit

)
Similarly, the optimality conditions for Kit and Nit yield:

log
PitYit
Kit

= log
Pit
MCit

− log α̂it + τKit + Constant

log
PitYit
Nit

= log
Pit
MCit

− log
(
ζ̂ − α̂it

)
+ τNit + Constant

Log-linearizing around the average α̂it, denote it ᾱ, and ignoring constants yields log
(
ζ̂ − α̂it

)
≈

− ᾱ

ζ̂−ᾱ log α̂it. Substituting gives expression (17).

Proof of Proposition 2. Assuming log α̂it is uncorrelated with τKit and τNit ,

cov
(
ãrpkit, ãrpnit

)
= − ᾱ

ζ̂ − ᾱ
σ2

log α̂ + cov
(
τ kit, τ

n
it

)
(33)

σ2

ãrpk
= σ2

log α̂ + σ2
τk (34)

σ2
ãrpn =

(
ᾱ

ζ̂ − ᾱ

)2

σ2
log α̂ + σ2

τn (35)

From here, we can solve for the correlation of the distortions:

ρ
(
τKit , τ

N
it

)
=

cov
(
ãrpkit, ãrpnit

)
+ ᾱ

ζ̂−ᾱσ
2
log α̂√

σ2

ãrpk
− σ2

log α̂

√
σ2
ãrpn
−
(

ᾱ

ζ̂−ᾱ

)2

σ2
log α̂

which is increasing in σ2
log α̂. An upper bound for σ2

log α̂, denoted σ̄2
log α̂, is where ρ

(
τKit , τ

N
it

)
= 1,

61



and substituting and rearranging gives

σ̄2
α̂ =

σ2

ãrpk
σ2
ãrpn
− cov

(
ãrpkit, ãrpnit

)2

2 ᾱ

ζ̂−ᾱcov
(
ãrpkit, ãrpnit

)
+
(

ᾱ

ζ̂−ᾱ

)2

σ2

ãrpk
+ σ2

ãrpn

Heterogeneous materials elasticities. We now allow for heterogeneity in ζ̂it, so the cost
minimization problem becomes

min
Kit,Nit,Mit

RtT
K
it Kit +WtT

N
it Nit + PM

it Mit s.t. Yit ≤ K α̂it
it N

ζ̂it−α̂it
it M1−ζ̂it

it

The first order conditions give the optimal average products of inputs (after some rearranging):

ARPKit ≡
PitYit
Kit

=
Pit
MCit

1

α̂it
TKit Rt

ARPNit ≡
PitYit
Nit

=
Pit
MCit

1

ζ̂it − α̂it
TNit Wt

ARPMit ≡
PitYit
PM
it Mit

=
Pit
MCit

1

1− ζ̂it

or in logs:

arpkit = ϕit − log α̂it + τKit + Constant

arpnit = ϕit − log
(
ζ̂it − α̂it

)
+ τNit + Constant

≈ ϕit −
ζ̄

ζ̄ − ᾱ
log ζ̂it +

ᾱ

ζ̄ − ᾱ
log α̂it + τNit + Constant

arpmit = ϕit − log
(

1− ζ̂it
)

≈ ϕit +
ζ̄

1− ζ̄
log ζ̂it + Constant

where, to ease notation, we define ϕit ≡ log Pit
MCit

as the log markup and the approximations
reflect log-linearizations around the average elasticities, denoted ᾱ and ζ̄.

There are three categories of firm-specific variation in the average product of inputs: markups,
ϕit, input elasticities in production, α̂it and ζ̂it, and distortions, τKit and τNit . We make the follow-
ing key assumption: this variation is independent across categories. Within categories, however,
we allow for arbitrary correlations. In other words, the covariances σlog α̂,log ζ̂ and στK ,τN are
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unrestricted but the other covariances are set to zero.52 We can derive the following expressions
for the second moments of the average products of the three inputs:

σ2
arpk = σ2

ϕ + σ2
log α̂ + σ2

τK (36)

σ2
arpn = σ2

ϕ +

(
ζ̄

ζ̄ − ᾱ

)2

σ2
log ζ̂

+

(
ᾱ

ζ̄ − ᾱ

)2

σ2
log α̂ −

2ᾱζ̄(
ζ̄ − ᾱ

)2σlog α̂,log ζ̂ + σ2
τN (37)

σarpk,arpn = σ2
ϕ +

ζ̄

ζ̄ − ᾱ
σlog α̂,log ζ̂ −

ᾱ

ζ̄ − ᾱ
σ2

log α̂ + στK ,τN (38)

σ2
arpm = σ2

ϕ +

(
ζ̄

1− ζ̄

)2

σ2
log ζ̂

(39)

σarpk,arpm = σ2
ϕ −

ζ̄

1− ζ̄
σlog α̂,log ζ̂ (40)

σarpn,arpm = σ2
ϕ −

ζ̄2(
ζ̄ − ᾱ

) (
1− ζ̄

)σ2
log ζ̂

+
ᾱζ̄(

ζ̄ − ᾱ
) (

1− ζ̄
)σlog α̂,log ζ̂ (41)

The following result states that we can identify the dispersion in (log) markups and materials
elasticities from the second moments of arpm.

Lemma 1. The parameters σ2
ϕ, σ

2
log ζ̂

and σlog α̂,log ζ̂ are uniquely identified by σ2
arpm, σarpn,arpm

and σarpk,arpm.

Proof. Rearrange (41) to derive

ζ̄

1− ζ̄
σlog α̂,log ζ̂ =

ζ̄ − ᾱ
ᾱ

(
σarpn,arpm − σ2

ϕ

)
+

1− ζ̄
ᾱ

(
ζ̄

1− ζ̄

)2

σ2
log ζ̂

Substituting into (40) gives:

σ2
ϕ =

ᾱ

ζ̄
σarpk,arpm +

ζ̄ − ᾱ
ζ̄

σarpn,arpm +
1− ζ̄
ζ̄

(
ζ̄

1− ζ̄

)2

σ2
log ζ̂

and then into (39) yields:(
ζ̄

1− ζ̄

)2

σ2
log ζ̂

= ζ̄σ2
arpm − ᾱσarpk,arpm −

(
ζ̄ − ᾱ

)
σarpn,arpm

This equation pins down σ2
log ζ̂

. Given this, the other two equations yield σ2
ϕ and σlog α̂,log ζ̂ .

Intuitively, the greater the positive covariation in the average revenue products of the three
inputs, the lower (higher) the variation in the output elasticity of materials (markups). Using

52The fact that materials shares were relatively uncorrelated with size provides some justification for this
assumption.

63



these estimates, we can appropriately adjust the second moments of arpk and arpn and apply
the logic of Proposition 2 to derive an upper bound for the variation in α̂it. We state this result
formally in the following proposition:

Proposition 3. The dispersion in log α̂it satisfies

σ2(log α̂it) ≤
σ̃2
arpkσ̃

2
arpn − ˜cov (arpk, arpn)2

2 ᾱ

ζ̂−ᾱ ˜cov (arpk, arpn) +
(

ᾱ

ζ̂−ᾱ

)2

σ̃2
arpk + σ̃2

arpn

. (42)

where

σ̃2
arpk ≡ σ2

arpk − σ2
ϕ

σ̃2
arpn ≡ σ2

arpn − σ2
ϕ −

(
ζ̄

ζ̄ − ᾱ

)2

σ2
log ζ̂

+
2ᾱζ̄(
ζ̄ − ᾱ

)2σlog α̂,log ζ̂

˜cov (arpk, arpn) ≡ σarpk,arpn − σ2
ϕ −

ζ̄

ζ̄ − ᾱ
σlog α̂,log ζ̂ .

Proof. Note that

σ̃2
arpk = σ2

log α̂ + σ2
τK

σ̃2
arpn =

(
ᾱ

ζ̄ − ᾱ

)2

σ2
log α̂ + σ2

τN

˜cov (arpk, arpn) = − ᾱ

ζ̄ − ᾱ
σ2

log α̂ + cov
(
τKit , τ

N
it

)
.

which are identical to expressions (33), (34) and (35). The proof is then the same as for
Proposition 2.

In Table 11, we report the results from applying this methodology to our datasets. Compar-
ing them to the results in Table 4 reveals that allowing for unobserved variation in the output
elasticity of materials slightly attenuates the contribution of markup dispersion and raises the
upper bound for the effects of technology heterogeneity, but the values are extremely close. One
reason why the two approaches are so similar is that the variation in the materials elasticity
(across firms within the same industry), σ2

log ζ̂
, is estimated to be very small in both countries:

0.007 in the US and 0.018 in China.
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Table 11: Heterogeneous Markups and Technologies with Firm-Specific Materials Elasticities

China US

Covariance matrix arpkit arpnit arpmit arpkit arpnit arpmit

arpkit 1.30 0.41
arpnit 0.33 0.69 0.10 0.20
arpmit 0.01 0.01 0.05 0.03 0.05 0.06

Estimated ∆σ2
arpk Level Share Level Share

Dispersion in Markups 0.03 (2.4%) 0.05 (11.8%)
Dispersion in log α̂it 0.31 (24.1%) 0.21 (51.6%)
Total 0.34 (26.5%) 0.26 (63.4%)

G Size-Dependent Policies

In this appendix, we explore the relationship between size- and productivity-dependent factors.
First, note that our empirical strategy can be thought of as essentially recovering the law of
motion for kit – in particular, the coefficients ψ1, ψ2 (1 + γ), ψ3 and ψ4. Importantly, these
estimates are invariant to assumptions about γk, which only affects the mapping from these
coefficients to the underlying structural parameters. For example, suppose we assume γk = 0.
Then, given our values for (α, β, δ), the estimated ψ1 identifies the adjustment cost parameter
ξ. Next, the value of ξ can be used to pin down ψ2, allowing us to recover γ from the estimated
ψ2 (1 + γ). This procedure can be applied for any given γk as well. Since the estimated ψ1 and
ψ2 (1 + γ) do not change, for any γk, the adjustment cost parameter becomes, from (8),

ξ = ψ1
1− α− γk

βψ2
1 + 1− ψ1 (1 + β)

.

The next step is the same as before: the estimated ξ implies a value for ψ2, which then allows us
to back out γ from the estimated ψ2 (1 + γ). Table 5 applies this procedure for various values
of γk to trace out a set of parameters that are observationally equivalent, i.e., that cannot be
distinguished using only data on capital and value-added.

H Financial Frictions

Including the liquidity cost, the firm’s problem can be written as

V (Kit, Bit, Iit) = max
Bit+1,Kit+1

Eit
[
Π (Kit, Ait) +RBit −Bit+1 − TKit+1Kit+1 (1− β (1− δ))

]
− Φ (Kit+1, Kit)−Υ (Kit+1, Bit+1) + βEit [V (Kit+1, Bit+1, Iit+1)]
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The first order conditions are given by

Eit [βΠ1 (Kit+1, Ait+1)− βΦ2 (Kit+2, Kit+1)] = TKit+1 (1− β (1− δ)) + Φ1 (Kit+1, Kit) + Υ1 (Kit+1, Bit+1)

−Υ2 (Kit+1, Bit+1) + βR = 1

Note that

Υ2 (Kit+1, Bit+1) = −ν̂ω2

Kω1
it+1

Bω2+1
it+1

, Υ1 (Kit+1, Bit+1) = ν̂ω1

Kω1−1
it+1

Bω2
it+1

Using the FOC for Bit+1

1 = ν̂ω2

Kω1
it+1

Bω2+1
it+1

+ βR ⇒ Bit+1 =

(
v̂ω2

1− βR

) 1
ω2+1

K
ω1
ω2+1

it+1

Υ1 (Kit+1, Bit+1) = ν̂ω1

Kω1−1
it+1

Bω2
it+1

= ν̂ω1

Kω1−1
it+1(

v̂ω2

1−βR

) ω2
ω2+1

K
ω2ω1
ω2+1

it+1

=

(
ν̂

ωω2
2

) 1
ω2+1

ω1 (1− βR)
ω2
ω2+1 K

ω1−(ω2+1)
ω2+1

it+1

= ν (1− βR)
ω2
ω2+1 Kω

it+1 ,

where

ν ≡
(

ν̂

ωω2
2

) 1
ω2+1

ω1

ω ≡ ω1 − (ω2 + 1)

ω2 + 1
.

Log-linearizing,

Ῡ1 + Ῡ1υ1t+1 ≈ ν (1− βR)
ω2
ω2+1 K̄ω + ν (1− βR)

ω2
ω2+1 K̄ωωkit+1

Ῡ1υ1t+1 ≈ ν (1− βR)
ω2
ω2+1 K̄ωωkit+1 .

Substituting into the FOC,

Eit
[
αβḠĀK̄α−1 (ait+1 + (α− 1) kit+1) + βξ̂ (kit+2 − kit+1)− τKit+1 (1− β (1− δ))

]
= ξ̂ (kit+1 − kit) + ν (1− βR)

ω2
ω2+1 K̄ωωkit+1 ,

or
kit+1 ((1 + β) ξ + 1− α− γk) = Eit [ait+1 + τit+1] + βξEit [kit+2] + ξkit ,
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where

γk = −ν (1− βR)
ω2
ω2+1 ωK̄ω

αβḠĀK̄α−1
= − ν (1− βR)

ω2
ω2+1 ωK̄ω

ν (1− βR)
ω2
ω2+1 K̄ω + 1− β (1− δ) + ξ̂δ

(
1− β

(
1− δ

2

))
= − ωῩ1

Ῡ1 + κ

where we have substituted in from the steady state Euler equations and κ ≡ 1 − β (1− δ) +

ξ̂δ
(
1− β

(
1− δ

2

))
.

I Robustness

I.1 Computation and Estimation of Non-Convex Model

This appendix provides details of our analysis of non-convex adjustment costs from Section
6.1. Since we can no longer rely on the perturbation approach, we solve the model non-linearly
using value function iteration and estimate the parameters via simulated method of moments.

Estimation details. Our estimation uses the following procedure. For a given parameter
vector

(
ξ̂, ξ̂f ,V, γ.σ2

ε , σ
2
χ

)
, we solve for the value and policy functions using a standard iterative

procedure and discretized grids for the state variables.53 We then use these solutions to simulate
time paths (10,000 periods) for firm-level capital and productivity. We discard the first 5,000
periods and compute the moments of interest using the remaining observations. We then search
over the parameter vector to minimize the equally-weighted sum of squared deviations between
the simulated values of the six target moments and their empirical counterparts.

Model fit. We report the fit of the estimated model in row ‘All factors baseline’ of Table 12.
The left panel displays the parameter estimates and the right panel the simulated moments
(the top row labeled ‘Data’ reports the empirical values of the moments). The set of targeted
moments is marked in bold italics. The table shows that the model matches the targeted
moments quite well (the fit is almost exact in the US; the model slightly undershoots the
variance of investment growth and the correlation of arpk with a in China, but is still fairly
close on those dimensions).

The last four columns of the table contain four additional moments not explicitly targeted
in the estimation – the autocorrelation of investment (in levels), denoted ρk,k−1 , the correlation

53We use a relatively fine grid for capital (at intervals of 0.025 log points). For the productivity process, we
use 21 grid points, spanning 6 standard deviations (±3 standard deviations on either side of the mean). We
have verified that our results are not particularly sensitive to these choices.
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of investment with productivity, ρk,a, and investment ‘spikes,’ defined as the fraction of obser-
vations with (gross) investment rates above 20%, spike+, or less than -20%, spike−. These are
the moments targeted in Cooper and Haltiwanger (2006). The set of moments examined in
the table were broadly chosen to encompass those from our estimation and additional moments
considered in previous influential studies of adjustment costs, namely, Cooper and Haltiwanger
(2006) and Asker et al. (2014) (the latter paper targets the variability of investment, inaction
and spikes, where the latter two moments are defined in the same way as here).

Turning to the non-targeted moments, the model somewhat over-predicts the serial correla-
tion of investment as well as its correlation with productivity. The model also overshoots a bit
on the fraction of positive investment spikes. To explore the extent to which these deviations
matter for our main conclusions, we estimated two alternative versions of the model. The first
replaces inaction as a target with spike+ and spike−.54 The results, reported in row ‘All factors
spikes’, yield estimates of the adjustment costs that are only slightly higher than the baseline
values in both countries. In the second exercise, we targeted the serial correlation of invest-
ment in levels (rather than growth rates). As with the first exercise, the parameter estimates
(reported in row ‘All factors ρk,k−1 ’) change only slightly. Importantly, across both exercises,
the contribution of the various factors to arpk dispersion (not reported in the table) are almost
unchanged. In sum, these exercises reveal that (i) while our relatively simple specification of
adjustment costs and other distortionary factors can reconcile an extremely broad set of invest-
ment moments, it struggles to exactly match all moments simultaneously, but (ii) despite this,
our conclusions about the sources of dispersion in arpk are quite robust to the precise choice
of moments.55

The role of other factors. Explicitly allowing for other distortionary factors plays a key
role in our analysis. It significantly contributes to our ability to simultaneously match various
data moments and is the primary reason for the difference between our estimates of adjustment
costs and those in previous studies.

To show this more clearly, we estimated three alternative versions of our model with only
adjustment costs.56 The first is estimated by targeting the same moments as do Cooper and
Haltiwanger (2006), namely, the serial correlation of investment, its correlation with productiv-

54This is in line with Cooper and Haltiwanger (2006), who argue that inaction may be poorly measured in
the micro-data and use these moments instead.

55We also estimated a version where all 10 moments are targeted together. Unsurprisingly, the model cannot
exactly match all of them, but the best-fit parameter estimates are quite similar to the baseline.

56Formally, all the parameters except the two governing adjustment costs (ξ̂ and ξ̂f ) are set to 0. We then
search over ξ̂ and ξ̂f to minimize the equally-weighted distance between the model-implied and data values for
the target moments.
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ity and the fractions of positive and negative spikes.57 The results, presented in row ‘AC Only
I’ in Table 12, show much larger fixed adjustment costs (and lower convex costs) compared
to all the variants of our estimation in the first three rows. Intuitively, as the only offsetting
force, large non-convex costs are necessary to match the relatively modest serial correlation of
investment observed in the data. However, this comes at the expense of counterfactually high
values for inaction and investment variability. For example, in the US, this version of the model
predicts an inaction rate of 70% and a variance of investment growth of 0.26, compared to their
empirical values of 18% and 0.06, respectively. In other words, an adjustment cost-only model
estimated to match only the serial correlation of investment and investment spikes struggles to
match the modest degrees of both inaction and investment variability observed in the data.

It is possible to partly fix some of these counterfactual implications using a more complicated
specification of the adjustment cost function. For example, assuming that only large investments
are subject to the fixed cost helps reduce the degree of inaction.58 The row labeled ‘AC Only II’
shows results from such a modification, where the fixed cost is incurred only for investment rates
greater than 5% in absolute value. As expected, this brings the predicted value for inaction much
closer to the data, particularly in China (predicted inaction remains excessively high in the US,
34% compared to 18% in the data), but has little effect on the variability of investment growth,
which remains counterfactually high. More importantly for our purposes, neither version of
the adjustment cost-only model generates significant dispersion in arpk (indeed the second
specification that better fits the data actually reduces the implied dispersion from adjustment
costs) – in the US, the predicted σ2

arpk is only about 13% of the observed level in the data. This
fraction is even lower in China.

The final exercise, displayed in row ‘AC Only III’, targets the variability of investment
growth along with inaction and spikes together. This is similar to the strategy in Asker et al.
(2014) (with the caveat that they target the variance of investment in levels). This produces
substantially higher estimates for the convex cost in both countries:59 Intuitively, a large convex
component is necessary to match the extremely low variability of investment. However, these
estimates imply a counterfactually high serial correlation. In China, for example, the predicted
ρk,k−1 is 0.67, compared to the empirical value of only 0.04 (the corresponding values in the
US are 0.66 compared to 0.25). These findings are precisely in line with the logic presented in

57See section 4.1.2 of that paper. The moments and resulting parameter estimates are not directly comparable
since the set of firms is quite different – Cooper and Haltiwanger (2006) work with data on US manufacturing
firms from the Longitudinal Research Database.

58This is along the lines of the specification in Khan and Thomas (2008), who also point out the inability of
standard adjustment cost models to simultaneously match both inaction and spikes in firm/establishment-level
data.

59The results for the fixed component are more mixed – the estimate is very close to our baseline value in the
US and is significantly higher in China, though well below the previous two adjustment cost-only estimations.
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Section 3 and are analogous to our discussion of the adjustment cost results in Section 4.4 –
the fact that the data show only modest serial correlations of investment/investment growth
rates limits the potential for convex adjustment frictions; an estimation strategy ignoring this
moment (and targeting the volatility of investment) can lead to substantial upward bias in the
estimates of convex costs.

In contrast to these adjustment cost-only specifications, our baseline model is able to capture
a broader set of data patterns precisely because of the inclusion of other factors influencing
investment. To gain some intuition for how they help, we turn to the formulae for the variance
and serial correlation of investment derived in Section 3 for the random walk case:

σ2
k =

(
ψ2

2

1− ψ2
1

)
(1 + γ)2 σ2

µ +
2

1 + ψ1

ψ2
3σ

2
ε

ρk,k−1 = ψ1 −
ψ2

3σ
2
ε

σ2
k

,

where ψ1, ψ2, ψ3 are composite parameters independent of distortions. These expressions show
that, ceteris paribus, more severe correlated distortions (i.e., more negative γ) reduce both the
volatility and serial correlation of investment (the latter through the effects on σ2

k). Intuitively,
correlated distortions lessen the influence of the persistent productivity process on investment,
reducing the serial correlation. Uncorrelated factors (higher σ2

ε) also make investment less
serially correlated, but more volatile. Quantitatively, the first effect is much larger.60 As a
result, the model can match both of these moments without resorting to large non-convex costs
(and the associated counterfactual implications).

In sum, the exercises in this appendix emphasize one of the main messages of our analysis:
examining a broad set of investment moments imposes additional discipline on the magnitude
of the various forces (including adjustment costs). In both countries, the data show that
investment/investment growth is (i) neither particularly volatile (ii) nor highly autocorrelated,
but (iii) there are large and extremely extremely persistent deviations of firm-level capital from
its ‘efficient’ level. These patterns seem hard to rationalize with standard specifications of
adjustment costs alone and lead us to find a significant role for other factors, particularly when
it comes to explaining the dispersion in σ2

arpk.

I.2 Alternative Stochastic Processes

In this section, we analyze the implications of alternative, richer stochastic processes for firm-
level productivity and distortions.

60For example, at our baseline estimates in the US, the coefficient on ψ2
3σ

2
ε in the expression for σ2

k is
2

1+ψ1
≈ 1.2 while the coefficient in the expression for ρk,k−1 is 1

σ2
k
≈ 25.
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Fixed-effects in productivity. First, we generalize the process on productivity in equation
(5) to include firm-level fixed-effects. Specifically, we assume:

ait = āi + âit, āit ∼ N
(
0, σ2

ā

)
(43)

âit = ρâit−1 + µit, µit ∼ N
(
0, σ2

µ

)
Now, productivity is composed of both an AR(1) component, âit, as in equation (5) and a firm
fixed-effect, āi, with cross-sectional variance σ2

ā.
We can show that the three parameters (ρ, σ2

µ, σ
2
ā) are uniquely identified by (i) the serial

correlation of productivity growth along with (ii) the coefficient from a simple autoregression
of ait on ait−1 and (iii) the residuals from that regression, which we denote σ2

µ̂ to distinguish it
from σ2

µ, which is the true, unobserved variance of the innovations in the process (the latter two
moments are the same that were used to identify the baseline process). Specifically, we derive:

ρ∆a,∆a−1 =
ρ− 1

2

ρa,a−1 =
σ2
ā + ρσ2

â

σ2
ā + σ2

â

σ2
µ̂ =

(
1− ρa,a−1

)2
σ2
ā +

(
ρ− ρa,a−1

)2
σ2
â + σ2

µ

where σ2
â =

σ2
µ

1−ρ2 . The first equation identifies ρ directly. The second two represent two
equations in two unknowns, which can be solved for σ2

ā and σ2
µ. We can then re-estimate the

other parameters of the model using this richer process for ait (the remaining moments are
unchanged).

We report the results of this estimation in Table 13. The first three columns display the
parameters governing the process on productivity. The estimates for the fixed-effect, σ2

ā, are
significant in both countries – 0.29 and 0.33 in China and the US, respectively. Comparing
the parameter estimates with those in Table 2 shows that (i) the persistence of the AR(1)
component here is somewhat lower than under the baseline specification – 0.87 vs. 0.91 for
China and 0.84 vs. 0.91 for the US and (ii) the volatility of the shocks, σ2

µ, is almost unchanged
in both countries.

We report the results for the other parameters in the remaining columns of Table 13. The
top panel shows the parameter estimates and the bottom panel the contribution of each factor
to observed arpk dispersion. In both countries, the estimated adjustment costs, ξ, are slightly
lower and the correlated distortion slightly higher (in absolute value) than under the baseline
specification in Table 3. The values are almost unchanged for the other factors. The bottom
panel of the table shows that our main conclusions regarding the sources of arpk dispersion
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Table 13: Estimates with Firm Fixed-Effects

Parameters ρ σ2
µ σ2

ā ξ V γ σ2
ε σ2

χ

China 0.87 0.14 0.29 0.12 0.10 −0.71 0.00 0.42

US 0.84 0.08 0.33 0.76 0.04 −0.38 0.00 0.30

∆σ2
arpk

σ2
arpk

China 1.1% 10.3% 47.8% 0.0% 46.1%

US 6.7% 8.1% 18.9% 1.1% 65.9%

continue to hold.

Persistence in distortions. In our baseline setup, the transitory uncorrelated distortion was
assumed to be an iid draw in each period. Here, we generalize that formulation and assume
that it follows an AR(1) process:

τit = γait + τ̂it + χi (44)

τ̂it = ρτ τ̂it−1 + εit

Compared to the baseline case, there is now an additional parameter, ρτ , and therefore the
estimation requires more moments. At the end of this appendix, we extend our analytical
approach from Section 3 and prove identification of all the parameters under this more general
process.61 In particular, we show that adding the second-order serial correlation of arpk (in
changes) is sufficient for identification of the new parameter, ρτ .62 Guided by this result, we
re-estimated the model adding both the first- and second-order serial correlations of arpk as
target moments.

We report the results from this estimation in Table 14. The estimates for ρτ are essentially
zero in both countries, providing support for the baseline iid assumption. In other words, condi-
tional on the fixed and correlated components, the remaining transitory piece of the distortion
is extremely short-lived. The remaining parameters are quite close to their baseline values.63

The remainder of this appendix proves identification of the model parameters in the case
61As before, we cannot identify the fixed-effect, σ2

χ since second moments in levels are not well defined.
62The first-order serial correlation turns out to be a simple transformation of other target moments and thus

does not contain new information.
63We also estimated another version of the model, where we assumed the uncorrelated component follows an

AR(1) without fixed-effects, i.e., we set σ2
χ = 0, and estimated ρτ along with the other parameters by targeting

the same set of moments as in the baseline analysis. This yielded values of ρτ very close to one, again pointing
to an extremely persistent component. Further, the estimated magnitude of the uncorrelated component in this
case, i.e., σ2

ε

1−ρ2τ
, was quite close to the baseline estimate for σ2

χ. The remaining parameters were almost identical
in the two versions.
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Table 14: Persistence in Distortions

New Moments Parameter Estimates

ρarpk,arpk−1 ρarpk,arpk−2 ξ V γ σ2
ε ρτ σ2

χ

China 0.90 0.81 0.24 0.09 −0.69 0.00 0.00 0.40

US 0.91 0.83 1.00 0.03 −0.34 0.01 0.00 0.28

that productivity follows a random walk and distortions follow the process in (44).
Following the same steps as in Section 2 of the text, we can derive the firm’s investment

policy function under this more general structure:

kit+1 = ψ1kit + ψ2 (1 + γ)Eit [ait+1] + ψ3τ̂it+1 + ψ4χi

where ψ1 solves the quadratic equation

ξ
(
βψ2

1 + 1
)

= ψ1 ((1 + β) ξ + 1− α)

and

ψ2 =
1

1− α− βξψ1 + ξ

ψ3 =
1

1− α + βξ (1− ψ1 − ρτ ) + ξ

ψ4 =
1

1− α + ξ (1− βψ1)

This law of motion is similar to (7) and (8) with a few modifications to the coefficients: ψ1

and ψ4 are the same as before, but ψ2 here corresponds to the case where ρ = 1 and ψ3 is
generalized to allow for ρτ 6= 0.

Investment is given by:

∆kit+1 = ∆kit + ψ2 (1 + γ) ∆Eit [ait+1] + ψ3∆τ̂it+1

= ψ1∆kit + ψ2 (1 + γ) ((1− φ)µit + φµit+1 + φ (eit+1 − eit)) + ψ3 ((ρτ − 1) τ̂it + εit+1)

where 1−φ = V
σ2
µ
. From here, we can derive the following four moments: the variance of invest-

ment, σ2
k, the autocovariance of investment, σk,k−1 , the coefficient from a regression of ∆arpkit

on ∆ait (λarpk,a), and the covariance of investment with lagged innovations in productivity,
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σk,a−1 :

σ2
k = ψ2

1σ
2
k + (1 + γ)2 ψ2

2σ
2
µ +

2 (1− ψ1)ψ2
3σ

2
ε

(1 + ρτ ) (1− ψ1ρτ )
(45)

σk,k−1 = ψ1σ
2
k −

(1− ρτ )ψ2
3σ

2
ε

(1 + ρτ ) (1− ψ1ρτ )
(46)

λarpk,a = 1− (1− α) (1 + γ)ψ2φ (47)

σk,a−1 = (1− φ (1− ψ1)) (1 + γ)ψ2σ
2
µ (48)

Here, we have one new parameter, ρτ , and so will need an additional moment. It turns out
that the first-order serial correlation of arpk does not contain any additional information. To
see this, we can derive

σarpk,arpk−1 ≡ cov (∆arpkit,∆arpkit−1)

= cov (µit − (1− α) ∆kit, µit−1 − (1− α) ∆kit−1)

= (1− α)2 σk,k−1 − (1− α)σk,a−1

which shows that the moment is a simple combination of two moments we have previously used.
Similarly, the variance of ∆arpkit is

σ2
arpk ≡ var (∆arpkit) = var (µit − (1− α) ∆kit)

= σ2
µ + (1− α)2 σ2

k − (1− α)λarpk,aσ
2
µ

which, again, is simply a combination of other moments we have already used.
However, the second-order serial correlation, σarpk,arpk−2 , does contain new information:

σarpk,arpk−2 ≡ cov (∆arpkit,∆arpkit−2)

= cov (µit − (1− α) ∆kit, µit−2 − (1− α) ∆kit−2)

= (1− α)2 cov (∆kit,∆kit−2)

= (1− α)2

(
ψ1σk,k−1 −

ρτψ
2
3σ

2
ε

(1 + ρτ ) (1− ψ1ρτ )

)
(49)

Substituting expressions (46)-(48) into (45), we obtain:

σ2
k = ψ2

1σ
2
k +

(
σk,a−1

σ2
µ

+

(
1− λarpk,a

1− α

)
(1− ψ1)

)2

σ2
µ +

2
(
ψ1σ

2
k − σk,k−1

)
(1− ψ1)

1− ρτ
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This is one equation in two unknowns, ψ1 and ρτ . Next, substitute (46) into (49):

σarpk,arpk−2 = (1− α)2

(
ψ1σk,k−1 −

ρτ
1− ρτ

(
ψ1σ

2
k − σk,k−1

))
which gives a second equation in the two unknowns. The solution to the two equations yields
ψ1 and ρτ . From ψ1, we can compute ξ and ψ2. Along with ρτ , these give ψ3. The remaining
moment conditions yield the remaining parameters, γ, σ2

ε and V.

I.3 Lower Elasticity of Substitution

There is no clear consensus on the appropriate value for the elasticity of substitution parameter,
θ, which is set to 6 in our analysis. Estimates generally range between 3 and 10 (see, e.g., Broda
and Weinstein (2006)). Studies on firm dynamics tend to use values closer to 6. For example,
Cooper and Haltiwanger (2006) estimate a demand elasticity among US manufacturing firms of
just about 6; the curvature parameter in Atkeson and Kehoe (2005) is 0.85, which corresponds
to θ = 7 in our setup. The literature on misallocation, following Hsieh and Klenow (2009),
often uses a lower value, θ = 3.

To investigate the robustness of our conclusions to this parameter, we re-did our analysis
using θ = 3. In conjunction with the production function elasticities, α̂1 and α̂2, reported in
Table 1, this yields values of α of 0.4 in the US and 0.5 in China (compared to 0.62 and 0.71
in the baseline analysis). We have recomputed the target moments under these new values
(recall that moments in productivity depend on the curvature parameter) – Table 15 – and
re-estimated the model targeting these moments – Table 16.

The moments in Table 15 show largely the same patterns as those in Table 2 and many of
the point estimates change little – for example, investment growth in China is more correlated
with lagged shocks, is more volatile and less serially correlated and shows a higher correlation
between arpk and productivity (although this figure is somewhat lower in both countries than
under the baseline α). The extent of the overall dispersion in the arpk is almost identical to
the baseline, since this figure is independent of α (there is a negligible difference in this value
for the US due to the trimming of outliers).

Table 15: Moments – θ = 3

ρ σ2
µ ρι,a−1 ρι,ι−1 ρarpk,a σ2

ι σ2
arpk

China 0.92 0.13 0.21 −0.36 0.56 0.15 0.92
US 0.95 0.11 0.03 −0.30 0.28 0.06 0.46

The estimation results in Table 16 also point to very similar patterns regarding the sources
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of arpk dispersion: adjustment/information frictions explain only a modest share, leaving a
large role for other factors. The estimated adjustment costs are slightly higher in China and
lower in the US. The opposite is true for the level of uncertainty. The estimates for correlated
(permanent) factors are slightly smaller (larger) in both countries. Importantly, correlated
factors are estimated to be much more severe in China than the US. Of course, θ also plays
a significant role in determining the magnitude of aggregate productivity losses from a given
amount of arpk dispersion, as expression (9) reveals. Thus, with θ = 3, the implied TFP losses
from all of the factors are smaller than the baseline. However, these losses remain substantial
and differ across the two countries, totaling about 50% in China and 12% in the US.

Table 16: Contributions to ‘Misallocation’ – θ = 3

Other Factors

Adjustment Costs Uncertainty Correlated Transitory Permanent

Parameters ξ V γ σ2
ε σ2

χ

China 0.21 0.08 −0.49 0.00 0.64
US 0.66 0.04 −0.10 0.00 0.38

∆σ2
arpk

China 0.01 0.08 0.24 0.00 0.64
US 0.02 0.04 0.01 0.00 0.38

∆σ2
arpk

σ2
arpk

China 1.1% 8.3% 26.4% 0.0% 69.2%
US 4.3% 9.4% 1.4% 0.0% 82.5%

∆a
China 0.01 0.04 0.12 0.00 0.32
US 0.01 0.01 0.00 0.00 0.10

Taken together, our findings in Table 16 confirm that our main conclusions regarding the
sources of arpk dispersion are not overly sensitive to the value of the elasticity of substitution.
While the exact productivity costs of that dispersion does depend on this parameter (and more
generally, on the extent of curvature), all the cases we have examined suggest they can be
substantial.

I.4 Alternative Targets: Investment Moments

In this appendix, we re-estimate our model targeting the autocorrelation and variance of in-
vestment in levels, rather than growth rates. The values of these moments are 0.25 and 0.04,
respectively, in the US and 0.04 and 0.08 in China. The other target moments are the same as
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in Table 2. Table 17 reports the results. A comparison to Table 3 shows that the parameter
estimates are quite close to the baseline, as are the contributions to arpk dispersion – adjust-
ment costs and uncertainty account for between 15% and 20% of σ2

arpk in the two countries,
correlated factors play a large role in China and less so in the US, while fixed factors are quite
significant in both countries.

Table 17: Using Moments from Investment in Levels

Other Factors

Adjustment Costs Uncertainty Correlated Transitory Permanent

Parameters ξ V γ σ2
ε σ2

χ

China 0.37 0.11 −0.72 0.02 0.38
US 1.77 0.04 −0.31 0.19 0.28

∆σ2
arpk

σ2
arpk

China 4.3% 11.9% 48.9% 2.5% 40.8%
US 12.1% 8.1% 13.2% 42.4% 62.8%

I.5 Measurement of Capital

Our baseline analysis uses reported book values of firm-level capital stocks. Here, we use the
perpetual inventory method to construct an alternative measure of capital for the US firms. To
do this, we follow the approach in Eberly et al. (2012). Here, we briefly describe the procedure
and refer the reader to that paper for more details. We use the book value of capital in the
first year of our data as the starting value of the capital stock and use the recursion:

Kit =

(
Kit−1

PKt
PKt−1

+ Iit

)
(1− δj)

to estimate the capital stock in the following years, where It is measured as expenditures on
property, plant and equipment, PK is the implicit price deflator for nonresidential investment,
obtained from the 2013 Economic Report of the President, Table 7, and δj is a four-digit
industry-specific estimate of the depreciation rate. We calculate the useful life of capital goods
in industry j as Lj = 1

Nj

∑
Nj

PPENTit−1+DEPRit−1+Iit
DEPRit

whereNj is the number of firms in industry
j, PPENT is property, plant and equipment net of depreciation and DEPR is depreciation
and amortization. The implied depreciation rate for industry j is δj = 2

Lj
. We use the average

value for each industry over the sample period.
Table 18 reports the estimation results. The parameters governing firm productivity, ρ and

σ2
µ, are quite close to the baseline values, as is the total amount of observed arpk dispersion,
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σ2
arpk.64 The autocorrelation of investment growth is somewhat higher and its volatility some-

what lower, which together lead to a higher estimate of the adjustment cost parameter, ξ. This
is reflected in the higher contribution of these costs to arpk dispersion, which is about 27%
of the total (compared to 11% in the baseline). The estimated degree of uncertainty is close
to the baseline value. Together, these two forces account for about 33% of the observed arpk
dispersion, compared to about 18% under our baseline calculations. Thus, our finding of a key
role for other firm-specific factors continues to hold – these factors account for roughly two-
thirds of σ2

arpk. The largest component shows up as a permanent factor that is orthogonal to
firm productivity. The time-varying correlated and uncorrelated components contribute only
modestly.

Table 18: Perpetual Inventory Method for Capital - US firms

Moments ρ σ2
µ ρι,a−1 ρι,ι−1 ρarpk,a σ2

ι σ2
arpk

0.94 0.07 0.15 −0.18 0.55 0.01 0.43

Parameters ξ V γ σ2
ε σ2

χ

5.80 0.02 −0.17 0.05 0.26

Aggregate Effects
∆σ2

arpk 0.12 0.02 0.02 0.05 0.26
∆σ2

arpk

σ2
arpk

27.5% 5.7% 4.3% 12.8% 59.9%

∆a 0.05 0.01 0.01 0.02 0.11

Similar to the exercise in Appendix I.4, we have also re-estimated the model using this
alternative measure of firm-level capital stocks and targeting the autocorrelation and variability
of investment in levels, rather than growth rates. The results are reported in Table 19. The
estimates are broadly in line with those in Table 18 and are extremely close to the baseline
ones in Table 3. To see why, we have also computed the implied values of the autocorrelation
and variance of investment using the parameter estimates from Table 18. This gives values of
0.69 and 0.02, respectively, compared to the empirical values of 0.57 and 0.02. Because the
estimation in Table 18 already matches these (non-targeted) moments fairly closely, explicitly
targeting them does not have a large effect.

Table 19: Perpetual Inventory Capital and Investment in Levels - US

ξ V γ σ2
ε σ2

χ

Parameters 1.65 0.03 −0.32 0.00 0.28
∆σ2

arpk

σ2
arpk

12.0% 6.9% 14.0% 0.7% 64.3%

64Even in the last year of the sample, the correlation of the two capital stock measures exceeds 0.95.
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I.6 Sectoral Analysis

In this appendix, we repeat our analysis for US firms at a disaggregated sectoral level, allowing
for sector-specific structural parameters.

We begin by computing sector-specific α’s (curvature in the profit function) using data on
value-added and compensation of labor by sector from the Bureau of Economic Analysis, Annual
Industry Accounts.65 To match the SIC (or NAICS) classifications in Compustat, we compute
labor’s share of value-added for the 9 major sectors of the industrial classification – Agriculture,
Forestry and Fishing; Mining; Construction; Manufacturing; Transportation, Communications
and Utilities; Wholesale Trade; Retail Trade; Finance, Insurance and Real Estate; Services.66

To translate these shares into a value of α, note that under our assumptions of monopolistic
competition and constant returns to scale in production, labor’s share of value-added is equal
to LS = θ−1

θ
(1− α̂1) where 1 − α̂1 is the labor elasticity in the production function. Then,

solving for α̂1 and substituting into the definition of α, we have

α =
α1

1− α2

=
θ−1
θ
− LS

1− (1− α̂1) θ−1
θ

=
θ−1
θ
− LS

1− LS

Implementing this procedure yields the values of α in the top panel of Table 20.67

Next, we re-compute our cross-sectional moments for each sector, using the values of α to
estimate firm-level productivities. We continue to control for time and industry fixed-effects
to extract the firm-specific components of the series (there are multiple four-digit industries
within each sector). We report the target moments in the first panel of Table 20. We then
estimate the model separately for each sector, allowing the structural parameters governing the
various sources of arpk dispersion to vary across sectors. The resulting parameter estimates
are presented in the second panel of the table and the implied contribution of each factor to
arpk dispersion in the last two panels.

There is some heterogeneity across the sectors, both in the overall extent of arpk dispersion
as well as in the estimates for the underlying factors. For example, adjustment costs are largest
in manufacturing, where they account for as much as 20% of the observed dispersion and
are smallest in FIRE. But, overall, the main message from our baseline analysis continues to
hold – adjustment and information frictions, although significant, do not create a lot of arpk

65The data are available at https://www.bea.gov/industry/iedguide.htm.
66Most of these correspond one-for-one with sectors reported by the BEA data. There, Transportation and

Utilities are reported separately, as are several subcategories of services, which we aggregate. The only sector
we were unable to include from the BEA data was Information, as it does not line up one-for-one with an SIC
or NAICS category. The shares are calculated as the average over the most recent period available, 1998-2011
(which roughly lines up with the period of the firm-level data, 1998-2009).

67We have also calculated this value for the entire US economy by summing across all the sectors reported
by the BEA. This gives an aggregate labor share of 0.56 and an implied α of 0.62, exactly our baseline value.
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dispersion, leaving a substantial role for other firm-specific factors. While the results point
to some heterogeneity in the correlation structure of these factors, the permanent component
seems to play a key role across all sectors.

J Estimates for Other Countries/Firms

In this appendix, we apply our empirical methodology to two additional countries for which we
have firm-level data - Colombia and Mexico - as well as to publicly traded firms in China.

The Colombian data come from the Annual Manufacturers Survey (AMS) and span the
years 1982-1998. The AMS contains plant-level data and covers plants with more than 10
employees, or sales above a certain threshold (around $35,000 in 1998, the last year of the
data). We use data on output and capital, which includes buildings, structures, machinery
and equipment. The construction of these variables is described in detail in Eslava et al.
(2004). Plants are classified into industries defined at a 4-digit level. The Mexican data are
from the Annual Industrial Survey over the years 1984-1990, which covers plants of the 3200
largest manufacturing firms. They are also at the plant-level. We use data on output and
capital, which includes machinery and equipment, the value of current construction, land,
transportation equipment and other fixed capital assets. A detailed description is in Tybout
and Westbrook (1995). Plants are again classified into industries defined at a 4-digit level.
Data on publicly traded Chinese firms are from Compustat Global. Due to a lack of a sufficient
time-series for most firms, we focus on single cross-section for 2015 (the moments use data going
back to 2012). Similarly, due to the sparse representation of many industries, we focus on those
with at least 20 firms. For all the datasets, we compute the target moments following the same
methodology as outlined in the main text of the paper. Our final samples consist of 44,909 and
3,208 plant-year observations for Colombia and Mexico, respectively, and 1,055 firms in China.

Table 21 reports the moments and estimated parameter values for these sets of firms, as well
as the share of arpk dispersion arising from each factor and the effects on aggregate productivity.
The results are quite similar to those for Chinese manufacturing firms in Table 3 in the main
text. The contribution of adjustment costs and uncertainty to observed arpk dispersion is
rather limited, and that of uncorrelated transitory factors negligible - across these sets of firms,
a large portion of the observed dispersion stems from correlated and permanent firm-specific
factors.
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Table 20: Sector-Level Results

Moments α ρ σ2
µ ρι,a−1 ρι,ι−1 ρarpk,a σ2

ι σ2
arpk

Agr., Forestry and Fishing 0.77 0.92 0.11 0.13 −0.37 0.92 0.03 0.61
Mining 0.76 0.91 0.10 0.16 −0.29 0.74 0.07 0.35
Construction 0.49 0.93 0.15 0.17 −0.28 0.71 0.07 0.69
Manufacturing 0.59 0.94 0.08 0.10 −0.32 0.50 0.05 0.43
Trans., Comm. and Utilities 0.67 0.94 0.04 0.13 −0.32 0.58 0.03 0.38
Wholesale Trade 0.65 0.94 0.08 0.18 −0.31 0.67 0.05 0.57
Retail Trade 0.61 0.96 0.02 0.20 −0.30 0.25 0.02 0.20
Finance, Insurance and Real Estate 0.78 0.90 0.09 0.28 −0.32 0.77 0.07 0.61
Services 0.38 0.95 0.10 0.03 −0.28 0.31 0.08 0.53

Parameters ξ V γ σ2
ε σ2

χ

Agr., Forestry and Fishing 0.83 0.05 −0.78 0.01 0.09
Mining 0.49 0.04 −0.56 0.00 0.13
Construction 0.65 0.08 −0.50 0.00 0.32
Manufacturing 3.35 0.03 −0.17 0.18 0.28
Trans., Comm. and Utilities 0.55 0.02 −0.55 0.00 0.25
Wholesale Trade 0.55 0.04 −0.54 0.00 0.30
Retail Trade 1.97 0.01 −0.07 0.03 0.17
Finance, Insurance and Real Estate 0.18 0.06 −0.80 0.00 0.26
Services 0.81 0.04 −0.14 0.00 0.44

∆σ2
arpk

Agr., Forestry and Fishing 0.07 0.05 0.45 0.01 0.09
Mining 0.06 0.04 0.19 0.00 0.13
Construction 0.04 0.08 0.26 0.00 0.32
Manufacturing 0.09 0.03 0.02 0.18 0.28
Trans., Comm. and Utilities 0.01 0.02 0.10 0.00 0.25
Wholesale Trade 0.02 0.04 0.20 0.00 0.30
Retail Trade 0.02 0.01 0.00 0.03 0.17
Finance, Insurance and Real Estate 0.01 0.06 0.31 0.00 0.26
Services 0.02 0.04 0.02 0.00 0.44

∆σ2
arpk

σ2
arpk

Agr., Forestry and Fishing 0.11 0.08 0.74 0.02 0.15
Mining 0.18 0.10 0.54 0.00 0.37
Construction 0.05 0.11 0.37 0.00 0.47
Manufacturing 0.21 0.07 0.05 0.41 0.63
Trans., Comm. and Utilities 0.03 0.05 0.26 0.01 0.65
Wholesale Trade 0.04 0.07 0.35 0.00 0.54
Retail Trade 0.08 0.05 0.01 0.14 0.85
Finance, Insurance and Real Estate 0.02 0.09 0.51 0.00 0.42
Services 0.05 0.07 0.04 0.00 0.83
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Table 21: Additional Countries/Firms

Moments ρ σ2
µ ρι,a−1 ρι,ι−1 ρarpk,a σ2

ι σ2
arpk

Colombia 0.95 0.09 0.28 −0.35 0.61 0.07 0.98
Mexico 0.93 0.07 0.17 −0.39 0.69 0.02 0.79
China Compustat 0.96 0.04 0.30 −0.42 0.76 0.04 0.41

Parameters ξ V γ σ2
ε σ2

χ

Colombia 0.54 0.05 −0.55 0.01 0.60
Mexico 0.13 0.04 −0.82 0.00 0.42
China Compustat 0.15 0.03 −0.69 0.00 0.18

∆σ2
arpk

Colombia 0.02 0.05 0.30 0.01 0.60
Mexico 0.00 0.04 0.36 0.00 0.42
China Compustat 0.00 0.03 0.22 0.00 0.18

∆σ2
arpk

σ2
arpk

Colombia 2.5% 5.6% 30.9% 0.7% 61.3%
Mexico 0.5% 4.9% 44.9% 0.0% 52.8%
China Compustat 0.8% 6.3% 54.0% 0.2% 43.7%

∆a
Colombia 0.01 0.02 0.13 0.00 0.26
Mexico 0.00 0.02 0.16 0.00 0.18
China Compustat 0.00 0.02 0.19 0.00 0.16
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