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1 Introduction

From telephone to online platforms, many markets feature direct or indirect network effects.1

It is of concern that positive network effects could lead to winner-takes-all, where the incum-

bent dominates the market and competing firms find it difficult to enter and survive.2 In the

meantime, multi-homing and compatibility could play an important role alleviating the anti-

competitive concerns.3 How do firms compete when they face positive network effects and

multi-homing users? To what extent does the entry of a competitor expand or steal the user

base of the incumbent? How do price, sales, and investment of the incumbent change as a result

of entry? Are there other competitive considerations besides the potential of winner-takes-all?

We take these questions to the dockless bike-sharing market of China. ofo4, the first bike-

sharing firm in China, was founded in 2015 by a graduate student of Peking University (PKU).

Due to travel inconvenience on a large college campus, ofo started as a two-sided platform that

allowed students to share privately owned bikes on campus via an online app. Soon after, the

online-to-offline (O2O) platform decided to supply the GPS-tracked dockless bikes itself and

effectively became one-sided.

As documented by a burgeoning literature5, bike-sharing solves the “last-mile” problem of

local transportation. There are positive network effects among bike riders because a user who

rides a bike from A to B makes the bike available for the next rider at point B. This feature,

referred to as “consumption-as-supply,” is particularly attractive in dockless bike-sharing. It no

longer requires fixed docks at the origin and destination of a trip, which mitigates the potential

1Telephone is a classical example of direct network effects: consumers are more willing to join a network

if they can reach more people in that network. Many two-sided platforms feature indirect network effects.

For example, sellers (buyers) are more willing to join eBay if eBay attracts more buyers (sellers) on the

other side; and firms are more willing to list in a yellow page if the yellow page can reach a larger number

of consumers.
2The main concern is that users may be reluctant to switch away from the incumbent because they all

enjoy the presence of other users in the same network. In some circumstances, users may coordinate on

the wrong (inferior) network, the incumbent firm may have incentives to develop a proprietary network to

lock in users, and the “excess inertia” may result in winner-takes-all. Even if multiple firms can compete

to be the “winner” of the market, such competition can be inefficient from the social planner’s point of

view (see the review of Farrell and Klemperer (2007)).
3On multi-homing, Caillaud and Jullien (2003) and Halaburda and Yehezkel (2013) show that multi-

homing tends to intensify competition. But the recent work of Bryan and Gans (2018) suggests that

competition equilibrium depends on whether multi-homing occurs on one or two sides of ridesharing

platforms. On compatibility, Katz and Shapiro (1985) show that large, reputable firms tend to choose

incompatibility while small, weak firms tend to choose compatibility. Farrell and Saloner (1986) further

show “excess inertia” and “excess momentum” in a dynamic setting.
4“ofo” is the trademark of the firm, symbolizing a person riding a bicycle. To keep the full meaning

of the trademark, we do not capitalize the first letter even if a sentence starts with “ofo.”
5Kabra, Belavina and Girotra (2016), Zheng et al. (2018) and O’Mahony and Shmoys (2015) have

studied docked bike-sharing in London, New York and Paris. Pan et al. (2018) study the dockless bike-

sharing firm, Mobike, in China. All of them focus on the operation of a single bike-sharing network, such

as network effects, consumer demand for bikes in the existing bike network, the optimal way to locate

bike docks, and algorithms that could reduce the imbalance between bike demand and bike supply.
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imbalance of demand and supply in different locations at different times.6 When thousands of

users ride ofo bikes in a small area, the wide availability of ofo bikes increases the expected

probability to find a bike at the needed time and location and therefore encourages more users

to use bike-sharing. In addition, more users on the road motivate ofo to put more bikes on the

market, which further increases each user’s willingness to use ofo.7 Thanks to these positive

network effects, ofo grew exponentially from a college campus to more than 250 cities in 20

countries by January 2018.8

ofo’s growth has attracted numerous competitors, of which Mobike is the biggest rival. From

the outset, ofo and Mobike were estimated to have more than 90% of the bike-sharing market

in China9, making many cities a de facto monopoly or duopoly depending on when one or both

of them entered the city. If both entered the city, most consumers multi-home because the two

bikes are almost perfect substitutes at the same time and location, and consumers can freely

choose whichever is available at the moment.10 In this sense, the two networks are compatible

and users are free to multi-home.

We first demonstrate the effects of Mobike’s entry on ofo, and then present a theoretical

model to explore the most likely explanations for the empirical facts. More specifically, we track

news reports11 and combine them with ofo’s proprietary data. This process identifies 59 cities

that were first served by ofo and then joined by Mobike. We label them ofo First cities. There

are another 23 ofo Alone cities and 22 Mobike First cities.12 Because ofo started half a year

earlier than Mobike, it is natural to consider ofo as an incumbent and Mobike as an entrant.

With this sequence in mind, we apply difference-in-differences (DID) to the sample of ofo Alone

and ofo First cities, while taking Mobike’s city-specific entry as the “treatment.” 13

Simple regressions suggest that Mobike’s entry has expanded the market for ofo, driving up

ofo’s trip volume by 40.8% and ofo’s average revenue per trip by 0.041 RMB. This result is

robust to heterogeneous time trends, placebo test, and an instrumental variable (IV) approach

to address the potential endogeneity of Mobike entry. The instrument we use is the projected

Mobike’s entry date in a city, where the projection uses the timing of Mobike’s venture capital

6Dockless bike-sharing does not completely solve the imbalance problem. See more detailed discussion

in Section 2.
7This is similar to the positive feedback between demand and supply on a two-sided platform, though

in our case the supply side is integrated with the firm.
8See the report from i-yiou at https://www.iyiou.com/p/64688, as of January 17, 2018.
9Industry research reports from different sources (such as iResearch, TrustDada and Analysys) cross-

validate this number and some even claim that this number is estimated to be larger than 95%.
10Both apps adopt Wechat Pay and Alipay, the two most widely accepted electronic payment systems

in China.
11We track news reports from 9/7/2015 to 9/14/2017.
12Our sample does not cover all the 200+ cities serviced by ofo, mostly because some cities do not

have complete city attribute data from the 2016 China City Statistical Yearbook. We will elaborate our

sample criterion and the definitions of ofo First, ofo Alone and Mobike First cities in Section 2.
13As detailed in Section 4, our estimation uses a long list of controls including weather conditions, air

quality, calendar day fixed effects, time since ofo entry and time trends specific to predetermined city

attributes. Since we do not have detailed data from Mobike, it is difficult to examine how ofo entry into

Mobike First cities affects the market. Later in the paper we will describe how we use ofo data on Mobike

First cities for robustness check.
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funding (8 rounds in total) and the city’s predetermined attributes such as population, geo-

graphic feature and transportation infrastructure. When we separate new and old users within

ofo, we find that Mobike’s entry has reduced the percent of old users that remain active on

ofo, but this market stealing effect is dominated by the expansion in new users. Unlike other

markets with positive network effects, bike-sharing allows firms to directly influence the network

size by bike investment. Analysis suggests that ofo has put more bikes in the ofo First markets

after Mobike’s entry, above and beyond the investment it made in ofo Alone markets; and ofo’s

bike utilization rate - measured by the number of trips per ofo bike per day - has increased

significantly upon Mobike entry.

Above all, competition seems to have motivated the incumbent to invest more and benefit

the incumbent in at least three dimensions (trip volume, revenue per trip, and bike utilization).

The beneficial effect on bike utilization rate is particularly interesting, because we cannot simply

explain it by the incumbent responding to entry by aggressive investment. Moreover, the effects

on volume, price and utilization happen despite the fact that bike-sharing features positive

network effects, multi-homing and network compatibility. This raises three immediate questions:

first, what mechanism leads to the overall market expansion for the incumbent? Second, why

the incumbent didn’t expand the network as much by itself before the second firm entered?

Third, why the incumbent chooses its post-entry investment such that the bike utilization rate

is higher after the entry than before the entry?

To answer these questions and to best explain our empirical results, we model bike-sharing

in monopoly and duopoly respectively. In both types of market, consumers decide whether to

search for a bike, given the price of each firm and the expected probability of finding a bike. In

addition to price, firms also decide on bike investment, which influences the matching probability

subject to investment costs. Naturally, congestion creates a negative network effect but if the

matching technology exhibits increasing return to scale, it also creates positive network effects,

as more bikes on the market and more consumers searching increase the matching efficiency. In

light of these network effects, we then derive how firm(s) choose price and bike investment in

a subgame perfect equilibrium. We only consider symmetric equilibrium in duopoly, given the

similarity between ofo and Mobike.

The model predicts that, under weak conditions, duopoly always leads to a higher price

than monopoly but the comparison on trade volume, bike investment and bike utilization rate

depends on a few factors. The first factor is positive network effects modeled as a matching

technology with increasing return to scale. When there are significant increasing return in

matching, duopoly competition will generate a market expansion effect that is large enough to

dominate the business stealing effect. In that case, each duopolist has incentive to make greater

bike investment than the monopolist, and as a result serve more trips. When the increasing

return is high enough, duopoly could also feature a higher bike utilization rate than monopoly.

Another factor is investment cost. If cost per bike is constant, positive network effects would

motivate the monopolist to invest in infinite bikes, leaving no room for entry. If cost per bike

is increasing – a realistic assumption because it requires more effort to balance and maintain

a larger and more diverse network of bikes – each firm must trade off the motive to expand

due to positive network effects and the cost of investment. When investment cost (per firm)

is convex enough, two firms investing at the same time is more cost-efficient than a single
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firm making all the investment. With increasing return in matching, competitor’s investment

also make one’s own investment more efficient in persuading more consumers to search and

improving the matching rate. The monopolist alone cannot achieve the same efficiency, because

it must shoulder the full cost to get to the same scale and it might be too convex to justify the

investment.14

While increasing return matching and investment cost could explain our empirical facts, the

model also offers a couple of alternative explanations for market expansion. The first alternative

is that entry may raise consumer awareness (by advertising for example) and therefore increase

matching efficiency for any given number of bikes. The model captures this by a multiplier in the

Cobb-Douglas matching function. In equilibrium, we show that utilization rate is independent of

this multiplier, hence an entry-motivated increase in the multiplier could lead to growth in bike

investment but it cannot explain why ofo’s bike utilization rate is higher post entry. The second

alternative explanation lies in the distribution of consumer’s private cost of using alternative

transportation (the outside good). If the density of this private cost is downward sloping,

an increase in that slope has two opposite effects: first, the next batch of bikes (introduced

by the entrant) could persuade more consumers to join bike-sharing than the existing batch

invested by the monopolist, thus generating a market expansion effect; second, there are fewer

consumers with high private costs when the monopolist invests in the first batch of bikes, which

discourages investment. In the model, we show that the second force dominates the first force

thus the monopolist tends to invest in fewer bikes if the density is more downward sloping. This

prediction is different from the marginal effect of increasing return matching, which motivates

us to conduct more data analysis to distinguish these two explanations. We find that variations

in private cost distribution cannot explain why the boost on ofo price and trade volume is

greater for the cities in which ofo has made more bike investment before Mobike’s entry, but

this empirical fact can be explained by variations in the increasing return matching technology.

Our model abstracts away from local geography within a market, but it is not difficult to

give it a geographic interpretation. Since the monopolist tends to first target consumers that are

easiest to convert, the entry – together with the entrant’s bike investment – will help persuade

the next cohort of consumers who are on the margin of using bike-sharing. To the extent that

the attractiveness of the outside good is geographically dispersed, the market expansion effect

of the entry also implies a geographic expansion. Using the same DID framework, we find that

the entry does help ofo bikes to reach more grids in the city (each grid is defined as a square

kilometer), and the network of ofo-reached grids has become more evenly distributed post entry.

These findings reinforce the conclusion that competition expands the market and improves the

performance of the incumbent.

Our work is closest to the literature of network economy. By focusing on a market with

positive network effects, we show that competition expands the overall market, even though the

competing goods are close substitutes. As suggested by our model, the monopolist may not ex-

haust all the positive network effects by itself, because the entrant extends the overall network of

bikes and the incumbent can enjoy that positive spillover at a lower cost through competitor’s

investment than through its own investment. This implication departs from the typical con-

14Our model further proves that decreasing return matching could not explain higher utilization rate

post entry, nor could constant or concave cost of investment.
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cern of winner-takes-all. Moreover, the positive network effects are reinforced by compatibility

between competitors. Existing theories tend to focus on the choice of (in)compatibility while

assuming users value network size and setting the cost of operation independent of network size

(Katz and Shapiro, 1985).15 In bike-sharing, firms take compatibility as given but choose bike

investment endogenously. Because bike investment affects the matching rate, it has a direct

impact on network size in equilibrium.

Our work also differs from the empirical literature of network markets. Instead of estimating

how the number of users affects user evaluation16, we document the impact of entry on the

incumbent, with a focus on the incumbent’s strategic choices (in price and investment) as well

as the incumbent’s market performance (in trade volume, utilization rate and network reach).

In doing so, we identify the effect of competition from the data directly, rather than inferring it

from demand estimates and supply-side assumptions.

Finally, our results highlight competition with the outside good. Many theories of two-

sided markets, such as Armstrong (2006) and Bryan and Gans (2018), emphasize head-to-head

competition between platforms, but assume away competition between platforms and the outside

good. In our context, attracting new users to search for a bike is essential to market expansion.

The market expansion effect of competition is similar to what has been found in industrial

agglomeration and retailer clustering, although typical agglomeration does not feature positive

network effects within one or more firms.17 Because there are positive spillovers between bike-

sharing firms, our work contrasts the market stealing effect documented in other network markets

(Seamans and Zhu, 2014; Angelucci and Cagé, 2016).

The rest of the article is organized as follows. Section 2 describes the background. Section 3

summarizes the data. Section 4 describes our main econometric specifications. Section 5 reports

the baseline empirical results. Section 6 presents a theoretical model that highlights consumer

search and network effects. The model also clarifies how positive network effects differ from

alternative explanations. Section 7 reports further data analysis in light of the model. Section

8 concludes with policy implications.

15Katz and Shapiro (1985) model compatibility through a fixed cost, but they assume the variable cost

is constant (zero) regardless of network size.
16The empirical literature has estimated network effects in many settings. For one-sided markets, the

literature has estimated the direct network effects of spreadsheet, ATM, compact disk player, and VCR,

and studied strategic pricing and technology adoption in light of the network effects (Saloner and Shepard,

1995; Gandal, 1994; Gandal, Kende and Rob, 2000; Park, 2004). For two-sided markets, the literature

has documented the indirect network effects in yellow pages, magazines, newspapers, video games, and

online platforms, and examined the implication of these network effects on pricing, advertising, product

positioning, and market structure (Rysman, 2004; Kaiser and Wright, 2006; Kaiser and Song, 2009; Dubé,

Hitsch and Chintagunta, 2010; Kim, Prince and Qiu, 2014; Angelucci and Cagé, 2016).
17Researchers have shown that competing retailers may choose to cluster at the same mall because it

lowers consumer search cost (Vitorino, 2012), automobile dealers may locate near each other despite the

intensified competition (Murry and Zhou, 2018), and industries may agglomerate in the same region to

enjoy positive spillovers in consumers, supplies, labors, and ideas (Ellison, Glaeser and Kerr, 2010).
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2 Background

Since the 1960s, bike-sharing systems have gone through a few generations, mostly driven by

technological development in electronically-locking racks, telecommunication systems, smart-

cards and fobs, mobile phone access, and on-board computers (DeMaio, 2003; DeMaio and

Gifford, 2004; DeMaio, 2009). The history of bicycle ownership and usage in China is relatively

long and bike-sharing systems have followed diverse development paths in different cities (Zhang

et al., 2015). Traditional bike-sharing systems provide bike rental service through stations, which

means that each bike is docked at a station, riders must pick up a bike from one station, and

return it to this or another station within the same network. The distance between stations

and origins/destinations may be far and the capacity of stations is limited, thus the coverage of

traditional bike-sharing systems is often restricted.

We focus on the emerging dockless bike-sharing platforms that originated in China. Users

no long need to pick up bikes from docked stations, neither do they have to dock bikes at

pre-set stations. They can use smart mobile phones to scan the QR code on bike smart locks

and reset it after finishing the trip at any authorized area, which is well summarized by an

ofo slogan “anytime and anywhere.” From the second half of 2015, the whole bike-sharing

industry has gone through explosive growth, which absorbed venture investment up to 4 billion

USD and accumulatively placed more than 25 million bikes in hundreds of Chinese cities. It is

estimated that the boom of dockless bike-sharing has contributed 221.3 billion RMB to economic

development, created more than 390,000 jobs, and led to a welfare improvement equivalent to

175.9 billion RMB in 2017 (China Academy of Information and Communications Technology,

2018). There are also environmental benefits from dockless bike-sharing, in terms of reduced

petrol consumption and decreased CO2 and NOx emissions (Zhang and Mi, 2018).

ofo and Mobike are two leading firms in dockless bike-sharing, both originated in China but

now operating worldwide. As the first dockless bike-sharing firm, ofo was launched on September

7, 2015 in Beijing with bikes colored yellow. At the very beginning, ofo restricted its service

within college campus and limited bike outflow in many cities, which offers an opportunity for

the placebo test described in Section 5. The campus-specific operation strategy was eliminated

on November 17, 2016 when ofo declared full embrace of city coverage. Mobike is the main

competitor of ofo, which originated in Shanghai on April 22, 2016 with bikes colored orange.

As of January 2018, ofo has placed dockless bikes in more than 250 cities in 20 countries. In

comparison, Mobike had placed their bikes in 176 cities of 7 countries by the end of 2017.

The quick growth of ofo and Mobike has encouraged entrepreneurs and angel investors to

enter the market of dockless bike-sharing. Some estimates suggest that nearly 30 new bike-

sharing platforms were established in 2016 alone.18 However, various industry reports conclude

that ofo and Mobike account for 90% to 95% of the bike-sharing markets from the very beginning,

so that the other firms are almost negligible.19 That is why we focus on the competition between

18See the report from National Business Daily: http://www.nbd.com.cn/articles/2017-01-

05/1067671.html.
19On October 25,2017, two second-tier bike-sharing firms, Youon and Hellobike, agreed to merge. On

April 4, 2018, Meituan took the full control of Mobike at a price of 2.7 billion USD. These two market

events may shake the market structure profoundly, whereas both happened after our sample period.
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ofo and Mobike, especially how the new entrant (Mobike) affects the incumbent (ofo).

Because we only have access to ofo data, we collect Mobike’s entry data from media reports,

and cross-validate it with postings on Mobike’s Weibo home page.20 As detailed in Section 3,

our sample covers the period from May 29, 2016 to September 14, 2017, and only includes the

cities that ofo has entered by September 14, 2017. Within this sample of cities, if Mobike enters

the city after ofo’s entry, then the city is categorized as “ofo First.” If ofo enters the city after

Mobike’s entry, it is categorized as “Mobike First.” If only ofo enters, it is “ofo Alone.” In total,

our sample consists of 104 cities, of which 59 are ofo First, 23 are ofo Alone, and 22 are Mobike

First. In another 6 cities out of our sample, both Mobike and ofo have entered but we could

not find the exact entry date of Mobike and therefore could not define the sequence of entry

precisely. We also exclude Beijing from the sample because Beijing is the birthplace of ofo and

ofo had experimented with many operation policies in Beijing before it started to explore other

cities. Appendix Table A1 lists the names of the 104 cities in our sample. Figure 1 plots them

on the map of China.

A few bike-sharing studies have examined the network feature of docked bikes. Zheng et

al. (2018) set up a structural demand model to estimate consumer preference for docked bikes

in the London bike-sharing system, emphasizing that the consumer must plan a trip with both

the origin and the destination close to a bike station. Because of this constraint, the scope and

location of the station network are important for consumer demand. They demonstrate these

network effects and conclude that the existing design of the station network is far from ideal.

Using data from a similar bike-sharing system in Paris, Kabra, Belavina and Girotra (2016)

estimate an even-more detailed demand system. They stress that both station accessibility and

bike availability are important for consumer demand, where station accessibility refers to how

far a consumer must walk to a nearby bike station and bike availability refers to whether a bike

is available when one walks to the station.

Both accessibility and availability problems can be mitigated in dockless bike-sharing, but

they are not completely eliminated. When it no longer requires a dock to park the bike, there

is a possibility to find a bike near one’s home or workplace. However, less constraint on parking

location may also make bikes more dispersedly distributed in the city, and therefore reduces

bike availability at a particular location. In this sense, consumption-as-supply becomes more

important in a dockless system, as consumers rely more on other consumers to “supply” a bike

in an accessible hotspot. It also changes the nature of the network effect from a fixed network

of bike stations to an evolving network of bikes “floating” throughout the city.

Another problem that dockless bikes can mitigate is bike rebalance. O’Mahony and Shmoys

(2015) study this problem in the docked bike-sharing system of New York City. Since demand

at certain stations can be highly asymmetric during rush hours, stations at the origin of popular

commuting routes will quickly run out of bikes while stations near the destination of the routes

will be overwhelmed by bikes without any dock to return to. O’Mahony and Shmoys (2015)

design a system that uses bike trailers to rebalance the demand and supply during rush hours

and uses trucks to rebalance overnight. This rebalance problem is mitigated in dockless bike-

sharing, because dockless bikes no longer need physical docks to complete the trip. However,

some imbalance may still exist throughout the day, for example, traffic demand throughout the

20Weibo is one of China’s biggest Twitter-like microblogging platforms operated by Sina.
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day may reduce bike supply needed for the afternoon rush hours, rendering a shortage at the

popular origin but an excess at other locations. Pan et al. (2018) propose a deep reinforcement

learning framework to solve this imbalance problem and demonstrate its effectiveness based on

Mobike’s transactional data.

Our paper differs from all the above, as we focus on platform competition while taking the

nature of network effects as given. Because dockless systems rely on consumers’ actual demand

to define bike accessibility and bike availability, the two competing systems are substitutes and

complements at the same time. On the one hand, if ofo and Mobike bikes are available at the

same location, they are perfect substitutes. But depletion of ofo bikes can be complemented

by the remaining Mobike bikes, hence having the competitor’s bikes at the same place could

increase bike availability and enhance consumer willingness to use bike-sharing. On the other

hand, if ofo and Mobike bikes are placed at different locations, the overall network of bike-

sharing is expanded. More consumers will find bikes accessible near the origin, and their usage

will increase bike availability at the destination. It can even expand the overall network to new

locations. Because the two networks are substitutes and complements to each other, it takes a

full model to describe how consumer search and network effects affect each firm’s pricing and

investment decisions, and whether competition would have a net market expanding or market

stealing effect on the incumbent.

3 Data and Sample Construction

We combine data from several resources: ofo aggregates transactional data by time and geog-

raphy, a few online platforms provide data about weather and air quality, and the 2016 China

City Statistical Yearbook reports city attributes. Below we first explain each data source, and

then describe our sample construction.

3.1 Transactional Data from ofo

ofo has kept full records of consumer usage, including the start and end times of each trip,

longitude and latitude of the origin and the destination, listing price for the ride, and the

amount actually paid after coupon redemption. From the first usage time of each physical bike,

we can also calculate ofo’s bike placement in each city over time. To protect user privacy,

consumer data are aggregated to grid or city level.

We start with daily trip volume qgct, defined as the total number of ofo bike trips consumed

in city c, day t and grid g. Grids are defined according to the longitude and latitude of the

origin up to two decimal places. For example, trips originating from (23.1632◦N, 113.3578◦E)

and (23.1677◦N, 113.3529◦E) will be counted as trips within the same grid (23.16◦N, 113.35◦E).

Aggregating it to the city level, we have log(Qct) = log(
∑

g qgct) for city c at day t.

Daily trip volume also provides an opportunity to describe the spatial distribution of bike

trips. We construct two measures: one is log(#Gridsct), namely the total number of unique

grids covered by (the origin) of any ofo bike trips in a city-day. This measure aims to describe the

width of the spatial network of ofo bikes as realized by consumption. The second measure aims

to describe how evenly the consumption is distributed in this network. In particular, we follow
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the definition of the Gini Coefficient, whereas “inequality” refers to trip distribution among

grids instead of income distribution among population. Adopting the same method as Alesina,

Michalopoulos and Papaioannou (2016), we define the base as all grids that are ever covered by

ofo within a city throughout our sample period. If at day t city c no trip occurs in grid g, then

qgct = 0. Assuming that there are n grids in the city and g = 1 to n are indexed in the non-

decreasing order, we define the Gini Coverage Index as Ginict = 1
n

[
n+ 1− 2

∑n
g=1 (n+1−g)qgct∑n

g=1 qgct

]
.

Another way to define Ginict is conditional on the grids that ofo has already covered in the city

before Mobike’s entry, which is a subset of the base used in the first version. We will report

results on both measures of Ginict.

Both ofo and Mobike charge consumers by trip and time spent in the trip. ofo’s listing

price is 1 RMB per hour, while Mobike’s listing price is 1 RMB per 30 minutes. The two

prices are essentially identical, because bike-sharing platforms position themselves as “means

of transportation for the last mile” and ofo data indicates that more than 99% of the trips

end in less than 30 minutes. On top of the listing price, both platforms engaged in aggressive

marketing campaigns such as trip coupons, free riding day, and monthly card for 1 RMB. These

campaigns led to fluctuations in price actually paid. We thus define two variables to capture

the transaction price: the first is average revenue per trip (pct), which is the simple average of

total amount actually paid per ride within a city-day. It is a proxy for the average transaction

price per trip. Considering that many consumers can ride for free because of coupons or other

marketing activities, we also compute percent of free trips (%Freect) as an alternative measure

of price within a city-day.

We define Utilizationct as the trip volume of a city-day divided by the total number of

ofo bikes on the market at that city-day. Because bike investment is sparse, we aggregate the

number of new bikes that ofo places in city c of month m as Investmentcm, thus the regressions

on bike investment are organized by city-month instead of city-day.

To examine market expansion and market stealing, it is important to distinguish old and new

users of ofo. If user i registers on the ofo app at day t, she is a new user on day t and becomes

an old user in any day after t. From all users’ registration history, we define log(#NewUsersct)

based on the total number of new users that register on ofo in that particular city-day. We also

define %ActiveOldct as the percent of old users that have used any ofo bike in that city-day, and

#Trips perOldct as the ratio between the total trips initiated by old users and the total count

of old users.

As mentioned in Section 2, in some cities ofo started on a college campus and gradually

expanded to the rest of the city. We define the dummy 1campus equal to 1 if ofo restricts its

operation within the college campus and 0 otherwise.

3.2 Weather Data and Air Quality

Weather conditions and air quality have profound impacts on the choice of travel means. Long

before the emergence of bike-sharing, researchers had examined the effects of weather on bike use

(Hanson and Hanson, 1977; Hopkinson et al., 1989; Nankervis, 1999) and explored the impact of

air pollution exposure on commuting modes (Hertel et al., 2008; Chertok et al., 2004). We use a

website crawler to obtain relevant data from two open-source databases. China Meteorological
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Data Service Center (CMDSC) provides an inquiry interface for hourly data from meteorological

stations, which is averaged within each calendar day and completed through co-kriging inter-

polation if data from some stations are missing.21 China Air Quality Online Monitoring and

Analysis Platform collects historical air quality data from the Ministry of Ecology and Environ-

ment and makes it available to the public. We choose Air Quality Index as the measure of air

quality in a city-day.22

3.3 Predetermined City-Level Attributes

From media report and published executive interviews, we identify four groups of city attributes

that may affect whether a platform enters a city: (i) economic development and overall popu-

lation size are the principal determinants of potential market scale; (ii) public transportation

such as bus and taxi23 may complement bike-sharing; (iii) penetration of mobile Internet and

smartphones are fundamental because bike-sharing relies on real-time communication among

the electronic lock of the bike, the user’s mobile phone app, and the platform’s system servers;

(iv) topography (e.g. steep slope) and land forms (e.g. unpaved roads) could restrict the usage

of bikes, because bikes provided by the platforms are all non-automatic.

To control for the first three aspects, we collected seven city-level variables from the 2016

China City Statistical Yearbook24: log of population, GDP per capita, the number of taxis, the

number of buses, road surface, the number of mobile phones, and the number of households that

have access to the Internet, which are all rescaled by total population except for log population

itself. To measure terrain ruggedness, we utilize Digital Elevation Model (DEM) to calculate

the average gradient for each city. All these attributes are summarized in Panel B of Table 1

and hereinafter referred to as city attributes.

3.4 Sample Construction

The original data extracted from ofo spans from September 7, 2015 to September 14, 2017. We

then clean the data in a few steps: first, we exclude all autonomous prefectures and admin-

istrative districts, because they are not included in the 2016 China City Statistical Yearbook.

Second, we exclude the 6 cities that Mobike entered but with missing entry dates. Without a

specific entry date, we cannot confirm the entry sequence of ofo and Mobike and thus cannot

define the dummy of post entry, which is the core independent variable of interest and will be

introduced in the next Section. Third, we exclude Beijing from the sample. Because Beijing is

21Please see Vicente-Serrano, Saz-Sánchez and Cuadrat (2003) for detailed introduction of co-kriging

interpolation.
22One potential threat to this measure lies in that air quality data disclosed by China government

is under suspicion of being manipulated. However, Liang et al. (2016) finds that data from the U.S.

diplomatic posts and the nearby Ministry of Environmental Protection sites produced highly consistent

air quality assessment in five major cities.
23Unfortunately, the 2016 China City Statistical Yearbook does not include data on subway. But all

our specifications include city fixed effects, which will absorb any time-invariant effect of subway and

other omitted public transportation means.
24 The 2016 China City Statistical Yearbook reports statistics by the end of 2015, thus predetermined

for our sample.
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the birthplace of ofo, ofo had experimented with its pricing and operation strategies in Beijing

extensively before it entered the second city, Shanghai. Thus, Beijing is hardly comparable to

any other cities. After data cleaning, we arrive at a sample of 19,631 city-day observations,

which cover 104 cities from May 29, 2016 to September 14, 2017.

Table 1 summarizes the sample in two panels: one for variables at the city-day level and

the other for variables at the city level. We report both panels by full sample first and then

by ofo First, ofo Alone and Mobike First cities. To protect ofo’s business secrets, we mask the

mean of trip volume and revenue per ride in Panel A. But from Panel B, it is obvious that

ofo First cities are bigger than ofo Alone cities in almost all dimensions, including population,

public transportation, and mobile/internet access. ofo First cities also have higher GDP per

capita, better air quality index and lower average gradient than ofo Alone cities. Mobike First

cities are more similar to ofo First cities than to ofo Alone cities. These summary statistics

are consistent with the facts that bike-sharing firms tend to enter bigger and more developed

cities first. Such selection prompts us to pay close attention to the comparability between ofo

First and ofo Alone cities. We will deal with it in the next section. We do not report summary

statistics on bike investment and bike utilization rate, because ofo designates them confidential.

4 Econometric Framework

Our main specification is difference-in-differences (DID), where we define Mobike’s entry as the

“treatment” in ofo First cities, and use ofo Alone cities to control for the organic growth of ofo.

In principle, we could include Mobike First cities in the control group as well, and transform the

comparison into monopoly-vs-duopoly as in the theoretical model. However, we do not observe

Mobike’s data before ofo’s entry into the Mobike First cities, nor can we use instrumental variable

to address the endogeneity of ofo entry because we do not have data for the time that ofo had

not entered. For this reason, our main specification focuses on ofo First and ofo Alone cities

only, and we do not include Mobike First cities until robustness check.

Specifically, the baseline specification is:

Yct = αc + γt + βPostEntryct +X
′
ctπ + (Sc × f(t))

′
θ + µGc · t+ εct (1)

where Yct represents outcome variables such as log(Qct), pct, %Freect, and Utilizationct at city

c and date t ; αc and γt denote city and time fixed effects respectively; Xct denotes weather

and air quality variables; Sc denotes city attributes as of 2016; and εct is the error term. It

is noteworthy that γt contains two sets of time fixed effects: the first set represents calendar

date fixed effects. They aim to capture nationwide shocks on specific dates, including national

holiday, nationwide news about bike-sharing, and nationwide advertising campaigns initiated

by any bike-sharing platform. The second set of γt captures the intrinsic growth of ofo and is

therefore defined by the number of days since ofo began operation in city c. We refer to them

as relative day fixed effects.

PostEntryct is the key regressor of interest, which takes the value of one if Mobike exists in

city c on date t. For ofo First cities, PostEntryct is zero before Mobike’s entry and becomes one

at and after Mobike’s entry. For ofo Alone cities, PostEntryct is always zero. For Mobike First

cities, PostEntryct is always one. Therefore, data on Mobike First cities do not help us identify
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changes pre- and post-entry, though they could sharpen our understanding of ofo performance

when it competes against Mobike. As stated before, we only include Mobike First cities for

robustness check.

To address the possibility that bike-sharing may diffuse differently in different types of cities,

we follow Duflo (2001) to interact city attributes (Sc) with multiple functions of time (f(t)).25

In particular, f(t) includes: (i) a third-order polynomial function of the relative days since ofo’s

entry; (ii) calendar date fixed effects, and (iii) relative day fixed effects. In addition, we also

control for linear time trends specific to ofo First cities by adding the interaction between linear

time trend t and a dummy variable indicating ofo First cities (Gc).

DID relies on the assumption of parallel pre-treatment trends, which could be checked by

a standard event-study regression (e.g., Jacobson, LaLonde and Sullivan, 1993; Autor, 2003).

Specifically, we use the following equation to test pre-treatment trends:

Yct = αc + γt +

21∑
k=2

λ−kAck + βPostEntryct +X
′
ctπ + (Sc × f(t))

′
θ + µGc · t+ εct (2)

where Ack is a set of dummies indicating that date t is k days before Mobike’s entry into city

c. We pool all days more than three weeks before Mobike’s entry as k = 21, and choose the

day before Mobike’s entry (i.e., k = 1) as the omitted default category. Thus, the coefficients

{λ−k}k=21
k=2 test the comparability between ofo First and ofo Alone cities for every day up to 3

weeks before Mobike’s entry. If the two groups of cities are statistically comparable, λs should

be jointly indistinguishable from zero.

Although including time trends and allowing them to be heterogeneous by city attributes

could mitigate the concern of omitted variable bias, reverse causality is still a key identification

challenge. If Mobike’s entry decision is a strategic response to ofo’s performance in a specific city,

the coefficient of PostEntryct could reflect the endogenous entry decision and does not represent

the causal effect of competition on ofo. To address this concern, we need an instrumental variable

that is correlated with Mobike’s entry into a city but independent of ofo’s market performance

in that city. We construct the instrument based on the predicted Mobike entry date, which is

the date on which we predict Mobike to enter city c according to Mobike’s VC funding rounds

and c’s pre-determined city attributes.

In particular, we assume Mobike could enter any city since its company establishment date

(November 1, 2015). Thus, the time span between November 1, 2015 and Mobike’s actual entry

date into city c is the “survival time” in a typical duration model. This is well defined for

every ofo First city. For ofo Alone cities, since Mobike has not entered the city by the end of

our sample, we treat the survival time as censored at 683, exactly the number of days between

November 1, 2015 and September 14, 2017. We then fit the survival time in a proportional

hazard duration model, where the explanatory variables are predetermined city attributes, the

timing and amount of the 8-round Mobike financing from venture capital, and a new variable

describing the cumulative number of days since Mobike’s latest round of VC finance. From the

estimates of the duration model, we then predict the median survival time for each city and add

it to the starting date (November 1, 2015). This defines the predicted entry date of Mobike.

25City attributes alone will be absorbed by city fixed effects.
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From the predicted entry date, we can compute a new post-entry dummy ( ̂PostEntryct) as the

IV for PostEntryct.

We argue that the predicted Mobike entry date is likely exogenous to city-specific unknowns,

because city attributes are all pre-determined and Mobike’s VC funding is not driven by a partic-

ular city. More specifically, Mobike’s VC funding may depend on ofo’s nationwide performance,

which is controlled by calendar date fixed effects in the main specification, but we assume it

is independent of ofo’s performance in a particular city at a particular time. We will perform

statistical tests on the IV when we present the baseline results.

We apply the same specifications to bike investment, but at the city-month level instead of

city-day. Accordingly, we redefine PostEntry as % of days in month m that Mobike is present

in city c. Weather and air quality variables are aggregated into monthly average, and the control

of time fixed effects is monthly instead of daily.

5 Baseline Empirical Results

This section reports two sets of baseline results: the first set is on trip volume, revenue per

ride, bike investment and bike utilization rate, including results with instrument and robustness

checks. The second unpacks market stealing and market expanding effects by new and old users.

5.1 Baseline Results

Following Equation (1), Table 2 reports the baseline DID results, where the key dependent vari-

ables are total trip volume (log(Qct)), revenue per ride (pct), and percent of free trips (%Freect).

For each dependent variable, we report the coefficient of PostEntryct from a series of OLS re-

gressions. The simplest one includes only city and time fixed effects (Column 1), the middle

ones add interactions between f(t) and city attributes (Columns 2 to 4), and the most sophis-

ticated ones add linear time trends specific to the ofo First group (Columns 5 to 7). All these

columns convey the same message: Mobike’s entry has increased ofo’s trip volume and boosted

ofo’s revenue per ride. If we take Column 7 as the preferred specification, it suggests that ofo’s

trip volume goes up 40.8% after Mobike’s entry, ofo’s revenue per ride goes up by 0.041 RMB,

and the percent of free trips goes down by 3.7 percentage points. These findings suggest a

strong market expanding effect from Mobike’s entry. As shown in Appendix Table A2, similar

results can be achieved when we drop ofo Alone cities from the sample (which effectively reduces

the DID into just before-after comparison), or add Mobike First cities into the sample (which

increases observations for post entry).

To test the assumption of comparable pre-treatment trends, Figure 2 plots the point esti-

mates of {λ−k}k=21
k=2 from Equation (2), along with the estimated 95% confidence intervals. The

first three panels of Figure 2 correspond to the three key dependent variables (log(Qct), pct, and

%Freect). All these estimates are statistically indistinguishable from zero, neither do they imply

any obvious trends jointly. This suggests that, after our control of observables, ofo Alone and

ofo First cities follow similar trends before Mobike’s entry, although the two sets of cities differ

in absolute population and other attributes. We also perform a falsification test by focusing on

pre-entry data only (ofo First pre-entry plus ofo Alone data) and assuming a false entry on 1, 2,
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..., 7 days before the publicly announced entry date. Results are reported in Figure 3, along with

the estimated 95% confidence interval. The first three panels correspond to the three dependent

variables. For comparison, we also plot the baseline OLS results (Table 2 Column 7) on the very

right. In short, the coefficients of false entry are all statistically insignificant from zero, which is

very different from the baseline results. This suggests that our Mobike entry dates are accurate

and the effects are attributable to the actual entry of Mobike.

To further address the concern of endogenous entry, we use the predicted entry date to

construct an IV for PostEntryct. Table 3 first reports the first stage (Column 1) and then the

IV results for log(Qct), pct, and %Freect (Column 2 to 4). The Kleibergen-Paap F Test is over

8000, suggesting that our IV is strongly correlated with PostEntryct. After using the IV, the

key coefficients of PostEntryct (β) have the same sign and similar magnitudes as in the OLS

regressions.

Table 4 reports the OLS and IV results for the effect of entry on bike utilization rate and bike

investment. The utilization regressions are at the city-day level, while the investment regressions

are at the city-month level. For the OLS columns, we use the specification that includes the

most extensive set of controls, as in Column 7 of Table 2. For the 2SLS columns with IV, we use

the same instrument as before, except that the instrument is aggregated into a monthly average,

i.e. % of days in month m that we predict Mobike to be present at city c. Both OLS and 2SLS

results suggest that Mobike’s entry have motivated ofo to place more bikes in the city and enjoy

a significant boost in bike utilization.

We perform two robustness checks on the IV results in Appendix Table A3. First, since

the proportional hazard model relies on the functional form of baseline hazard, we confirm that

results are stable when we use Weibull (reported), log-normal, or log-logistic distribution for

baseline hazard. Second, Mobike was established on November 1, 2015 but did not enter the

first city (Shanghai) until April 22, 2016. We have tried to use December 1, 2015, January 1,

2016, February 1, 2016, March 1, 2016 and April 1, 2016 as alternative starting dates. Results

under these alternatives are similar to what is reported in Table 3 and Table4, except that the

results on bike investment lose statistical significance at the 90% level if we assume the baseline

hazard distribution is log-logistic or lognormal. One possible explanation is that investment is

sparse and therefore sensitive to functional form. However, even in these marginal results, the

coefficient of Postentryct has the same sign and similar magnitude as in the baseline result.

Above all, we find that Mobike’s entry has increased ofo’s trip volume and revenue per trip,

has encouraged the incumbent to place more new bikes on the market, and has helped ofo to

enjoy a higher bike utilization rate. Robustness checks further suggest that these effects are

unlikely driven by omitted variable bias or endogenous entry.

5.2 New and Old Users

If entry has led to an increase in price and trade volume at the same time, it suggests market

expansion. However, since Mobike and ofo bikes are almost perfect substitutes at the same time

and location, the entry could have a market stealing effect as well. We examine this possibility

by separating new and old users within ofo. Note that both new and old are from ofo’s point of

view, as we do not know whether a user has also downloaded the Mobike app or not.
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Results are presented in Table 5. The OLS results suggest that Mobike’s entry has increased

the number of new users (for ofo) by 65.2%, and this effect is even greater if we use the instrument

(73.5%). However, percent of active old users declines 4.1-4.4 percentage points post entry, which

is a significant fraction of the sample mean26. Because every new user becomes an old user after

the registration day, the pool of old users is cumulative over time. Thus 4.1-4.4% of this pool

is a significant market stealing effect if all of them switch to Mobike. Conditional on old users,

Columns 5-6 show that the average number of trips they take on ofo does not change significantly

post Mobike entry. As shown in Columns 7-10, Mobike’s entry has increased revenue per trip

for both new and old users, at a similar magnitude. In short, we observe market expansion into

new users and market stealing of old users, the sum of which gives rise to the overall market

expansion effects documented in the baseline results.

To summarize, Mobike’s entry has created a net market expansion for ofo, despite some

market stealing effects on old users. A potential explanation is that Mobike’s marketing cam-

paign, including the sight of orange bikes on the road, may have motivated more consumers

to use bike-sharing. Both Mobike and ofo have issued coupons to lure new users, which could

contribute to market expansion as well. However, the entry has a significant, positive effect

on price, suggesting that the market expansion is not solely driven by the price competition

between the two firms. What is the mechanism behind such price-boosting market expansion?

Why does ofo find it worthwhile to put even more bikes on the market after Mobike has entered

the market with many orange bikes? If bike investment is just another form of marketing, how

could bike utilization rate increase post entry? And if the higher bike utilization rate implies

that bike investment is effective in attracting more users, why didn’t ofo make the extra bike

investment until Mobike entered? We attempt to answer these questions in a theoretical model.

6 Theoretical Model

In this section, we develop a theoretical model to explain the empirical findings presented in

the previous section. Our goal is to use the simplest model to explain how entry could generate

higher price, higher trade volume, higher investment and higher utilization rate in a unified

framework. It is not difficult to come up with a story to explain higher price and higher trade

volume, or even higher investment. For example, Mobike’s marketing campaign can be one

of the potential explanations. But the real challenge is to explain why bike utilization rate is

higher post entry. As detailed below, this requires a particular combination of consumer search,

network effects and investment cost.

6.1 Model Setup

We consider a market consisting of measure 1 of consumers. Each consumer has to finish a trip

with value normalized to 1. A consumer can use either bike-sharing or his own way to finish

this trip (the outside good). If he uses his own way such as buying his own bike, driving his

private car or calling a taxi, the private cost is distributed on the interval [0, 1] according to

the distribution function F (c) = 1 − (1 − c)θ where θ > 0 is common knowledge. Obviously,

26We are not allowed to report the sample mean because it is a business secret.
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when θ = 1, this distribution function is the same as the uniform distribution. When θ > 1, the

density function is decreasing in c; while when θ < 1, the density function is increasing in c.

If a consumer uses bike-sharing, he pays a price for the service. However, the consumer may

not find a bike nearby. We assume that the probability of finding a bike is determined by an

aggregate matching function. In particular, if there are measure u of consumers searching for a

bike and there are measure v of bikes in the market, then the total measure of matches is given

by m(u, v) = Avαuβ with 1 ≥ α, β > 0. This Cobb-Douglass matching function is widely used in

the literature. It is usually assumed that the matching function exhibits constant return to scale:

α+ β = 1. But we do not impose this assumption here, and also allow decreasing or increasing

return to scale α+β > 1.27 An increasing return matching technology could reflect the positive

network effect in the bike-sharing industry: the consumers are actually transporting bikes for the

firm when they are using the service of bike-sharing. Therefore, as more consumers are sharing

bikes, it is more likely for other consumers to find a bike. In comparison, the multiplier A is

another parameter that governs matching efficiency. Since A is a constant independent of the

number of bikes (v) and the numbers of searching consumers (u), it captures network-neutral

technology factors such as consumer awareness of bike-sharing and the quality of bike-sharing

apps.

Under the above matching function, the probability for a consumer to find a bike is given

by q = m(u,v)
u = Avαuβ−1. We assume that a consumer only search once. If he could not find a

bike, then he receives an outside value of 0. This assumption reflects the fact the bike-sharing

aims to solve the “last mile” problem for the consumer. If a consumer cannot find a bike for the

trip, he usually will try other ways of transportation instead of keeping searching bikes.28

We will consider two cases. In the first case, there is one monopolist operating in the market;

while in the second case, there are two duopoly firms competing in the market. In both cases,

the sequence of move is that first, the firms set up the prices and total measures of bikes put

into the market; and then the consumers then choose between bike-sharing and their own ways

to finish the task. If a consumer chooses bike-sharing, he finds a bike with some probability. If

he finds a bike, he will use it as long as the price charged is lower than 1. Otherwise, he will

take the outside option.

In the first monopoly case, it is the monopoly firm who sets the price p and the total measure

of bikes v put into the market. We assume that the investment cost function is ψ(v) = 1
γφv

γ with

γ > 0 capturing the concavity/convexity of the cost function. In the second duopoly case, we

assume that firm 1 is the same as the monopoly firm while firm 2 is a new entrant with the same

cost function ψ(v).29 In this case, the two duopoly firms simultaneously choose the measures of

27Such an assumption is also adapted in many other studies, e.g., Gan and Zhang (2006), Petrongolo

and Pissarides (2006), Gavazza (2011), Bleakley and Lin (2012).
28In reality, a consumer that could not find a bike may still use alternative transportation to complete

the trip, but there is a delay as compared to using the alternative transportation at the very beginning.

For example, one may get to work on time if she calls a taxi at time t or searches for a bike at time

t and rides the bike at time t + 1. However, she will be late for work if she calls a taxi at time t + 1.

Our assumption on the value of ride sharing and alternative transportation (before search) is just a

normalization. In the above example, it is equivalent to assuming the value of getting late to work is 0,

the value of biking to work on time is 1, and the value of calling taxi to work on time is 1− c.
29In general, there is no need to assume that the firms have the same cost function. But the symmetric
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bikes put into the market (v1, v2) and the prices (p1, p2). Given v1 and v2, the probability for a

consumer to find a firm 1’s bike is given by q1 = A(v1 + v2)
αuβ−1 v1

v1+v2
, where A(v1 + v2)

αuβ−1

is the probability of finding a bike and v1
v1+v2

is the probability that this bike belongs to firm 1.

The underlining assumption is that search is purely random and the consumers cannot target

which bike to search. Similarly, the probability for a consumer to find a firm 2’s bike is given

by q2 = A(v1 + v2)
αuβ−1 v2

v1+v2
.

We aim to solve the subgame perfect equilibria of this model. In the first monopoly case, the

key is to solve the monopoly price pm and bike investment vm in equilibrium, while in the second

duopoly case, the key is to solve the price and investment of firm 1 pd1 and vd1 in equilibrium.

The final step is to investigate the impact of firm 2’s entry by comparing (pm, vm) with (pd1, v
d
1).

6.2 Equilibrium Analysis

6.2.1 Monopoly Case

We solve the subgame perfect equilibrium in the monopoly case by backward induction. Given

p and v, a consumer will choose bike-sharing if

q∗(1− p) ≥ 1− c,

or

c ≥ 1− q∗(1− p),

where q∗ is the equilibrium probability that a consumer finds a bike. Hence, under the distribu-

tional assumption of c, the total measure of searching consumers is given by u = (q∗(1 − p))θ.
This together with the condition q = m(u,v)

u = Avαuβ−1 pins down q∗:

q∗ = Avα((q∗(1− p))θ)β−1,

which implies

q∗ = A
1

1+θ(1−β) v
α

1+θ(1−β) (1− p)
θ(β−1)

1+θ(1−β) .

When the monopolist sets the price and total measure of bikes, the objective is to maximize:

Avα(q∗(1− p))θβp− ψ(v),

where Avα(q∗(1 − p))θβ is the total measure of matches and for each match, the monopolist

receives a revenue of p. Plugging the expression of q∗ into the above maximization problem

yields

A
1+θ

1+θ(1−β) v
α(1+θ)

1+θ(1−β) (1− p)
θβ

1+θ(1−β) p− ψ(v).

Clearly, on the one hand, by putting more bikes into the market, the total revenue will

increase by generating more matches, but the cost also increases. On the other hand, by setting

a higher price, the revenue for each match will increase, but the total measure of matches also

decreases as fewer consumers choose bike-sharing. Based on this tradeoff, the monopoly chooses

case is easy to solve theoretically. Moreover, in reality, the two leading bike-sharing firms, ofo and Mobike,

are quite symmetric.
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the amount of total investment and price, vm and pm are solved from the first order conditions.

First of all, the monopoly price is given by

θβ

1 + θ(1− β)
pm = 1− pm,

which implies that

pm =
1 + θ(1− β)

1 + θ
< 1.

Second, when α(1+θ)
1+θ(1−β) < γ, the optimization problem is concave in v, and hence the monopoly

investment vm satisfies

α(1 + θ)

1 + θ(1− β)
A

1+θ
1+θ(1−β) v

α(1+θ)
1+θ(1−β)−1

(1− pm)
θβ

1+θ(1−β) pm = φvγ−1,

which implies

vm =

 α(1 + θ)

1 + θ(1− β)

A
1+θ

1+θ(1−β) (1− pm)
θβ

1+θ(1−β) pm

φ

 1

γ− α(1+θ)
1+θ(1−β)

.

The above result can be summarized by the following lemma:

Lemma 6.1 Assume that α(1+θ)
1+θ(1−β) < γ. Then, there exists a unique subgame perfect equilibrium

in the monopoly case. In this equilibrium, the price is

pm =
1 + θ(1− β)

1 + θ
(3)

and the investment is

vm =

 α(1 + θ)

1 + θ(1− β)

A
1+θ

1+θ(1−β) (1− pm)
θβ

1+θ(1−β) pm

φ

 1

γ− α(1+θ)
1+θ(1−β)

. (4)

Notice that the condition α(1+θ)
1+θ(1−β) < γ does not rule out the possibility of γ < 1. For

example, if α + β = 1, there exists γ < 1 satisfying the above condition. Moreover, for γ ≥ 1,

the above condition is satisfied when

α+ β < 1 +
γ − α+ θ(γ − 1)(1− β)

θ
.

So there exists α+ β > 1 satisfying α(1+θ)
1+θ(1−β) < γ.

6.2.2 Duopoly Case

Now we move to the duopoly case. In this case, we also first solve the consumer’s problem

of whether to choose bike-sharing or not. Denote q∗1 to be the equilibrium probability that a

consumer finds bike 1, and q∗2 to be the equilibrium probability that a consumer finds bike 2.

Recall that given v1 and v2, these two probabilities are given by q1 = A(v1 + v2)
αuβ−1 v1

v1+v2
and

q2 = A(v1 + v2)
αuβ−1 v2

v1+v2
.

A consumer will choose bike-sharing if

q∗1(1− p1) + q∗2(1− p2) ≥ 1− c,
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or

c ≥ 1− q∗1(1− p1)− q∗2(1− p2).

Similar to the monopoly case, we can solve the equilibrium probabilities as:

q∗1 = A(v1 + v2)
α(q∗1(1− p1) + q∗2(1− p2))θ(β−1) v1

v1 + v2

and

q∗2 = A(v1 + v2)
α(q∗1(1− p1) + q∗2(1− p2))θ(β−1) v2

v1 + v2
.

Firm 1’s profit then can be written as:

A(v1 + v2)
α v1
v1 + v2

(q∗1(1− p1) + q∗2(1− p2))θβp1 − ψ(v1).

Compared with the profit in the monopoly case

Avα(q∗(1− p))θβp− ψ(v),

we can observe two opposing effects. The first business stealing effect comes from the observation

that (v1 + v2)
α v1
v1+v2

< vα1 for any v2 > 0. Basically, the operation of firm 2 decreases firm 1’s

total measure of matches for a given v1, because some of the consumers are stolen by firm 2.

The second market expansion effect comes from the term q∗1(1− p1) + q∗2(1− p2). The existence

of firm 2 attracts more consumers into the market, and hence increases the total measure of

matches for firm 1.

We can first solve q∗1 and q∗2 as functions of v1, v2, p1, p2. Plugging these functions into the

firms’ profits yields:

π1 = A
1+θ

1+θ(1−β) v
1+θ

1+θ(1−β)
1 (v1 + v2)

− (1+θ)(1−α)
1+θ(1−β) [(1− p1) +

v2
v1

(1− p2)]
θβ

1+θ(1−β) p1 − ψ(v1),

and

π2 = A
1+θ

1+θ(1−β) v
1+θ

1+θ(1−β)
2 (v1 + v2)

− (1+θ)(1−α)
1+θ(1−β) [(1− p2) +

v1
v2

(1− p1)]
θβ

1+θ(1−β) p2 − ψ(v2).

The firms simultaneously choose (vd1 , p
d
1) and (vd2 , p

d
2) to maximize profits. We will focus on

the symmetric equilibrium: vd1 = vd2 and pd1 = pd2.

First, the first order condition with respect to p1 is:

θβ

1 + θ(1− β)
p1 = (1− p1) +

v2
v1

(1− p2).

In the symmetric equilibrium, it is straightforward to derive

pd1 = pd2 = pd =
2

2 + θβ
1+θ(1−β)

.

Second, we can take first order conditions with respect to v1 in the firm 1’s profit function.

The equilibrium investments vd1 and vd2 can be solved by plugging pd1 and pd2 into the first order

conditions. In the symmetric equilibrium, we obtain vd1 = vd2 = vd, with vd satisfying:

A
1+θ

1+θ(1−β)

[
1 + θ

1 + θ(1− β)
− (1 + θ)(1− α)

2[1 + θ(1− β)]
− θβ

2[1 + θ(1− β)]

]
ω = φv

γ− α(1+θ)
1+θ(1−β) ,

where

ω = 2
θβ−(1+θ)(1−α)

1+θ(1−β) (1− pd)
θβ

1+θ(1−β) pd.

The above result can be summarized by the following lemma:
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Lemma 6.2 Assume that α(1+θ)
1+θ(1−β) < γ. Then, there exists a unique symmetric subgame perfect

equilibrium in the duopoly case. In this equilibrium, both firms set prices to be

pd =
2

2 + θβ
1+θ(1−β)

(5)

and investments to be

vd =

[
A

1+θ
1+θ(1−β)

[
1 + θ

1 + θ(1− β)
− (1 + θ)(1− α)

2[1 + θ(1− β)]
− θβ

2[1 + θ(1− β)]

]
ω

φ

] 1

γ− α(1+θ)
1+θ(1−β) . (6)

6.3 Equilibrium Comparison

In this section, we compare the unique subgame perfect equilibrium in the monopoly case with

the unique symmetric subgame perfect equilibrium in the duopoly case. We aim to compare

prices, investments, trade volumes, and utilization rates in different cases. Trade volume is

defined as the total measure of successful matches for firm 1. In the monopoly case, it is

TV m = m(um, vm), while in the duopoly case, it is TV d = m(ud, vd1 + vd2)
vd1

vd1+v
d
2
. Utilization rate

is defined as the average number of match per bike. It is rm = TVm

vm in the monopoly case, and

rd = TV d

vd1
in the duopoly case.

Our first observation is the following:

Proposition 1 In equilibrium, it is always the case that pd > pm.

Proof From equations (3) and (5), we obtain

pd =
2

2 + θβ
1+θ(1−β)

> pm =
1

1 + θβ
1+θ(1−β)

.
�

The above proposition claims that the duopoly price is always higher than the monopoly

price. This result is very intuitive. When there is only one firm in the market, raising price will

reduce the number of searchers and this negative impact is fully incorporated in the monopolist’s

pricing decision. If the prevailing price is already optimal for the monopolist, the marginal

benefit of the price hike (higher profit per match) is equal to the marginal cost of the hike

(fewer consumers searching). In contrast, if the firm faces competition in duopoly, its price hike

will affect the number of searchers as before but this hurts both firms. Since each firm does

not incorporate the negative externality its price hike imposes on the competitor, competition

reduces the marginal cost of price hike, while the marginal benefit remains the same. In other

words, competition blunts the negative impact of price hike for each firm’s individual demand.

This is equivalent to reducing the demand elasticity facing each firm, creating an extra incentive

to raise price. For this reason, the model shows that price increases when the market moves from

monopoly to duopoly, regardless of the shape of the private cost distribution or the efficiency of

the matching technology.

Note that we are not the first one finding price increase with competition. In a model of price

search, Stahl (1989) shows that the equilibrium price approaches monopoly price when the num-

ber of firms increase, because the probability of finding the lowest price decreases exponentially

with the number of firms. In a market where each seller faces loyal and switching consumers,
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Rosenthal (1980) shows that competition may reduce each seller’s share of the switching group

and therefore incentivize it to charge higher price among the remaining loyal consumers. Al-

lowing product differentiation, Chen and Riordan (2008) show that price may increase from

monopoly to duopoly, if consumer preferences for the two products are sufficiently diverse and

negatively correlated. Our model differs from all of them, because we assume consumers only

search once (per episode) and therefore price shopping does not occur within the bike search.

Our next results focus on the comparison of the utilization rates rd and rm. By definition,

we obtain

rm =
A

1+θ
1+θ(1−β) (vm)

α(1+θ)
1+θ(1−β) (1− pm)

θβ
1+θ(1−β)

vm
.

And the first order condition with respect to vm implies that α(1+θ)
1+θ(1−β)r

mpm = φ(vm)γ−1, which

implies

rm =
φ(vm)γ−1

α(1+θ)
1+θ(1−β)p

m
. (7)

Similarly, we derive

rd =
φ(vd)γ−1[

1+θ
1+θ(1−β) −

(1+θ)(1−α)
2[1+θ(1−β)] −

θβ
2[1+θ(1−β)]

]
pd
. (8)

The above equations implies that the comparison of rd and rm does not depend on A. Hence,

we can even allow A to increase in the duopoly market and get the same result. The increase

of A could occur if the entry of the second firm makes more consumers aware of bike-sharing or

leads to a higher consumption value to the consumers (e.g., Mobike’s marketing campaign).30

Although the increase in A will lead to a higher investment, it cannot lead to a higher utilization

rate. To obtain higher utilization rate in equilibrium, we need the following condition:

Proposition 2 It is possible to have both higher investment vd > vm and higher utilization rate

rd > rm in equilibrium only when γ > 1. And when γ > 1, rd > rm is satisfied only if vd > vm.

Proof From equations 7 and 8, we obtain rd > rm if

pd

pm
< (

vd

vm
)γ−1

α(1+θ)
1+θ(1−β)

1+θ
1+θ(1−β) −

(1+θ)(1−α)
2[1+θ(1−β)] −

θβ
2[1+θ(1−β)]

.

Rearranging terms implies that

(
vd

vm
)γ−1 >

α(1 + θ) + (1 + θ)− θβ
α[2(1 + θ)− θβ]

> 1.

Therefore, if vd > vm, the above inequality can be satisfied only when γ > 1. Moreover, when

γ > 1, in order to get rd > rm, we must have vd > vm. �

The above proposition implies that higher investment and higher utilization rate can both

exist only when the investment cost function is convex. So we will make the assumption that γ >

1 in the subsequent analysis. Since a higher investment is a prerequisite for a higher utilization

rate, our next proposition investigates when the equilibrium investments satisfy vd > vm.

30For example, consider the case that the total measure of consumers increase from 1 to η > 1 due to

the fact that more consumder are aware of bike-sharing. This is equivalent to an increase in the matching

efficiency increases from A to Aηβ > A.

21



Proposition 3 The equilibrium investments satisfy vd > vm if

2
θβ−(1+θ)(1−α)

1+θ(1−β) >
2α(1 + θ)

α(1 + θ) + 1 + θ(1− β)

(1− pm)
θβ

1+θ(1−β) pm

(1− pd)
θβ

1+θ(1−β) pd
. (9)

Moreover, when θβ − (1 + θ)(1− α) ≤ 0, we must have rd < rm.

Proof Condition(9) directly comes from equation (4) and (6). vd > vm if[
1 + θ

1 + θ(1− β)
− (1 + θ)(1− α)

2[1 + θ(1− β)]
− θβ

2[1 + θ(1− β)]

]
ω >

α(1 + θ)

1 + θ(1− β)
(1− pm)

θβ
1+θ(1−β) pm,

which implies condition (9). From equations 7 and 8, we know that the comparison of rd and

rm depends on the comparison of ( v
d

vm )γ−1 and

Ω ,
pd

pm

1+θ
1+θ(1−β) −

(1+θ)(1−α)
2[1+θ(1−β)] −

θβ
2[1+θ(1−β)]

α(1+θ)
1+θ(1−β)

=
α(1 + θ) + (1 + θ)− θβ

α[2(1 + θ)− θβ]
> 1.

From equation (4) and (6), we derive

(
vd

vm
)γ−1 =

[
2
θβ−(1+θ)(1−α)

1+θ(1−β) (
1− pd

1− pm
)

θβ
1+θ(1−β) Ω

] γ−1

γ− α(1+θ)
1+θ(1−β) .

Therefore, the comparison of ( v
d

vm )γ−1 and Ω is equivalent to the comparison of

Γ ,

[
2
θβ−(1+θ)(1−α)

1+θ(1−β) (
1− pd

1− pm
)

θβ
1+θ(1−β)

] γ−1

γ− α(1+θ)
1+θ(1−β)

and

Ω
1− γ−1

γ− α(1+θ)
1+θ(1−β) .

Notice that whenever θβ − (1 + θ)(1− α) ≤ 0, we must have

2
θβ−(1+θ)(1−α)

1+θ(1−β) ≤ 1

and
α(1 + θ)

1 + θ(1− β)
= 1 +

θβ − (1 + θ)(1− α)

1 + θ(1− β)
≤ 1.

So it is straightforward to see that Γ < 1 since we have 1− pd < 1− pm from Proposition 1, and

Ω
1− γ−1

γ− α(1+θ)
1+θ(1−β) ≥ 1

since Ω > 1 and 1 − γ−1

γ− α(1+θ)
1+θ(1−β)

≥ 0. As a result, whenever θβ − (1 + θ)(1 − α) ≤ 0, we should

get ( v
d

vm )γ−1 < Ω, which implies that rd < rm. �

Condition (9) in the above proposition gives the condition under which the equilibrium

investments satisfy vd > vm. Intuitively, the term 2
θβ−(1+θ)(1−α)

1+θ(1−β) in condition (9) measures the

joint effects of the market expansion and business stealing effects. From the expressions of

the firms’ profit functions, it is easy to see that in the symmetric equilibrium, the business
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stealing effect is proportional to 2
− (1+θ)(1−α)

1+θ(1−β) while the market expansion effect is proportional to

2
θβ

1+θ(1−β) . So the term 2
θβ−(1+θ)(1−α)

1+θ(1−β) measures the joint effect. And this term becomes larger as

the market expansion effect becomes stronger than the business stealing effect. The second part

of Proposition 3 implies that when the business stealing effect dominates the market expansion

effect ( θβ−(1+θ)(1−α)
1+θ(1−β) ≤ 0), it is impossible to achieve a higher utilization rate in the duopoly

case. Therefore, we need to further consider the case of a sufficiently degree of increasing return

to scale α+ β > 1 + 1−α
θ to satisfy θβ − (1 + θ)(1−α) > 0. Notice that this condition rules out

the case of constant return to scale: α + β = 1. In other words, we should always get a lower

utilization rate under constant return to scale.

Our last observation claims that it is possible to generate both vd > vm and rd > rm when

both α+ β and θ are sufficiently large.

Proposition 4 Suppose that both α and β go to one, and θ goes to infinity. Then we must

have both vd > vm and rd > rm.

Proof Consider the extreme case of α = β = 1. In this case, the left-hand side of condition (9) is

2θ while the right-hand side is 2(1+θ)
(1+θ)+1

(1−pm)
θβ

1+θ(1−β) pm

(1−pd)
θβ

1+θ(1−β) pd
. Clearly, when θ goes to infinity, the left-

hand side goes to infinity as well while the right-hand side stays bounded. As a result, condition

(9) is satisfied. Moreover, from the proof of Proposition 2, rd > rm if ( v
d

vm )γ−1 > α(1+θ)+(1+θ)−θβ
α[2(1+θ)−θβ] .

Notice that the right-hand-side of the above inequality is one when α = 1, while the left-hand-

side goes to infinity as θ goes to infinity. Therefore, we must have both vd > vm and rd > rm.�

Figure 4 illustrates how the parameter values α and β affect the comparison of rd and rm

when we fix θ = γ = 2. We can see several interesting features from Figure 4. First of all, the

dashed line in Figure 4 is an upper bound on the value of β. This comes from the requirement
α(1+θ)

1+θ(1−β) < γ. Second, the region between the solid line and the dashed line represents the

parameter values of α and β under which we have rd > rm. From Proposition 2, in this region

we have vd > vm, which also implies TV d = vdrd > TV m = vmrm. Notice that there is a

sufficient degree of increasing return to scale in this region: α+β > 1. In particular, this region

exists only when α > 0.5. This is because from Proposition 3, we require θβ > (1 + θ)(1 − α).

So α cannot be too low such that the above inequality is satisfied for some β ≤ 1. Finally, as α

goes to one, α + β on the solid cutoff line decreases to be lower than 1.2, which implies that a

small degree of increasing return to scale is enough to generate vd > vm.

Although it is difficult to conduct theoretical comparative static analyses, Figures 5 and

6 numerically investigate how the change in parameters affects the equilibrium outcomes in

monopoly and duopoly cases. Figure 5 compares the equilibrium outcomes in monopoly and

duopoly cases when we change parameter z = α+β while keeping the ratio α
β to be a constant. So

in this numerical exercise, α and β changes with z at the same rate. Consistent with Proposition

1, we always have pd > pm as seen in Figure 5a. Figure 5b plots how vm and vd change with

z, and shows that vm > vd when z is low and vice versa. This is consistent with our discussion

of condition (9). Figures 5c and 5d show that both trade volumes and utilization rates follow

similar patterns: they are higher in the duopoly case only when z is sufficiently large. This is

also consistent with Figure 4: we need the degree of increasing return to scale to be sufficiently

large to guarantee rd > rm, vd > vm and TV d > TV m.
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Figure 6 compares the equilibrium outcomes in monopoly and duopoly cases when we change

the distribution parameter θ. The findings are similar to the ones in Figure 5. In particular,

we find that when we fix other parameters, it is also possible to have rd > rm, vd > vm and

TV d > TV m when θ is sufficiently large. Moreover, although sufficiently high θ and sufficiently

high z are both consistent with our baseline results, an increase in θ always decreases bike

investment in the monopoly case while an increase in z always increases bike investment in the

monopoly case. This is very intuitive. An increase in θ implies a smaller measure of consumers

with high cost c and hence makes the market unattractive. A monopoly firm will optimally

respond by lowering its bike investment. On the contrary, an increase in z implies a larger degree

of increasing return to scale and hence makes the market more unattractive. A monopoly firm

will optimally respond by increasing its bike investment.

To summarize, we find that it is possible that investment, trade volume and utilization rate

all increase in the duopoly case when θ or z are sufficiently large. A high z can be interpreted as

a large enough increasing return to scale in the matching function. A high θ can be interpreted

as the density of the private cost of the outside good (c) decreasing at a sufficiently high speed

as c increases. In both situations, the market expansion effect is sufficiently large to dominate

the business stealing effect, which implies the following testable implications:

1. After the entrant’s entry, the incumbent’s price goes up;

2. After the entrant’s entry, some of the incumbent’s old customers are stolen by the entrant

while the incumbent can get new customers due to market expansion;

3. After the entrant’s entry, the incumbent’s bike investment may increase when θ is suffi-

ciently high or z = α+ β is sufficiently high;

4. After the entrant’s entry, both the incumbent’s trade volume and utilization rate can also

go up when θ is sufficiently high or z = α+ β is sufficiently high.

6.4 Discussion of the model

The model highlights a few important features of bike-sharing: consumer search, matching

technology, investment cost and the outside good. We now discuss each respectively.

6.4.1 Consumer search

Using bike-sharing requires the consumer to initiate a bike search. Assuming the search is

random and once-for-all, we downplay competition within the search process. As a result,

competition only affects the search result through bike investment (which affects the matching

probability), and the number of consumers that decide to search (which depends on the expected

matching rate, consumer’s private cost of using the outside good, and the price of each bike-

sharing firm). Because of these assumptions, competition tends to reduce the demand elasticity

facing each firm, which naturally leads to our Proposition 1: entry increases the equilibrium

price.

The assumption that search is once-for-all might seem strong at the first glance. It nonethe-

less reflects an important feature at the current stage of bike sharing: the scarcity margin is
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more important than price margin. That is to say, most consumers use bike-sharing for com-

mute (rather than recreation) and they care more about finding a bike than the relatively small

price differential. Therefore, they will not continue searching as in standard search models. Our

model remains appropriate as long as there is a keen concern of not finding a bike in time. It is

also possible to develop a more complete model incorporating search cost, but we choose not to

do so for two reasons. On the one hand, the results in such a full-fledged model is likely similar

to those in the current model.31 On the other hand, a very detailed model of consumer search

might blur the main purpose of our model, which is to explain the bigger puzzle in higher uti-

lization rate post entry. We do not even need a complicated search model to explain why price

and investment increase after entry (e.g. Mobike’s marketing campaign alone could achieve it),

but the real challenge is explaining the increase in utilization rate while keeping the changes in

price and investment consistent with the facts. For this purpose, we believe our current model

of consumer search provides the simplest way to illustrate the main driving force behind the

data.

6.4.2 Network effects in the matching technology versus investment cost

The second key feature is network effects. Given a fixed supply of bikes, the more consumers

search for a bike, the less likely each consumer gets matched to a bike. This is a negative network

effect of congestion. However, if bikes and searchers increase proportionally, the matching rate

will increase or decrease depending on the matching technology. When the matching technology

has increasing return to scale (z = α + β > 1), two million consumers searching for 2N bikes

will have a higher matching rate than the first million consumers searching for N bikes, and the

improved matching efficiency will encourage more consumers to join the search. This creates a

positive network effect. Furthermore, because matching rate improves by scale, each bike has

a higher rate of utilization as the numbers of consumers and bikes increase. If investment cost

per bike does not increase as fast as the utilization rate, firm(s) has incentive to invest in more

bikes. This creates a second positive feedback in the system, similar to what we have seen on

two-sided platforms (e.g. more sellers attract buyers, and more buyers attracts sellers).

If the network effect is positive, it could have an important impact on market structure.

For instance, if the positive network effects are always large enough to swamp any increase in

investment cost, the market is winner-takes-all, because the monopolist has incentive to invest in

infinite bikes, leaving no room for other firms to enter. This possibility is ruled out in our model

when we impose the assumption α(1+θ)
1+θ(1−β) < γ. Under this assumption, the cost of investment

will eventually dominate the expanding incentive driven by the positive network effects.

When the positive network effects are sufficiently large but not too large to trigger winner-

takes-all, each duopolist will engage in more bike investment than the monopolist. This is

because each duopolist free rides on the competitor’s investment. Every bike invested by firm

2 costs nothing to firm 1, but expands the overall market and benefits firm 1. In this sense,

it is more cost-efficient than firm 1’s own investment. While free-riding incentive often exists

in duopoly, it is magnified when the market enjoys large, positive network effects. With such

31For example, due to positive search cost, the famous Diamond paradox claims that firms will charge

monopoly price, which is quite close to the equilibrium price in our current model.
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network effects, competitor’s investment will make one’s own investment more efficient in per-

suading more consumers to search and improving the matching rate. The monopolist alone

cannot achieve the same efficiency, because the monopolist must invest at its own cost to get

to the same scale and its cost function might be too convex to justify the investment. In that

situation, we believe there is no first mover or second mover advantage, though the model has

not addressed sequential entry explicitly. Since monopoly profit is greater than zero and duopoly

profit is greater than monopoly profit, entry is always preferred to no entry.

In comparison, when the positive network effects are relatively small, the model predicts that

each duopolist invests less than the monopolist. If all past investments are sunk, the monopolist

may find it over-invested when the second firm enters. As a result, the entrant enjoys extra

free ride from the monopolist’s over-investment, which implies a first-mover disadvantage and a

second-mover advantage. It is difficult to test whether this strategic concern applies to our data,

but we have addressed the potential endogeneity of Mobike entry in the empirical analysis. The

fact that we find ofo invests more after Mobike’s entry suggests that this regrettable situation

(for the monopolist) is unlikely in our setting.

6.4.3 Competition with the outside good

The extent to which competition expands the market also depends on the outside good, namely

the distribution of consumers’ private cost of using the outside good (c). The higher the private

cost, the more attractive is bike-sharing relative to the outside good (private bike, private car,

taxi, bus, etc.). Since the monopolist must first attract consumers of higher private cost, returns

from the next batch of bike investment (which increases matching probability) will depend on

the private cost of the next group of consumers. When the private cost distribution has a

declining density (θ > 1), the same improvement in matching probability will persuade more

consumers to search for a bike, and this effect increases with the number of consumers already

in bike-sharing. It amounts to a market expanding effect, which speeds up the incentive in bike

investment as long as the extra return in such investment exceeds the extra cost of investment.

To summarize, the model points out three potential explanations for the market expansion

effects shown in Section 5: (1) an increasing-return matching technology that generates large

enough positive network effects (z = α + β > 1) but not large enough to dominate convex

investment cost; (2) a declining density distribution of private cost that makes it easier to

persuade the next batch of users to join bike-sharing (θ > 1); and (3) an awareness marketing

campaign that enhances the multiplier in the matching technology (A) while keeping the same

return-to-scale. The last explanation is easy to rule out because in our model the utilization

rate is independent of A hence an entry-motivated increase in A could lead to growth in bike

investment but cannot explain the increase in bike utilization rate. The other two explanations

works together to explain higher investment and higher utilization rate, if their combination

satisfies the conditions laid out in the model.

Is there a way to further distinguish which of the two remaining explanations is the main

driver of market expansion? We note that the two key parameters, z and θ, give us different

comparative statistics. As shown in Figure 6 and Figure 5, the monopolist will invest more as

z increases but invests less as θ increases. This is because higher θ means a steeper density
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function of private cost hence for a given threshold of private cost (above which consumers

will search for bike) the monopolist can only attract a smaller fraction of the population. This

reduces the investment incentive in monopoly. On the contrary, as z increases, the matching

technology becomes more efficient, thus the monopolist can attract a higher fraction of consumers

by investing more. This will increase the monopolist’s investment incentive.

The differential comparative statistics offers an opportunity to test whether the observed

variations in market expansion is mainly driven by variations in z or in θ. In particular, some

ofo-first cities had more bikes on the road than other ofo-first cities, before Mobike entered. As-

suming these cities are comparable in everything else, if the difference in θ drives this difference,

the cities with a higher pre-entry ofo investment should have a lower θ, which implies that they

should experience smaller market expansion effects upon Mobike’s entry. On the contrary, if z

drives the initial ofo investment, the first set of cities should have a higher zs, and therefore

greater market expanding effects post entry. We will test this empirically.

7 Further Data Analysis Motivated by the Model

This section presents three sets of data analyses in light of the model.

First, the model suggests that market expands because of the competition. In particular, the

entrant’s bike investment enhances the matching rate and encourages more consumers to search

for a generic bike once they start to search. This mechanism is most evident when ofo and Mobike

bikes mingle together. Though we do not know exactly where Mobike puts its bikes within a city,

the competition intensity between ofo and Mobike varies within ofo-First cities, because ofo had

experienced a “campus period” when it restricted its operation within a college campus while

Mobike always regards the whole city as the target market. Therefore, according to the model,

the competition effects should be weaker if ofo was still in the “campus period” when Mobike

entered the city. To test this prediction, we decompose PostEntryct into 1campus · PostEntryct
and (1 − 1campus) · PostEntryct, and estimate their coefficients separately. Table 6 shows the

OLS and IV results on log(Qct), pct and %Freect. Compared with the baseline results, we find

that the market expanding effects are solely driven by the time when ofo expanded into the city.

This finding confirms that the market expansion effects occur because ofo and Mobike compete

head-in-head in the city.

Our second set of analysis follows the comparative statistics implied by variations in z

and θ. Greater market expansion effects could be driven by a higher θ, but higher θ implies

greater reluctance to invest before the entry. This implies that we should observe greater market

expansion in the ofo-First cities that had less bike investment before entry. In contrast, greater

market expansion effects could be driven by a higher z and a higher z implies more investment

before entry. This contrast leads us to include an interaction of pre-entry investment and the post

entry dummy on the right hand side. Note that pre-entry investment only describes the cross-

sectional variations across ofo First cities. To the extent that z and θ depends on pre-determined

city attributes, pre-entry investment alone is absorbed by city fixed effects. As shown in Table

7, the positive price effect of entry is stronger when there had been more pre-entry investment

in a city. The trade volume effect of entry goes the same direction, but the coefficient is only

marginally significant. As articulated in the model, we need z and θ to work together to satisfy
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the conditions for higher investment and higher utilization rate post entry. Table 7 does not

reject this interdependence. Rather, it shows that the differential market expansion effects (in

price and trade volume) is more likely due to variations in the extent of increasing return of

matching (z) rather than variations in the distribution of consumers’ private cost (θ).

The third analysis explores detailed geographic information in our dataset. Although our

model abstracts away from geography within a city, one can imagine that residents at different

parts of the city have different costs of using alternative transportation. For example, living

on a street right next to a bus or subway station may make bike-sharing unnecessary. In con-

trast, living one kilometer away from the station could make bike-sharing much more attractive.

Similarly, people working at the city-center, where it is easy to call a taxi or walk to a bus

station, could be more reluctant to use bike-sharing than those working at a less convenient

location. These variations give us a geographic interpretation of the distribution of the private

cost c. As shown in the model, the monopolist first attracts those with the highest c and stops

at a threshold c that makes the marginal consumer indifferent between searching for a bike and

taking alternative transportation. If the monopolist knows where the high-c people are, it will

place bikes near them. When the entrant enters the market, it will place its bikes near the next

batch of consumers that have the highest c among those that have not chosen bike-sharing yet.

To the extent that c might vary across people even if they live at the same location (for example

some residents in an apartment may have private cars while others do not), the entrant could

also place some bikes close to where the incumbent’s bikes have occupied before and enhance

the probability of matching in the nearby area. Either way, entry could persuade people of

lower c to join bike-sharing and these people may use either brand of bike depending on which

is handy when they search. If they ride ofo bikes, these bikes will be available for the next rider

at the destination. As a result, market expansion could geographically manifest in a network

expansion of ofo bikes.

We use three variables to describe the geographic network of ofo bikes: #Gridsct describes

the total number of unique grids covered by (the origin) of any ofo bike trips in a city-day;

Ginict describes how evenly distributed the origin of ofo bike trips is in the city-day; and a

second version of Ginict is conditional on the grids that ofo has reached before Mobike’s entry.

The last one depends on Mobike’s entry, so we can only compare it before and after the entry,

without any control group. For the first two variables, we use the same DID specification as

Equation (1).

Table 8 reports the OLS and IV results for these three variables. They suggest that Mobike’s

entry allows ofo bikes to reach more grids in the city and makes the ofo bikes distributed more

evenly throughout the city. The network is also more evenly distributed within the grids that ofo

has covered before the entry. Combined with other evidence, the geographic expansion confirms

that Mobike’s entry attracts more users, enhances the reach of the ofo bike network, and boosts

the average bike utilization rate.

8 Conclusion

Using proprietary data from a major bike-sharing firm, we document how entry affects the

market performance of the incumbent. Since bike-sharing features positive network effects but
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the market is city-specific, we have a rare opportunity to study competition with network effects.

We find that the entrant expands the market, resulting in higher trade volume, higher price,

higher bike investment, better bike utilization, and a wider, flatter network for the incumbent.

However, the entrant also steals a significant fraction of the old users away from the incumbent,

which in part justifies the entry decision.

Our findings challenge the classical “winner-takes-all” concern in a market with network

effects. According to that concern, positive network effects would enable the incumbent to

become a natural monopoly and then abuse its monopoly power to the harm of consumers. In

our context, entry creates positive spillovers on the incumbent, which helps the incumbent to

better explore the positive network effects. This occurs for a couple of reasons: first, multi-

homing consumers search for a generic bike, implying that one firm can motivate consumers

to search but there is no guarantee that the search would lead to its own bike rather than the

competitor’s bike. Second, the cost of investing and maintaining a diverse network of bikes is

convex, thus it is more cost-efficient to free ride on the competitor’s investment than making

all the investment on its own. In our model, the spillovers are mutual, which explains why the

entrant finds it worthwhile to enter even if the incumbent has already operated in a market with

positive network effects, and why the incumbent is willing to share the (expanded) market with

the entrant. Furthermore, our work highlights the importance of the outside good in a network

market. Since entry could generate market expansion, competition with the outside good is as

important as within-market competition, for at least bike-sharing. These findings could have

significant implications for policy makers, as they conduct merger reviews or consider entry

policies in a market with positive network effects.
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Table 2: Competition Effects on Usage Volume and Price

(1) (2) (3) (4) (5) (6) (7)

Panel A Dependent Variable Log (Trip Volume)

PostEntry 0.370* 0.439** 0.535*** 0.491** 0.346** 0.402** 0.408**

(0.211) (0.181) (0.199) (0.207) (0.166) (0.181) (0.185)

Within Adjusted R2 0.104 0.233 0.106 0.111 0.241 0.12 0.117

Panel B Dependent Variable Average Revenue per Trip

PostEntry 0.029*** 0.027*** 0.030*** 0.035*** 0.031*** 0.031*** 0.041***

(0.009) (0.008) (0.010) (0.011) (0.008) (0.010) (0.011)

Within Adjusted R2 0.075 0.122 0.049 0.057 0.123 0.049 0.059

Panel C Dependent Variable Percent of Free Trips (0-100)

PostEntry -2.288** -2.311** -3.132** -3.589** -2.170** -2.717** -3.695***

(1.131) (1.117) (1.487) (1.563) (0.971) (1.287) (1.399)

Within Adjusted R2 0.085 0.14 0.073 0.07 0.14 0.074 0.07

Dummy for Operation within Campus YES YES YES YES YES YES YES

Weather Condition YES YES YES YES YES YES YES

Air Quality YES YES YES YES YES YES YES

City Fixed Effects YES YES YES YES YES YES YES

Calendar Date Fixed Effects YES YES YES YES YES YES YES

Relative Day Fixed Effects YES YES YES YES YES YES YES

Duopoly Group Trend YES YES YES

Linear Time Trend YES YES

City AttributesDate Fixed Effects YES YES

City AttributesDay Fixed Effects YES YES

Number of Clusters 82 82 82 82 82 82 82

Number of Observations 16193 16193 16193 16193 16193 16193 16193

Notes: Column 1 only controls for city fixed effects and time fixed effects. Column 2 adds the

interaction between predetermined city attributes and a third-order polynomial function of

the relative days since ofos entry. Column 3 and 4 interact the city attributes with calendar

date fixed effects and relative day fixed effects respectively. Column 5-7 further include the

linear time trend specific to the ofo First cites. The specification of Column 7 is taken

as benchmark settings in the following analyses. Standard errors are in parentheses and

clustered at the city level. *** Denotes significance at the 1%, ** 5%, and * 10% level.
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Table 3: 2SLS Estimates

(1) (2) (3) (4)

Dependent Variables PostEntry Log (Trip Volume)
Average Revenue

per Trip

Percent of

Free Trips

Models First-Stage 2SLS 2SLS 2SLS

Predicted PostEntry 0.949***

(0.011)

PostEntry 0.478** 0.045*** -3.999***

(0.199) (0.012) (1.493)

Dummy for Operation within Campus YES YES YES YES

Weather Condition YES YES YES YES

Air Quality YES YES YES YES

City Fixed Effects YES YES YES YES

Calendar Date Fixed Effects YES YES YES YES

Relative Day Fixed Effects YES YES YES YES

Duopoly Group Trend YES YES YES YES

City AttributesDay Fixed Effects YES YES YES YES

Kleibergen-Paap F Test 8000.251 / / /

Number of Clusters 82 82 82 82

Number of Observations 16193 16193 16193 16193

Notes: The instrument variable Predicted PostEntry is derived from a duration model which

treats the time span between Mobike entry dates and November 1, 2015 as “survival time”

and uses city attributes and VC finance of Mobike as regressors. We assume that the baseline

hazard follows Weibull distribution. Column 1 reports the first-stage with the Kleibergen-

Paap F test larger than 8000. Column 2-4 show 2SLS estimates under the benchmark

settings, which are similar to baseline results in both significance and magnitude. Further

robustness checks of starting date choice and the assumption of baseline hazards are reported

in Appendix Table A3. Standard errors are in parentheses and clustered at the city level.

*** Denotes significance at the 1%, ** 5%, and * 10% level.
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Table 4: Competition Effects on Bike Utilization Rate and Bike Investment

(1) (2) (3) (4)

Dependent Variables Log (Bike Utilization Rate) Bike Investment

Models OLS 2SLS OLS 2SLS

PostEntry 0.392** 0.457**

(0.185) (0.198)

Percent of Duopoly Days (1-100) 57.526** 58.384**

(27.789) (27.391)

Dummy for (Percent of) Operation within Campus YES YES YES YES

Weather Condition YES YES YES YES

Air Quality YES YES YES YES

City Fixed Effects YES YES YES YES

Calendar Date(Month) Fixed Effects YES YES YES YES

Relative Day(Month) Fixed Effects YES YES YES YES

Duopoly Group Trend YES YES YES YES

City AttributesDay(Month) Fixed Effects YES YES YES YES

Within Adjusted R2 0.092 / 0.016 /

Number of Clusters 79 79 79 79

Number of Observations 15770 15770 616 616

Notes: Every two columns under the same outcome variable report OLS and 2SLS estimates

separately which adopt the benchmark settings in Table 2 Column 7. Because of the lumpi-

ness bike investment, we aggregate the investment data to month level, redefine PostEntry as

the percent of days that Mobike operates in the city c and month m, reconstruct all weather

and air variables as monthly average, and control for monthly time fixed effects instead of

daily fixed effects. Standard errors are in parentheses and clustered at the city level. ***

Denotes significance at the 1%, ** 5%, and * 10% level.
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Figure 1: Expension Process of ofo and Mobike

(a) September 30, 2016 (b) December 31, 2016

(c) March 31, 2017 (d) June 30, 2017

Notes : This figure depicts the expansion process of ofo and Mobike in our sam-

ple cities. Beijing and the 6 cities without detailed entry sequence are excluded.

The base map of China comes from Resource and Environment Data Cloud Platform

(http://www.resdc.cn).
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Figure 2: Test of Common Pre-Trend Assumption

(a) Log(Trip Volume)

(b) Average Revenue per Trip

(c) Percent of Free Trips

(d) Log(Bike Utilization Rate)

(e) Bike Investment

Notes : Point estimates of {λ−k}k=21
k=2 in Equation (2) as well as corresponding

95% confidence intervals are plotted with relative days before Mobike’s entry on

the horizontal axis. The day before Mobike’s entry is omitted as base and days

more than 3 weeks before the entry are all counted as 21. Similar notations apply

to the last panel with time unit changed into month. All the coefficients are

indistinguishable from 0 even at the 10% significance level, which implies that ofo

Alone and ofo First cities follow similar pre-entry trends. All the other controls

are the same as Table 2 Column 7. Standard errors are clustered at the city level.
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Figure 3: Falsification Test of Forwards of PostEntry

(a) Log(Trip Volume)

(b) Average Revenue per Trip

(c) Percent of Free Trips

(d) Log(Bike Utilization Rate)

(e) Bike Investment

Notes : We restrict the sample to ofo Alone cities and pre-entry observations of ofo First

cities, and generate false entry on 1,2,,7 days before the publicly announced Mobike entry.

Point estimates of the false entry as well as 95% confidence intervals are depicted together

with the baseline estimates from Table 2 Column 7 plotted on the very right. Similar

notations apply to the last panel with time unit changed into month. Standard errors are

clustered at the city level.
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Figure 4: The graph plots how the parameter values α and β affect the comparison of rd and rm when

we fix θ = γ = 2.
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Figure 5: The graphs plot how the equilibrium prices, investments, trade volumes and utilization rates

change with z = α+ β in both monopoly and duopoly cases.
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Figure 6: The graphs plot how the equilibrium prices, investments, trade volumes and utilization rates

change with θ in both monopoly and duopoly cases.
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Appendix

Table A1: List of Cities

City Name
Administrative

Area Code
ofo Entry Date Mobike Entry Date Group

Tianjin 120000 27-Aug-16 12-Feb-17 ofo First

Shijiazhuang 130100 31-Aug-16 6-Mar-17 ofo First

Tangshan 130200 1-Apr-17 17-Apr-17 ofo First

Qinhuangdao 130300 28-Apr-17 12-Jun-17 ofo First

Handan 130400 14-Apr-17 6-May-17 ofo First

Baoding 130600 9-Mar-17 19-Jun-17 ofo First

Langfang 131000 20-Apr-17 17-May-17 ofo First

Taiyuan 140100 17-Aug-16 14-May-17 ofo First

Datong 140200 3-Mar-17 27-Jun-17 ofo First

Jinzhong 140700 6-May-17 17-May-17 ofo First

Xinzhou 140900 10-Jul-17 / ofo Alone

Hohhot 150100 1-May-17 / ofo Alone

Wuhai 150300 30-Jun-17 / ofo Alone

Erdos 150600 9-Jun-17 8-May-17 Mobike First

Shenyang 210100 8-May-17 17-May-17 ofo First

Dalian 210200 26-Jun-17 16-Apr-17 Mobike First

Shanghai 310000 9-May-16 22-Apr-16 Mobike First

Nanjing 320100 14-Jun-16 12-Jan-17 ofo First

Wuxi 320200 2-Mar-17 3-Mar-17 ofo First

Suzhou 320500 15-Jan-17 18-Jun-17 ofo First

Nantong 320600 29-Apr-17 / ofo Alone

Yangzhou 321000 20-Apr-17 9-Mar-17 Mobike First

Zhenjiang 321100 28-Apr-17 / ofo Alone

Hangzhou 330100 12-Sep-16 16-Apr-17 ofo First

Ningbo 330200 14-Jan-17 6-Dec-16 Mobike First

Wenzhou 330300 14-May-17 8-Apr-17 Mobike First

Jiaxing 330400 6-Apr-17 27-Apr-17 ofo First

Jinhua 330700 31-Mar-17 20-May-17 ofo First

Taizhou 331000 18-May-17 1-Jul-17 ofo First

Hefei 340100 24-Aug-16 13-Feb-17 ofo First

Wuhu 340200 16-Mar-17 26-Mar-17 ofo First

Maanshan 340500 28-Dec-16 11-May-17 ofo First

Anqing 340800 6-Dec-16 / ofo Alone

Fuzhou 350100 19-Aug-16 7-Feb-17 ofo First

Xiamen 350200 17-Dec-16 20-Dec-16 ofo First

Quanzhou 350500 14-Mar-17 8-Mar-17 Mobike First

Zhangzhou 350600 13-Mar-17 9-Mar-17 Mobike First

Ningde 350900 25-Apr-17 / ofo Alone
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Nanchang 360100 20-Aug-16 24-Feb-17 ofo First

Jiujiang 360400 20-Apr-17 20-May-17 ofo First

Ganzhou 360700 20-Apr-17 16-Jun-17 ofo First

Shangrao 361100 14-May-17 / ofo Alone

Jinan 370100 29-Aug-16 25-Jan-17 ofo First

Qingdao 370200 21-Feb-17 7-May-17 ofo First

Zibo 370300 3-Apr-17 / ofo Alone

Zaozhuang 370400 29-Jun-17 17-May-17 Mobike First

Yantai 370600 5-May-17 / ofo Alone

Weifang 370700 28-Apr-17 / ofo Alone

Jining 370800 17-Jun-17 17-May-17 Mobike First

Tai’an 370900 10-Apr-17 23-May-17 ofo First

Weihai 371000 25-Apr-17 7-May-17 ofo First

Rizhao 371100 29-Apr-17 19-Mar-17 Mobike First

Dezhou 371400 23-May-17 27-Apr-17 Mobike First

Zhengzhou 410100 11-Aug-16 6-Mar-17 ofo First

Kaifeng 410200 17-May-17 17-May-17 ofo First

Luoyang 410300 20-Apr-17 10-Apr-17 Mobike First

Puyang 410900 22-Jul-17 11-Aug-17 ofo First

Xuchang 411000 4-Jun-17 / ofo Alone

Sanmenxia 411200 19-Jun-17 / ofo Alone

Wuhan 420100 18-Apr-16 29-Dec-16 ofo First

Shiyan 420300 19-Aug-17 / ofo Alone

Yichang 420500 9-Apr-17 7-Apr-17 Mobike First

Xiangyang 420600 2-Apr-17 1-May-17 ofo First

Ezhou 420700 16-May-17 16-Jul-17 ofo First

Xiaogan 420900 10-May-17 / ofo Alone

Huanggang 421100 15-May-17 25-Aug-17 ofo First

Xianning 421200 6-Jun-17 12-Jun-17 ofo First

Changsha 430100 26-Aug-16 14-Feb-17 ofo First

Zhuzhou 430200 24-Apr-17 / ofo Alone

Xiangtan 430300 24-Apr-17 / ofo Alone

Guangzhou 440100 8-Jun-16 27-Sep-16 ofo First

Shaoguan 440200 1-Jun-17 / ofo Alone

Shenzhen 440300 11-Sep-16 16-Oct-16 ofo First

Zhuhai 440400 20-Oct-16 21-Jan-17 ofo First

Shantou 440500 12-Apr-17 19-Feb-17 Mobike First

Jiangmen 440700 10-Apr-17 27-Mar-17 Mobike First

Heyuan 441600 9-Jun-17 / ofo Alone

Dongguan 441900 24-Feb-17 13-Jan-17 Mobike First

Zhongshan 442000 7-Apr-17 16-Jun-17 ofo First

Jieyang 445200 17-Apr-17 / ofo Alone

Nanning 450100 7-Sep-16 21-Feb-17 ofo First
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Guilin 450300 1-Mar-17 30-May-17 ofo First

Haikou 460100 28-Feb-17 17-Feb-17 Mobike First

Chengdu 510100 22-Aug-16 16-Nov-16 ofo First

Deyang 510600 22-Apr-17 9-Mar-17 Mobike First

Mianyang 510700 17-Mar-17 6-Mar-17 Mobike First

Leshan 511100 10-May-17 17-May-17 ofo First

Nanchong 511300 8-May-17 17-May-17 ofo First

Meishan 511400 8-Jul-17 23-Jun-17 Mobike First

Ziyang 512000 1-Jun-17 23-May-17 Mobike First

Guiyang 520100 6-Mar-17 9-Apr-17 ofo First

Liupanshui 520200 6-May-17 / ofo Alone

Zunyi 520300 27-Apr-17 21-May-17 ofo First

Kunming 530100 27-Aug-16 8-Jan-17 ofo First

Xi’an 610100 27-May-16 19-Feb-17 ofo First

Xianyang 610400 29-Apr-17 17-May-17 ofo First

Weinan 610500 20-May-17 21-May-17 ofo First

Yan’an 610600 22-May-17 16-Aug-17 ofo First

Yulin 610800 23-May-17 3-Aug-17 ofo First

Lanzhou 620100 25-Aug-16 10-Jul-17 ofo First

Xining 630100 8-May-17 / ofo Alone

Yinchuan 640100 25-Apr-17 25-Apr-17 ofo First

Urumqi 650100 5-Jul-17 7-Jul-17 ofo First

Karamay 650200 22-Aug-17 / ofo Alone

Notes: This list only includes cities in our final sample. Beijing and the 6 cities without

detailed entry sequence are excluded. Administrative Area Code is a unique number to

identify administrative area, which is issued by the China central government. / means that

entry dates are missing for ofo Alone cities.
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Table A3: Robustness Check of 2SLS Estimates

(1) (2) (3) (4) (5)

Distribution

Starting Dates
12/1/15 1/1/16 2/1/16 3/1/16 4/1/16

Panel A Dependent Variables Log (Trip Volume)

Weibull 0.484** 0.480** 0.487** 0.498** 0.505**

(0.201) (0.202) (0.204) (0.205) (0.206)

Loglogistic 0.450** 0.456** 0.464** 0.469** 0.479**

(0.198) (0.199) (0.200) (0.201) (0.205)

Lognormal 0.456** 0.459** 0.461** 0.469** 0.477**

(0.199) (0.201) (0.202) (0.204) (0.207)

Panel B Dependent Variables Average Revenue per Trip

Weibull 0.045*** 0.045*** 0.046*** 0.046*** 0.046***

(0.012) (0.012) (0.012) (0.013) (0.013)

Loglogistic 0.043*** 0.044*** 0.044*** 0.045*** 0.046***

(0.012) (0.012) (0.012) (0.012) (0.013)

Lognormal 0.044*** 0.043*** 0.043*** 0.043*** 0.043***

(0.012) (0.012) (0.012) (0.013) (0.013)

Panel C Dependent Variables Percent of Free Trips

Weibull -4.023*** -4.031*** -4.101*** -4.153*** -4.158***

(1.502) (1.508) (1.522) (1.534) (1.537)

Loglogistic -3.796** -3.804** -3.889** -3.962** -4.017**

(1.496) (1.506) (1.508) (1.519) (1.542)

Lognormal -3.872** -3.832** -3.804** -3.851** -3.837**

(1.489) (1.505) (1.517) (1.533) (1.554)

Notes: The five panels experiment with instrument variables constructed from duration

models that use December 1, 2015, January 1, 2016, February 1, 2016, March 1, 2016 and

April 1, 2016 as starting dates of Mobike, under different assumptions for the functional

form of baseline hazard (that is, Weibull, log-log and log-normal distributions). For each

outcome variable, there are 53 = 15 estimates of β. This table provides further support to

Table 3 and Table 4 in the sense that results are not driven by the choice of starting dates

or distribution function. Standard errors are in parentheses and clustered at the city level.

***Denotes significance at the 1%, ** 5%, and * 10% level.
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Table A3: Robustness Check of 2SLS Estimates (Continued)

(1) (2) (3) (4) (5)

Distribution

Starting Dates
12/1/15 1/1/16 2/1/16 3/1/16 4/1/16

Panel D Dependent Variable Log (Bike Utilization Rate)

Weibull 0.461** 0.457** 0.463** 0.473** 0.480**

(0.200) (0.200) (0.202) (0.203) (0.204)

Loglogistic 0.428** 0.434** 0.440** 0.445** 0.454**

(0.196) (0.198) (0.198) (0.200) (0.202)

Lognormal 0.433** 0.436** 0.437** 0.444** 0.452**

(0.198) (0.200) (0.200) (0.202) (0.205)

Panel E Dependent Variable Bike Investment

Weibull 52.342* 52.066* 51.285* 51.632* 51.866*

(30.428) (30.571) (30.217) (30.292) (30.321)

Loglogistic 47.565 47.501 47.696 47.436 46.338

(29.457) (29.515) (29.486) (29.285) 46.338

Lognormal 48.052 47.765 46.609 47.315 46.894

(29.610) (29.754) (29.490) (29.435) (29.289)
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Table A4: Competition Effects on Usage Volume within Pre-Entry & Non-Campus Grids

(1) (2) (3) (4)

Dependent Variable Log (Trip Volume)

Models OLS 2SLS OLS 2SLS

PostEntry 0.386** 0.451** 0.440** 0.490**

(0.190) (0.205) (0.194) (0.210)

Dummy for Operation within Campus YES YES YES YES

Weather Condition YES YES YES YES

Air Quality YES YES YES YES

City Fixed Effects YES YES YES YES

Calendar Date Fixed Effects YES YES YES YES

Relative Day Fixed Effects YES YES YES YES

City AttributesDay Fixed Effects YES YES YES YES

Duopoly Group Trend YES YES YES YES

Within Adjusted R2 0.101 / 0.045 /

Number of Clusters 59 59 53 53

Number of Observations 13560 13560 9170 9170

Notes: To investigate whether the booming usage is mainly driven by expansion to new

grids, we first restrict to grids which are already covered by ofo before Mobikes entry and re-

compute usage volume. ofo Alone and Mobike First cities are thus excluded and estimates

are reported in Column 1 and 2. To eliminate potential effects from campus, we further

restrict to non-campus grids among those old grids which are employed in the regression

for Column 1 and 2. Please note that some cities of ofo First group have been covered

by ofo completely during the campus period, i.e., ofo does not strictly enforce the within-

campus strategy. We could not define non-campus grids for them and the number of clusters

decreases to 53 in Column 3 and 4. Standard errors are in parentheses and clustered at the

city level. ***Denotes significance at the 1%, ** 5%, and * 10% level.
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