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Three emerging technologies that will transform transportation:

• Self-driving cars

• Frictionless time-dependent tolls

• Convenient, efficient carpooling

What will a market powered by these technologies look like?

How should it be designed and organized?



Outline of the talk

• Emerging technologies and interactions among them

• Main model and results

• Auxiliary result: The benefits of higher utilization



Tolls – current technology



Tolls – coming soon (2020)
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Autonomous transportation and carpooling

With self-driving cars, carpooling will blur the line between solo driving and public

transportation. Currently, the cost of drivers is a large component of public

transit costs ⇒ large vehicles, frequent stops, slow and often inconvenient service.

Eliminating this cost ⇒ smaller vehicles, fewer stops, door-to-door transit.

Carpooling in self-driving cars vs. carpooling now:

• Seamless coordination.

• No loss of flexibility.

• With several people sharing a ride, it does not have to be the case that the same

person is the first one getting in the car and the last one getting out of it.



• Detours are much less costly: it costs much less to sit in the car as a passenger

and read/sleep/work/watch movies while the car is making a five-minute detour

than to drive during that time.

• No need to depend on a potentially unreliable carpool driver.

• Consistency of experience. E.g., no need to worry about being matched with an

unsafe driver.

• One of the key challenges in creating a carpooling platform is getting to a

critical mass where on-demand carpooling is reliable enough to be practical.

With transportation services powered by self-driving cars, this issue is resolved

automatically.



Autonomous transportation and road pricing

• Logistical reasons

• Equilibrium effect of self-driving cars on road demand during peak hours (in the

absence of road pricing). Disutility of being stuck in traffic goes down ⇒ demand

goes up ⇒ more traffic.

“A lot of people think that once you make cars autonomous that they’ll be

able to go faster and that will alleviate congestion and to some degree that

will be true. But . . . the amount of driving that will occur will be much

greater with shared autonomy and actually, traffic will get far worse.”

– Elon Musk, Tesla CEO (2017)

In this case, intelligent road pricing becomes even more valuable.



Complementarity between carpooling and road pricing

Example based on Vickrey (1969). Consider a congested road: twice as many drivers
want to go over the segment over a certain period of time as what the road allows.

• Suppose carpooling becomes very convenient: its disutility (vs. driving solo) is
some small ∆ > 0. This has no effect on outcomes.

• Suppose there is no carpooling and tolls are set at the socially optimal level.
With homogeneous drivers, none of the drivers are better off : they simply pay in
dollars what they used to pay in time. Also, the cost of suboptimal arrival times
is not eliminated.

• Now suppose we both have convenient carpooling and set tolls optimally. We
now fully relieve congestion, all riders arrive at their most preferred times, and
are now much better off than they were before.



Main model and results



Model

• Finite set of riders m = 1, . . . ,M .

• Finite set of road segments s = 1, . . . , S. Each road segment s identifies both a

physical road segment and a specific time interval.

• Each road segment s has an integer capacity qs > 0.

• A trip is a feasible combination of one or more riders and one or more road

segments. There is a finite number T of possible trips t = 1, . . . , T .

• Each trip t has a physical cost c(t) associated with it.



• Each rider m has a valuation for every trip t that involves him: vm(t).
Monetary transfers enter m’s utility additively.

• For each m, there exists an “outside option”: a trip that involves only one
rider (m) and no road segments, gives m the value of zero, and costs zero.

• An assignment is a set of trips A such that each rider is involved in exactly one
trip in A.

• Assignment A is feasible if for each road segment s, the number of trips in A

that include road segment s does not exceed its capacity qs.

• The social surplus of assignment A is equal to the sum of the valuations of all
the riders from the trips to which they are assigned in A minus the sum of the
costs of the trips in A.



Monetary transfers and outcomes

• A non-negative vector p ∈ RM specifies the price paid by each rider m.

• A non-negative vector r ∈ RS specifies the tolls imposed by a regulator.

• An outcome is a triple (A, p, r) that specifies an assignment, the payments made

by the riders, and the tolls imposed by the regulator.



An outcome (A, p, r) is

• feasible if the corresponding assignment A is feasible,

• budget-balanced if the sum of prices paid by the riders for their trips is ≥ to

the sum of the total physical costs of those trips and the total tolls on the road

segments involved in those trips,

• stable if it is not possible to organize a trip t that makes all the riders involved

in it strictly better off than they were under (A, p, r),

• market-clearing if for every road segment s that has “excess capacity” in A, the

corresponding toll rs is equal to zero.



Theorem 1:

If an outcome (A, p, r) is feasible, stable, budget-balanced, and market-clearing, then

assignment A has the highest possible social surplus among all feasible outcomes.



Proof:

Take a feasible, stable, budget-balanced, and market-clearing outcome (A, pA, rA).

Suppose feasible assignment B generates a higher social surplus than assignment A.

Take any trip t in B, and all riders m involved in t. By stability of (A, pA, rA), this

coalition cannot benefit from organizing trip t by themselves, given prices pA and

tolls rA in outcome A. Thus, summing the utilities of all riders involved in trip t:

∑
m∈t

(
vm(tAm)− pAm

)
≥

∑
m∈t

vm(t)

− c(t)− rA(t). (1)

Adding up equations (1) across all trips t in assignment B, we get

M∑
m=1

vm(tAm)−
M∑

m=1

pAm ≥
M∑

m=1

vm(tBm)−
∑
t∈B

c(t)−
S∑
s=1

rA(s)kB(s), (2)

where kB(s) denotes how many trips in assignment B use segment s.



Since the outcome is by assumption budget-balanced, we have

M∑
m=1

pAm ≥
∑
t∈A

c(t) +
S∑
s=1

rA(s)kA(s).

Thus, equation (2) implies that

M∑
m=1

vm(tAm)−
∑
t∈A

c(t)−
S∑
s=1

rA(s)kA(s) ≥
M∑

m=1

vm(tBm)−
∑
t∈B

c(t)−
S∑
s=1

rA(s)kB(s).

The social surplus of A is equal to
∑M
m=1 vm(tAm)−

∑
t∈A c(t), while the social surplus

of B is equal to
∑M
m=1 vm(tBm)−

∑
t∈B c(t). To show that the former is greater than

or equal to the latter, it is now sufficient to observe that

S∑
s=1

rA(s)kA(s) ≥
S∑
s=1

rA(s)kB(s),

which follows from the market-clearing property of (A, pA, rA).



Issue: a feasible, stable, budget-balanced, market-clearing outcome may fail to exist.

For example, suppose we have 101 riders and each car fits at most two passengers.

Approximation: allow trips to be “divisible”. Formally, a “quasi-assignment” A is a

measure on the set of trips such that overall, each rider is involved in measure 1 of

trips. The definitions of an outcome and of feasibility, stability, budget-balancedness,

and market-clearing extend naturally.

Theorem 2:

A feasible, stable, budget-balanced, and market-clearing quasi-outcome is guaranteed

to exist. Any such quasi-outcome is socially efficient.



Idea of the proof:

Construct an auxiliary economy. Consumers in this economy are new agents called

“trip organizers”. There are T types of those agents, one for each trip. There are 2

trip organizers of each type.

The goods are the M riders and S road segments from the original model. Price

vector ρ ∈ RM+S ≥ 0 assigns a price to every good in the economy.

Trip organizers can consume bundles of goods b ∈ [0,1]M+S. Their utility is

Ṽt(b) =

∑
m∈t

vm(t)− c(t)

×min
g∈t

b(g)− ρT b.



Competitive equilibrium: set of prices ρ and profile of consumption bundles b such

that every consumer is optimizing and markets clear.

Existence of CE: For each ρ, take optimal bundles b, and add them up to get

aggregate demand D ∈ RM+S. Let Q ∈ RM+S denote the available supply of all items.

Define the tâtonnement price adjustment function τ(ρ,D) = max{0, ρ+ (D −Q)}.

Correspondence ϕ: for each ρ, take all possible D, and compute all possible τ(ρ,D).

Correspondence ϕ satisfies all the requirements of Kakutani’s fixed-point theorem:

ϕ(ρ) is non-empty and convex for all ρ; and ϕ(ρ) has a closed graph. Thus,

correspondence ϕ has at least one fixed point. Any fixed point ρ∗ of ϕ and a profile

of consumer-optimal bundles with aggregate demand D∗ such that ρ∗ = τ(ρ∗, D∗)
form a competitive equilibrium.



Last step: observe that in every CE, the utility of every consumer (trip organizer) is

zero, because by construction, there is “excess supply” of trip organizers.

This observation allows us to go from a CE in the auxiliary market to a feasible,

stable, budget-balanced, and market-clearing quasi-outcome:

• For each segment s, toll r(s) is equal to the competitive equilibrium price ρ∗(s).

• For each rider m, the utility u(m) in the original market is set equal to ρ∗(m).

• To construct the quasi-assignment G, take all riders m whose utility u(m) is

greater than zero and “read off” the volumes of various trips from these riders.



Additional observations, comments, and results



We made an assumption: “Each road segment s has an integer capacity qs > 0.”

This assumption is:

• Very accurate for highways.

• Less accurate, but still reasonable, for cities.

Upside from making this assumption: when setting tolls, the regulator does not need

to estimate marginal costs and benefits of various drivers in various situations; can

simply focus on the volume of traffic.



Another Assumption: “Each trip t has a physical cost c(t) associated with it.”

Observation: This assumption makes our model not applicable to the world with

professional drivers (taxis, Uber, Lyft, and so on).

However, the model and the main results can be easily adapted to the world of

carpooling (win non-professional drivers) without self-driving cars. Each “trip”

would need to specify which of the people involved is the driver (with the rest being

passengers), and we also need to make some minor modifications to our modeling

assumptions.

Why is it OK to make this assumption in our main model with self-driving cars?



Basic model of car utilization

A car costs C and dies after N miles or A years, whichever comes first. The annualized
real interest rate is r. A car is driven K miles per year. Fuel, maintenance, and
insurance are variable costs, m per mile. Note: car will die at T = min{A, NK}.

Proposition

For r > 0, the cost per mile G is equal to m + Cr
K(1−e−rT )

. For r = 0, the cost per

mile is G = m+ C
KT .

Proof:

C +
∫ T

0
mKe−rtdt =

∫ T
0
GKe−rtdt.

Note that there is no discontinuity at r = 0 (because lim r
1−e−rT = 1

T ).



Corollary

If cars die from usage (rather than old age) and the real interest rate is equal to

zero, the increase in annual mileage yields no cost savings.

Numerical example

• Cars die after 200,000 miles or 15 years, whichever happens first

• New cars cost $30,000, real interest rate is 3% per year

• Gas, maintenance and insurance are variable costs, 30 cents per mile

Annual mileage 5,000 15,000 25,000 35,000 75,000
Cost per mile (¢) 80 48 47 46 46



Implications

• Limited cost reduction of using “Transportation-as-a-serivce” vs. personal

ownership for many people (e.g., those driving 15,000 miles per year or more and

living in areas with low parking costs), so personal self-driving cars may easily

co-exist with various transportation services. Our framework accommodates this

possibility.

• “High utilization” in the form of putting more people in the car (carpooling) is

likely to be much more important than “high utilization” in the form of putting

more miles on a car. E.g., potential cost savings from doubling car occupancy

are an order of magnitude higher than the savings from doubling car usage (i.e.,

the number of miles a car drives per year).



Thank you!


