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Abstract

We study the rationality of individual and consensus professional forecasts of macroeconomic and
financial variables using the methodology of Coibion and Gorodnichenko (2015), which examines
predictability of forecast errors from forecast revisions. We report two key findings: forecasters typically
over-react to their individual news, while consensus forecasts under-react to average forecaster news. To
reconcile these findings, we combine the diagnostic expectations model of belief formation from Bordalo,
Gennaioli, and Shleifer (2018) with Woodford’s (2003) noisy information model of belief dispersion. The
forward looking nature of diagnostic expectations yields additional implications, which we also test and
confirm. A structural estimation exercise indicates that our model captures important variation in the data,
yielding a value for the belief distortion parameter similar to estimates obtained in other settings.
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I. Introduction

According to the Rational Expectations Hypothesis, market participants form their beliefs about
the future, and make decisions, on the basis of statistically optimal forecasts. A growing body of work tests
this hypothesis using survey data on the anticipations of households and professional forecasters. The
evidence points to systematic departures from statistical optimality, which take the form of predictable
forecast errors. Such departures have been documented in the cases of forecasting inflation and other macro
variables (Coibion and Gorodnichenko 2012, 2015, henceforth CG, Fuhrer 2017), the aggregate stock
market (Bacchetta, Mertens, and Wincoop 2009, Amromin and Sharpe 2013, Greenwood and Shleifer
2014, Adam, Marcet, and Buetel 2017), the cross section of stock returns (La Porta 1996, Bordalo,
Gennaioli, La Porta, and Shleifer 2017, henceforth BGLS), credit spreads (Greenwood and Hanson 2013,
Bordalo, Gennaioli, and Shleifer 2018), and corporate earnings (DeBondt and Thaler 1990, Ben-David,
Graham, and Harvey 2013, Gennaioli, Ma, and Shleifer 2016, Bouchaud, Kruger, Landier, and Thesmar
2017). Departures from optimal forecasts also obtain in controlled experiments (Hommes et al. 2004,

Beshears et al. 2013, Frydman and Nave 2016, Landier, Ma, and Thesmar 2017).

Various relaxations of the Rational Expectations Hypothesis have been proposed to account for the
data. In macroeconomics, the main approach builds on rational inattention and information rigidities (Sims
2003, Woodford 2003, Carroll 2003, Mankiw and Reis 2002, Gabaix 2014). This view maintains the
rationality of individual inferences, but relaxes the assumption of common information or full information
processing. This is often justified by arguing that acquiring or processing information entails significant
material and cognitive costs. To economize on these costs, agents revise their expectations sporadically, or
on the basis of selective news. As a consequence, expectations and decisions under-react to news relative
to the case of unlimited information capacity. In a novel empirical test of these theories, CG (2015) study
predictability of errors in consensus macroeconomic forecasts of inflation and other variables, and find

evidence consistent with under-reaction.

In finance, in contrast, although there is some evidence of momentum and under-reaction (Cutler,
Poterba, and Summers 1990, Jegadeesh and Titman 1993), the dominant puzzle is over-reaction to news.

This puzzle has been motivated by the evidence that stock prices move too much relative to the movements



in fundamentals both in the aggregate (Shiller 1981) and in the cross section (De Bondt and Thaler 1985).
The leading psychological mechanism for over-reaction is Tversky and Kahneman’s (1974) finding that,
in reacting to news, people tend to overweight “representative” events (Barberis, Shleifer and Vishny 1998,
Gennaioli and Shleifer 2010). For instance, exceptional past performance of a firm may cause
overweighting of the probability that this firm is “the next google” because googles are representative of
the group of well performing firms, even though they are objectively rare. This approach is not inconsistent
with limited information processing, but stresses that people infer too much from the information they
attend to, however limited, so that beliefs and decisions move too much with news (Augenblick and Rabin
2017, Augenblick and Lazarus 2017). BGLS (2017) look at the cross section of stock returns and analyst

expectations of earnings growth and find support for over-reaction driven by representativeness.

This state of research motivates two questions. First, which departure from rational expectations is
predominant, under- or over-reaction to news? Second, which mechanisms create these departures? Put
differently, can one account for the main features in the data using a parsimonious model capturing precise

cognitive mechanisms for under- and over-reaction?

This paper addresses these questions by studying the predictions of professional forecasters of 16
macroeconomic variables, which include and expand those considered by CG (2015). We use both the
Survey of Professional Forecasters (SPF) and the Blue Chip Survey, which gives us 20 expectations time
series in total (four variables appear in both surveys), including forecasts of real economic activity,
consumption, investment, unemployment, housing starts, government expenditures, as well as multiple
interest rates. We examine both consensus and individual level forecasts. SPF data are publicly available;

Blue Chip data were purchased and hand-coded for the earlier part of the sample.

Section 3 describes the patterns of over- and under-reaction in different series. We follow CG’s
methodology of measuring a forecaster’s reaction to news by their forecast revision, and of using this
forecast revision to predict the forecast error, computed as the difference between the realization and the
forecast. In this setting, under-reaction to news implies a positive correlation between forecast errors and

forecast revisions, while over-reaction to news implies the opposite. Unlike CG, we examine not only



consensus forecasts, defined as the average forecast across all analysts, but also individual ones. The

consequences of aggregating forecasts turn out to be crucial for understanding their properties.

For the case of consensus forecasts, we confirm the CG findings of under-reaction: the average
forecast revision positively predicts the average future forecast error for most series. At the individual level,
however, the opposite pattern emerges: for most series, the forecast revision of the average forecaster
negatively predicts the same forecaster’s future error. In stark contrast to the consensus results, at the level
of the individual forecaster over-reaction is the norm, under-reaction the exception. These results are
robust to several potential sources of predictability, including forecaster heterogeneity, small sample bias,

measurement error, nonstandard loss functions, and non-normality of shocks.

In Section 4 we propose a model that reconciles these seemingly contradictory findings. In our
setup, agents must predict the future value of a state that follows an AR(1) process. Each agent observes a
different noisy signal of the current value of this state. Forecaster-specific noise can capture either
inattention or the fact that different forecasters have access to different data. As in Woodford (2003), these
noisy signals are optimally evaluated using the Kalman filter. We allow for over-reaction by assuming

that, in processing the signals, agents are swayed by the representativeness heuristic.

To formalize this heuristic we use the Gennaioli and Shleifer (2010) model, originally proposed to
describe lab experiments on probabilistic judgments but later applied to social stereotypes (Bordalo,
Coffman, Gennaioli, and Shleifer 2016), forecasts of credit spreads (BGS 2018), and forecasts of firm
performance (BGLS 2017). In this approach, the representativeness of a future state is measured by the
proportional increase in its probability in light of recent news. Agents exaggerate the probability of more
representative states — states that have become relatively more likely — and underestimate the probability
of others. Representativeness causes expectations to follow a modified Kalman filter that overweighs recent

news. As in earlier work, we call expectations distorted by representativeness “diagnostic.”

In this model, under-reaction in the consensus can be reconciled with over-reaction at the
individual level, but only when each forecaster over-reacts to the news he receives. When each forecaster
over-reacts to his own information, the econometrician detects a negative correlation between his forecast

error and his earlier forecast revision. At the consensus level, however, the econometrician may still detect
4



a positive correlation between the forecast error and the consensus revision provided the distortion caused
by representativeness is not too strong. The reason is that, while over-reacting to their own signal,
individual forecasters do not react to the signals observed by others. Because all signals are informative
and on average correct about the state, the average forecast under-reacts to the average information. As a
consequence, judging whether individuals under- or over-react to news on the basis of consensus forecasts
is misleading. Even if all forecasters over-react, as they do under diagnostic expectations, consensus

forecasts may point to under-reaction simply because different analysts over-react to different news.

In Section 5 we assess whether individual forecasts are consistent with a key prediction of
diagnostic expectations, the “kernel of truth” property, which is the idea that expectations exaggerate true
patterns in the data. This implies that belief updating should depend on the persistence of the series,

distinguishing our model from mechanical models of extrapolation such as adaptive expectations.

In Section 5.1 we present cross-sectional tests. We show first that individual forecast revisions at
different horizons are more positively correlated with each other for the more persistent variables. This
finding is consistent with diagnostic expectations, but not with adaptive expectations, where the same
updating rule is used for all series. We then show that the individual-level CG coefficients display less
over-reaction for the more persistent series. In line with diagnostic expectations, higher persistence causes

rational forecast revisions to be more volatile, reducing the scope for over-reaction.

In Section 5.2 we develop a time-series test of the kernel of truth. We model individual series as
AR(2) processes to account for long term reversals of actuals, consistent with Fuster, Laibson, and Mendel
(2010). We find that 12 out of 16 variables exhibit hump-shaped dynamics. In this setting, the kernel of
truth property implies that beliefs should exaggerate not only short term response but also long term
reversals. We find that this prediction is borne out in the data. The evidence is broadly consistent with the

kernel of truth property of beliefs that is central to the diagnostic expectation mechanism.

In Section 6 we estimate the structural parameters of our baseline model using the simulated
method of moments. We find the diagnostic parameter @ is significantly positive for 17 out of 20 series,
with an average value of 0.6 that falls in the ballpark of estimates we obtained in other contexts using

different methods (BGS 2018, BGLS 2017). We estimate a small but significantly negative 8 for one
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series, unemployment. These results suggest that over-reaction is sizable: the predictable component of the

forecast error is comparable to the size of the rational response to news.

This paper documents the prevalence of over-reaction to news in individual macroeconomic
forecasts and reconciles this finding with under-reaction in the consensus using a model of diagnostic
expectations. There have been other approaches to similar phenomena. One is adaptive expectations; we
show that the diagnostic expectations model has better psychological foundations and fits the data better.
Another approach is Natural Expectations (Fuster, Laibson, and Mendel 2010), which argues that
forecasters form beliefs assuming that growth follows a simple AR(1) model. Forecast errors arise because
agents neglect longer lags. The authors show that many macroeconomic variables are described by hump-
shaped dynamics (which we confirm), so natural expectations systematically overreact to short term
growth. Diagnostic expectations share some predictions with natural expectations, but also make

distinctive predictions, which we show more closely describe the data.?

Predictable forecast errors may reflect model mis-specification, and not over-reaction to news.
Even macro-econometricians find it difficult to find the best specification for many series. The evidence
in support of the kernel of truth however suggests that forecasters pay attention to key features of reality
such as persistence and reversals, and exaggerate them in their forecasts. More broadly, representativeness
and mis-specification may be synergistic: in a complex world in which forecasters are considering different
models, data representative of a certain model may induce the forecaster to attach excessive weight to it.

In this sense, the difficulties of learning may help explain persistence of representativeness-induced errors.

Diagnostic expectations are also related to overconfidence, in the sense of overestimating the
precision of private information, which implies an exaggerated reaction to private signals (Daniel,
Hirshleifer, and Subrahmanyam 1998, Moore and Healy 2008). Overconfidence has been used to explain
excess volatility in prices of both asset and goods (Barber and Odean 2001, Benigno and Kourantasias

2018). In independent work, Broer and Kohlhas (2018) explore the role of overconfidence in driving

2 A large literature considers how incentives may distort professional forecasters’ stated expectations. Ottaviani and
Sorensen (2006) point out that if forecasters compete in an accuracy contest with particular rules (winner-take-all),
they overweigh private information. In contrast, Fuhrer (2017) argues that in the SPF data, individual forecast
revisions can be negatively predicted from past deviations relative to consensus. Kohlhas and Walther (2018) also
offer a model of asymmetric loss functions. We discuss these issues in Sections 3.2 and 5.
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individual over-reaction in forecasts for GDP and inflation. In Sections 4 and 6 we compare overconfidence
and our model. At the same time, we stress that diagnostic expectations describe beliefs and over-reaction
in a wide range of settings, both in the lab and in the field, including those where overconfidence can be
ruled out (such as when information is common and public). Developing portable models that are

applicable in very different domains is a key step in identifying robust departures from rationality.

2. The Data

Data on Forecasts. We collect forecast data from two sources: Survey of Professional Forecasters (SPF)
and Blue Chip Financial Forecasts (Blue Chip).® SPF is a survey of professional forecasters currently run
by the Federal Reserve Bank of Philadelphia. At a given point in time, around 40 forecasters contribute to
the SPF anonymously. SPF is conducted on a quarterly basis, around the end of the second month in the
quarter. It provides both consensus forecast data and forecaster-level data (identified by forecaster ID).
Forecasters report forecasts for outcomes in the current and next four quarters, typically about the level of

the variable in each quarter.

Blue Chip is a survey of panelists from around forty major financial institutions. The names of
institutions and forecasters are disclosed. The survey is conducted around the beginning of each month. To
match with the SPF timing, we use Blue Chip forecasts from the end-of-quarter month survey (i.e. March,
June, September, and December). Blue Chip has consensus forecasts available electronically, and we
digitize individual-level forecasts from PDF publications. Panelists forecast outcomes in the current and
next four to five quarters. For variables such as GDP, they report (annualized) quarterly growth rates. For
variables such as interest rates, they report the quarterly average level. For both SPF and Blue Chip, the

median (mean) duration of a panelist contributing forecasts is about 16 (23) quarters.

Given the timing of the SPF and Blue Chip forecasts we use, by the time the forecasts are made in

quarter t (i.e. around the end of the second month in quarter t), forecasters know the actual values of

3 Blue Chip provides two sets of forecast data: Blue Chip Economic Indicators (BCEI) and Blue Chip Financial
Forecasts (BCFF). We do not use BCEI since historical forecaster-level data are only available for BCFF.
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variables with quarterly releases (e.g. GDP) up to quarter t — 1, and the actual values of variables with

monthly releases (e.g. unemployment rate) up to the previous month.

Table 1 presents the list of variables we study, as well as the time range for which forecast data are
available from SPF and/or Blue Chip. These variables cover both macroeconomic outcomes, such as GDP,
price indices, consumption, investment, unemployment, government consumption, and financial variables,
primarily yields on government bonds and corporate bonds. SPF covers most of the macro variables and
selected interest rates (three month Treasuries, ten year Treasuries, and AAA corporate bonds). Blue Chip
includes real GDP and a larger set of interest rates (Fed Funds, three month, five year, and ten year
Treasuries, AAA as well as BAA corporate bonds). Relative to CG (2015), we add two SPF variables

(nominal GDP and the 10Y Treasury rate) as well as the Blue Chip forecasts.*

Table 1. List of Variables

This table lists our outcome variables, the forecast source, and the period for which forecasts are available.

Variable SPF Blue Chip Abbreviation
Nominal GDP 1968Q4--2014Q4 N/A NGDP

Real GDP 1968Q4--2014Q4 1999Q1--2014Q4 RGDP
GDP Price Deflator 1968Q4--20140Q4 N/A PGDP

Real Consumption 1981Q3--2014Q4 N/A RCONSUM
Real Non-Residential Investment 1981Q3--2014Q4 N/A RNRESIN
Real Residential Investment 1981Q3--20140Q4 N/A RRESIN
Federal Government Consumption 1981Q3--2014Q4 N/A RGF

State & Local Government Consumption  1981Q3--2014Q4 N/A RGSL
Housing Starts 1968Q4--2014Q4 N/A HOUSING
Unemployment Rate 1968Q4--2014Q4 N/A UNEMP
Fed Funds Rate N/A 1983Q1--2014Q4 FF

3M Treasury Rate 19810Q3--20140Q4 1983Q1--20140Q4 TB3M

5Y Treasury Rate N/A 1988Q1--2014Q4 TN5Y

10Y Treasury Rate 1992Q1--2014Q4 1993Q1--2014Q4 TN10Y
AAA Bond Rate 1981Q3--2014Q4  1984Q1--2014Q4 AAA

BAA Bond Rate N/A 2000Q1--2014Q4 BAA

We use an annual forecast horizon. For GDP and inflation we look at the annual growth rate from

quarter t — 1 to quarter t + 3. In SPF, the forecasts for these variables are in levels (e.g. level of GDP), so

we transform them into implied growth rates. Actual GDP of quarter t — 1 is known at the time of the

4 Relative to CG, we do not use SPF forecasts for CPI inflation and industrial production index, as real time data are
missing for these two variables for a period of time.
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forecast, consistent with the forecasters’ information sets. Blue Chip reports forecasts of quarterly growth
rates, so we add up these forecasts in quarters t to ¢t + 3. For variables such as the unemployment rate and
interest rates, we look at the level in quarter t + 3. Both SPF and Blue Chip have direct forecasts of the

quarterly average level in quarter t + 3. Appendix B provides a description of variable construction.

Consensus forecasts are computed as means from individual-level forecasts available at a point in
time. We calculate forecasts, forecast errors, and forecast revisions at the individual level, and then average

them across forecasters to compute the consensus.®

Data on Actual Outcomes. The values of macroeconomic variables are released quarterly but are often
subsequently revised. To match as closely as possible the forecasters’ information set, we focus on initial
releases from Philadelphia Fed’s Real-Time Data Set for Macroeconomists.® For example, for actual GDP
growth from quarter t — 1 to quarter t + 3, we use the initial release of GDP;,, 5 (available in quarter t +
4) divided by the initial release of GDP;_, (available in quarter t, prior to when the forecasts are made).
For financial variables, the actual outcomes are available daily and are permanent (not revised). We use
historical data from the Federal Reserve Bank of St. Louis. In addition, we always study the properties of
the actuals (mean, standard deviation, persistence, etc) using the same time periods as the corresponding
forecasts. The same variable from SPF and Blue Chip may have slightly different actuals when the two

datasets cover different time periods.

Summary Statistics. Table 2 below presents the summary statistics of the variables, including the mean and
standard deviation for the actuals being forecasted, as well as the consensus forecasts, forecast errors, and
forecast revisions at a horizon of quarter t+3. The table also shows statistics for the quarterly share of

forecasters with no meaningful revisions,” and the quarterly share of forecasters with positive revisions.

5> There could be small differences in the set of forecasters who issue a forecast in quarter t, and those who revise
their forecast at ¢ (these need to be present at t — 1 as well). This issue does not affect our results, which are robust
to considering only forecasters who have both forecasts and forecast revisions.

® When forecasters make forecasts in quarter t, only initial releases of macro variables in quarter t — 1 are available.
"' We categorize a forecaster as making no revision if he provides non-missing forecasts in both quarters t — 1 and ¢,
and the forecasts change by less than 0.01 percentage points. For variables in rates, the data is often rounded to the
first decimal point, and this rounding may lead to a higher incidence of no-revision.
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Table 2. Summary Statistics

Mean and standard deviation of main variables. All values are in percentages. Panel A shows the statistics for
actuals, consensus forecasts, consensus errors and consensus revisions. Actuals are realized outcomes
corresponding to the forecasts, and errors are actuals minus forecasts. Actuals are measured using the same time
periods as when the corresponding forecasts are available. Revisions are forecasts of the outcome made in
quarter t minus forecasts of the same outcome made in quarter t-1. Panel B shows additional individual level
statistics. The forecast dispersion column shows the mean of quarterly standard deviations of individual level
forecasts. The revision dispersion column shows the mean of quarterly standard deviations of individual level
forecast revisions. Non-revisions are instances where forecasts are available in both quarter t and quarter t-1 and
the change in the value is less than 0.01 percentage points. The non-revision and up-revision columns show the
mean of quarterly non-revision shares and up-revision shares. The final column of Panel B shows the fraction
of quarters where less than 80% of the forecasters revise in the same direction.

Panel A. Consensus Statistics

Actuals Forecasts Errors Revisions
Variable Format mean sd mean sd mean sd mean sd
Nominal GDP (SPF) 6.19 2.90 6.43 230 -0.24 1.75 -0.14 0.71
Real GDP (SPF) 2.56 231 2.73 138 -0.17 1.74 -0.18 0.64
Real GDP (BC) 266 155 262 08 0.03 130 -0.12 0.48
GDP Price Index (SPF) 356 249 363 203 -007 114 002 0.48
Real Consumption (SPF) fGrO\Nth(;at]g 285 146 253 076 032 115 -005 051
geSL;\'O“'Res'de”t'a' Investment | PRertl 490 735 441 368 049 586 026 178
Real Residential Investment (SPF) ;%22‘;0;3 277 11.68 267 619 011 871 -064 248
ng]'sﬁfnd&%ﬁgg%”mem 136 459 134 261 002 322 013 124
Fse;"F)StatE&Loca' Govt Consumption 162 168 162 109 000 112 000 059
Housing Start (SPF) 167 2216 475 1533 -3.08 1881 -241 5.97
Unemployment (SPF) 6.38 1.55 6.38 1.43 0.00 0.76 0.06 0.33
Fed Funds Rate (BC) 410 299 453 294 -042 104 -0.18 0.54
3M Treasury Rate (SPF) 3.98 2.86 4,54 293 -0.56 1.15 -0.21 0.52
3M Treasury Rate (BC) 3.76 273 428 272 -052 102 -0.18 0.51
5Y Treasury Rate (BC) @ﬁﬁ?‘e 445 224 486 205 -041 089 -015 045
10Y Treasury Rate (SPF) quarter t+3 4.49 1.56 4.99 140 -050 0.76 -0.12 0.37
10Y Treasury Rate (BC) 442 156 486 138 -044 075 -0.13 0.39
AAA Corporate Bond Rate (SPF) 7.26 2.4 7.74 252 047 0.85 -0.11 0.39
AAA Corporate Bond Rate (BC) 6.84 194 726 201 -0.42 0.7 -0.12 0.37
BAA Corporate Bond Rate (BC) 6.30 1.08 6.75 095 -045 0.68 -0.14 0.31
Panel B. Additional Individual Level Statistics
Forecasts Revisions
Variable Format Dispersion  Dispersion non-rev. up-rev Pr(<80% re_vise
share share  same direction)
Nominal GDP (SPF) Growth rate from end 0.59 1.13 0.02 0.45 0.79
Real GDP (SPF) of quarter t-1 to end of 0.63 0.94 0.02 0.43 0.74
Real GDP (BC) quarter t+3 0.17 0.40 0.05 0.43 0.66
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GDP Price Index (SPF) 0.52 0.75 0.05 0.49 0.79

Real Consumption (SPF) 0.68 0.76 0.03 0.48 0.76

Real Non-Residential Investment

(SPF) 1.03 2.47 0.02 0.49 0.71
Real Residential Investment (SPF) 2.09 4.24 0.03 0.45 0.83
Real Federal Government

Consumption (SPF) 1.38 2.25 0.06 0.52 0.87
Real State&Local Govt

Consumption (SPF) 1.45 1.28 0.10 0.48 0.93
Housing Start (SPF) 5.46 8.61 0.00 0.39 0.68
Unemployment (SPF) 0.13 0.30 0.18 0.42 0.77
Fed Funds Rate (BC) 0.33 0.48 0.22 0.30 0.68
3M Treasury Rate (SPF) 0.29 0.48 0.15 0.34 0.68
3M Treasury Rate (BC) 0.29 0.46 0.19 0.32 0.63
5Y Treasury Rate (BC) Average level in 0.15 0.42 0.12 0.35 0.61
10Y Treasury Rate (SPF) quarter t+3 0.09 0.38 0.10 0.35 0.65
10Y Treasury Rate (BC) 0.08 0.35 0.13 0.33 0.57
AAA Corporate Bond Rate (SPF) 0.25 0.51 0.09 0.38 0.73
AAA Corporate Bond Rate (BC) 0.22 0.47 0.12 0.34 0.71
BAA Corporate Bond Rate (BC) 0.12 0.41 0.13 0.32 0.81

Several patterns emerge from Table 2. First, the average forecast error is about zero. Macro
analysts do not seem to have asymmetric loss functions that systematically bias their forecasts in a given
direction. Second, there is significant dispersion of forecasts and revisions at each point in time, as shown
in Table 2 Panel B. Third, analysts frequently revise their forecasts (share of analysts with no revision is
small), but they do so in different directions. As shown by the final column of Panel B, it is uncommon to
have quarters where more than 80% forecasters revise in the same direction. This suggests that different
forecasters observe or attend to different news, either because they are exposed to different information or
because they use different models, or both. Berger, Erhmann, and Fratzscher (2011) show that the
geographical location of forecasters influences their predictions of monetary policy decisions. Different
forecasters may have personal contacts with the industry, policymakers, etc., which offers one explanation

for the disagreement we see in the data.

3. Over-reaction vs. Under-reaction: Basic Tests
Many tests of the rational expectations hypothesis assess whether forecast errors can be predicted

using information available at the time the forecast is made. Understanding whether departures from
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rational expectations are due to over- or under-reaction to information is more challenging, since the

forecaster’s full information set cannot be directly observed by the econometrician.

CG (2015) address this problem with forecast revisions. Denote by x;.p|; the h-periods ahead
forecast made at time ¢ about the future value x,, , of a variable. Denote by x;,p.—; the forecast of the
same variable in the previous period. The h-periods ahead forecast revision att is given by FR,, =
(xt+h|t - xt+h|t_1), or the one period change in the forecast about x;,,. This revision captures the
reaction to whichever news the forecasters have observed. The extent to which forecasters under- or over-

react to information can then be assessed by estimating the regression:

Xern = Xesnje = Bo + BiFRep + €cpan- (D

Under the Rational Expectations Hypothesis, the forecast error should be unpredictable using any
current information, including the forecast revision itself, so §; = 0. When instead the forecast under-
reacts to information, we expect 8; > 0. To see why, suppose that positive information is received, leading

to a positive forecast revision FR, , > 0. If the forecast under-reacts, the upward revision is insufficient,
predicting a positive forecast error IEt(xHh — xt+h|t) > 0. The converse holds if negative information is

received: the downward revision is insufficient, predicting a negative error. Under-reaction implies that

the forecast error should be positively correlated with the forecast revision.

By the same logic, when the forecast over-reacts to information we should expect 8; < 0. Indeed,

over-reaction means that after positive information FR, ,, > 0 the forecast is too optimistic, so the forecast
error is negative E,(x¢4pn — xt+h|t) < 0. On the other hand, after negative information FR, < 0 it is too
pessimistic, so the error is positive ]Et(xHh — xt+h|t) > 0. That is, over-reaction implies that the forecast

error should be negatively correlated with the forecast revision.

To test for Rational Inattention, CG’s baseline estimate of Equation (1) uses consensus SPF

forecasts. The consensus forecast x;,p; IS defined as the average of individual forecasters’ predictions

Xeh|t = %Zix,f;rhlt , where I > 1 is the number of forecasters. Similarly, FR, is the h-periods ahead
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“consensus information” or forecast revision. CG estimate (1) for the GDP price deflator (PGDP_SPF) at
a horizon h = 3 and find $; = 1.2, which is robust to a number of controls. They also run Equation (1)
for 13 SPF variables by pooling forecast horizons from h = 0to h = 3, and find qualitatively similar
results, with 8 out of 13 variables exhibiting significantly positive 3,’s and the average coefficient being
close to 0.7 (see Figure 1 Panel B of CG (2015)).  The general message is that consensus forecasts of

macroeconomic variables display under-reaction.

We estimate Equation (1) for our 20 series for the same baseline horizon h = 3, using consensus
forecasts. Standard errors are Newey-West with the automatic bandwidth selection following Newey and
West (1994). © The results are reported in columns (1) through (3) of Table 3, and confirm the findings of
CG. The estimated 3, is positive for 14 out of 20 series, statistically significant for 8 of them at the 5%
confidence level, and for a further two series at the 10% level (and our point estimate for inflation forecasts
coincides with CG’s). While results for the other SPF series are not directly comparable (since CG pool
across forecast horizons), the estimates lie in a similar range. The one exception is RGF_SPF (federal
government spending) for which the estimated £, is negative and significant at the 5% level. Results from

the Blue Chip survey align well with SPF where they overlap, but do not exhibit significant consensus

over-reaction for the remaining (exclusively financial variables) series.

We stress that the various forecast series are not independent. For instance, nominal and real GDP
growth are highly correlated; the different interest rate series are also closely connected. Nonetheless, the
general message holds: for macro variables and short rates, under-reaction is common in the consensus

forecast regressions, while such patterns are largely absent in long-term rates.

As mentioned above, insufficient updating of consensus beliefs may be due to aggregation issues,

rather than to under-reaction to information by individual forecasters. As we saw in Table 2, individual

8 We also perform sensitivity analysis on the kernel bandwidth selection for Newey-West standard errors. In Appendix
C Table C.1, we present standard errors using lags from zero to eight, which cover the reasonable range given the
length of our time series. The results are largely similar.
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forecasters often revise in different directions, perhaps because they look at different data or use different

models. Over-reaction of individual forecasters may thus be attenuated by heterogeneity and aggregation.

Table 3. Error-on-Revision Regression Results

This table shows coefficients from the CG (forecast error on forecast revision) regression. Coefficients are displayed
for both consensus time-series regressions, and forecaster-level pooled panel regressions, together with standard
errors and p-values. Standard errors are Newey-West for consensus time-series regressions, and clustered by both
forecaster and time for individual level regressions.

Consensus Individual
No fixed effects With fixed effects

B se. pval pF  se. pval pP se. p-val

Variable @ @ B @» 6 6 O 6
Nominal GDP (SPF) 0.48 0.22 0.03 -0.26 0.07 0.00 -030 0.06 0.00
Real GDP (SPF) 045 0.25 0.07 -023 0.08 000 -021 0.06 0.00
Real GDP (BC) 059 034 009 012 019 026 -0.02 0.17 0.93
GDP Price Index Inflation (SPF) 121 021 000 -0.07 0.10 046 -0.16 0.07 0.03
Real Consumption (SPF) 018 022 041 -034 011 0.00 -0.39 0.0 0.00
Real Non-Residential Investment (SPF) 093 038 0.02 001 013 093 -0.03 0.12 0.82
Real Residential Investment (SPF) 126 038 0.00 -0.02 010 082 -0.12 0.08 0.14

Real Federal Government Consumption (SPF) -0.44 0.23 0.05 -0.62 0.07 0.00 -0.63 0.06 0.00
Real State & Local Govt Consumption (SPF) -0.16 0.20 042 -0.71 0.14 0.00 -0.73 0.13 0.00

Housing Start (SPF) 045 031 0214 -025 0.09 001 -028 0.08 0.00
Unemployment (SPF) 0.82 021 0.00 033 011 0.00 026 0.11 0.02
Fed Funds Rate (BC) 061 023 001 015 0.09 011 012 0.09 0.19
3M Treasury Rate (SPF) 071 026 0.01 024 009 001 019 0.09 0.04
3M Treasury Rate (BC) 0.67 025 001 020 0.09 002 016 0.08 0.06
5Y Treasury Rate (BC) 005 022 084 -012 010 0.23 -019 0.10 0.05
10Y Treasury Rate (SPF) -0.01 0.28 097 -0.18 0.10 0.06 -0.23 0.09 0.01
10Y Treasury Rate (BC) -0.06 025 081 -0.17 0.12 0214 -025 0.11 0.02
AAA Corporate Bond Rate (SPF) -0.01 024 097 -021 0.08 0.00 -0.26 0.07 0.00
AAA Corporate Bond Rate (BC) 021 021 031 -017 0.07 0.00 -0.22 0.06 0.00
BAA Corporate Bond Rate (BC) -0.14 0.28 062 -0.28 0.10 0.00 -0.34 0.10 0.00

To assess whether individual forecasters over- or under-react to their own information, we continue

to follow the CG methodology, but perform the analysis at the individual analyst level. Here FR};,h =
(x§'+h|t —x§'+h|t_1) is the analyst-level revision, and the h-periods ahead individual forecast error is

Xewn — xti +nje- FOr each variable, we then pool all analysts and estimate the regression:

Xewn = Xtsne = By + BLFRE, + €L pin- (2
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Superscript p on the coefficients recognizes that we are pooling individual level data. The logic of the test,
however, does not change: Bf > 0 indicates that the average analyst under-reacts to his own information,

while /)’f < 0 indicates that the average analyst over-reacts.’

Columns (4) through (6) of Table 3 report the results of estimating Equation (2). Surprisingly, the
picture is essentially reversed from the consensus: at the individual level, the average analyst appears to
over-react to information, as measured by a negative Bf coefficient. The estimated ﬁf is negative for 14
out of the 20 series (13 out of 16 variables), and significantly negative for 9 series at the 5% confidence
level, and for one other series at the 10% level. Except for short rates (Fed Funds and 3-months T-bill rate),
all financial variables display over-reaction, consistent with Shiller’s evidence of excess volatility. But
many macro variables also display over-reaction, including nominal GDP, real GDP (in SPF, not in Blue
Chip), real consumption, real federal government expenditures, real state and local government
expenditures. GDP price deflator inflation, real GDP in Blue Chip, and non-residential investment display

neither over-nor under-reaction ([)’f close to zero). Only the 3-months T-bill rate and unemployment rate

display individual level under-reaction with positive and statistically significant ﬁf.

In columns (7) to (9), we also analyze regressions with forecaster fixed effects to account for
possible time-invariant differences among analysts. Some analysts may be consistently overly-optimistic
or overly-pessimistic, perhaps due to differences in their prior beliefs, contributing to positive correlations
between forecast errors and revisions. Specifically, the overly optimistic analysts systematically receive
bad news, leading to negative revisions and negative forecast errors, while the overly pessimistic analysts
systematically receive good news, leading to positive revisions and positive forecast errors. In the data, the
results with and without forecaster fixed effects are similar. With forecaster fixed effects, the estimated ﬂf
is negative for 17 series, and significantly negative for 13 series at the 5% confidence level. The message

of Table 3 is clear: at the level of the individual forecaster, over-reaction is the norm.

° The individual level coefficient ¥ can in principle be different from the consensus coefficient f3; : to the extent that
some information is forecaster specific, and that individuals do not react to information they do not possess, errors
€¢¢+n May be correlated across individuals over time. In Section 4 we formalize this intuition.
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In sum, a fascinating picture emerges from these tests. At the consensus level, expectations
typically under-react. At the individual level, they typically over-react. We conclude this section with a

number of robustness checks. In Section 4, we present a model capable of reconciling these patterns.

3.1 Robustness Checks

Predictability of forecast errors might arise from features of the data unrelated to individuals’

under- or over-reaction to news. We next show that our results are robust to many such confounds.

Small Samples. Our individual level estimates can face small sample problems. Finite-sample biases exist
in time series regressions (Kendall 1954, Stambaugh 1999) and panel regressions with fixed effects
(Nickell, 1981). In the baseline individual-level tests in Table 3, our panel regressions do not have fixed
effects, which alleviates the concern (Hjalmarsson 2008). Adding fixed effects does not change the results
much, indicating that the bias, even if present, is not severe. Moreover, the finite sample biases are stronger
when the predictor variables are persistent. The predictor variable in the CG regressions, namely forecast
revision, has low persistence in the data (about zero for most variables at the individual level, and less than
0.5 at the consensus level). Finally, simulation analyses in Appendix D show that, for parameter values

and time frames relevant to our data, the coefficients do not have notable biases.

Measurement Error. Forecasts measured with noise can mechanically lead to negative predictability of
forecast errors in Equation (2): a positive shock increases the measured forecast revision and decreases the
forecast error. In our case, since professional forecasters directly report their forecasts, it is hard to think
of literal “measurement error.” Moreover, motivated by the fact that some series display an AR(2)
structure, in Section 5 we regress the forecast error at t + h on revisions of forecasts for previous periods
t+h—1andt+ h— 2 (Equation 13). In line with the predictions of the model (Proposition 3), but not
with measurement error, we find strong predictability in these regressions as well (Table 6). Finally, in
Section 6 we estimate our model without using information from the CG coefficients; we obtain estimates
that indicate significant individual level over-reaction and generate CG regression coefficients very similar

to the data.
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Heterogeneity among Forecasters. Forecaster heterogeneity either in updating (e.g., heterogeneous signal
to noise ratios), or in beliefs about long term means, may affect the predictability of forecast errors. To
assess this problem, we perform forecaster level regressions, focusing on forecasters with at least 10
observations. Table C2 in Appendix C compares the median coefficient from forecaster level regressions
to the coefficients from pooled individual level regressions from Table 3. The coefficients are very similar,
so the observed over-reaction describes the median forecaster. On average across series, we estimate a
negative ﬁf for two thirds of the forecasters. In some series, nearly every forecaster over-reacts while in
other series the distribution of 5P's is more balanced. We return to forecaster heterogeneity in Section 6,

when we estimate our model.

Asymmetric Loss Functions. Another concern with our findings is that forecast errors reflect not cognitive
limitations but analysts’ biased incentives. Of course, an analyst’s objective is difficult to observe. Here

we discuss the implications of several analyst loss functions proposed in the literature.

With an asymmetric loss function (Capistran and Timmerman 2009), the over-reaction pattern in
Table 3 may be generated by a combination of: i) a higher cost of over- than under-predicting, and ii)
suitably time varying volatility (Pesaran and Weale 2006). In this case, an asymmetric loss function would
also generate an average forecast error in the form of pessimism. In the data, however, forecasts are not
systematically upward or downward biased on average. The consensus forecast errors are small and
insignificant (Table 2, panel A). This is also true for individual forecast errors: we fail to reject that the

average error is different from zero for about 60% of forecasters for the macroeconomic variables.°

Another source of bias in reported expectations is that individuals may follow consensus forecasts
(Morris and Shin 2002, Fuhrer 2017). Let %f,p = axyp + (1 — @)X ppnye, Where xi,p ., is the
individual rational forecast and X;,p; is the average contemporaneous forecast with this bias (which

coincides with the consensus without this bias). Our benchmark model has @ = 1 but for @ < 1 forecasters

put weight on others’ signals at the expense of their own. In this model, in line with intuition, following

10 Some individual forecasters have average errors that are significantly different from zero for some series, but these
average out in the population for nearly all series. For interest rates, average forecast errors tend to be negative, but
this reflects the secular decline in rates over the time period we examine.
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consensus forecasts leads to individual level under-reaction, namely positive individual level CG

coefficients, contrary to our findings.'*

Reputational incentives may also induce forecast smoothing. In response to news at t, forecasters

may wish to minimize forecast revisions by taking into account the previous forecast x. +hje—1 as well as
the future path x§+h|t+ j- To assess the relevance of this mechanism, note that forecast smoothing should

reduce the current revision for the current quarter (h = 0), creating under-reaction. This prediction is

contradicted by the data: negative predictability prevails even at this horizon (Appendix C, Table C3).

More generally, the similarity of our results across datasets suggests that distorted incentives
cannot be the whole story. The SPF panelists are anonymous, the Blue Chip ones are not. Thus, forecasts
in Blue Chip should be more affected by the above reputational incentives or by additional ones (e.g.,
individual forecasters may wish to distinguish themselves from others in order to prevail in a winner-take-
all context, as in Ottaviani and Sorensen (2006)). However, in our data, when Blue Chip and SPF forecasts
are available for the same series, they display very similar average forecast errors and revisions (see Table
2), they have similar CG coefficients (see Table 3), and they lead to similar model estimates (see Section

6). Analyst incentives do not seem a compelling explanation for our findings.

Fat tailed shocks. In our data both fundamentals and forecast revisions have high kurtosis. To see whether
fat tailed shocks may, by themselves, create a false impression of over-reaction, in Appendix D we consider
a learning setting with fat tailed fundamental shocks. Without normality, we can no longer use the Kalman
filter, but instead need to use the particle filter (Liu and Chen, 1998; Doucet, de Freitas, and Gordon, 2001).
We find that when forecasts are produced using the particle filter under rational expectations, individual
forecast errors are not predictable from forecast revisions, and thus cannot explain the evidence. Moreover,

in Section 6 we estimate a modified particle filter that allows for overreaction to news, and find that fat

1 Formally, denote FEf,,, = X4, — X{4n; the forecast error and FR},j,, = %{ypjr — Xf1nje—1 the forecast revision,
It follows that FE!,,, = aFEl,,, + (1 — @)FE,y and similarly FR{,,, = aFR},,, + (1 — @)FRyip;c. Then
cov(FEf,p . FREyp,) > 0 follows from cov(FE{ s FREyp.) = 0 and cov(FEgin;e, FRepne) > 0 under noisy
rational expectations, together with cov(FE{, 1, FRenic ) cOV(FEsn)er FREy ) > O.
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tailed shocks do not significantly affect our quantitative estimates. Because fat tails do not appear to affect

our results, we maintain the more tractable assumption of normality in our theoretical analysis.!?

4. Diagnostic Expectations

We present a model that reconciles under-reaction of consensus expectations with over-reaction of
individual level expectations. At each time t, the target of forecasts is a hidden state x;.,; whose current

value x, is not directly observed. What is observed instead is a noisy signal s;:
st=x, + €, 3)

where €} is noise, i.i.d. normally distributed across forecasters and over time, with mean zero and variance

o2. The hidden state x, evolves according to an AR(1) process with persistence p:

X¢ = pX¢—q1 T Uy, 4)

where u, is a normal shock with mean zero and variance ;2. This AR(1) setting, also considered by CG

(2015), yields convenient closed form predictions. In Section 6 we examine the AR(2) case.

This setup accommodates several interpretations. In CG (2015), unobservability of x; stems from
rational inattention (Sims 2003, Woodford 2003). Forecasters could in principle observe x; but doing so
is too costly, so they observe a noisy proxy for it and optimally use that proxy in their forecasts.'® This
rational inattention interpretation is not entirely convincing, since the job of professional forecasters is

precisely to be attentive to, and to predict, the variables in question.

A more compelling story is that forecasters observe the same data, say GDP or interest rates, but
differ in their interpretations because they have different pieces of other information. Think of the current

GDP estimate or interest rate level as a noisy proxy for an unobservable persistent state. Due to individual

12 Apart from fat tails, skewness of shocks may also lead to systematically biased forecasts under Bayesian updating
(Orlik and Veldkamp 2015). As we saw in Table 2, in our data forecasts are not biased on average.

13 As CG show, the same predictions are obtained if rational inattention is modelled a la Mankiw and Reis (2002),
where agents observe the same information but only sporadically revise their predictions.
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expertise or contacts in the industry, a forecaster has personal information on that hidden state. This
implies that the current GDP estimate or interest rate level is transformed into a forecaster-specific signal
st. Even so, a Bayesian forecaster optimally filters noise in his own signal. In this sense, under both the

rational inattention and the dispersed information interpretations, forecasters rationally update on the basis

of noisy signals. We refer to both mechanisms as “Noisy Rational Expectations” .

A Bayesian, or rational, forecaster enters period t carrying from the previous period beliefs about
the current state x, summarized by a probability density f (x,|S{_, ), where S{_; denotes the full history of
signals observed by this forecaster.”” In period t, the forecaster observes a new signal st.  In light of
this evidence, he updates his estimate of the current state using Bayes’ rule:

f(stloxe)f (xe1S-1)
J F(stlx)f(xIS{-y)dx

f(xcISE) = )

Equation (5) iteratively defines the forecaster’s beliefs. Given normal shocks, f(x.|Sf) is
described by the Kalman filter. A rational forecaster estimates the current state at x,fﬁlt = [ xf(x|S{)dx

and forecasts future values using the AR(1) structure, so x,§+h|t = phx,fﬁlt.

We allow beliefs to be distorted by Kahneman and Tversky’s representativeness heuristic, as in
our model of Diagnostic Expectations. In line with BGLS (2017), who apply Diagnostic Expectations to a

(diagnostic) Kalman Filter, we define the representativeness of a state x at t as the likelihood ratio:

f(xI8¢)
fxIsiy U {xélt—l}).

R.(x) = (6)

State x is more representative at t if the signal s} received in this period increases the probability of that
state, relative to not receiving any news. Receiving no news means observing a signal equal to the ex-ante

forecast, s{ = x§'|t_1, as described in the denominator of equation (6).

14 Equation (5) assumes that forecasters observe only their individual signals. In reality they also observe common
signals, such as public announcements and the past consensus of all other forecasters. In our analysis we focus on
individual signals, which drive the difference between individual and consensus forecasts. We consider public signals
in Corollary 1, and show that they do not alter the qualitative properties of the model.
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Intuitively, the most representative states are those whose likelihood has increased the most in light

of recent data. The forecaster then overweighs representative states by using the distorted posterior:
0 i i o1
f (xt|5t) = f(xt|5t)Rt(xt) 7 7
t

where Z, is a normalization factor ensuring that fe(xt|S§) integrates to one. Parameter 8 > 0 denotes the
extent to which beliefs are distorted by representativeness. For 8 = 0 beliefs are rational, described by the
Bayesian conditional distribution f(x;|S{). For 6 > 0 the diagnostic density £9(x.|S{) inflates the
probability of representative states and deflates the probability of unrepresentative ones. Mistakes occur

because states that have become relatively more likely may still be unlikely in absolute terms.

This formalization of representativeness as relative likelihood, and its effect on probability
assessments, has been shown to unify well-known laboratory biases in probability assessments such as
base rate neglect, the conjunction fallacy, and the disjunction fallacy (Gennaioli and Shleifer 2010). It has
also been used to explain real world phenomena such as stereotyping (BCGS 2016), self-confidence
(BCGS 2018), and expectation formation in financial markets (BGS 2018, BGLS 2017). Here we assess

whether this same structure can shed light on errors in forecasting macroeconomic variables.
Equation (7) yields a very intuitive characterization of beliefs.

Proposition 1 The distorted density f"(xt|5t") is normal. In the steady state it is characterized by a

2 .
constant variance ;f;z and by a time varying mean x;ﬁ where:
€
x40 = xl 1+ (@ +06) —2 (sé — xt 1) (8)
- t|t— tjt—-1)»
tle ! T+ o2 !
g -~ =p0é + i + [ = p*)oZ — oil]* + 4oloi ©

2

In equations (8) and (9), x,fﬁlt_l refers to the rational forecast of the hidden state implied by the

Kalman Filter. Diagnostic beliefs resemble rational beliefs. They have the same conditional variance Z,
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and their mean x;7

updates past rational beliefs x,,_, with “rational news” s — x,,_,, to an extent that
increases in the signal to noise ratio % /o2. Because diagnostic expectations overweigh the impact of news

by the multiplicative factor 8 in Equation (8), they entail over-reaction to information.

Equation (8) also highlights that diagnostic expectations create excess volatility but not an average

bias. Indeed, the discrepancy between rational and diagnostic expectations arises only in the presence of
rational news, when (s{ —x{llt_l) is non-zero. Since rational news are zero on average, diagnostic

expectations over-react when news arrive but then systematically revert to rationality.

In contrast to traditional departures from rationality such as adaptive expectations, diagnostic
expectations are forward-looking in that they depend on the parameters of the true data generating process.
They are characterized by the “kernel of truth” property: they exaggerate true patterns in the data. Positive
news are objectively associated with improvement, but representativeness causes excess focus on the right
tail, generating excessive optimism. As we show in Sections 5 and 6, the kernel of truth property offers
testable predictions on how updating and forecast errors should change as the process becomes more
persistent or when it is influenced by longer AR(2) lags. Critically, these predictions can be tested against

conventional mechanical models of extrapolation such as adaptive expectations.

The consensus diagnostic forecast of x;,, at time t is given by:
6 _ i,0 - _ h i,0 j.
Xevh|t = fxt+h|tdl =p fxqtdl'

so that the diagnostic forecast error and revision are respectively given by x;,, — xf+h|t and xf+h|t —

xt9+h|t_1. In Appendix A, we prove the following result.

Proposition 2 Under the Diagnostic Kalman Filter, the estimated coefficients of regression (2) at the

consensus and individual level, g; and 87, are given by:

0 (2 (2
Cov(xt+h - xt+h|tl xt+h|t - xt+h|t—1)
Lol Teeh = (02 — 62)g (02,3, p,0) (10
var(xt+h|t xt+h|t—1)
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i,0 i,0 i,0
Cov(xt+h ~ Xt+njo Xerne T Xernje-1) 6(1+6) (11)
e _ _if T (14+6)2+ 9202
var (xt+h|t xt+h|t—1) ( ) p

where g(c2,%,p,0) > 0is a function of parameters. Thus, for 8 € (0,52 /%) the Diagnostic Kalman

Filter entails a positive consensus coefficient 5, > 0, and a negative individual coefficient gF < 0.

When representative types are not too overweighed, 6 < ¢2/%, the diagnostic filter reconciles
positive consensus coefficients with negative individual level coefficients, consistent with the patterns in

Section 3. Intuitively, over-reaction of individual analysts to their own information implies a negative
pooled coefficient ﬁf < 0. At the same time, analysts do not react at all to the information received by
other analysts (which they do not observe). This effect can create under-reaction of consensus to average

information if 62 /% is large enough. If information is very noisy, not using the signals observed by other

forecasters entails a large loss of information. As long as individual forecasters discount news, consensus

forecasts exhibit under—reaction, even if each analyst discounts their own information too little.

In contrast to diagnostic expectations, Noisy Rational Expectations (6 = 0) can generate under-
reaction of consensus forecasts, ; > 0, but not over-reaction of individual analysts, 8 < 0. In that
model, because forecasters optimally use the limited information at their disposal, their forecast error is
uncorrelated with their own forecast revision. As is evident from Equations (9) and (10), when 8 = 0 there

is no individual-level predictability, inconsistent with the evidence of Section 3.

Finally, Proposition 2 also illustrates the cross-sectional implications of the kernel of truth

mentioned above: the predictability of forecast errors depends on the true parameters characterizing the
data generating process (62,%,p,0). In particular, stronger persistence p reduces individual over-

reaction, in the sense that it pushes the pooled coefficient ﬁf toward zero.

Table 4 summarizes the predictions of three departures from rational expectations for the tests of
Section 3. These include: Noisy Rational Expectations (or Rational Inattention), Diagnostic Expectations,

and Mechanical Extrapolation (adaptive expectations). We evaluate these models according to three
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forecast revisions on the features of the data generating process.

Table 4. Model Comparison

predictions: 1) consensus level predictability, 2) individual level predictability, and 3) dependence of

Model Consensus Individual Updating
Noisy Rational under-reaction no predictability depends on
fundamentals
Diagnostic consistent V\."th over-reaction depends on
under-reaction fundamentals
Mechanical / . under-reaction for | does not depend
. Undetermined . .
Adaptive persistent series | on fundamentals

The sign switch between consensus and individual coefficient we documented for 9 out of 20 series
(and 8 out of 16 variables) is consistent with diagnostic expectations but not with noisy rational
expectations. The evidence for 4 series out of 20 — the GDP price deflator, the investment variables, and
the Federal Funds rate — is consistent with rational inattention, featuring 8; > 0 and ﬂf ~ 0. Finally, the
results for the 3-month T-bill rate (in SPF and Blue Chip) and the unemployment rate are consistent with
neither Rational Inattention nor Diagnostic Expectations because they exhibit under-reaction at both the

consensus and individual level, 5, Blp > 0. This pattern may be accounted for by adaptive expectations.

Overall, most of the evidence is consistent with Diagnostic Expectations, but Rational Inattention

or Adaptive Expectations may play a role for some series. We further assess these models in Section 5.

We conclude this Section by considering the possibility, relevant in many real world settings, that
forecasters also observe public signals. Suppose that each analyst observes, in addition to the private signal
sk, a public signal s, = x, + v,, where v, is also normal with variance 2. In this case, the diagnostic

estimate uses both the private and the public signal according to their informativeness. We then obtain:

Corollary 1 Suppose that 8 € (0,02/%). Then, increasing the precision 1/02 of the public signal while
holding constant the total precision (1/62 + 1/02) of the private and the public signals: i) leaves the

pooled coefficient ﬂf unchanged, and ii) lowers the consensus coefficient ;.

When a higher share of information comes from a public signal, the information of different
forecasters is more correlated, so that individual forecasts incorporate a larger share of the information

available to others. As a result, the consensus forecast exhibits less under-reaction, or possibly even over-
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reaction. This may explain why in financial market variables such as interest rates we detect less consensus
under-reaction than in most other series: market prices act as public signals that correlate to a significant

extent the information sets of different forecasters.

The results in this section describe the features of over—reaction implied by diagnostic expectations.
It is useful to compare over—reaction in this specific setting to the concept of overconfidence, modeled as
overweighting of private signals relative to public signals (Daniel et al. 1998). " Inflating the signal to

noise ratio of private information can cause over-reaction, by boosting the Kalman gain closer to its upper
bound of 1. In contrast, under diagnostic expectations, the Kalman gain is multiplied by (1 + 8) and so

the reaction to information is not bounded by 1 (see Equation 8).  In our estimation in Section 6, we find
clear evidence for the latter for several series. This difference has important implications for consensus
forecasts: Proposition 2 shows that consensus forecasts can over—react when the diagnostic Kalman gain
is large, which cannot happen under overconfidence. Moreover, Corollary 1 shows that there is more
consensus over—reaction when there is more public information, another result that cannot be obtained

from overconfidence, which predicts more under-reaction when more information is public.

5. Kernel of Truth
We first run a cross sectional test based on the persistence of the different series, which allows us
to compare Diagnostic Expectations with Adaptive Expectations. We then assess whether, for series that

feature hump-shaped dynamics, beliefs over-react both to short-term news and to longer-term reversals.
5.1 Persistence Tests

Under Noisy Rational and Diagnostic Expectations forecast revision at t satisfies:

i i _ i i
Xt+h|t — Xt+n|t-1 = p(xt+h—1|t - xt+h—1|t—1)'

15 As mentioned in the Introduction, diagnostic expectations describe beliefs in a wide range of settings, both in the
lab and in the field, including those where overconfidence can be ruled out (such as when all information is public,
for example in experimental illustrations of base rate neglect or social stereotypes, BCGS 2016).
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The revision h periods ahead reflects the forecast revision about the same variable h — 1 periods ahead,
adjusted by the persistence p of the series. The idea is simple: when forecasts are forward looking, more

persistent series should witness more correlated revisions across different forecast horizons.

Under Adaptive Expectations, in contrast, updating is mechanical and should not depend on the

true persistence of the forecasted process. Formally, in this case:
i i _ i i
Xt+h|t ~ Xt+n|t-1 = :u(xt+h—1|t - xt+h—1|t—1)'
where i is a positive constant independent of p.

To assess this prediction, we fitan AR(1) for the actuals of each series and estimate p. The actuals

have the same format as the forecast variables, and we use the exact time period for which the forecasts
are available. We run the following individual level regression using forecast revisions for different

horizons:

i i I D1 i i
Xew3lt — Xea3je-1 = Yo TV (xt+2|t - xt+2|t—1) + €43

and repeat the same specification at the consensus level. We then study the relationship between the slope

coefficient !’ and the persistence p of each series.

The results are reported in Figure 1 Panel A. At both the individual and the consensus level, the
more persistent series display more correlated forecast revisions. While we only have 20 series, the
correlation is statistically different from zero with a p-value less than 0.001. 17 In line with forward-looking
models, forecasters see more persistent impact of news for more persistent series. The positive relationship
between the slope coefficient P and the persistence p of each series depends only on the first

autocorrelation lag, and so holds also for series with richer dynamics than AR(1). The pattern is similar

for consensus forecasts, shown in Figure 1 Panel B. This evidence is inconsistent with adaptive

16 This formula is based on the Error-Learning model, a generalization of adaptive expectations for longer horizons
(Pesaran and Weale 2006). This model postulates x;, ¢r — *fysj—1 = Hs(Xe — X{jr—1), SO that g = pp /.

7 The results in Figure 1 and 2 are similar if we exclude the Blue Chip series that are also available in SPF (e.g. real
GDP, 3-month Treasuries, 10-year Treasuries, AAA corporate bond rate).
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expectations, in which updating does not depend on persistence, in which case the line in Figure 1 should

be flat.

Figure 1. Properties of Forecast Revisions and Actuals

In Panel A, the y-axis is the coefficient v from regression x{, 5, — X{1510-1 = Vo + V1 (Xt42)t — Xts2jt-1) + Ebss-
The x-axis is the persistence measured from an AR(1) regression of the actuals corresponding to the forecasts. For

each variable, the AR(1) regression uses the same time period as when the forecast data is available. In Panel B, the
y-axis is the regression coefficient from the parallel specification using consensus forecasts.
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Another approach is to assess the correlation between the persistence of a series and the CG
coefficient of reaction to news. Diagnostic Expectations do not have clear predictions at the consensus
level: the coefficient (62 — 8%)g(02,%, p,6) in Equation (10) can be either decreasing or increasing in
persistence p, depending on the parameter values. On the other hand, Equation (11) says that the individual
CG coefficient should increase, i.e. get closer to zero, as p increases. When the series is more persistent,
rational revisions become more volatile, which reduces the predictability of errors for a given level of
noise. Of course, under Noisy Rational Expectations individual coefficients should be zero, so they should

be uncorrelated with the persistence of fundamentals.

Figure 2 shows the correlation for the CG coefficient estimated from individual-level regressions.
We find that the CG coefficient rises with persistence, which lends additional support for diagnostic

expectations. The correlation is statistically different from zero with a p-value of 0.035.

Figure 2. CG Regression Coefficients and Persistence of Actual

Plots of individual level CG regression (forecast error on forecast revision) coefficients in the y-axis, against the
persistence of the actual process in the x-axis.
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5.2. Kernel of Truth in the Time Series

We now allow the forecasted series to be described by an AR(2) process. As shown by Fuster,
Laibson and Mendel (2010), several macroeconomic variables follow hump-shaped dynamics with short-
term momentum and longer-term reversals. Considering this possibility is relevant for two reasons. First,
under the kernel of truth, forecasters should exaggerate true features of the data generating process,
including the presence of long-term reversals. This also allows us to compare these approaches to the
model of Natural Expectations proposed by Fuster, Laibson and Mendel (2010), in which agents forecast

an AR(2) process “as if” it was AR(1) in changes.
5.2.1 Diagnostic Expectations with AR(2) Processes
Suppose that forecasters seek to forecast an AR(2) process:
Xt+3 = P2Xez T P1Xr41 + Upys. (12)

If p, > 0and p; < 0, the variable displays short-term momentum and long-term reversal. Each forecaster
now observes two signals, one about the current state sf, = x, + e and another about the past state
si_1: = x¢_4 + v{. The presence of two signals implies that the current forecast revisions for x,, and

X4 are not perfectly collinear, which is necessary for out test.

The diagnostic forecasts about t + 1 and t + 2 overweigh each signal (this is proved in Appendix
A), so that forecast revisions are excessive. The diagnostic forecast of x; 5 is then a linear combination

of the forecasts of x;,, and x;,; with weights given by the autoregressive parameters p; and p,:
0 _ 0 0
x;+3|t = p2x2+2|t + p1x2+1|t'
This formula suggests a way to test for overreaction, generalizing Equation (2) to AR(2). To do
so, simply predict forecast errors in the long term using forecast revisions about shorter term:

Xt43 — x£+3|t = 53) + 5§FRé,t+2 + 5fFRé,t+1 t+ €tetns (12)

where FR,fl,t +1 and FR,fl‘tJr2 stand for the surveyed forecast revisions at for t + 1 and t + 2, respectively.

Under diagnostic expectations, estimates of (12) satisfy the following property.
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Proposition 3. Under the Diagnostic Kalman filter, the estimated coefficients Sf and Sﬁ’ in Equation (12)

are proportional to the negative of the AR(2) coefficients:
8P o« —p, 6, (13)
87 o —p, 0. (14)

Once again, under rational expectations (9 = 0) individual forecast errors cannot be predicted

from any forecast revisions. Diagnostic expectations instead imply that the coefficients should be non-
zero, with flipped signs relative to the data generating process. This is due to the kernel of truth. Over-
reaction to short term news, p, > 0, implies that upward forecast revisions about x;.,, lead to exaggerated

optimism about x,, 5 and thus negative forecast errors. This yields 65 < 0. On the other hand, over-
reaction to long-term reversal, p; < 0, implies that upward forecast revisions about x;,, lead to

exaggerated pessimism about x;.,; and thus positive forecast errors. This yields 8f >0."

Before moving to the data, we link this discussion to Natural Expectations, which have been

proposed to account for expectations errors in AR(2) settings. In this model, forecasts are based on an
AR(1) process in changes.” This implies that Natural Expectations exaggerate the short run persistence of

the series and, similarly to Diagnostic Expectations, entail negative predictability of forecast errors at this

horizon. On the other hand, Natural Expectations also dampen long-term reversals, unlike our prediction
of over-reaction to long-term reversals (Sf >0). Thus, the two models predict overlapping but

distinguishable patterns of predictable forecast errors.

In the remainder of the section, we test the predictions of Proposition 3.

18 Proposition 3 also implies that the tests of Section 3 may be biased toward finding under-reaction when the AR(2)
process has p, > 0 and p; < 0. Positive news at t may then trigger an upward revision of the forecasts for both
X¢4+1 and x;.,. The former creates excess pessimism, the latter excess optimism. If the first effect is strong, the test
of Section 3 may detect excess pessimism after good news, giving a false impression of under-reaction.

9 Formally, forecasters use the rule (x;4q1 — X¢) = @(x¢ — x¢_1) + V41 With fitted coefficient ¢ = (p, —
p1—1)/2. For a stationary AR(2) process (i.e. if p, —p; <1, p; +p, <1 and |p;| < 1) this implies that
forecasters exaggerate short term momentum and dampen long term reversals. This model cannot be directly
estimated using Equation (12) because it implies that the two forecast revisions are perfectly collinear.

30



5.2.2 AR(1) vs AR(2) Dynamics

As a first step, we assess which of our 16 variables is more accurately described by AR(2) rather
than AR(1). We do not aim to find the unconstrained optimal ARMA(k, q) specification, which is well
known to be difficult. We only wish to capture the simplest longer lags and see whether expectations react
to them as predicted by the model. We fit a quarterly AR(2) process for our 20 series. Figure 4 below
plots the estimates for p, and p,.2° As before, the actuals have the same format as the forecast variables,

and for each series the regression covers the time period when the forecast data are available.

The signs of coefficients point to a positive momentum at short horizons (p, > 0) for all series,
and to long-run reversals (p; < 0) for most series, the remaining ones having p, approximately zero.?* To
assess which dynamics better describe the series, we compare the AR(2) estimates to the AR(1) estimates

from Section 5.1. Table 6 shows the Bayesian Information Criterion (BIC) score associated with each fit.

For the majority of series, AR(2) is favored over AR(1). The tests favor AR(1) dynamics only for
real consumption (SPF) and the BAA bond rate (BC), while for the 10-year Treasury rate series the tests

are inconclusive.?? In sum, hump shaped dynamics are a key feature of several series.

20 Just like for the case of AR(1), for growth variables we run quarterly AR(2) regressions of growth from t — 1 to
t + 3. For variables in levels, we run quarterly regressions in levels. We run separate regressions for the variables
that occur both in SPF and BC, because they cover slightly different time periods.

2L We check whether multicollinearity may affect our results in this Section, given that forecasts revisions at different
horizons are often highly correlated. The standard issue with multicollinearity is the coefficients are imprecisely
estimated, which we do not find to be the case. We also perform simulations to verify that the correlation among the
right hand side variables by itself does not mechanically lead to the patterns we observe.

22 The Akaike Information Criterion (AIC) yields similar results, except that it positively identifies the TN10Y (SPF)

series as AR(2). To interpret the IC scores, recall that lower scores represent a better fit. The likelihood ratio :Ejiﬁ

], so that ABIC,_; = —2 means the AR(2) model is 2.7 times more likely than

BICAR2—BICAR1

is estimated as exp [— 5

the AR(1) model.
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Figure 4. AR(2) Coefficients of Actuals

For each variable, the AR(2) regression uses the same time period as when the forecast data is available. The blue
circles show the first lag and the red diamonds show the second lag. Standard errors are Newey-West, and the vertical
bars show the 95% confidence intervals.
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Table 6. BIC of AR(1) and AR(2) Regressions of Actuals

This table shows the BIC statistic corresponding to the AR(1) and AR(2) regressions of the actuals. The final
column shows the specification that has a lower BIC (preferred).

Variable BICar1 BICar2  ABIC,;  model
Nominal GDP (SPF) -1133.74 -1149.13 -1539 AR(2)
Real GDP (SPF) -1120.33 -1164.52 -44.19 AR(2)
Real GDP (BC) -618.50 -626.83 -8.33  AR(2)
GDP Price Index Inflation (SPF) -1423.70 -1456.90 -33.20 AR(2)
Real Consumption (SPF) -924.47 91166 1282 AR(1)
Real Non-Residential Investment (SPF) -509.72  -524.37 -14.65 AR(2)
Real Residential Investment (SPF) -375.81  -401.05 -25.25 AR(2)
Real Federal Government Consumption (SPF) -560.97  -553.12 7.85 AR(1)
Real State&L ocal Govt Consumption (SPF) -905.91  -896.23 9.68 AR(1)
Housing Start (SPF) -250.88  -265.89 -15.01 AR(2)
Unemployment (SPF) 168.69 11157 -57.12 AR(2)
Fed Funds Rate (BC) 191.89 149.87  -42.02 AR(2)
3M Treasury Rate (SPF) 240.87 23225 -8.62 AR(2)
3M Treasury Rate (BC) 163.27 11876  -4451 AR(2)
5Y Treasury Rate (BC) 126.30 123,51 -2.79 AR(2)
10Y Treasury Rate (SPF) 89.66 89.91 0.25 AR(1)
10Y Treasury Rate (BC) 86.54 84.80 -1.74 AR(2)
AAA Corporate Bond Rate (SPF) 129.84 118.64 -11.20 AR(2)
AAA Corporate Bond Rate (BC) 86.05 84.72 -1.32 AR(2)
BAA Corporate Bond Rate (BC) 58.33 61.79 3.46 AR(1)
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5.2.3 Empirical Tests of Over-Reaction with AR(2) dynamics

We next restrict the analysis to the series for which AR(2) is favored, and test the prediction of
Proposition 3 by estimating Equation (12). Since our AR(2) series exhibit p, > 0 and p; < 0, under
diagnostic expectations the estimated coefficient on medium term forecast revision should be negative,

8Y < 0, while the estimated coefficient on short term forecast revision should be positive, §7 > 0.

Figure 5 shows, for each relevant series, the forecast error regression coefficients 85’ and Sf
obtained from estimating Equation (12) with pooled individual data. Table 7 reports these coefficients,
together with their corresponding standard errors and p-values. In line with the predictions of the model,
the signs of the coefficients indicate that the short-term revision positively predicts forecast errors (Sf >0
for all 15 series, 10 of which are statistically significant at the 5% level) while the medium-term revision
negatively predicts them (8} < 0 for 12 out of 15 series, 8 of which are statistically significant at the 5%
level). To further assess these results, we perform a test of joint significance for 85’ < O,Sf >0. We
resample the data using block bootstrap, and calculate the fraction of times when 85’ <0, Sf > 0 holds,

as shown in the last column of Table 7. The probability is greater than 95% for 8 out of the 15 series.

Figure 5. Coefficients in CG Regression AR(2) Version

This plot shows the coefficients 57 (blue circles) and 67 (red diamonds) from the regression in Equation (12).
Standard errors are clustered by both forecaster and time, and the vertical bars shown the 95% confidence intervals.
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Table 7. Coefficients in CG Regression AR(2) Version

Coefficients §Yand 87 from the regression in Equation (12), together with the corresponding standard errors and p-
values. The final column resamples the data using block bootstrap and shows the probability of 5§ < 0 and 67 > 0.

Variable 8Y se. pval &P se. p-val P;?g? §> <0 0
Nominal GDP (SPF) -0.37 0.12 0.00 0.33 0.15 0.03 0.99
Real GDP (SPF) -0.21 0.16 019 023 018 0.22 0.86
Real GDP (BC) -0.14 040 0.72 024 0.33 048 0.78
GDP Price Index Inflation (SPF) -0.36 0.11 0.00 059 0.18 0.00 0.99
Real Non-Residential Investment (SPF) 0.18 0.26 050 0.09 031 0.77 0.11
Real Residential Investment (SPF) -0.48 0.22 0.03 088 0.25 0.00 1.00
Housing Start (SPF) -0.31 0.11 0.01 0.85 0.14 0.00 1.00
Unemployment (SPF) 023 0.18 0.22 023 020 0.26 0.03
Fed Funds Rate (BC) 0.09 006 015 031 019 0.11 0.40
3M Treasury Rate (SPF) -0.17 022 043 055 0.26 0.03 0.85
3M Treasury Rate (BC) -0.17 0.13 0.20 062 0.16 0.00 0.92
5Y Treasury Rate (BC) -040 0.11 0.00 046 0.14 0.00 1.00
10Y Treasury Rate (BC) -0.72 0.12 0.00 0.712 0.18 0.00 1.00
AAA Corporate Bond Rate (SPF) -0.60 0.12 0.00 051 0.18 0.01 1.00
AAA Corporate Bond Rate (BC) -043 0.08 0.00 0.49 0.10 0.00 1.00

These results are consistent with kernel of truth but are harder to reconcile with Natural
Expectations, where forecasters neglect longer lags (in the current setting, this means fitting an AR(1)
model even for AR(2) series).? Overall, then, the AR(2) analysis confirms and perhaps strengthens the
evidence for over-reaction in the data. Four of the seven series (PGDP_SPF, RRESINV_SPF, TN5Y_BC
and TN10Y_BC) for which individual level forecast errors seemed unpredictable (Table 3), and thus
consistent with Noisy Rational Expectations, show evidence of over-reaction in the AR(2) setting. In
addition, the two series that seemed to display under-reaction at the individual level, unemployment and
the 3-months T Bill rate, now show evidence of over-reaction to long-term reversals (Sf > 0), albeit not
significantly. Inall these cases, it is possible that over-reaction to long term reversals moved the individual
level coefficient in Table 4 close to zero or above, giving the false impression of rationality or under-
reaction. Only for the variable RGDP_SPF, which displayed significant over-reaction under the AR(1)

specification loses its significance at conventional level in the AR(2) case.

23 Beshears et al. (2013) report results from a laboratory experiment in which subjects recognize reversals occurring
within ten periods, but not in fifty periods. In our data reversals are fast, which is consistent with their findings.
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6. Model Estimation

We next use the simulated method of moments to quantify 8 and assess the performance of our
model. In the baseline quantification, we assume that shocks are normal and that the macro series follow
the better-fitting process among AR(1) or AR(2). We then present a sensitivity analysis. We first estimate
6 under the assumption that all series follow an AR(1). The results are similar, which is reassuring given
the well known difficulty of finding the proper AR specification. We next allow for fundamental shocks to
be drawn from fat tailed distributions. Using the particle filter, we find that our results again remain stable.
Finally, we estimate an overconfidence model, and show that diagnostic expectations better fit of the data

guantitatively. Appendix E presents supporting material for these exercises.

The estimation exercises share the following general structure. First, we assume forecasters
describe each series k using the vector of estimated fundamental parameters ((pq x, oy k) for the AR(1)
specifications and (pyx, P2k, 0uk) for the AR(2) specifications). By separating the estimation of
fundamental and expectations parameters, we minimize the degrees of freedom in fitting expectations data.
Second, given these parameter values we use the simulated method of moments to estimate, for each
expectations series, the series-specific measurement noise o, and the diagnostic parameter 8, . We

initially take (6y, o, x) to be common to all forecasters, but also estimate them at the forecaster level.

We estimate o, ,, and 6, by matching two moments of the expectations data: the variance of the
forecast errors, o7, = var;.(FEL,), and the variance of forecast revisions, o2 = var;.(FRL,),
computed across time and forecasters. We choose these moments because they can be measured directly
from the data with reasonable precision and they are linked to the parameters of interest.?* By the law of
total variance, the variance of forecast errors a2z ;. is the sum of the: i) average cross sectional variance of

errors, and the ii) over time variance of consensus errors. The first term is informative about measurement
noise o, ., Without which any cross sectional variance would be zero. The second term is informative about

the over-reaction parameter 8,. A similar logic holds with respect to the total variance of forecast revisions.

2% In contrast, matching average forecast errors and revisions would not be informative about o, and 6y, as these
sample moments are close to zero in our data (consistently with diagnostic but also rational expectations). Importantly,
we do not use the CG coefficients in the estimation because we later use these moments to assess model performance.
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We do not estimate the model using maximum likelihood for two reasons. First, because our model
is simple and transparent, it is also likely to be misspecified. In this case, moment estimators are often more
reliable. Second, fundamental shocks can be fat tailed, and estimating a non-normal model by maximum
likelihood is problematic. The likelihood function cannot in fact be written in closed form. Numerical
approximations methods must be used, and these may introduce additional noise in parameter estimates.
Despite the limitation, our structural estimation exercise can be viewed as useful first step in assessing the

ability of our model to account for variation in forecast errors and revisions in expectations data.

6.1 Baseline Estimation

We first explain the estimation procedure. In our baseline exercise we describe each series k as
either an AR(1) or an AR(2) process following Table 6, using the fundamental parameters (p; x, oy k) OF
(P1k P2k Oy i) TESPECtively (see Figure 4 and Appendix E, Table E1 for the estimates). In the following,
we refer to this specification as the “baseline specification,” which uses the AR(2) (respectively, AR(1))
version of the model to those series identified as AR(2) (respectively, AR(1)) according to Table 6, and.

Next, for each series x of actuals and given (8, o, x), we simulate time series of signals st‘"‘ =xF + eé'k

where e/* is drawn from (0, 62,,) i.i.d. across time and forecasters. We then use (6, o, ;) and s¢* to

generate diagnostic expectations associated with each forecaster, using Equation (8) for AR(1) processes
and its generalization Equation (E1) for AR(2) processes, for the exact period in which he forecasts a given

series (we drop forecasters with less than ten observations). We compute the forecast revisions and forecast
errors of each forecaster, as well as the model-implied variances of forecast errors o, and of forecast

revisions o}%R’k. Finally, we search through a grid of (8, o) to find parameter values that minimize the

distance between model moments and data moments:

S 2 S 2
(6% 05k) = argm%n (O-IgE,k — 05 (6, Ue)) + (UbgR,k — iR (6, Ue)) :
Te

To obtain confidence intervals for our estimates, we repeat the process using 60 bootstrap samples (with
replacement) from the panel of forecasters.
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Table 8 summarizes the estimation results. For 17 out of the 20 series, we estimate a significantly
positive 8, varying roughly between 0.2 and 1.5 (except for State & Local Government Consumption,
which is an outlier). For the Federal Funds rate and the 3-month Treasury rate (BC), two closely related

series, we estimate a 8 of zero. For unemployment, we estimate a small but significant negative 6.

Model estimation strengthens the finding of over-reaction. Our estimates of 8 exhibit tight
confidence intervals, with an average of 0.6. Estimates of standard deviation of noise o,, normalized by

the standard deviation of shocks o;,, show more variation across series and are less precisely estimated.

Table 8. SMM Estimates of 6 and o,

This table shows the estimates of 8 and o, in the baseline specification of the model, as well as the 95% confidence
interval based on block bootstrap (bootstrapping forecasters with replacement). The standard deviation of the noise
g, isnormalized by the standard deviation of innovations in the actual process a,,. Results for each series are estimated
using the AR(1) or AR(2) version of the diagnostic expectations model based on the properties of the actuals
according to Table 6.

0 95% ClI 0. /0y 95% Cl
Nominal GDP (SPF) 0.21 (0.06, 0.43) 0.45 (0.10, 1.08)
Real GDP (SPF) 0.51 (0.09, 0.87) 0.79 (0.34, 1.00)
Real GDP (BC) 0.34 (0.11, 0.58) 1.39 (0.58, 2.00)
GDP Price Index Inflation (SPF) 0.45 (0.12,0.84) 3.18 (2.32, 4.00)
Real Consumption (SPF) 1.56 (0.95, 2.00) 3.56 (2.25, 4.00)
Real Non-Residential Investment (SPF) 0.35 (0.19, 0.57) 1.46 (1.03, 2.08)
Real Residential Investment (SPF) 0.28 (0.16, 0.45) 1.37 (0.82, 2.00)
Real Federal Government Consumption (SPF) 1.18 (0.8, 1.55) 1.66 (1.00, 2.40)
Real State & Local Govt Consumption (SPF) 2.80 (1.30, 3.90) 4.81 (3.74, 5.00)
Housing Start (SPF) 1.00 (0.54, 1.61) 1.81 (1.00, 3.36)
Unemployment (SPF) -0.25 (-0.67, -0.08) 0.57 (0.01, 1.01)
Fed Funds Rate (BC) -0.02 (-0.10, 0.06) 1.17 (0.77, 1.62)
3M Treasury Rate (SPF) 0.18 (0.11,0.21) 1.11 (0.93, 1.43)
3M Treasury Rate (BC) 0.01 (-0.03, 0.09) 1.86 (1.44, 2.29)
5Y Treasury Rate (BC) 0.37 (0.32,0.42) 2.19 (1.84, 2.61)
10Y Treasury Rate (SPF) 0.59 (0.50, 0.60) 2.91 (2.70, 3.00)
10Y Treasury Rate (BC) 0.29 (0.21, 0.37) 2.21 (1.78, 2.87)
AAA Corporate Bond Rate (SPF) 0.63 (0.50, 0.79) 4.60 (3.95, 5.21)
AAA Corporate Bond Rate (BC) 0.71 (0.60, 0.85) 4.85 (4.10, 5.60)
BAA Corporate Bond Rate (BC) 0.73 (0.64, 0.80) 2.63 (2.30, 3.00)

The estimates for 8 are in line with BGS (2018), who obtain 8 = 0.9 for expectations data on

credit spreads, and with BGLS (2017) who also obtain 8 = 0.9 for expectations data on firm level
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earnings’ growth. In the current exercise the average estimate is a bit lower, but this may be due to the fact
that here we allow for AR(2) specifications (if we assume an AR(1) structure for all series, we find an
average 6 of 0.81, see Section 6.3). To have a sense of the magnitude, a & = 1 means that forecasters’
reaction to news is roughly twice as large as the rational expectations benchmark. In BGLS (2017), we
find that this magnitude of 8 can account for the observed 12% annual return spread between stocks
analysts are pessimistic about and stocks they are optimistic about. This suggests that this magnitude of

distortions can have sizable economic consequences.

6.2 Model Performance
We first assess the ability of the model to match the target moments. Across different series k, the

average absolute log difference between the variance of forecast errors in the data (01?5,1{) and that in the

simulated model (OTFZET((Q, o)) is 0.022, with a minimum of 0.001 for the Fed Funds Rate and a maximum
of 0.207 for Real State and Local Government Consumption. Likewise, the variance of forecast revisions
in the data (o7z ;) and that in the simulated model (a/FZET((H, o)) is 0.028, with a minimum of 0.002 for
Housing Starts and a maximum of 0.188 for Unemployment Rate (see Appendix E, Table E2).

Second, we assess the ability of the model to match the Coibion-Gorodnichenko coefficients, at
the individual and consensus levels. We calculate the CG coefficients in the model using the estimated (8,
o.) for each series, together with the actual process and its parameters, to generate model-based forecasts
associated with each forecaster and each time period where the forecaster is available; we then run CG
regressions using these model-based forecasts, and compare the results with CG regressions using survey
data. Figure 6 shows the individual CG coefficients from the estimated model and those from the survey

data. The correlation between the two sets of coefficients is high, about 0.83 (p-value of 0.00).

Figure 6. Individual CG Coefficients using Estimated 8 and o,
The figure plots individual CG coefficients in the baseline specification of the model (with estimated 6 and ¢.) in the

y-axis, and CG coefficients in the survey data in the x-axis. Results for each series are estimated using the AR(1) or
AR(2) version of the diagnostic expectations model based on the properties of the actuals according to Table 6.
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For consensus CG coefficients, we also find a positive correlation between estimates from the
model and in the survey data, but the correlation is lower than in the individual case (0.30 vs 0.83, see
Appendix E Figure E1). The lower correlation reflects the fact that, unlike individual level coefficients,
consensus coefficients are highly dependent on the magnitude of measurement noise o ., which is less

precisely estimated as shown in Table 8.

6.3 Sensitivity Analysis and Overconfidence

We next assess the robustness of our results to alternative assumptions. We complement our
baseline specification above with two other specifications: we first restrict all series to follow an AR(1)
process, keeping the assumption of normal shocks; we then allow the fundamental shocks to be non-
normal, as macro series are known to have fat tails. Table E3 reports the estimated target moments, Table
E4 reports the 8, estimates, and Table E5 assesses model performance in terms of reproducing individual
and consensus CG coefficients.

We find a very high correlation between the distortions 6, estimated under the different
specifications, between 91% and 96%, and the average estimates for 8 in the alternative specifications are
also very similar (0.6 in the baseline specification, 0.81 for AR(1) and 0.74 for AR(1) with fat tails and
particle filtering, see Table E4 for details). Our baseline estimates are robust to these alternative
specifications. In terms of model performance, the baseline specification (which allows for AR(2)) seems

to do a better job than the other ones. It achieves a lower value of the loss function (half as large as the next
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best performer for the median series, based on moments shown in Table E2 and E3), and it explains a larger
share of variation in individual CG coefficients (see Table E5, panel A).
We also assess the ability of the model to capture observed heterogeneity in distortions across

different analysts. To do so, we estimate distortion and noise coefficients (G,i,a;',k) analyst by analyst.
Table E6 in Appendix E reports the median estimate of . and a;',k across forecasters for each series, which

confirms our previous results. The estimated 6} are also generally positively correlated across series: Table
E7 shows that individuals who over-react more in forecasting certain series also tend to over-react more in
forecasting other series.?

Finally, we compare the performance of the diagnostic expectations model with the performance
of a model of overconfidence in which analysts perceive their noisy signals to be more informative than in
reality. To this end, we repeat the previous simulation procedures, but estimate parameters (ay, o¢ ),
where o\ is the actual volatility of the noise but forecasters perceive it to be a0, (see Appendix E.3).
In other words, a;, < 1 captures the potential under-estimation of noise, which would inflate the Kalman
gain. To facilitate comparison, we focus on AR(1) fundamentals, for which both overconfidence and
diagnostic expectations can be collapsed into a single Kalman gain. Table E8 shows that the diagnostic
expectations model performs generally better than overconfidence. For 14 out of 20 series, it achieves a
smaller loss than the overconfidence model, and its loss is about a half of the latter’s loss for the median
series. This is mainly due to the fact that the overconfidence model bounds the extent of over-reaction by
forcing the Kalman gain to be at most one. The diagnostic Kalman gain is instead allowed to exceed one,
which is supported by the data for seven series, see Figure E2.

Overall, our structural estimation exercise yields three results. First, diagnostic distortions in
professional forecasters’ expectations are sizable and in the ballpark of previous estimates obtained in
different contexts. Representativeness is thus a promising candidate for a robust psychological distortion
in expectation formation. Second, the estimated distortions are quite robust to alternative assumptions.

Third, the diagnostic expectation model does a good job at capturing variation in the data.

25 Here we take heterogeneity of (6, aei‘k) as given, but it would be interesting in future work to explore its sources.
40



7. Conclusion

Using data from both the Blue Chip Survey and the Survey of Professional Forecasters, we have
investigated how professional forecasters react to information using the methodology of Coibion and
Gorodnichenko (2015). We have found that while under-reaction is the norm for the consensus forecast,
as previously shown by CG (2015), for individual forecasters the norm is over-reaction to information, in
the sense of forecast errors being (negatively) predictable from forecast revisions. We showed that
individual-level overreaction is robust to a wide range of possible confounds. We then applied a
psychologically founded model of belief formation, diagnostic expectations, to these data. We showed
that diagnostic expectations generate over-reaction in individual forecasts, but if different forecasters see
different information and/or use different models, the consensus forecast may exhibit under-reaction. The

model thus reconciles these seemingly opposite patterns in the data.

The kernel of truth property of diagnostic expectations yields several additional predictions as to
when we would see over-reaction in forecasts, and by how much, as a function of the series’ underlying
dynamics. These predictions are supported in the data, consistent with forecasters being forward looking
and their judgment distorted by representativeness. Thus, individual forecasts are better described by
diagnostic expectations than by mechanical models of extrapolation, such as adaptive expectations, which
have been criticized by Lucas (1976) precisely on the grounds that people are assumed to be entirely
backward looking. In fact, diagnostic expectations can serve as a micro-foundation of extrapolation, and

the latter may reflect the former at a crude level.

Our approach enables us to document and reconcile distinctive features of expectations data. At
the most basic level, it reconciles individual and consensus forecast patterns. Perhaps more subtly,
diagnostic expectations when extended to the AR(2) context enable us to model expectations for hump
shaped series. In this setting, diagnostic expectations capture some features of Natural Expectations (Fuster
et al. 2010), such as exaggeration of short term persistence, but also yield over-reaction to long term
reversal, which seems to be a feature of the data. Finally, unlike overconfidence, diagnostic expectations

can generate effective Kalman gains above 1, which also seem to describe several series.
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The ubiquity of over-reaction in individual macroeconomic forecasts helps reconcile several
findings in finance and macroeconomics. Financial economics has put together a lot of evidence of over-
reaction in individual markets, such as housing, credit, and equities. It would be puzzling if
macroeconomic forecasts were the opposite, but as we show this is likely to be a consequence of
aggregation. The extent of individual over-reaction estimated from the data is sizable. In our estimates of
the diagnostic parameter, the predictable component of individual forecast errors entailed by over-reaction

is comparable in magnitude to the rational response to news.

Of course, predictable forecast errors can also be influenced by model mis-specification. In fact,
representativeness and mis-specification may work in tandem: in a complex world in which forecasters
consider different models, data that is representative of a given model may induce the forecaster to attach
excessive weight to it, as in Barberis, Shleifer and Vishny (1998). In this sense, learning may help explain
the persistence of representativeness-induced errors, and this may be a way to understand the variation in

the strength 6 of diagnostic distortions across series.

We leave at least two important problems to future work. We have stressed over-reaction in
individual time series, which seems to be the norm in our data, but other studies have also found rigidity
in expectations (e.g., Bouchaud, Kruger, Landier, and Thesmar 2017). In this paper we have combined
over-reaction with aggregate rigidity by incorporating representativeness in a noisy information setting.
The reconciliation of anchoring with over-reaction to information based on psychological foundations

remains an open problem.

We have not addressed the basic question: what are the macroeconomic consequences of diagnostic
expectations? One might think at first sight that what matters for aggregate outcomes is consensus
expectations, so all one needs to know is that consensus expectations under-react. This view misses two
critical points. First, over-reaction by individual forecasters can influence aggregate outcomes by
magnifying dispersion in beliefs. Belief heterogeneity plays an important role in several macroeconomic
and finance models. The ability of optimists to lever up may create asset price bubbles and financial
fragility (Geanakoplos 2010), or misallocation across firms or sectors. Second, at key junctures news may

be correlated across different agents, for instance when major innovations are introduced, or when repeated
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news in the same direction provide highly informative evidence of large and persistent changes. In these
cases, individual over-reaction will entail aggregate over-reaction, as shown by our analysis of public
signals. Such aggregate over-reaction has been documented in the cross section, where extremely positive
consensus forecasts of long term earnings growth of fast growing firms predict poor returns and revisions
of expectations going forward (BGLS 2017). Aggregate over-reaction is also found in the time series,
where buoyant credit markets and extreme optimism about firms’ performance predict slowdowns in
investment and GDP growth (Greenwood and Hanson 2013, Lopez-Salido et al. 2017, Gulen et al. 2018).
Whether diagnostic expectations can offer a coherent and micro-founded theory for macroeconomic

phenomena such as investment booms or business cycles is an important open question for future work.
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Appendix: for online publication only

A. Proofs

Proposition 1. The data generating process is x; = px;_; + u;, where u,~N(0,02) i.i.d. over time.
Forecaster i observes a noisy signal sf = x, + €}, where e.~N'(0,02) is i.i.d. analyst specific noise.

Rational expectations are obtained iteratively:

f( |xt)

(xt|5t) f(xt|5t 1) f( t)

The rational estimate thus follows f (x.|S{)~ ]\f( t'lt, Zt't 108 )Wlth
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where X, is the variance of the prior f(x;|S¢_;). The variance of f(x;,1]S}) is:
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Beliefs about the current state are then described by f(x;|Sf)~N (xglt,;%), where:
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Let us now construct diagnostic expectations. For s = xtlt 1 We have xtlt xtlt 1= pxt"_llt_l, so that
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fxelStoq U {xgeg ))~N (pxt_m_l,ﬁ). In light of the definition of diagnostic expectations in
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Equation (7), we have that the diagnostic distribution £ (x,|S}) fulfils:
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i0 Zo?

Given the normalization [ £9(x|S{)dx =1, we find f®(x.|S{)~N (’%wﬁ) with x/? = xf), +

0(xfj; — xi;t—1). Using the definition of the Kalman filter x/,, we can write:

, . > . .
0 _
xélt = X1 + (1 + 9)E s (st - x§|t_1). [
€

Proposition 2. Denote by K = /(2 + ¢2) the Kalman gain. The rational consensus estimate for the

current state is then equal to [ xf, di = xy¢ = Xye—1 + K(xp — Xge-1).

The consensus estimation error under rationality is then equal to x; — x¢; = %("tlt — X¢|¢-1). The
diagnostic filter for an individual analyst is equal to x;7 = xf, + 6 (xf;, — x},—,), Which implies a

consensus equation xﬁt = X¢j¢ + 0(x¢)e — X¢je—1)- We thus have:

1-K
Xt — Xfu = (T - 9) (xt|t - xt|t—1)-

Note, in addition, that the diagnostic consensus forecast revision is equal to:
xﬁt - xt6|t—1 =1+ 9)(xt|t - xt|t—1) - 6’P(xt—1|t—1 - xt—1|t—2)-
Therefore, the consensus CG coefficient is given by:

6 6 6
_ COU(xt+h ~ Xt+n|tr Xt+h|t — xt+h|t—1)

- 0 0
var(xt+h|t - xt+h|t—1)

_ (1 - K 9) . cov[xm — Xgje-1, (1 + 9)(xt|t - xt|t—1) - 6’P(xt—1|t—1 - xt—1|t—2)]
var[(l + 9)(xt|t - xtlt—l) - ep(xt—llt—l - xt—1|t—2)]

Where we have that:

cov[xm — Xt|t-1» 1+ 9)(xt|t - xt|t—1) - gp(xt—1|t—1 - xt—1|t—2)]

=1+ 9)var(xt|t - xt|t—1) - QPCOV(xqt — Xt|t—1 Xt—1|t-1 — xt—1|t—2)v

and

var[(l + 9)(xt|t - xt|t—1) - Qp(xt—1|t—1 - xt—1|t—2)]
=[(1+ 6)* + 6%p*lvar(xy — X¢je-1)

—20(1+ H)pcov(xm — Xt|t-1 Xt-1|t-1 — xt—1|t—2)-
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To compute the covariance between adjacent rational revisions, note that x| = x¢¢—1 + K(x¢ — X¢j¢-1)

and xt|t_1 = xtlt_z + K(pxt_l - xtlt_z) |mp|y that

Xeje = Xeje—1 = (1 = K)p(Xpo1je—1 = Xe—qje—2) + Kug.

As a result,
Cov(xt|t = Xt|t-1 Xe-1|t-1 — xt—1|t—2) =(1-K)p- var(xqt - xt|t—1)
Therefore:
ﬁ—(ﬂ— ) (1+6) —6p2(1 —K)
“\ K [(1+6)%+62p2]—26(1+6)p2(1—K)

which is positive if and only if 1 — K > K, namely, 8 < ?/Z.

Consider individual level forecasts. The coefficient (at the individual level) of regressing forecast

error on forecast revision is equal to:

o i _ _if
gy = cov(xt_m ~ Xtanjor Xe+n)t ~ Xe+nje-1)
- i,0 i,0 a
var (xt+h|t o xt+h|t—1)

6 6 _ _if
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0,0 0.0
var (xtlt xt|t—1)

where x;? —xpif_ = (1 + 0)(xhe — xbjp—1) — 0p(xi_1j0—1 — x}_1r—,). Because at the individual level

cov(xfj; — Xfje—1,Xfje—1 — Xfjt—2) = 0, we immediately have that:

6(1+6)
(1+6)2+p26%

pY =

Corollary 1. Denote by p; the precision of the private signal, by p the precision of the public signal, by p
the precision of the lagged rational forecast x,flt_l. The diagnostic filter at time ¢ is:

. . Di
x;'ft’ = X1 + (1 + e)p. :
l

L p
— L (si=xi,_ )+ +6)
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The precision pf of the forecast depends on the sum of the precisions (p; + p) and hence stays constant as

we vary the relative precision of the public versus private signal.
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Denote the Kalman gains as K; = Pi__and K, = P_andK = K; + K,. The consensus Kalman
pitptpys pitp+pyr

filter can then be written as x; = x¢¢—1 + K(xt - xt|t_1) + K,v;, while the diagnostic filter can be

written as xflt =X + B(xm — xt|t_1). The consensus coefficient is then:

0 0 0 2h 0 0 0
COU(XH_h — Xt+h|or Xt+n|t — xt+h|t—1) _p cov(xt — Xelo Xe|e — xt|t—1)

Uar(xt?+h|t - xte+h|t—1) - thvar(xzt - xlﬁt—l)

Consider first the numerator. Denote by FR; = x;; — x|, the revision of the rational forecast of x,

between t and t — 1. Then:

%8 = x8_y = (1+ 6)FR, — 6pFR,_;.

The dlﬁel’ence between xtlt = xt|t_1 + K(xt - xt|t_1) + szt and xt|t_1 = xtlt_z + K(pxt_l -

Xtjt—2) + Kapvy_4 reads:
FR; = (1 = K)pFRy_1 + Ku; + K, (v — pvp_q),
which in turn implies:
cov(FR,, FR,_,) = (1 — K)p - var(FR,) — pK30?2. (4.1)
It is also immediate to find that:

K2af +[(1 + p?) = 2p*(1 = K)]K3 0}

var(FRy) = 1-[(1-K)p)?

The numerator of the CG coefficient is then equal to:

o .0 0 1-K Kz 2
cov(x, — X¢|er Xe|e — xm_l) = (T - 9) cov[FR;, (1 + 0)FR, — 6pFR,_] — 7(1 + 0)K,0;
1-K 1+ 0)Kfo?
= (T - 9) [[1 +6 —0p%(1 — K)var(FR,) + 9,021(220,,2] - % (A.2)

The denominator of the CG coefficient equals:

var(xﬁt - xt9|t_1) =var[(1 + 0)FR; — OpFR;_4]

=[(1+6)? + 6%p?lvar(FR,) — 20(1 + 8)pcov(FR;, FR;_;)

which implies that:
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e = x4 20(1+6
F((irixgl;z +x;|; 1% i ;)2':_ ;/2) ey cov(FR;, FR,_;) = var(FRy). (A4.3)

Putting (A. 3) together with (A. 1) one obtains:

cov(FR:, FR;_1) =

3 1- K)pvar(xf't — xf't_l)
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Using Equations (A. 2) and (4. 4) we find:
cov(x, — xgt,xgt - x,ﬂt_l)
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where B, is the consensus coefficient obtained when the public signal is fully uninformative, namely o2

oo and thus K, — 0. On the other hand using equation (A.3) this can be rewritten as:

[(1+46)%+62%p2 —26(1 + 0)(1 — K)p?]K20?

var(xj, — xf_1) = =K + AKZ02,

where A is a suitable positive coefficient. The CG coefficient is then equal to:
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For given total informativeness K, the above expression falls in the precision of the public signal, namely
as KZ grows, if and only if:

1-K 2(1+6)?

|[9p2( K _9)((1+9)2+92p2_1)+(1+9)]|
| 200 —K)(1 +6)p?

| T (1+6)2+62p2 |
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A sufficient condition for this to hold is that (% - 9) > 0, which is equivalent to 8, > 0.

Proof of Proposition 3

The diagnostic expectation at time t about t + 3 is given by:
TR .
xé+3|t = xé+3|t + 9FR§+3|tr

where FR, 5, = (x}y3c — X}131—1) The diagnostic forecast revision FRy(5, = (x;{3c — X¢s/c_1) IS

therefore equal to:

0 .
FR{{3 = (1+ 0)FRE 31 — OFRE, 31

The diagnostic forecast error FEy(y , = X¢43 — X/(), is equal to:
FEtl+3|t Ug+3 — 9FR11;+3|t'
where u;, 5 is white noise. We then have:
cov(FE{ 30 FRYys1) = —0cov(FREy sy, (1 + 0)FRL 5, — OFRL 5,_;)
= —0(1 + 0)var(FR},5)
var(FRiﬂlt) = (1 + 6)*var(FR{,5),) + 0%var(FR[,3;_,)-
As a result, the relationship between forecast error and forecast revision is equal to:

0(1+0)
FEX0. = : FRY. +v
t+3|t — var(FR2+3|t—1) t+3|t t+3

(1+6)2 + 92 :
var(FRy3.)

By plugging Equation (13) in the text, we obtain:

p260(1+ 0) p16(1+ 6)
i FRt+2|t i
var(FRtJfglt_l) Uar(FRt—fj3|t—1)
var(FRt,3.) var(FRy,3).)

P i
FE¢ 3 = FRiy1)¢ + Vets,

(1+6)2 +6? (1+6)2 + 62
If FR! +2)¢ and FR} +1)¢ are not collinear, the above equation can be estimated and it satisfies the prediction
of Proposition 3. To conclude the proof, we therefore need to prove non-collinearity. Recall that the state

follows AR(2) dynamics:
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Xep1 = AX¢ + bxe_q + Upyq,

At time t, the agent observes two signals, one about the current state, sti =x; + e{l, and one about the past
state z{ = st_y; = x,_, + v{. Signals e and v} are normal with precision € and v. At time t, the agent

forms estimates about x; and x,_,;. He then combines them to forecast about x;,, k = 1.

To ease notation we drop superscripts i from the noise and the signals and subscript ¢t from the signals.

Conditional on the signals, the density of the current state f(x;, x;_1|S¢, z¢) satisfies:

2 2
—Inf < (1 — @?)(s¢ — x)* + v(1 — D) (2 — x¢-1)* + (x — xt|t—1) p+ (xt—l - xt—1|t—1) q

- 2<p\/pq(xt - xt|t—1)(xt—1 - xt—1|t—1)
where p is the precision of x;, q is the precision of x;_;, and ¢ is their correlation.

Maximizing the likelihood f with respect to x; and x,_, yields the first order conditions:
—2e(1 - fpz)(st - xtlt) + Zp(xtlt - xtlt—l) — 2¢, PQ(xt—ut - xt—1|t—1) =0
—2v(1 — ¢?)(z, — xt—llt) +2q(xp—1)e — xt—llt—l) — 2¢, PQ(xt|t — X¢e-1) =0

which identify the conditional estimates (the Kalman filter):

€
1- §02)55t + Xge-1 t (p\/gFRt—ﬂt

1—p2)S+1
A -e%5

)

Xt|t =

v
(1-9¢% g% + Xt qpe-1 t ‘P\/g FRy ¢

1-9p) 241
( qo)q

)

Xt—1|t =

Where FRy; is the forecast revision at ¢ for x,. This further implies that:

€
1- fpz)g(st — X¢e-1) + (p\/gFRt—llt

1-9)<4+1
( <p)p

FRtlt =

1]

v
1- (pz)a(zt — Xe—1)e-1) + fp\lgFth

FRi_1;t =
t-1|t (1—<P2)g+1

These equations imply that, provided ¢ <1, the forecast revisions FR;, and FR,_ ), are linearly

independent combinations of the news s, — x¢;—; and z; — x;_q}¢—1°
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[(1— %)= +1] (s¢ — Xt|t— 1)+¢J:v(zt xt—1|t—1)

[(1—(p2)6+1]5+6+1

FRtIt —_—

)

[(1 - <P2)§ + 1] L (Zt - xt—1|t—1) + <P\/I €(St - xt|t—1)

[(1 0?)< +1] +2 +1

FRt—1|t =

Therefore, FRm and FR}_ 1)¢ are not collinear. Since FRt+1|t = aFRm + bFRL_ 1j¢ and FR};+2|t = (a®+

b)FRt|t + abFRL_ 1jt» We conclude that FRHth and FRt+1|t are not collinear.

B. Variable Definitions

For each variable, we report the source survey, the survey time, the survey question, and the definitions

of forecast variable, revision variable, and actuals.

1. NGDP_SPF

e  Variable: Nominal GDP. Source: SPF.
o  Time: Around the 3rd week of the middle month in the quarter.
e Question: The level of nominal GDP in the current quarter and the next 4 quarters.

e  Forecast: Nominal GDP growth from end of quarter t-1 to end of quarter t+3: Fixtss _ 4 , Where t

Xt-1

is the quarter of forecast and x is the level of GDP in a given quarter; x;_, uses the initial release of

actual value in quarter t-1, which is available by the time of the forecast in quarter t.

Frx Fr_1x
e Revision; /=3 — L1743
t 1 Fr_1X¢—1

e Actual: 22 — 1, using real time macro data: initial release of x,, 5 published in quarter t+4 and

Xt—1

initial release of x;_, published in quarter t.
2. RGDP_SPF

e Variable: Real GDP. Source: SPF.
e Time: Around the 3rd week of the middle month in the quarter.
e Question: The level of real GDP in the current quarter and the next 4 quarters.

e  Forecast: Real GDP growth from end of quarter t-1 to end of quarter t+3: Fxss _ 4 , Where t is the

t_
quarter of forecast and x is the level of GDP in a given quarter; x;_, uses the initial release of actual
value in quarter t-1, which is available by the time of the forecast in quarter t.
o  Revision; ftXtsz _ fimaXess
Xt—1 Feo1Xt—q’
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e Actual: X2 — 1, using real time macro data: initial realease of x;, 3 published in quarter t+4 and

Xt—-1

initial release of x;_, published in quarter t.
RGDP_BC

e Variable: Real GDP. Source: Blue Chip.

e Time: End of the middle month in the quarter/beginning of the last month in the quarter.

e  Question: Real GDP growth (annualized rate) in the current quarter and the next 4 to 5 quarters.

e  Forecast: Real GDP growth from end of quarter t-1 to end of quarter t+3: F;(z; + Z¢4q + Zpyo +
Z:43) /4, where t is the quarter of forecast and z; is the annualized quarterly GDP growth in quarter t.

Fe(zt+2ze11+Ze12+2e43)  Feo1(Ze+Zeg1+2e42 +Zt+3)
4 4

e Actual: =2 — 1, using real time macro data: initial realease of x, published in quarter t+4 and
Xt—1

initial release of x;_, published in quarter t.

e Revision:

PGDP_SPF

e  Variable: GDP price deflator. Source: SPF.
e  Time: Around the 3rd week of the middle month in the quarter.
e  Question: The level of GDP price deflator in the current quarter and the next 4 quarters.

o  Forecast: GDP price deflator inflation from end of quarter t-1 to end of quarter t+3: f¥ees _ 4 :
Xt—1

where t is the quarter of forecast and x is the level of GDP price deflator in a given quarter; x;_, uses
the initial release of actual value in quarter t-1, which is available by the time of the forecast in quarter
t.

e Revision: fXt#s _ FroiXess

xt 1 Feo1Xt—q
e Actual: 22 — 1, using real time macro data: initial realease of x5 published in quarter t+4 and

Xt—1

initial release of x;_, published in quarter t.
RCONSUM_SPF

e  Variable: Real consumption. Source: SPF.
e  Time: Around the 3rd week of the middle month in the quarter.
e Question: The level of real consumption in the current quarter and the next 4 quarters.

e  Forecast: Growth of real consumption from end of quarter t-1 to end of quarter t+3: fres _ 4 :
Xt—1

where t is the quarter of forecast and x is the level of real consumption in a given quarter; x;_, uses the
initial release of actual value in quarter t-1, which is available by the time of the forecast in quarter t.

Frx Fr_q1x
e  Revision; -tXt#3 _ ft-a¥t+3
t 1 Fr_1X¢—1

e Actual: X2 1, using real time macro data: initial realease of x;, 3 published in quarter t+4 and

Xt—-1

initial release of x;_, published in quarter t.
RNRESIN_SPF
e Variable: Real non-residential investment. Source: SPF.

e Time: Around the 3rd week of the middle month in the quarter.
e  Question: The level of real non-residential investment in the current quarter and the next 4 quarters.

55



e  Forecast: Growth of real non-residential investment from end of quarter t-1 to end of quarter t+3:
Fexees 4 , Where t is the quarter of forecast and x is the level of real non-residential investment in a

Xt-1
given quarter; x;_, uses the initial release of actual value in quarter t-1, which is available by the time

of the forecast in quarter t.
FiXtys  Fr_1Xt43

e Revision: —* :
Xt—1 Fr_1X¢—1
e Actual: % — 1, using real time macro data: initial realease of x;, 5 published in quarter t+4 and
t—-1

initial release of x;_, published in quarter t.
RRESIN_SPF

e Variable: Real residential investment. Source: SPF.

e  Time: Around the 3rd week of the middle month in the quarter.

e Question: The level of real residential investment in the current quarter and the next 4 quarters.

e  Forecast: Growth of real residential investment from end of quarter t-1 to end of quarter t+3:

% — 1, where t is the quarter of forecast and x is the level of real residential investment in a given
t—-1

quarter; x;_, uses the initial release of actual value in quarter t-1, which is available by the time of the

forecast in quarter t.
FiXtys  Fr_1Xt43

e Revision: —= .
Xg—1 Fe1Xt—1
e Actual: % — 1, using real time macro data: initial realease of x;, 5 published in quarter t+4 and
t—-1

initial release of x;_, published in quarter t.
RGF_SPF

e  Variable: Real federal government consumption. Source: SPF.

e  Time: Around the 3rd week of the middle month in the quarter.

e  Question: The level of real federal government consumption in the current quarter and the next 4
quarters.

e  Forecast: Growth of real federal government consumption from end of quarter t-1 to end of quarter

t+3: %— 1, where t is the quarter of forecast and x is the level of real federal government
t—1

consumption in a given quarter; x;_, uses the initial release of actual value in quarter t-1, which is

available by the time of the forecast in quarter t.

.. F, Fe_
° Revision: ftXe+3 _ Fe-1Xe+3

Xt—1 Feo1Xt—q’
e Actual: % — 1, using real time macro data: initial realease of x;, 5 published in quarter t+4 and
t—-1

initial release of x;_, published in quarter t.
RGSL_SPF

e Variable: Real state and local government consumption. Source: SPF.

o Time: Around the 3rd week of the middle month in the quarter.

e Question: The level of real state and local government consumption in the current quarter and the
next 4 quarters.

e  Forecast: Growth of real state and local government consumption from end of quarter t-1 to end of

quarter t+3: F¥tes _ q , Where t is the quarter of forecast and x is the level of real state and local

Xt-1
government consumption in a given quarter; x,_; uses the initial release of actual value in quarter t-1,
which is available by the time of the forecast in quarter t.
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10.

11.

12.

13.

14.

FiXtys  Fr_1Xt43

e Revision: —== :
Xt—1 Fro1X¢—1
e Actual: % — 1, using real time macro data: initial realease of x;, 5 published in quarter t+4 and
t—-1

initial release of x;_, published in quarter t.
UNEMP_SPF

e  Variable: Unemployment rate. Source: SPF.

o Time: Around the 3rd week of the middle month in the quarter.

e  Question: The level of average unemployment rate in the current quarter and the next 4 quarters.
e  Forecast: Average quarterly unemployment rate in quarter t+3: Fyx;,3, where t is the quarter of
forecast and x is the level of unemployment rate in a given quarter.

o  Revision: Fixpp3 — Fr_qXty3.

e Actual: x;, 3, using real time macro data: initial realease of x,, 3 published in quarter t+4.

HOUSING_SPF

e  Variable: Housing starts. Source: SPF.
o Time: Around the 3rd week of the middle month in the quarter.

e  Question: The level of housing starts in the current quarter and the next 4 quarters.

e  Forecast: Growth of housing starts from quarter t-1 to quarter t+3: % — 1, where tis the quarter
t—-1

of forecast and x is the level of housing starts in a given quarter; x;_, uses the initial release of actual

value in quarter t-1, which is available by the time of the forecast in quarter t.

.. F, Fr_
° Revision: ftXe+3 _ Ft-1Xe43

Xt—1 Fe 1%
e Actual: % — 1, using real time macro data: initial realease of x;, s published in quarter t+4 and
t—-1

initial release of x;_, published in quarter t.
FF_BC

e  Variable: Federal funds rate. Source: SPF.

e  Time: Around the 3rd week of the middle month in the quarter.

e  Question: The level of average federal funds rate in the current quarter and the next 4 quarters.

e  Forecast: Average quarterly 3-month federal funds rate in quarter t+3: Fyx;, 3, where tis the quarter
of forecast and x is the level of federal funds rate in a given quarter.

o Revision: Fyx;y3 — Fr_1X 43

o Actual: x;y3.

TB3M_SPF
e  Variable: 3-month Treasury rate. Source: SPF.
e Time: Around the 3rd week of the middle month in the quarter.
e  Question: The level of average 3-month Treasury rate in the current quarter and next 4 quarters.
e  Forecast: Average quarterly 3-month Treasury rate in quarter t+3: Fyx,,3, Where t is the quarter of
forecast and x is the level of 3-month Treasury rate in a given quarter.
o Revision: Fyx; 3 — Fr_1X43.
o Actual: x;y3.

TB3M_BC
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15.

16.

17.

18.

Variable: 3-month Treasury rate. Source: Blue Chip.

Time: Around the 3rd week of the middle month in the quarter.

Question: The level of average 3-month Treasury rate in the current quarter and next 4 quarters.
Forecast: Average quarterly 3-month Treasury rate in quarter t+3: Fyx; 3, Where t is the quarter of

forecast and x is the level of 3-month Treasury rate in a given quarter.

ReVISIon tht+3 - Ft_l.xt+3.
Actual: x; 3.

TN5Y_BC

Variable: 5-year Treasury rate. Source: Blue Chip.

Time: Around the 3rd week of the middle month in the quarter.

Question: The level of average 5-year Treasury rate in the current quarter and the next 4 quarters.
Forecast: Average quarterly 5-year Treasury rate in quarter t+3: F,x;,3, Where t is the quarter of

forecast and x is the level of 5-year Treasury rate in a given quarter.

REVISIOH tht+3 - Ft_lxt+3.
Actual: x;4 3.

TN10Y_SPF

Variable: 10-year Treasury rate. Source: SPF.

Time: Around the 3rd week of the middle month in the quarter.

Question: The level of average 10-year Treasury rate in the current quarter and next 4 quarters.
Forecast: Average quarterly 10-year Treasury rate in quarter t+3: F.x;, 3, where t is the quarter of

forecast and x is the level of 10-year Treasury rate in a given quarter.

REVISIOH tht+3 - Ft_lxt+3.
Actual: x;43.

TN10Y_BC

Variable: 10-year Treasury rate. Source: Blue Chip.

Time: Around the 3rd week of the middle month in the quarter.

Question: The level of average 10-year Treasury rate in the current quarter and next 4 quarters.
Forecast: Average quarterly 10-year Treasury rate in quarter t+3: Fx;, 3, where t is the quarter of

forecast and x is the level of 10-year Treasury rate in a given quarter.

REVISIOH tht+3 - Ft_lxt+3.
Actual: x4 3.

AAA_SPF

Variable: AAA corporate bond rate. Source: SPF.

Time: Around the 3rd week of the middle month in the quarter.

Question: The level of average AAA corporate bond rate in the current quarter and next 4 quarters.
Forecast: Average quarterly AAA corporate bond rate in quarter t+3: Fyx;,3, Where t is the quarter

of forecast and x is the level of AAA corporate bond rate in a given quarter.

REVISIOH tht+3 - Ft_lxt+3.
Actual: x; 3.
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19.

AAA BC

Variable: AAA corporate bond rate. Source: Blue Chip.

Time: Around the 3rd week of the middle month in the quarter.

Question: The level of average AAA corporate bond rate in the current quarter and next 4 quarters.
Forecast: Average quarterly AAA corporate bond rate in quarter t+3: Fyx,, 3, Where t is the quarter

of forecast and x is the level of AAA corporate bond rate in a given quarter.

20.

Revision: Fix;y 3 — Fr_1Xp43.
Actual: x4 3.

BAA BC

Variable: BAA corporate bond rate. Source: Blue Chip.

Time: Around the 3rd week of the middle month in the quarter.

Question: The level of average BAA corporate bond rate in the current quarter and next 4 quarters.
Forecast: Average quarterly BAA corporate bond rate in quarter t+3: F;x;, 3, Where t is the quarter

of forecast and x is the level of BAA corporate bond rate in a given quarter.

Revision: Fix¢y3 — Fr_q1Xty3-
Actual: x;4 3.
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C. Robustness Checks

Table C1. Consensus CG Regressions

Kernel Bandwidth Selection for Newey-West Standard Errors

This table shows the standard errors and t-statistics (in brackets) in consensus time series CG regressions, for Newey-
West standard errors with different lag lengths (O to 8).

Variable Kernel Lag Length I (s.e. and [t])
B I=0 =1 1=2 1=3 1=4 I=5 I=6 =7 =8
Nominal GDP (SPF) 0.48 0.24 0.27 0.29 0.30 0.29 0.29 0.28 0.27 0.26
[1.99] [1.79] [1.66] [1.62] [1.62] [1.65] [1.72] [1.79] [1.87]
Real GDP (SPF) 0.45 0.27 0.26 0.27 0.28 0.29 0.29 0.29 0.29 0.29
[1.70] [1.72] [1.67] [1.61] [1.59] [1.57] [1.56] [1.56] [1.57]
Real GDP (BC) 0.59 0.36 0.39 0.39 0.38 0.36 0.36 0.36 0.36 0.37
[1.65] [1.51] [1.49] [1.56] [1.61] [1.64] [1.63] [1.61] [1.59]
GDP Price Index Inflation (SPF) 121 0.25 0.31 0.35 0.39 0.41 0.43 0.44 0.44 0.44
[4.87] [3.90] [3.42] [3.12] [2.95] [2.84] [2.78] [2.74] [2.73]
Real Consumption (SPF) 0.18 0.24 0.26 0.28 0.29 0.29 0.30 0.31 0.31 0.31
[0.78] [0.71] [0.66] [0.64] [0.62] [0.61] [0.60] [0.59] [0.58]
Real Non-Residential Investment (SPF) 0.93 0.31 0.34 0.34 0.32 0.31 0.30 0.30 0.29 0.29
[2.95] [2.75] [2.74] [2.85] [2.96] [3.05] [3.13] [3.17] [3.21]
Real Residential Investment (SPF) 1.26 0.37 0.40 0.37 0.34 0.33 0.34 0.33 0.33 0.32
[3.39] [3.12] [343] [3.74] [3.78] [3.75] [3.78] [3.85] [3.88]
Real Federal Government -0.44 0.27 0.26 0.25 0.24 0.24 0.23 0.24 0.24 0.25
Consumption (SPF) [[1.67] [-1.72] [-1.76] [-1.82] [-1.88] [-1.89] [-1.86] [-1.82] [-1.80]
Real Federal Government -0.16 0.17 0.20 0.21 0.22 0.22 0.23 0.22 0.22 0.22
Consumption (SPF) [-0.94] [-0.81] [-0.77] [-0.75] [-0.73] [-0.72] [-0.73] [-0.73] [-0.73]
Housing Start (SPF) 0.45 0.28 0.30 0.32 0.34 0.34 0.34 0.34 0.34 0.34
[1.61] [1.50] [1.41] [1.35] [1.33] [1.32] [1.33] [1.34] [1.35]
Unemployment (SPF) 0.82 0.18 0.21 0.22 0.22 0.22 0.21 0.21 0.21 0.21
[451] [3.91] [3.72]1 [3.71] [3.74] [3.82] [3.89] [3.92] [3.96]
Fed Funds Rate (BC) 0.61 0.19 0.22 0.22 0.21 0.20 0.19 0.18 0.18 0.18
[3.22] [2.79] [2.80] [2.94] [3.09] [3.21] [3.27] [3.35] [3.40]
Fed Funds Rate (BC) 0.71 0.21 0.22 0.22 0.20 0.17 0.16 0.15 0.16 0.15
[3.34] [3.16] [3.23] [3.58] [4.07] [454] [459] [457] [4.67]
3M Treasury Rate (BC) 0.67 0.18 0.20 0.20 0.18 0.16 0.15 0.14 0.14 0.13
[3.62] [3.28] [3.37] [3.68] [4.04] [4.38] [4.63] [4.88] [5.10]
5Y Treasury Rate (BC) 0.05 0.21 0.22 0.21 0.17 0.15 0.14 0.13 0.12 0.11
[0.22] [0.20] [0.22] [0.26] [0.31] [0.34] [0.36] [0.39] [0.41]
10Y Treasury Rate (SPF) -0.01 0.24 0.25 0.23 0.19 0.17 0.16 0.15 0.14 0.14
[-0.04] [-0.04] [-0.04] [-0.05] [-0.06] [-0.06] [-0.06] [-0.07] [-0.07]
10Y Treasury Rate (BC) -0.06 0.22 0.23 0.20 0.17 0.15 0.14 0.14 0.13 0.12
[0.27] [-0.26] [-0.29 [-0.35] [-0.39] [-0.41] [-0.43] [-0.46] [-0.48]
AAA Corporate Bond Rate (SPF) -0.01 0.23 0.24 0.23 0.23 0.22 0.23 0.23 0.23 0.23
[-0.03] [-0.03] [-0.03] [-0.04] [-0.04] [-0.03] [-0.03] [-0.03] [-0.04]
AAA Corporate Bond Rate (BC) 0.21 0.18 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
[1.14] [1.04] [1.04] [1.05] [1.05] [1.05] [1.04] [1.06] [1.06]
BAA Corporate Bond Rate (BC) -0.14 0.26 0.22 0.22 0.19 0.17 0.16 0.16 0.15 0.15
[-0.53] [-0.65] [-0.66] [-0.75] [-0.81] [-0.87] [-0.90] [-0.92] [-0.94]
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Table C2. Forecaster-by-Forecaster CG Regressions

Column “Pooled” shows the pooled panel CG regressions at the individual level (same as Table 3 column (4)).
Column “By Forecaster (Median)” shows the median coefficient from forecaster-by-forecaster CG regressions;
column “By Forecaster (%<0)” shows the fraction of forecasters where the coefficient is negative. For the forecaster-
by-forecaster coefficients, we restrict to forecasters with at least 10 forecasts available.

Variable By Forecaster
Pooled -

Median %<0
Nominal GDP (SPF) -0.26 -0.14 0.63
Real GDP (SPF) -0.23 -0.09 0.54
Real GDP (BC) 0.12 0.00 0.50
GDP Price Index Inflation (SPF) -0.07 -0.11 0.57
Real Consumption (SPF) -0.34 -0.20 0.83
Real Non-Residential Investment (SPF) 0.01 -0.20 0.58
Real Residential Investment (SPF) -0.02 -0.32 0.64
Real Federal Government Consumption (SPF) -0.62 -0.43 0.95
Real State&Local Govt Consumption (SPF) -0.71 -0.50 0.91
Housing Start (SPF) 0.33 0.24 0.35
Unemployment (SPF) -0.25 -0.19 0.73
Fed Funds Rate (BC) 0.15 0.21 0.27
3M Treasury Rate (SPF) 0.24 -0.02 0.51
3M Treasury Rate (BC) 0.20 0.20 0.28
5Y Treasury Rate (BC) -0.12 -0.18 0.82
10Y Treasury Rate (SPF) -0.18 -0.18 0.58
10Y Treasury Rate (BC) -0.17 -0.29 0.86
AAA Corporate Bond Rate (SPF) -0.21 -0.35 0.85
AAA Corporate Bond Rate (BC) -0.17 -0.28 0.84
BAA Corporate Bond Rate (BC) -0.28 -0.34 0.95

Table C3. Last Forecast Revision

The Table shows the pooled panel CG regressions at the consensus and individual levels (pooled panel regression)
for horizon h = 0 (same as Table 3 columns 1, 2, 4, and 5).

Variable By t-stat  BP t-stat
Nominal GDP (SPF) -0.05 -1.03 -014 -235
Real GDP (SPF) 0.06 1.01 -006 -1.15
Real GDP (BC) 0.16 1.04 -005 -054
GDP Price Index Inflation (SPF) -0.01 -014 -010 -2.14
Real Consumption (SPF) -0.12  -162 -023 -3.59
Real Non-Residential Investment (SPF) 0.03 0.50 -0.06 -0.85
Real Residential Investment (SPF) 023 374 004 099
Real Federal Government Consumption (SPF) -0.08 -0.74 -0.22 -3.58
Real State&Local Govt Consumption (SPF) -0.18 -2.84 -0.26 -3.33
Housing Start (SPF) 0.23 6.55 0.03 1.20
Unemployment (SPF) 0.42 5.95 0.09 2.09
Fed Funds Rate (BC) -0.03 -089 -0.11 -2.25
3M Treasury Rate (SPF) 0.17 7.30 0.00 0.21
3M Treasury Rate (BC) 0.01 040 -0.18 -2.01
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5Y Treasury Rate (BC) 0.12
10Y Treasury Rate (SPF) 0.15
10Y Treasury Rate (BC) 0.04
AAA Corporate Bond Rate (SPF) 0.07
AAA Corporate Bond Rate (BC) -0.10
BAA Corporate Bond Rate (BC) 0.04

3.27
3.34
1.50
1.29
-2.46
1.26

0.00
-0.05
-0.01
-0.10
-0.16
-0.09

0.04
-1.86
-0.52
-2.15
474
-3.43

D. Non-Normal Shocks and Particle Filtering

In the main text, we assume that both the innovations of the latent process, u;, and the measurement
error for each expert, €;, follow normal distributions. In this case, as all the posterior distributions are
normal, the Kalman filter provides the closed form expression for the posterior densities. However, many
processes for macro and financial variables may have heavy tails and more closely follow, for example, a

t-distribution. In this appendix, we relax the normality assumption and verify the model predictions with

fundamental shocks following fat tailed t-distributions.

In the non-normal case, while the point estimates of the Kalman filter still minimize mean-squared
error (MSE), the mean and covariance estimates of the filter are no longer sufficient to determine the
posterior distribution. Given that our formulation of diagnostic expectations involves a reweighting of the
likelihood function, we require more than the posterior mean and variance to properly compute the

diagnostic expectation distribution. Accordingly, we apply particle filtering to analyze expectations under

non-normal shocks.
D.1 Particle Filtering: Motivation and Set-Up

We start with the processes in Equations (3) and (4):

i — i —
St =X¢ + €, X = pxXe—q + U

where x, is the fundamental process and s} is forecaster i’s noisy signal. In Section 3, the shocks to these

processes are assumed to be normal. In the following, we analyze the case where the shock to the

fundamental process u; follows a t-distribution.
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Since the t-distribution is no longer conjugate to normal noise, one can no longer get closed form
solutions. Instead, we draw from the posterior distribution in a Monte Carlo approach using the particle
filter, a popular algorithm for simulating Bayesian inference on Hidden Markov Models (Doucet, de
Freitas, and Gordon, 2001; Doucet and Johansen 2011). We first briefly describe this approach, then
formulate the application to diagnostic expectations, and finally show simulation results for the CG forecast

error on forecast revision regressions.

Particle filtering builds on the idea of importance sampling. Specifically, suppose we wish to
estimate the expectation of f(x), where x is distributed according to p; we are not able to sample from p,

or in general unable to compute its precise density, but can compute p up to a proportionality constant:
p(x) = %ﬁ(x), where Z = [ p(x) dx is the (unknown) normalizing constant. If we can sample from an

arbitrary density g, we can use the following importance sampling mechanism to indirectly sample from

P(xn)
a(xn)

p: for each sample from q, x,, compute the importance weight w,, = and resample from
xnaccording to probability proportional to the weights. It is easy to see that the average of the weights
estimates the proportionality factor Z : % N w(xn) af%-q(x)dx = [p(x)dx = Z .
Consequently, one can easily derive that the resampled x, converge in distribution to p: given any

measurable function ¢, the expectation of ¢ (x)for the resampled x converges to Ep¢:

Iy b)) T dxyyy = 2080 [ o) TR qGr)q (o) dxaw = N1 Bplp (0] =

E,¢

The algorithm above, called the sample-importance resample (SIR) algorithm, can be summarized in the

following steps:

1. Sample N particles from g, denoted as x;.y

Pxi)

2. Foreach x;, computew; = proms

3. Resample according to probability o w;
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For the hidden Markov Process model, the above idea generalizes to give us a quick algorithm to
sample from the filtering density p(x,|s1.n,). Like the Kalman filter, the idea is to proceed inductively,

using the following forward equation:

g(snlxn) P(xnlS1:m-1) _ fg(5n|xn) f(xnlxn-1) P(Xn-11S1:n-1)dS1:n—1dXp 1

p(xXnlsin) =
mietn p(Snl| S1:n-1) P(SnlS1:n-1)

By induction, suppose that we have samples from the previous filtered distribution p(x;,,_1|S1.n—1)- NOw,

given a (conditional) proposal q(x,|x,_1, S1.,)for each sample, the recursive equality above suggests the

resampling weights: w(x, | x,_,) = 2o/ Cnlns) o 1he hase case, where we have only seen the

q(xn | Xn-1,51:n)
data point s, our filtered density p(x;|s;)is the standard Bayesian posterior, which can be sampled via

importance sampling.

The particle filter algorithm refers to this extension of the SIR algorithm to the sequential setting. The

procedure is as follows:

1. Attimen =1, generate Ni.i.d. samples from a default proposal g.

_ u(x) g(s1lxy)
R

2. Compute for each sample the weights w(x proos

3. Resample according to the weights, and store the sample.
4. Forn > 2: for each x_, in the sample, propose x., according to q(x,|xp—1 = X'—_1,51.1)

9(snlxn)) £ entlxn-1"
q(xXn|xXp_1=x"%_1,51:n)

5. Compute for each x} the weights w(x,,') =

6. Resample according to the weights, save as x,.
Finally, we need to specify the proposal density q(x,|X,—1 = x'n_1,S1.,). It is well-known that the
optimal proposal density should be the conditional distribution p(x,,|x,—1 = x',,_1,S,). If the latent
Markov process is a simple AR(1) process with normal innovation, one can analytically derive the optimal

proposal density p(x,,|x,—1 = x'5_1,5,).

2

2 2.2
N € Oy O¢ Oy
XnlXn-1,Sn ~ (ﬁpxn—l +

o + oy

Sn )
o2+ 0?2 Va2 + o?

= N(1,2)

64



While this result is only precise for normal processes, we shall still use ji, Xas location and scale parameters

for our proposal, which is now t-distributed. If the original innovations have ddegrees of freedom, our

proposal will have %degrees of freedom, which have much thicker tails.

D.2 Application to Diagnostic Expectations

To analyze the case of diagnostic expectations, we only need to re-adjust the resampling weights

by a simple likelihood ratio, as given by the following proposition:

Proposition D1 Let s*(s1.,—1) be the predictive expectation of s,, given s;.,,_;. The representativeness

p(xnl S1:n)
p(xn| S1:m-1,5")

g(Snlxn)

can be simplified to the likelihood ratio
9(s”|xn)

R(xp|s1m) = , up to a proportionality

constant independent of x,,.

P(Xnl S1:n) — P(SnlS1n-1.%n) ‘PXnl S1n-1) .
p(xnl S1:n-1,5%) p(sn | S1:n-1)

Proof. By Bayes’ rule: R(x,|S1.n) =

(p(S* | Sl:n—l) 'p(xnl 51:11—1))—1
p(s*| S1:n-1) '

Due to the Markov property, p(S,|S1n-1,%n) = 9(Snlxn) and p(s, = ™ |S1n—1,%n) = g(™|x,).

Plugging this in, we obtain:

9(Sn | xn) - P(XnlS1:0-1) . 9(5*|xn) P | S1n-1) -1 _ 9 (Snlxn) . p(S*lsl:n—l)
p(snlS1:n-1) p(s”[S1:n-1) 9(s™ [xn) p(snls1:n-1)

R(xp IS1:) =

p(s*[S1:n-1)

The latter term
p(SnlS1:n-1)

is constant with respect to x,,, as desired.

As we have assumed that g is a normal density, the likelihood ratio simplifies to:

(xn - Sn)z + (xn - S*)2> = exp ((Sn ; S*)xn)

R(xnlsl:n) X exp <_ 20.2 20.2 2
€ €

Hence, if the observed signal s,, is greater than s*(a positive news), the forecaster puts an exponentially
heavier weight on larger values of x,,, and for negative news, he overweights smaller values of x,,, which

is in line with over-reaction to most recent news.
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With the particle filter, we get the exponential reweighting by multiplying the original weights

9(snlxn)) fntlxn-1"
q(xXn|xXn_1=x"%_1,51n)

w(x,)) = with the extra exponential factor exp(%). As with the basic

particle filter algorithm discussed above, we need to specify our proposal density g to target regions of

high density. We would like to target § o« exp(@

)P (Xn|xn—15,), Which we estimate by first
assumin e normal model. Given that x,|x,_1,S, ~ 7,%) in the normal model, the diagnostic
g th I del. G that x,|x,—1,5, ~ N(i, 2 th | del, the diagnost

—”_S). Thus we set the location and scale

2
€

expectation is given by a shift of the posterior density by ”'S:

parameter of our proposals as ugiaq = A+ %, Ldiag = X, where f, ¥ are the location and scale
€
parameters for our original proposal. As before, we have df, = %to ensure that our proposal has

heavier tails than the target distribution. To summarize, the algorithm is as follows:

1. From the original particle filter, estimate s* = pu,,_,, with u,_, our predictive mean

E[xp_1| S1.n—1], estimated by the mean of our particles x‘,,_;.

0-Z(sp—s")
02

2. Propose according to a t-distribution with location parameter g, = A + » Ldiag =

- df +2
2, dfy = S

3. For each proposal, resample with weightswg;q g (Xp [Xn—1,5n) =

9(snlxn)) fntlxn—1 ex ((sn - s*)xn)
q(xXn|xXn_1=x"%_1,51n) Uez

D.3 Results
In the simulations below, we set p = 0.9,0,, = 0.2,0, = 0.2,and 0 < 6 < 1.5. We find that the
basic qualitative characteristics of diagnostic expectations are robust to fat tails. As Figure D1 shows, the

diagnostic expectation over-reacts to news, relative to the rational benchmark.

We then check the results of the CG forecast error on forecast revision regressions. Figure D2

shows the distribution of bootstrapped regression coefficients. Panel A first checks the case with normal

0(1+6)

shocks, the particle filter simulation agrees with the predicted coefficients — o202 2

using the Kalman
filter. Panel B then shows the case where the shocks are heavy-tailed. We see that the coefficients for the
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heavy-tailed shocks are more negative compared to the predicted values for the normal case. Specifically,
as the rational posterior exhibits heavier tail, the exponential reweighting of the diagnostic expectation
results in greater mass located on the extreme values of the exponential weight, and hence greater shift in
the diagnostic expectation. This effect is only present for diagnostic expectations — for rational

expectations i.e. & = 0, we do not observe a divergence between normal and fat tailed distributions.
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Figure D1. Response to News under Rational and Diagnostic Expectations

This plot shows the belief distribution in response to news, with fat tailed fundamental shocks and particle filtering.
The black line plots the distribution with no news. The dashed red line plots the distribution in response to news
with rational expectations. The dotted blue line plots the distribution in response to news with diagnostic
expectations.
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Figure D2. Individual CG Coefficients with Normal and Fat Tailed Shocks

This plot shows the distribution of coefficients from individual level (pooled panel) CG regressions. Panel A analyzes
the case for normal shocks and Panel B analyzes the case for fat tailed shocks, both using the particle filter. Each
simulation has 80 time periods and each plot shows the coefficients from 300 simulations. The dashed vertical line

6(1+6) which is the coefficient predicted by normal shocks and Kalman filtering.
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Panel B. Fat Tailed Shocks, df = 2.5
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Finally, Figure D3 replicates the results for the contrast between regressions using individual and
consensus forecasts. The general qualitative result is that there is much less over-reaction in consensus
forecasts. On average, we get slight under-reaction in consensus forecasts. Under-reaction occurs when the
noise a,.2is sufficiently high and individual over-reaction parameter @ is sufficiently low. Figure D3 plots
the case where g, = 1,68 = 0.1, which shows robustly positive consensus regression coefficients for 40

forecasters and 80 time periods.
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Figure D3. Individual vs. Consensus Diagnostic Expectations

This plot shows the distribution of coefficients from individual level (pooled panel) and consensus CG regressions,
using fat tailed shocks and particle filtering. The left panel shows the coefficients from pooled individual level
regressions, and the right panel shows the coefficients from consensus regressions. Each draw has 40 forecasters and
80 time periods; there are 300 draws.
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E. Model Estimation: supporting information

Kalman inference for AR(1) processes was described in the text, see Equations (8,9). We now

describe Kalman inference for an AR(2) process. The state variable is a vector X, = (x, x;_;) which

P1

1 %2] and disturbance W, =

evolves according to X; = AX;_, + W, with transition matrix 4 = [

[ut 0

0 0] with u,~N (0, ¢2) i.i.d. across time. The observation equationis s, = C¥; + €, with C = [1 0]

and e,~N'(0,52) i.i.d. across time. The Kalman filter can then be written:

211 . . .
2 (Sf“ - plxé—llt—l - P2x2—2|t—1)' (E1)

i,0 i _
X, =x_4+(14+6
t|t t|t—1 ( )211 e

where X, is the first entry of the steady state variance matrix of beliefs at ¢ — 1 about x;, which is given

by the following condition:

% = ASAT + W — AZC(CTZC + 02)~1CTzAT

2
where W = [06‘ 8] The above expression does not have a closed form solution. One can solve for by

numerically solving for the unique root of a polynomial, or iterating the above equation until the value
stabilizes. In practice, we solve for the root and confirm that the above condition is satisfied. Once we have

the value of X, one can iterate equation (E1) to generate forecasts for our SMM estimation procedure.

Table E1. Estimates of AR(1) and AR(2) Parameters for Fundamentals

This table shows the autocorrelation and standard deviation parameters of the fundamental processes, for both AR(1)
and AR(2) specifications. The parameters are estimated for the same time period when the corresponding forecasts
are available.

AR(1) AR(2)
p Oy p1 P2 Oy
Nominal GDP (SPF) 0.92 1.08 1.27 -0.37 1.00
Real GDP (SPF) 0.87 1.12 1.33 -0.51 0.96
Real GDP (BC) 0.86 0.77 1.24 -0.43 0.69
GDP Price Index Inflation (SPF) 0.98 0.49 1.45 -0.48 0.43
Real Consumption (SPF) 0.87 0.72 0.89 -0.02 0.72
Real Non-Residential Investment (SPF) 0.88 3.43 1.25 -0.41 3.14
Real Residential Investment (SPF) 0.88 5.68 1.27 -0.42 5.01
Real Federal Government Consumption (SPF) 0.78 2.83 0.74 0.06 2.82
Real State&Local Govt Consumption (SPF) 0.90 0.77 0.85 0.04 0.77
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Housing Start (SPF) 0.85 11.80 1.14 -0.34 11.12

Unemployment (SPF) 0.96 0.37 1.48 -0.53 0.31
Fed Funds Rate (BC) 0.99 0.50 1.53 -0.55 0.42
3M Treasury Rate (SPF) 0.95 0.58 1.22 -0.27 0.55
3M Treasury Rate (BC) 0.99 0.45 1.54 -0.56 0.37
5Y Treasury Rate (BC) 0.97 0.44 1.17 -0.21 0.42
10Y Treasury Rate (SPF) 0.97 0.38 1.17 -0.21 0.37
10Y Treasury Rate (BC) 0.97 0.38 1.21 -0.25 0.37
AAA Corporate Bond Rate (SPF) 0.97 0.38 1.16 -0.20 0.36
AAA Corporate Bond Rate (BC) 0.97 0.33 1.19 -0.22 0.32
BAA Corporate Bond Rate (BC) 0.95 0.37 1.01 -0.07 0.37

Table E2. Variance of Forecast Errors and Forecast Revisions: Data and Model
Baseline Specification

This table shows forecast error variance, a2z, and forecast revision variance 2 in the data and in the estimated
model, as well as the absolute log difference between them. The model is estimated using either the AR(2) version or
the AR(1) version, based on properties of the fundamental process shown in Table 6.

Forecast Error Variance o7 Forecast Revision Variance o,
Data Model Log Dif Data Model Log Dif
Nominal GDP (SPF) 4.67 4.60 0.016 1.91 1.83 0.042
Real GDP (SPF) 4.58 4.53 0.012 1.60 1.64 0.023
Real GDP (BC) 1.89 1.89 0.003 0.39 0.39 0.005
GDP Price Index Inflation (SPF) 2.53 2.45 0.032 1.03 1.08 0.047
Real Consumption (SPF) 2.03 1.97 0.029 0.85 0.90 0.061
Real Non-Residential Investment (SPF) 42.38 42.56 0.004 9.63 9.88 0.025
Real Residential Investment (SPF) 98.67 97.18 0.015 24.29 24.70 0.017
Real Federal Government Consumption (SPF) 15.89 15.99 0.006 6.03 6.07 0.007
Real State&Local Govt Consumption (SPF) 4.14 3.37 0.207 2.60 2.73 0.046
Housing Start (SPF) 488.41 499.82 0.023 133.61  133.32 0.002
Unemployment (SPF) 0.75 0.73 0.026 0.21 0.17 0.188
Fed Funds Rate (BC) 1.38 1.38 0.001 0.61 0.60 0.013
3M Treasury Rate (SPF) 1.42 1.42 0.003 0.49 0.48 0.003
3M Treasury Rate (BC) 1.33 1.34 0.005 0.52 0.51 0.005
5Y Treasury Rate (BC) 0.98 0.99 0.007 0.41 0.41 0.009
10Y Treasury Rate (SPF) 0.68 0.68 0.011 0.27 0.27 0.012
10Y Treasury Rate (BC) 0.70 0.70 0.008 0.28 0.28 0.008
AAA Corporate Bond Rate (SPF) 0.87 0.88 0.009 0.37 0.37 0.014
AAA Corporate Bond Rate (BC) 0.81 0.80 0.017 0.40 0.39 0.021
BAA Corporate Bond Rate (BC) 0.63 0.63 0.002 0.27 0.27 0.003

73



Figure 6 in the text showed the model-predicted individual level CG coefficients were strongly correlated

with those estimated in the pooled regressions. Figure E1 shows the corresponding predictions for the

consensus CG coefficients.

Figure E1. Consensus CG Coefficients using Estimated 8 and o,

The figure plots consensus CG coefficients in the baseline specification of the model (with estimated 6 and o) in the
y-axis, and CG coefficients in the survey data in the x-axis. Results for each series are estimated using the AR(1) or
AR(2) version of the diagnostic expectations model based on the properties of the actuals according to Table 6.
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E.1 Alternative Specifications: AR(1) and Particle Filtering

We present here the results of the specification where series are assumed to follow an AR(1) with normal
shocks (denoted AR(1)), as well as an AR(1) specification where we allow for non-normal shocks (denoted
AR(1) particle). The particle filter procedure used for estimating the latter case is explained in detail in
Appendix D.

Table E3. Variance of Forecast Errors and Forecast Revisions
AR(1) and AR(1) Particle Specifications

This table shows forecast error variance, o7, and forecast revision variance a2 in the data and in the estimated
model. The model is estimated using the AR(1) version as well as AR(1) with non-normal fundamental shocks and
particle filtering.

Forecast Error Variance o7 Forecast Revision Variance g2,
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AR1 AR1

Data ARL Particle Data ARL Particle
Nominal GDP (SPF) 4.67 4.76 4.73 1.91 1.97 2.10
Real GDP (SPF) 4.58 5.13 5.21 1.60 1.65 1.74
Real GDP (BC) 1.89 1.87 1.90 0.39 0.39 0.42
GDP Price Index Inflation (SPF) 2.53 2.45 2.63 1.03 1.00 1.02
Real Consumption (SPF) 2.03 1.97 1.90 0.85 0.90 0.83
Real Non-Residential Investment (SPF) 4238  42.07 41.84 9.63 9.73 9.80
Real Residential Investment (SPF) 98.67 101.81 103.96 24,29 2457 28.26
Real Federal Government Consumption (SPF)  15.89 15.99 16.78 6.03 6.07 6.69
Real State&Local Govt Consumption (SPF) 4.14 3.37 3.55 2.60 2.73 2.50
Housing Start (SPF) 488.41 498.63 517.97 133.61 141.43 127.69
Unemployment (SPF) 0.75 0.75 0.75 0.21 0.21 0.22
Fed Funds Rate (BC) 1.38 1.35 1.36 0.61 0.60 0.61
3M Treasury Rate (SPF) 1.42 1.41 1.45 0.49 0.48 0.51
3M Treasury Rate (BC) 1.33 1.32 1.39 0.52 0.51 0.55
5Y Treasury Rate (BC) 0.98 0.97 0.95 0.41 0.40 0.39
10Y Treasury Rate (SPF) 0.68 0.68 0.68 0.27 0.27 0.27
10Y Treasury Rate (BC) 0.70 0.71 0.69 0.28 0.28 0.28
AAA Corporate Bond Rate (SPF) 0.87 0.79 0.80 0.37 0.39 0.32
AAA Corporate Bond Rate (BC) 0.81 0.79 0.80 0.40 0.41 0.40
BAA Corporate Bond Rate (BC) 0.63 0.63 0.66 0.27 0.27 0.27

Table E4. Estimates of 8 for AR(1) and AR(1) particle specifications

This table shows estimates of 6 as well as the 95% confidence interval based on block bootstrap (bootstrapping
forecasters with replacement). The model is estimated using the AR(1) version as well as AR(1) with non-normal
fundamental shocks (particle filtering).

AR1

AR1 95% ClI particle 95% ClI
Nominal GDP (SPF) 0.64 (0.45,0.80) 0.68 (0.37,1.00)
Real GDP (SPF) 0.82 (0.60, 1.15) 1.10 (0.58, 1.84)
Real GDP (BC) 0.37  (0.30,0.50) 0.37 (0.26, 0.58)
GDP Price Index Inflation (SPF) 0.97 (0.60, 1.40) 0.40 (0.26, 0.58)
Real Consumption (SPF) 156  (0.95, 2.00) 1.60 (0.63, 2.38)
Real Non-Residential Investment (SPF) 0.43  (0.30, 0.50) 0.41 (0.27, 0.56)
Real Residential Investment (SPF) 0.38  (0.30, 0.50) 0.33 (0.26, 0.58)

Real Federal Government Consumption (SPF)  1.18  (0.80, 1.55) 1.01 (0.66, 1.38)
Real State&Local Govt Consumption (SPF) 2.80  (1.30, 3.90) 3.04 (1.28, 5.00)

Housing Start (SPF) 0.68 (0.50, 0.95) 0.42 (0.24, 0.55)
Unemployment (SPF) 0.46  (0.40, 0.50) 0.46 (0.42, 0.58)
Fed Funds Rate (BC) 0.62 (0.50,0.70) 0.46 (0.37,0.58)
3M Treasury Rate (SPF) 0.43  (0.40, 0.50) 0.27 (0.26, 0.37)
3M Treasury Rate (BC) 0.57 (0.50,0.70) 0.31 (0.26, 0.37)
5Y Treasury Rate (BC) 0.54  (0.40, 0.60) 0.56 (0.47, 0.58)
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10Y Treasury Rate (SPF) 0.59
10Y Treasury Rate (BC) 0.55
AAA Corporate Bond Rate (SPF) 0.76
AAA Corporate Bond Rate (BC) 1.10
BAA Corporate Bond Rate (BC) 0.73

(0.50, 0.60)
(0.50, 0.60)
(0.70, 0.90)
(0.90, 1.30)
(0.64, 0.80)

0.56
0.54
0.63
1.10
0.46

(0.47, 0.58)
(0.47, 0.58)
(0.47, 0.74)
(0.84, 1.24)
(0.38, 0.55)

Table E5. CG Coefficients: Data vs Model

This table shows regressions of CG coefficients in the data (LHS) on CG coefficients in the estimated model (RHS)
across different series. The model is estimated using the baseline version (primarily AR(2)), the AR(1) version, and
AR(1) with non-normal fundamental shocks (particle filtering). Panel A uses individual CG coefficient from
forecaster-level panel regressions. Panel B uses consensus CG coefficient from time series regressions of consensus

forecasts.

Panel A. Individual CG

Data CG (Individual)

(€] 2 (©)]
Model CG (Baseline) 1.043***
(0.168)
Model CG (AR1) 0.772%**
(0.154)
Model CG (AR1 particle) 0.706***
(0.152)
Constant 0.0832* -0.0294 -0.0336
(0.0397) (0.0433) (0.0443)
Observations 20 20 20
R-squared 0.686 0.605 0.561
Robust standard errors in parentheses
*** n<0.01, ** p<0.05, * p<0.1
Panel B. Consensus CG
Data CG (Consensus)
() ) @)
Model CG (Baseline) 0.345
(0.260)
Model CG (AR1) 0.138
(0.214)
Model CG (AR1 particle) 0.342
(0.264)
Constant 0.102 0.288 0.165
(0.222) (0.174) (0.195)
Observations 20 20 20
R-squared 0.092 0.020 0.077

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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E.2 Forecaster Level Results

Table 8 in Section 6 presents the pooled estimates of the latent parameters 6, and o, that were allowed
to vary by series k but not by individual forecaster. We also estimate the model at the individual level, and
obtain estimated parameters (6}, Uei,k) for each forecaster and a given series. Table E6 shows the median

estimates of these parameters at the individual level in the baseline specification of our model. Results are

similar using other specifications.

Table E6. Model Estimation Results by Forecaster

This table shows the median of individual-level 8¢ and ¢ (normalized by o) estimates, as well as the CG coefficients
in the model with estimated 8° and o . For the model CG coefficients, we use the forecaster level estimates (8¢, o?),
together with the fundamental process and its parameters, to generate model-implied forecasts for each forecaster and
each time period where the forecaster is available; we then run panel CG regressions and consensus CG regressions
using the model-based forecasts. Results for each series are estimated using the AR(1) or AR(2) version of the
diagnostic expectations model based on the properties of the actuals according to Table 6.

Median 8¢  Median 6l/o, Individual CG  Consensus CG

Nominal GDP (SPF) 0.32 1.08 -0.20 0.29
Real GDP (SPF) 0.69 0.78 -0.26 0.10
Real GDP (BC) 0.63 1.43 -0.30 0.35
GDP Price Index Inflation (SPF) 0.59 3.42 -0.25 1.06
Real Consumption (SPF) 0.64 2.71 -0.36 0.95
Real Non-Residential Investment (SPF) 0.44 1.55 -0.15 1.15
Real Residential Investment (SPF) 0.42 1.68 -0.22 0.90
Real Federal Government Consumption (SPF) 0.73 171 -0.36 0.11
Real State&Local Govt Consumption (SPF) 0.91 4.50 -0.47 0.38
Housing Start (SPF) 1.37 211 -0.42 0.60
Unemployment (SPF) -0.17 0.67 0.26 1.00
Fed Funds Rate (BC) -0.01 1.24 -0.04 0.61
3M Treasury Rate (SPF) 0.21 1.60 0.04 1.18
3M Treasury Rate (BC) -0.03 1.87 0.01 1.08
5Y Treasury Rate (BC) 0.37 2.49 -0.21 1.10
10Y Treasury Rate (SPF) 0.47 2.55 -0.35 0.68
10Y Treasury Rate (BC) 0.26 2.74 -0.30 0.88
AAA Corporate Bond Rate (SPF) 0.63 5.21 -0.36 1.20
AAA Corporate Bond Rate (BC) 0.76 5.20 -0.35 1.47
BAA Corporate Bond Rate (BC) 0.69 2.50 -0.36 0.70

Table E7 shows that there is a consistent correlation between individual level estimates of 6¢ across series.
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Table E7. Rank Correlations for 6°

This table shows the rank correlation for forecaster-level estimates of 8% across different series, and p-value in
parenthesis. Panel A shows results for series and forecasters in SPF. Panel B shows results for series and forecasters
in Blue Chip. 8 for each series is estimated using the AR(1) or AR(2) version of the diagnostic expectations model
based on the properties of the actuals according to Table 6.

Panel A: SPF Series

NGDP RGDP PGDP RCONSUM RNRESINV RRESINV ~RGF RGSL HOUSING UNEMP th3m  tnlOy
RGDP 0.48
(0.000)
PGDP -0.04 0.0
(0.747)  (0.976)
RCONSUM -020 -028 -0.11
(0.128) (0.030) (0.393)
RNRESINV ~ 0.41 034  -0.20 -0.11
(0.001) (0.008) (0.127)  (0.382)
RRESINV 0.29 013  -0.07 -0.01 0.25
(0.023) (0.326) (0.571)  (0.919) (0.048)
RGF -001  -026  -0.33 0.35 0.08 0.25
(0.938) (0.043) (0.010)  (0.005) (0.539) (0.047)
RGSL 000 -019  -0.17 0.50 0.04 -0.21 0.42
(0.984) (0.139) (0.199)  (0.000) (0.745) (0.100)  (0.001)
HOUSING ~ 0.08  -0.03  -0.09 0.02 0.18 0.45 0.02  -0.03
(0.518) (0.822) (0.487)  (0.862) (0.170) (0.000)  (0.899) (0.823)
UNEMP -018  -010  0.04 0.11 -0.07 -0.01 011  -0.12 0.03
(0.159) (0.443) (0.754)  (0.388) (0.581) (0.913)  (0.392) (0.367)  (0.814)
th3m 0.15 022  -0.01 -0.29 0.18 0.07 029  -0.17 0.04 0.03
(0.233) (0.087) (0.944)  (0.023) (0.158) (0.609)  (0.023) (0.182)  (0.732) (0.791)
tn10y 009 -023 -0.03 0.16 -0.03 0.28 0.39 0.08 -0.09 0.00 -0.13
(0.495) (0.076) (0.846)  (0.206) (0.799) (0.025)  (0.002) (0.542)  (0.489) (0.998)  (0.332)
AAA 0.15 0.13 0.21 -0.27 0.29 0.14 019  -0.19 0.04 -0.02 036  -0.22
(0.249) (0.300) (0.102)  (0.032) (0.021) (0.295)  (0.132) (0.147)  (0.745) (0.898)  (0.004) (0.081)
Panel B: Blue Chip Series
RGDPBC  FFBC th3mBC  tn5yBC  tnl0yBC  AAABC
FFBC 0.13
(0.306)
th3mBC 0.10 0.54
(0.450) (0.000)
th5yBC 0.15 0.45 0.37
(0.243) (0.000) (0.003)
tn10yBC -0.32 0.02 -0.01 0.02
(0.010) (0.876) (0.956) (0.863)
AAABC -0.12 0.08 -0.03 0.15 0.20
(0.346) (0.530) (0.808) (0.247) (0.122)
BAABC -0.05 0.09 0.07 0.12 -0.13 0.12
(0.722) (0.480) (0.592) (0.332) (0.302) (0.352)
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E.3 Overconfidence

We now estimate a model of overconfidence as described in Section 6.3. Here the agent underestimates
the standard deviation of the noise in his signal by a factor of @, where a < 1. He then substitutes the

deflated standard deviation of the noise into the Kalman filter update equation. Formally, setting 0/62_\“ =

a? 02, a < 1, the overconfidence Kalman update is given by the following two equations:

—_ “a 2 -5
@ =-p i tol+ \/[(1 —p?) i, — GLZL] + 402,07

Xy 5

—

_ o i
Xitle = Xitt-1 ¥ = = (St — Xit)e-1)
o,
[04 [54

One can easily derive that the Kalman gain is a decreasing function of «, which needs to be bounded above
by 1. Intuitively, no matter how overconfident the agent is, he can only give at most full weight to the most
recent observation. Extrapolating beyond the noisy signal is only possible for diagnostic agents.

Table E8 presents the results for the target moments oz , and opg . FoOr comparison, we also include the

estimates from the AR(1) version of the diagnostic expectations model.

Table E8. Variance of Forecast Errors and Forecast Revisions
Diagnostic Expectations vs Overconfidence

This table shows forecast error variance, o7, and forecast revision variance a2 in the data and in the estimated
model. Results from the AR(1) version of the diagnostic expectations model and the over-confidence model are
reported.

Forecast Error Variance o7 Forecast Revision Variance o2
Actual DE AR(1) oC Actual DE AR(1) ocC
Nominal GDP (SPF) 4.67 4.76 5.18 1.91 1.97 1.69
Real GDP (SPF) 4.58 5.13 5.73 1.60 1.65 0.88
Real GDP (BC) 1.89 1.87 1.94 0.39 0.39 0.36
GDP Price Index Inflation (SPF) 2.53 2.45 2.52 1.03 1.00 1.00
Real Consumption (SPF) 2.03 1.97 2.03 0.85 0.90 0.86
Real Non-Residential Investment (SPF) 42.38 42.07 44.41 9.63 9.73 8.30
Real Residential Investment (SPF) 98.67 101.81 99.50 24.29 24.57 24.49
Eeser:\II:)Federal Government Consumption 15.89 15.99 16.13 6.03 6.07 6.19
Eeser:\'I:)State&Local Govt Consumption 414 337 373 2 60 273 2 89
Housing Start (SPF) 488.41 498.63 503.24 133.61 141.43 123.56
Unemployment (SPF) 0.75 0.75 0.83 0.21 0.21 0.17
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Fed Funds Rate (BC) 1.38 1.35 1.42 0.61 0.60 0.57

3M Treasury Rate (SPF) 1.42 1.41 1.41 0.49 0.48 0.49
3M Treasury Rate (BC) 1.33 1.32 1.34 0.52 0.51 0.52
5Y Treasury Rate (BC) 0.98 0.97 0.99 0.41 0.40 0.42
10Y Treasury Rate (SPF) 0.68 0.68 0.68 0.27 0.27 0.28
10Y Treasury Rate (BC) 0.70 0.71 0.68 0.28 0.28 0.27
AAA Corporate Bond Rate (SPF) 0.87 0.79 0.87 0.37 0.39 0.38
AAA Corporate Bond Rate (BC) 0.81 0.79 0.81 0.40 0.41 0.41
BAA Corporate Bond Rate (BC) 0.63 0.63 0.63 0.27 0.27 0.27
2(0?)

Figure E2 plots the effective Kalman gains under our AR(1) model, namely the estimated (1 + 8)

2(ad)+0?’

2
against those in the overconfidence model, namely the estimated %

Figure E2. Model Kalman Gains for Diagnostic Expectations (AR (1)) and Overconfidence

The figure plots model implied Kalman gains in the AR(1) version of the diagnostic expectations model on the x-
axis, and model implied Kalman gains in the overconfidence model on the y-axis.
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