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1 Introduction

Several studies have documented and modeled the stickiness of consumer goods prices,

while price rigidity of long-term financial services remains less examined. This is impor-

tant because such products constitute a non-negligible fraction of household spending. For

example, the share of married household expenditures on personal insurance and pensions

in 2016 was 11.1%, compared to 11.8% on food or 17.5% on transportation.1 This paper

documents the high degree of price rigidity for a specific long-term financial contract, life

insurance. We propose a novel theory of endogenous price rigidity based on the trade-off

between commitment and flexibility for the life insurance company, which is generated by

the consumer hold-up problem in long-term contracting.

We show that life insurance premiums are characterized by long periods of rigidity with

occasionally sizable adjustments. This is intriguing, because the underlying marginal cost

of life insurance is volatile over time, with a monthly coefficient of variation of 6.3% and

the average absolute month-to-month change of 1.4% of the mean. In the data though, the

overall probability of a monthly premium change amounts to just 2.6%. This implies an

average premium duration of roughly 39 months, placing life insurance on the far-right tail

of the price change frequency distribution documented by Bils and Klenow (2004). Figure 1

presents an illustrative plot of premiums over time for the most significant and longest-

observed companies in our sample. Remarkably, some products have maintained a constant

premium for over 20 years, rendering it possible that a son could pay the same amount for

life insurance as his father used to, as the title of this paper goes.

To explain the empirical findings, we construct a model where the firm faces a commit-

ment versus flexibility trade-off, which stems from the consumer hold-up problem. Con-

sumers live up to three periods and form an overlapping generations structure. They decide

between purchasing two types of policies from monopolistically competitive firms: renewable

or non-renewable. To do so, they must incur a transaction cost, which represents the mone-

tary expenses and opportunity cost of research and medical examination. In addition, they

face adverse health shocks in the future, which could lead to significant premium hikes if

they searched for a new policy. On the other hand, renewable policyholders are guaranteed

coverage in the second period without incurring any additional cost. Therefore, renewable

policyholders are locked into a long-term relationship with the company, limiting their future

options. As a result, the firm has an incentive to increase renewal prices, but this lowers the

consumers’ willingness to sign. In essence, the firm is time-inconsistent and values commit-

ment. At the same time, the firm also faces stochastic cost shocks in the second period, so it

1Bureau of Labor Statistics, Consumer Expenditures 2016.
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Note: For illustration, we plot here the companies with: i. a share in the California life insurance

market of at least 1% according to California Department of Insurance (2004), and ii. a continuous

presence in our sample for at least 180 months (15 years). The total share in the life insurance market

for these four companies was 9.3% in 2003.

Source: Compulife Software, 1990-2013.

Figure 1: ART premiums over time for selected companies

values flexibility. Policyholders do not observe the shocks and are unsure whether premium

changes are due to being held-up or due to changes in the cost. Consequently, the firm

designs premium schedules that leave consumers with no doubt that premium increases are

due to sizable changes in the cost.

To balance the need for commitment and the desire for flexibility, the firm optimally

commits to a constant pricing schedule for small cost variations, while price adjustments

are large and only possible when cost shocks are substantial. This is because the premium

adjustment is typically minor for small cost shocks, so it does not affect demand due to

the policyholders being locked-in. This implies that any variation in prices for low cost

shocks would not be credible, because the firm could increase premiums slightly without
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losing any consumers. As a result, the firm commits to a single low premium for all shocks

sufficiently small to gain credibility. For premium adjustments to be credible, deviations

from the low premium need to be significant so price increases induce enough reduction in

demand. This way, adjustments can only be attributed to large cost shocks and not ascribed

to opportunistic behavior.

We show that the optimal premium profile has a simple cutoff rule: premiums are low

and rigid for marginal costs below an endogenously determined threshold, while above this

threshold premiums are high and initially rigid before full flexibility is possible.2 Our model

explains why level-term insurance policies have a non-guaranteed premium schedule that

afford them the room to be flexible, while the finalized premiums rarely deviate from it.

Having established the general properties of an optimal premium schedule, we proceed

to solve the model numerically and calibrate it to match the quantitative features of ten-

year renewable insurance. The model generates realistic premium amounts and predicts

a jump in the premium of 12% when the cost shock realization switches between the low

and high regions, in line with what we observe on average in the data. Interestingly, we

find that in the numerical exercise the company does not find it optimal to allow for a fully

flexible premium schedule, even for the largest cost shocks. Instead, the flexibility is achieved

only by switching between the two rigid premiums. We then use the quantitative model to

perform several comparative statics exercises, highlighting the subtle differences between the

consumer’s hold-up problem and the traditional monopoly power.

We finally test the model predictions directly on our dataset of insurance premiums. First,

we find that between the 1990s and the 2000s, a period of time when the consumer’s hold-up

problem was likely weakened due to falling transaction costs and less adverse health shocks,

the frequency of premium changes increased and the average size of such adjustments fell,

bringing the pricing patterns of life insurance companies closer to those in typical consumer

goods markets. Second, we show that as the level-term of a renewable policy increases,

which relieves the quantitative power of our mechanism due to a higher probability of policy

termination before the renewal date, premiums are also more likely to be adjusted and

exhibit smaller jumps. Third, we demonstrate that life insurance companies tend to respond

to marginal cost shocks predominantly on the extensive margin, by increasing the hazard of

a premium change, while no apparent effect is detected on the intensive margin, by varying

the size of a premium change. This observation is in line with our model where the pricing

dynamics is based on a threshold rule. We conclude by testing common alternative models

of price rigidity, such as time- and state-dependent sticky price models, and show that their

predictions are not consistent with the facts about life insurance premiums.

2The upper rigidity result is similar to Melumad and Shibano (1991) or Alonso and Matouschek (2008).
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To summarize, our paper makes three contributions. On the empirical side, we provide

evidence for the frequency and size of price changes in the life insurance market, and propose

an explanation for this phenomenon. On the theoretical side, we build a model where the

optimal incentive compatible contract necessarily features price rigidity and a discrete jump.

Finally, we calibrate our commitment versus flexibility model to the life insurance market

and show that the predicted premium rigidity and jumps are quantitatively significant.

Our work builds upon several strands of literature in economics. In a seminal paper,

Hendel and Lizzeri (2003) examine cross-sectional data on life insurance premiums to show

that with one-sided commitment on the firm’s side, and risk of health reclassification on the

consumers’ side, the optimal insurance contracts exhibit front-loading. Hendel and Lizzeri

(2003) use the data from a single point in time (July 1997), making an implicit yet crucial

assumption that companies never deviate from the current non-guaranteed premiums.3 Our

paper therefore provides both empirical and theoretical foundation for their assumption.

Alternatively, Gottlieb and Smetters (2016) show that the front-loading of premiums can

be explained by insurers’ motive to profit from the policyholders who lapse early in their

life-cycle upon experiencing adverse income shocks. The aforementioned papers develop

theoretical models for the premium structure faced by a fixed individual over time. By

comparison, our work tries to explain the premium evolution of a life insurance contract for

a fixed age group over time.

More recently, Koijen and Yogo (2015) show that life insurance companies sold long-

term policies at largely negative markups following the financial crisis of 2008. The authors

highlight the role of financial frictions in that life insurers were able to improve their required

capital holdings by selling discounted long-term policies. In a subsequent contribution,

Koijen and Yogo (2016) demonstrate that the existence of “shadow insurance”, i.e. the

practice of ceding large amounts of liabilities to on- and offshore reinsurers allows companies

to mitigate the impact of tightening capital regulations and limit their impact on equilibrium

prices and quantity of underwritten insurance. In relation to these papers, we show that such

strategies of life insurance companies may be additionally motivated by an explicit desire to

keep prices constant in the face of changing costs and regulatory environment.

Our model is also related to the literature on optimal delegation and self-control. These

papers typically analyze a principal-agent setting with no transfers in which a biased agent

is better informed. The principal has full commitment and chooses a set of actions that the

agent can take. Main references for the literature on delegation include Holmstrom (1984),

Melumad and Shibano (1991), Alonso and Matouschek (2008) and Amador and Bagwell

(2013). Similar frameworks have been applied to the commitment versus flexibility trade-off

3The authors support this by citing a July 1993 issue of Consumer Reports.
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for time-inconsistent agents (Amador et al., 2006), and on the optimal level of discretion for

policymaking (Athey et al., 2005; Halac and Yared, 2014, 2017, 2018). Our paper differs from

the literature in three distinct ways. First, in our model, the time inconsistency of the firm

is endogenous. The firm is able to decrease or even eliminate its intertemporal conflict, but

we show quantitatively that it will not do so under empirically relevant parameters. Second,

the optimal premium will always contain a discontinuous jump if the firm has discretion

in adjusting the premiums in the future. This is in contrast to previous literature which

has found conditions for interval delegation to be optimal. Third, our paper focuses on an

industrial organization setting and emphasizes its quantitative importance in explaining a

previously undocumented phenomenon.

The remainder of the paper is structured as follows. Section 2 describes the construction

of our dataset and summarizes the main findings about price rigidity in the life insurance

market. Section 3 develops the theoretical model. In Section 4 we present the main qualita-

tive predictions of the model, calibrate it and perform a numerical analysis of the solution.

Section 5 empirically tests the main predictions of the model and addresses common alter-

native theories. Section 6 concludes and discusses the broader implications of our theory.

The Appendices contain the proofs to theorems and lemmas presented in the main text, a

description of the numerical algorithm, and some more nuanced discussions of our data.

2 Life Insurance Prices

In this section we describe the empirical setting of our paper. We start by explaining

how renewable level-term insurance works, introduce the dataset of historical premiums, and

then discuss our findings on premium rigidity. We conclude by showing that marginal cost

of life insurance is volatile over time, which presents a puzzle in light of the rigid premiums.

2.1 Contract Description

We focus our attention on the renewable level-term form of insurance. These contracts

require a down payment of yearly premium at the moment of signing and stay in force

for a pre-defined period, typically between one and twenty years. After the term expires,

customers face a premium schedule that increases with age and are allowed to renew the

policy without undergoing a medical reclassification. Table 1 presents the structure of a

typical level-term insurance policy, commonly referred to as the Annual Renewable Term

(ART), for the first 10 policy years. In order to help the consumers undertake this long-

term commitment, the contract stipulates a projected path of premiums based on the rates
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currently offered to older individuals in the same health category (the “Non-Guaranteed

Current” column). This schedule is not binding though, and the company may change it

at any point in the future. From a legal standpoint, the insurer only commits to an upper

bound on future premiums (the “Guaranteed Maximum” column), which vastly exceeds the

amounts that can be expected in a market equilibrium.

A natural question to ask is: how often do life insurance companies change their premium

schedules? The next section answers this question by constructing a dataset of historical

premiums to verify that companies indeed tend to honor these non-binding commitments.

Table 1: Structure of an Annual Renewable Term (ART) contract

Age
Guaranteed Maximum

Contract Premium
Non-Guaranteed Current

Contract Premium
30 270.00 270.00∗

31 550.00 280.00∗

32 565.00 285.00∗

33 582.50 297.50∗

34 605.00 302.50∗

35 632.50 325.00∗

36 670.00 330.00∗

37 712.50 332.50∗

38 757.50 350.00∗

39 820.00 360.00∗

Note: Sample contract offered by the Guardian Life Insurance Company of America (first

ten years). Face value = $250, 000. The asterisk in the last column is a standard feature and

indicates that premiums are non-guaranteed. Source: Compulife Software, December 2004.

It is important to highlight that Table 1 presents a type of contract referred to as Aggre-

gate ART where the premiums vary exclusively by age. Similarly as in Hendel and Lizzeri

(2003), our data also contains the Select and Ultimate (S&U) ARTs where prices are contin-

gent on the time elapsed since the last medical exam. For example, a 31-year-old new S&U

policyholder would be offered a lower premium than a renewing customer of the same age,

unless the former undergoes an new medical examination. For completeness, our dataset

pools together both types of level-term contracts.

2.2 Data Construction

We construct a sample of life insurance premiums from Compulife Software, a commercial

quotation system used by insurance agents. The programs are released monthly, spanning

the period from May 1990 until October 2013. For each of the 282 months collected, we
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recover the premiums for 1-, 5-, 10- and 20-year renewable term policies offered by different

companies.4 Even though Compulife is not a complete dataset, it covers most of the major

life insurers with an A.M. Best rating of at least A-. As the default customer profile we use a

30-year-old male, non-smoker, with the “regular” health category, purchasing a policy with

face value of $250,000, in California. The choice of this particular state is by Compulife’s

recommendation, due to a relatively large population and wide representation of insurance

companies. The obtained sample consists of 55,829 observations on annual premiums for 578

different policies offered by 234 insurance companies.5 Naturally, over the course of 23 years

these firms tend to disappear or merge, as well as discontinue their old products and launch

new ones. For this reason, even though we keep track of such transformations whenever

possible, each product is observed on average for just over 96 months (with a median of 84).

We also eliminate the seemingly duplicate products offered by the same company, always

keeping the one with lower price.

2.3 Historical Premiums

Table 2 provides a statistical description of price rigidity in our dataset. Among 578

distinct insurance products that appear for at least 12 continuous months in the sample, only

369 change their premium ever. The probability of a change in any month is 2.56%, resulting

in an average premium duration of roughly 39 months. Table 2 includes a vast number of

companies that do not adjust prices even once. This may be a deliberate business strategy,

but it may also result from other, non-market-oriented factors.6 Hence, we also calculate the

statistics for the subsample of insurance policies that display at least one premium change.

Among those products the probability of a monthly price adjustment increases slightly, but

still remains low at 3.4%, resulting in an average duration of almost 28 months. It should

also be noted that products whose price adjusts in the dataset, also tend to stay around

for a longer time (114 months as opposed to an unconditional average of 96 months). This

observation suggests that certain insurance policies tend to be discontinued (and replaced

by new ones) rather than to deviate from the previously promised premium schedule.

We observe a total of 1432 instances of premium adjustment, consisting of 580 hikes and

852 drops. Whenever they occur, premium changes tend to be of large magnitude, over 10%

4To extract the data from Compulife programs, we obtain screenshots with premium listings and apply
a dedicated optical character recognition (OCR) script to convert them into numeric data. This approach is
particularly useful for the pre-1997 programs which can only be run under MS-DOS operating system.

5Because of occasional incompleteness of Compulife data (especially in the 1990s), we impute the prices
whenever a discontinuity appears for up to at most 12 months. The imputed data constitutes roughly 1% of
the final sample size. We also drop all the products that are observed for less than 12 continuous months.

6For instance, an insurance company that has no interest in selling certain types of policies may still
offer them as a reference for tax authority.
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on average, although we also observe many small changes which yields a median change of

around 8%. Overall, the size distribution of price changes in the life insurance market looks

similar to the broad class of consumer products, as documented by Klenow and Kryvtsov

(2008).7 In particular, the distribution is leptokurtic (kurtosis is around 5.5) meaning that

more mass is concentrated around zero and in the tails relative to a normal distribution

(kurtosis = 3). However, it is unclear how this distribution compares to other financial

services, because very little evidence is available in the literature.

Table 2: Price rigidity in the sample

Total number of observations 55,829
Total number of insurance products observed 578
Total number of products that change price 369

Whole sample:
Probability of a monthly price change (in %) 2.56
Median probability of a price change (in %) 1.73
Average number of observations per product 96.59

Excluding the companies that never adjust:
Probability of a monthly price change (in %) 3.41
Median probability of a price change (in %) 3.23
Average number of observations per product 113.82

Total number of premium adjustments:
All premium changes 1432
Premium hikes only 580
Premium drops only 852

Distribution of adjustment size (in %): Average Median Kurtosis
All premium changes 10.74 7.94 5.56
Premium hikes only 10.58 7.41 5.99
Premium drops only 10.85 8.49 5.14

In order to visualize these findings, Figures 2(a) and 2(b) take a closer look at the

distribution of premium durations and adjustment sizes. The former depicts a standard view

of a distribution of durations with significant positive skewness and a long right tail reaching

up to 20 years! Each bin in the histogram represents 6 months, which means that roughly

7Naturally, life insurance is different from typical CPI basket goods in that it provides a nominal face
value rather than a real consumption value. Hence, inflation provides at best a second-order pressure on
premium changes (via the company’s strategic behavior), as we show in more detail in Appendix A. Hence,
all else constant it should not be surprising that life insurance premiums are rigid even in the presence of
positive inflation. On the other hand, as we demonstrate in Section 2.4, life insurance products exhibit
volatile cost shocks which is not necessarily the case for many goods included in the CPI basket.
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35% of premiums spell last up to 12 months, while the majority last longer than a year. The

second chart presents the distribution of relative sizes of price adjustments, together with a

fitted normal density plot. As it is clear from the summary statistics in Table 2, premium

drops occur more often and are of slightly larger magnitude. The adjustments reach as much

as 50% in both directions. The distribution also exhibits fatter tails and more concentration

around zero than the normal one.
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Figure 2: Distribution of premium durations and adjustment sizes

In a final piece of data analysis, we explore the distribution in insurance premiums in

our sample by examining the relative price dispersion. Figure 3 sketches a histogram of all

premiums relative to the current monthly average (for a given renewable term), which is

normalized to 100. The striking feature of the graph is the long right tail which implies that

some life insurance policies are offered at a premium 2.5 times as high as the average in that

category, at a given point in time. More generally, even though life insurance may seem to be

a rather homogeneous financial product, we observe a significant dispersion across policies.

This may be attributed to varying terms and conditions of different policies (we aggregate all

products in the category “renewable level-term” by term duration), as well as the imperfectly

competitive environment in which life insurance companies operate. These imperfections

may include search frictions (Hortacsu and Syverson, 2004), information frictions or product

differentiation (e.g. with respect to company reputation or brand loyalty).

2.4 Marginal Cost Estimation

The rigidity of premiums over time may not appear puzzling unless we have an under-

standing of the dynamics of the underlying marginal cost of life insurance. In this section we
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Figure 3: Distribution of insurance premiums, relative to the cross-sectional average

show how this cost can be constructed using publicly available data, specifically the interest

and mortality rates. We approximate marginal cost by calculating the actuarially fair value

of a renewable level-term policy (also referred to as the net premium). A precise description

of the method we use is provided in Appendix D. Intuitively, a net premium can be thought

of as a price that satisfies a zero-profit condition faced by the insurance company. Figure 4

presents a stylized illustration of an insurer’s cash flow structure. A k-year renewable level-

term insurance policy is effective from the moment the first premium is paid, period t, and

stays in force for as long as the customer keeps renewing it. Premiums are increasing with

age every k years and the benefit is paid out by the company at the moment of death of

the insured, denoted t+ n. In order to break-even, the firm must charge a stream of premi-

ums {Pt} such that the present expected value of cash flows between the company and the

policyholder are equalized, i.e.
∑N

s=0
Et[Pt+s]
Rst

=
∑N

s=0
Et[Bt+s]

Rst
.

t

Pt

t+ 1

Et[Pt+1]

t+ 2

Et[Pt+2]

t+ 3

Et[Pt+3]

t+ n

Et[Bt+n]

Death BenefitFlow of premiums

Figure 4: Stylized illustration of a life insurer’s expected cash flows
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Figure 5 plots the evolution of net premium for an ART policy, from May 1990 until

October 2013.8 It ranges from as low as $196 (in November 1994) up to $291 (in December

2008), with mean of $216 and a standard deviation of $13.6. The net premium exhibits

considerable fluctuations over time that depend on the high frequency movements in the

interest and low frequency movements in mortality rates. A slight upward trend can be

noticed throughout the sample, which results from the two opposing empirical patterns - a

decline in interest rates, and a decline in mortality of the insured. In particular, the net

premium exhibits a sharp spike in December 2008 when interest rates plunged to record low,

and a similarly high level in the post-2011 period of the zero lower bound.

Figure 5: Net premium for an Annual Renewable Term policy over time

2.5 Data Interpretation

So far we have documented that life insurance premiums tend to be rigid over time and

exhibit infrequent jumps, while the marginal cost of issuing policies is volatile. Here, we

explain how these findings motivate the construction of our model in the next section.

Our model follows a generation of aging policyholders who face renewal decisions in the

future. To see how the model ties into the data, denote the life insurance premium as

function P (t, a, x), where t is time, a is age, and x is the initial profile of a customer which

we take as given. We focus on the profile of premiums for a fixed age P (·, 30, x) and we find

that premiums P (t, 30, x) are rigid with respect to t. By contrast, Hendel and Lizzeri (2003)

8We assume here that the customer does not voluntarily lapse before turning 60 years of age.
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focus on the age profile of premiums at a fixed point in time, P (t0, ·, x). In reality, as time

passes the policyholder also ages which makes arguments t and a move one-to-one. So for

an Aggregate level-term policy, where premiums vary in age but not across cohorts, rigidity

with respect to time implies that the current non-guaranteed rates in Table 1 are likely the

premiums posted upon renewal. For example, if a premium P (t, 31, x) is constant for all

t, then a customer renewing at age 31 in 2011 pays the same premium as he anticipated

at age 30 in 2010. In other words, the company keeps its promises towards the renewing

customers. On the other hand, in a Select and Ultimate contract this does not have to be

the case because customers of the same age may pay different premiums depending on when

they had their last medical exam. While extracting the exact renewal premiums for such

contracts from Compulife is technologically formidable, we verify that adjustments to the

renewal schedules tend to coincide with changes to the newcomers’ schedules.

A final remark is in order. The premium amounts we present here are nominal, while our

model in the following section is formulated in real terms. As we explain in Appendix A,

this is without loss of generality as long as inflation is constant (which is approximately true

for the analyzed period of time in the United States). This is because while inflation erodes

the value of premiums over time, it does so to the expected death benefit as well. Thus,

nominally rigid premiums for a policy with fixed nominal face value translate into rigid real

premiums per dollar of real face value.

3 The Model

In this section, we present a dynamic pricing model of renewable life insurance. After set-

ting up the model, we characterize consumer demand, define incentive compatible premiums

and the firm’s optimization problem.

3.1 The Setup

3.1.1 Consumers and Preferences

We consider an economy consisting of overlapping generations of three-period-lived con-

sumers. The economy operates in discrete time, t = 0, 1, 2, . . . . At each date t, there is a

continuum of consumers with demand for insurance, where a unit of them are young and

the rest are old. We refer to the young born in t as consumers of generation t. For each

generation t, the young decide whether to purchase insurance at t and whether to renew,

lapse or search for a new policy when old at t+ 1. The life insurance market does not exist

for generation t consumers at t+ 2, because they are dead in t+ 3 and beyond.
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We assume that all young consumers are of the same health category. Before becoming

old, consumers face a population-average mortality risk my ∈ (0, 1). Additionally, before

the final period of their life, a consumer’s individual mortality rate is affected by a possible

change in health status. We denote the population-average mortality risk of the old as

mo ∈ (0, 1).

Consumers are heterogeneous in their private reservation price to owning a policy, ro, of

a life insurance coverage when old, while it is assumed to be the same across all consumers

when young: ry = r.9 Private valuation ro is drawn from a continuous and differentiable

distribution h (ro) and c.d.f. H (ro) with support [R,R]. We assume R > R ≥ 0 and R is

sufficiently large so there is positive demand for insurance coverage when old even if the firm

is facing large cost shocks. We also assume that the hazard rate is non-decreasing for H.

Only the distribution of valuations is common knowledge, so life insurance companies are

unable to write individual-specific contracts. Consumers also have discount factor δ ∈ (0, 1) .

We normalize the value of not owning life insurance to 0.10

3.1.2 Life Insurance Company

We model the pricing decision of a single life insurance company that faces exogenous

competition in the form of stochastic outside options available to consumers. The mar-

ket structure can be interpreted as monopolistic competition where the company faces

downward-sloping demand due to the imperfect substitutability of insurance policies.11

The company faces a stochastic marginal cost shock co for insuring the old, which is

randomly drawn from a continuous and differentiable c.d.f. G and p.d.f. g with support

[c, c] .12 The marginal cost for each date cj,t, where j ∈ {y, o} depends on the aggregate

mortality rate and the interest rate. Formally, this relationship can be expressed as

cj,t =
mj,t

1 + it
,

where it is the one-period risk-free interest rate. We do not take a stand on the distributions

of mj,t and it, and instead we only model explicitly the univariate distribution of cj,t. Also,

since my,t is small, we assume that cy,t = cy and my,t = my for all t.13

A key assumption is that the cost is privately observed by the insurance company. This

9The main results of the paper are unchanged if ry is heterogeneous.
10It is important to note that since consumers have a positive valuation for having coverage, they are not

risk neutral.
11This is due to the search and information frictions, as described by Hortacsu and Syverson (2004) and

confirmed by the premium dispersion in our dataset. Section 3.1.3 introduces this assumption in more detail.
12The insured pool is large, so G does not vary with the size of the insured pool on the margin.
13The cost to insure the young is relatively stable in the data, for details see Figure 8 in Section 4.1.
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assumption is reasonable given the complicated nature of the mapping from interest and

mortality rates to marginal cost of renewable life insurance contracts, as well as limited

availability of the data in real time.14

3.1.3 Renewability, Transaction Cost and Search Frictions

There are two types of policies offered in the market: renewable and non-renewable, each

with the same face value which we take as given. The young may purchase one of these

products, or neither of them. If they choose a renewable policy, then they have an option

to renew when old regardless of the possible changes in their health status. On the other

hand, a non-renewable policy expires after one period and consumers may purchase another

non-renewable insurance bearing the risk of being reclassified to a different health group. In

both cases, consumers can lapse after the first period (i.e. drop coverage altogether).

Prior to acquiring a new policy, consumers need to invest a transaction cost µ > 0. It cap-

tures the cost of researching the market for available products, attending medical checkups,

meeting with sales agents and answering detailed questionnaires, as well as being exposed to

the contestability period.15 If young consumers decide to purchase a non-renewable policy,

then they must pay the transaction cost again to receive new coverage when old. On the

other hand, this cost is avoided if consumers decide to extend their renewable policy.

Old consumers may choose to search for a new non-renewable policy, at the expense of

paying the transaction cost µ again. There are two sources of risk associated with this action.

First, as discussed above, consumers face a possibility of health deterioration which can result

in much higher premium when purchasing non-renewable insurance.16 The second source of

risk comes from the search and information imperfections, resulting in ample dispersion of

the premiums offered in the market. This means that a consumer who decides to search may

end up finding a worse alternative, even if the health status is unchanged. To model these

risks, the price of non-renewable insurance for the generation t old consumers is PNR
o,t+1 =

εco,t+1, where ε is the uncertainty added to the marginal cost and it follows a right-skewed

distribution with c.d.f. Z and p.d.f. z and support (0,∞). As a result, old consumers face

a trade-off in deciding whether to search for a new policy or renewing with the current

company. Their eventual choice depends on the relative size of the transaction cost, their

private valuation of insurance, as well as the risk of searching for a new policy. Since cy is

14For example, the mortality rates are limited to the insured pool and are privately collected by and
shared among insurance companies. Furthermore, a report on life insurance cost disclosure to the Federal
Trade Commission argued that most consumers are unable to evaluate the real cost of insurance (Bureau of
Consumer Protection and Bureau of Economics, 1979).

15We refer the reader to the quantitative part in Section 4.1.1 for more details on the transaction cost.
16We will abstract from selection issues and assume that the non-renewable premium is independent of

the policyholder’s valuation.
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constant, we assume that the non-renewable premiums for the generation t young consumers

is constant across time, PNR
y,t = PNR

y .

3.1.4 Timing

We express the premium schedule for generation t old consumers as {Po,t+1(co,t+1)} and

the realization of the premium at cost co,t+1 as Po,t+1(co,t+1). The renewable life insurance

contract is defined as the premium schedule {Py,t, {Po,t+1(co,t+1)}}∞t=0 .

At each t, the company announces Py,t. Young consumers proceed to make their in-

vestment and purchasing decision. Prior to t + 1, the company announces the schedule

{Po,t+1 (co,t+1)} . At t+ 1, co,t+1 is realized and the company sets Po,t+1, which all surviving

consumers observe. Then, the existing policyholders decide whether to renew, lapse or search

for a new offer. Figure 6 summarizes the timing for generation t.

Py,t
announced

Invest µ

{Po,t+1 (co,t+1)}
announced

Death
shock

co,t+1

realized
Po,t+1

finalized

Renew,
lapse

or search

Generation t Young Generation t Old

Figure 6: Timing of events

Even though {Po,t+1 (co,t+1)} is not announced at the beginning of t, it is common knowl-

edge that it is selected optimally to balance commitment and discretion. In other words,

consumers correctly anticipate {Po,t+1 (co,t+1)} upon signing. More details will be provided

in the following sections.

We do not consider generation t new consumers or newcomers purchasing the renewable

policy in t+1. In reality, consumers can sign up at any age. If the newcomers invest µ before

the realization of co,t+1, then the hold-up problem persists. To be more concrete, young

consumers who did not purchase renewables can choose to invest µ for an opportunity to

have coverage when old. After µ is sunk, the cost is realized and the insurance company

finalizes their premium. After observing the premium, the newcomers can choose to sign the

contract or not. Under this timing, there exists a minimal valuation of the newcomers who

invested µ. Since the firm has monopoly power, it has the temptation to increase premiums

up to this minimal valuation once µ is sunk. Therefore, the insurance company is time-

inconsistent and it can be shown that the optimal premium satisfies the same properties as

the model without newcomers.
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3.2 Characterizing the Demand

For the analysis in this section, we focus on consumers of generation t. Let Bren (ro; t)

denote the expected utility of a generation t renewable policyholder with private valuation

ro, and Bnon (ro; t) denote the expected utility of individuals with the same profile who did

not purchase a renewable policy. For any {Po,t+1 (co,t+1)} , a generation t consumer with

valuation ro will purchase renewable life insurance in t if

(r − Py,t − µ) + (1−my) δB
ren (ro; t) ≥

max
{

0, r − PNR
y − µ

}
+ (1−my) δB

non (ro; t) , (1)

where Bren (ro; t) is∫ c

c

max

{
0, ro − Po,t+1 (co,t+1) ,

∫
ε

max
{

0, ro − Po,t+1 (co,t+1) , ro − PNR
o,t+1

}
dZ (ε)− µ

}
dG (co,t+1)

and

Bnon (ro; t) =

∫ c

c

max

{
0,

∫
ε

max
{

0, ro − PNR
o,t+1

}
dZ (ε)− µ

}
dG (co,t+1) .

There are three benefits to purchasing a renewable policy, all reflected in the left-hand side

of (1). First, renewable policyholders do not need to incur a transaction cost of µ if they

choose to renew. Second, renewable life insurance contracts are similar to options. Due to

one-sided commitment, policyholders are not obligated to renew if premiums are high. They

could instead lapse or search for a new policy. Finally, policyholders can always renew if

they are unable to find better deals after searching. The right-hand side of (1) captures the

expected utility of not purchasing a renewable. In this case, individuals can choose to either

not have coverage or be covered by a non-renewable when young. Also, when they are old,

they have the same options as renewable policyholders except for the option of renewing.

We will make the following assumption, so all consumers would have coverage when young.17

Assumption 1 r ≥ PNR
y + µ.

By Assumption 1, a generation t young consumer purchases renewable if and only if

Bren (ro; t)−Bnon (ro; t) ≥
Py,t − PNR

y

(1−my) δ
. (2)

Inequality (2) states that consumers purchase renewable insurance if and only if the expected

17This simplifies but does not change our analysis, because as long as µ is sufficiently large the hold-up
problem persists.
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difference in benefits between a renewable and a non-renewable is greater than the premium

difference of the two types of insurance. The next lemma helps characterize the demand.

Lemma 1 For any t, Bren (ro; t) and Bnon (ro; t) have the following properties: (i.)

Bren (ro; t) ≥ Bnon (ro; t) ≥ 0 for all ro, (ii.) Bren (ro; t) and Bnon (ro; t) are weakly increasing

in ro, (iii.) there exists sufficiently large r̃o such that Bren (ro; t) and Bnon (ro; t) are strictly

increasing in ro for any ro ≥ r̃o. Also, if there exists r̂o such that Bren (r̂o; t) > Bnon (r̂o; t) ,

then Bren (ro; t)−Bnon (ro; t) is strictly increasing in ro ≥ r̂o.

Lemma 1 states that if there are consumers who prefer renewables, then all consumers

with higher ro would also prefer renewables. If Py,t ≤ PNR
y , then (2) is automatically satisfied.

In particular, the demand for renewables is independent of ro, because consumers purchase

renewables as long as r ≥ Py,t+µ regardless of ro. As a result, not all renewable policyholders

expect to renew next period. Hence, there is no hold-up problem if Py,t ≤ PNR
y , because the

renewal demand is elastic with respect to premium changes.

The more interesting case is when Py,t > PNR
y , because all renewable policyholders expect

to renew. This means only consumers with sufficiently large ro would purchase renewables

(by Lemma 1) and there is a lower bound in ro for its pool of policyholders (by (2)). The firm

would then be tempted to increase Po,t+1 to this lower bound. This is because the renewal

demand in t + 1 is inelastic with respect to premium changes below this lower bound. The

firm encounters a hold-up problem when Py,t > PNR
y . We will show numerically that despite

this, the firm will set Py,t > PNR
y at the optimum.

More formally, let r̄o (Py,t, {Po,t+1 (co,t+1)}) be defined as the threshold valuation such

that (2) holds with equality. Notice that this threshold is increasing with respect to both

arguments. To streamline notation, we write r̄o,t with the implicit understanding that it

depends on the premium schedules of both periods. Lemma 1 shows that all consumers with

ro ≥ r̄o,t purchase the renewable insurance. The demand function of generation t young

consumers is

Dy,t (Py,t, {Po,t+1 (co,t+1)}) = 1−H (r̄o,t) . (3)

The demand for renewing is

Do,t+1 (Py,t, Po,t+1 (co,t+1)) = (1−my) [1−H (max {r̄o,t, Po,t+1 (co,t+1)})] . (4)

The demand is weakly decreasing in premiums. Most importantly, renewal demand becomes

perfectly inelastic for any Po,t+1 (co,t+1) ≤ r̄o,t.
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3.3 Incentive Compatibility

Before a young consumer buys a renewable policy, the renewal demand is downward

sloping for all premiums. We refer to this pre-investment demand as the ex-ante demand

and the demand following the signing of the contract as the ex-post demand. The ex-ante and

ex-post demands are different which creates a time inconsistency problem for the insurance

company. In particular, policyholders reveal their valuation is at least as large as r̄o,t by

purchasing. After consumers sign, the insurance company has an incentive to increase next

period premiums up to r̄o,t, because the renewal demand is inelastic for prices below it.

The disparity between the ex-ante and the ex-post demand is the reason why the insurance

company needs commitment. However, volatile cost shocks create an incentive to adjust

premiums accordingly. To resolve this tension, the insurance company disciplines its pricing

behavior by setting incentive compatible premium schedules.

For generation t old policyholders, we can define the following cost regions for co,t+1 :

Co,t+1 = {co,t+1 | Po,t+1 (co,t+1) ≥ r̄o,t} ,

Co,t+1 = {co,t+1 | Po,t+1 (co,t+1) < r̄o,t} .

It is worth pointing out that the dissonance between ex-ante and ex-post demands occurs

for co,t+1 ∈ Co,t+1, while both demands are in agreement for co,t+1 ∈ Co,t+1.
18

We require {Po,t+1 (co,t+1)} to be incentive compatible: for all t and all co,t+1, c
′
o,t+1 ∈ [c, c] ,

[Po,t+1 (co,t+1)− co,t+1]Do,t+1 (Py,t, Po,t+1 (co,t+1)) ≥[
Po,t+1

(
c′o,t+1

)
− co,t+1

]
Do,t+1

(
Py,t, Po,t+1

(
c′o,t+1

))
. (5)

Constraint (5) serves to reduce the possible set of renewal premiums {Po,t+1 (co,t+1)} the

company can choose from. This is the same concept as delegation sets in Holmstrom (1984).

The set is announced prior to t+ 1. Though the set of premiums is not legally binding, it is

implicitly assumed that the firm has reputational concerns and believes that deviating from

this set would instigate consumer retaliation which lowers its future sales.

In addition to incentive compatibility, the company needs to refrain from exploiting the

consumers. The additional disciplinary measure requires the life insurance company to take

r̄o,t as given and choose {Po,t+1 (co,t+1)} such that (2) is satisfied for all ro ≥ r̄o,t. In essence,

the company needs to deliver a minimal expected utility to the policyholders that corresponds

to what the consumers expected when they were young.

18The analysis does not change if Co,t+1 = {co,t+1 | Po,t+1 (co,t+1) > r̄o,t} and Co,t+1 =
{co,t+1 | Po,t+1 (co,t+1) ≤ r̄o,t} .
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3.4 The Optimization Problem

From our model’s setup, we can see that the insurance company maximizes the expected

present value of profits by optimizing the profit for each generation, and that the optimal

premium schedule is stationary. Hence, the company can maximize total expected present-

valued profit by choosing the same premium schedule (Py, {Po (co,t+1)}) for each generation

t. This is because the environment is the same across generations, so the firm’s problem does

not change for each generation. The analysis will thus focus on the company maximizing its

profit from a single generation. To simplify notation, we drop the date subscripts.

We consider a sequentially optimal pricing rule. The company chooses a premium sched-

ule in each period that maximizes the present value of discounted profits taking into account

that it will do the same in the future. Moreover, consumers purchase insurance taking the

future behavior of the company into consideration. The endogeneity of consumer behavior

differs from the concept of sequential optimality in Halac and Yared (2014).

Definition 1 The sequentially optimal pricing rule is a contract {Py, {Po (co)}} such that

{Po (co)} solves the static optimization problem:

Πo(Py) ≡ max
{Po(co)}

∫ c

c

(Po (co)− co)Do (Py, Po (co)) dG(co), (6)

subject to (2) and (5) for any given Py and r̄o. The premium Py solves the optimization

problem for a given cy by taking the optimal response {Po (co)} as given:

Π = max
Py

(Py − cy)Dy (Py, {Po (co)}) +
1

1 + i
Πo (Py) . (7)

Given Py and the optimal response {Po (co)} , consumers sign-up for renewable life insurance

if (2) is satisfied.

We choose to focus on the sequentially optimal pricing rule instead of the ex-ante optimal

pricing rule, where the company chooses the current and all future premium schedules at

the beginning of the generation, because companies may choose to renegotiate or announce

possible changes to the premiums before the following period. For example, the premium

schedule in Table 1 demonstrates how, in practice, life insurance companies do not tie them-

selves down to a fixed pricing rule.

The objective (6) is similar to finding a balance between discretion versus rules in delega-

tion problems. The main difference is in how this trade-off is being created. The literature

on optimal delegation and self-control has focused on situations where the disagreement be-

tween principal and agent or present and future-selves is exogenous. In (7), the insurance
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company can completely eliminate its time inconsistency by setting Py ≤ PNR
y . However, we

will show numerically that the trade-off in life insurance contracts is endogenously generated

by the company optimally setting Py > PNR
y . 19

4 The Optimal Premium Schedule

In this section, we characterize the incentive compatible premium schedule and obtain its

general properties. Note that all of the results here are for Py > PNR
y . Later in this section,

we will calibrate the model and solve for Py. The following lemma shows that the incentive

compatible premium schedule is rigid for low cost shocks.

Lemma 2 An incentive compatible premium schedule {Po (co)} satisfies the following:

i. For co ∈ Co, Po (co) does not vary with co and Co has strictly positive measure.

ii. Po (co) is weakly increasing, and there exists cT such that Co =
[
c, cT

)
and Co =

[
cT , c

]
.

Lemma 2 shows that the premium schedule is not sensitive to cost shocks within Co. It

also states that cost shocks within Co are non-negligible. In addition, Lemma 2 shows that

there exits a cutoff cT such that Co =
[
c, cT

)
and Co =

[
cT , c

]
, which means that premiums

do not respond to small cost shocks.20

The rigidity is caused by the inelastic renewal demand at low prices. Since Py > PNR
y ,

this means the firm needs to promise all policyholders a strictly positive expected utility

at renewal, so Co is non-negligible. However, the firm knows the minimum valuation of the

insured pool from (2) and is tempted to increase premiums up to it. As a result, any variation

in premiums below r̄o would not be credible, because the firm would always announce the

highest premium below r̄o.

Denote P̄o = Po (co) and the demand D̄o = Do (Py, Po (co)) for all co ∈ Co. Lemma 2 allows

us to rewrite the downward deviating incentive compatibility constraints into the following

single constraint: ∀co ∈ Co,∀c′o ∈ Co, [Po (co)− co]Do (Py, Po (co)) ≥
(
P̄o − c′o

)
D̄o. Similarly,

we can also rewrite the upward deviating incentive compatibility constraints. In particular,

we have the following binding incentive compatibility constraint at cT :

(
P̄o − cT

)
D̄o =

(
Po
(
cT
)
− cT

) [
1−H

(
Po
(
cT
))]

. (8)

19An additional reason for Py > PNR
y not modeled in this paper is the fact that firms may attempt to

screen consumers with demand in the next period from those without. To see this, suppose some consumers
have ro = 0 while some have ro > 0. The firm separates the two types by issuing renewable and non-renewable
contracts. Consumers with ro = 0 prefer the non-renewables r−PNR

y − µ ≥ r−Py − µ+ δη, where η > 0 is

the expected benefit from selling the insurance in the secondary market. This implies Py − PNR
y ≥ δη.

20Alternatively, defining Co =
[
c, cT

]
and Co =

(
cT , c

]
would not affect the analysis and results.
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If (8) is non-binding, then it is not incentive compatible for co within a neighborhood of cT .

The next lemma characterizes the incentive compatible premium for Co, which shows

that premiums are also rigid for intermediate cost shocks. Let P ∗o (co) denote the optimal

frictionless premium at co. We refer to it as the frictionless premium because the incentive

compatibility constraints are not binding.

Lemma 3 An incentive compatible premium schedule {Po (co)} satisfies the following:

i. For co ∈ Co, if Po (co) is strictly increasing and continuous on an open interval (c′o, c
′′
o) ,

then Po (co) = P ∗o (co) on (c′o, c
′′
o) .

ii. Po
(
cT
)
> r̄o > P̄o, and there exists cM > cT such that Po (co) does not vary with

co ∈
[
cT ,min

{
cM , c

})
.

Lemma 3 shows that the company charges the optimal frictionless price if it has full

flexibility, but it is not incentive compatible for the firm to have full flexibility for all costs

in Co. Most importantly, {Po (co)} has a jump discontinuity at cT .

By Lemma 2 and the fact that r̄o > P̄o, the incentive compatible premium has to have

a discrete jump if the company has flexibility to adjust premiums. What is interesting is

the size of this jump. The incentive compatible premium has a discrete jump at cT such

that Po
(
cT
)
> r̄o, because the company has to induce enough lapsation to convince the

consumers that an upward adjustment in premiums is due to adverse cost shocks and not

an attempt to take advantage of the hold-up problem. The company can credibly respond

to cost shocks only when it causes a simultaneous decrease in the demand for insurance.

The existence of a discontinuous jump is in contrast to the optimal delegation literature,

where general conditions can be found to rule it out (Amador and Bagwell, 2013). The

difference is the endogeneity of r̄o. To see why, suppose the admissible premium is within the

range of [A,B] , then only consumers with ro > B would purchase renewables.21 Therefore,

r̄o > B and the company would always charge a price of B. This implies that incentive

compatible adjustments to premiums have to be significant and contain jumps.

Lemma 3 also states that incentive compatible premiums are rigid for co ∈[
cT ,min

{
cM , c

})
. This is because if the firm chooses P ∗o (co) for all co ∈

[
cT , c

]
, then the firm

would deviate to the frictionless premium for cost shocks slightly below cT . As a result, the

firm chooses a rigid premium, which is the only other incentive compatible option for costs

within
[
cT ,min

{
cM , c

})
.22 This implies the firm is able to charge frictionless premiums only

21Consumers with ro = A would purchase non-renewables, because expected utility for buying renewables
would be zero. Also, consumers with ro ∈ (A,B] would also not purchase, because the company would set
Po = r̄o if they are part of the insured pool making [A,B] not incentive compatible.

22This result is similar to the characterization of incentive compatible delegation rules with discontinuities
in Melumad and Shibano (1991) and Alonso and Matouschek (2008).
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for sufficiently large shocks, because the corresponding premiums would be large enough to

cause a significant decrease in demand through lapsation to retain incentive compatibility.

Let ¯̄Po denote the rigid premium when co ∈
[
cT ,min

{
cM , c

})
.

Theorem 1 The incentive compatible premium has the following feature:

Po (co) =


P̄o c ≤ co < cT

¯̄Po cT ≤ co < min
{
cM , c

}
P ∗o (co) min

{
cM , c

}
≤ co ≤ c

with P̄o < r̄o <
¯̄Po = P ∗o

(
cM
)

and

(
P̄o − cT

)
[1−H (r̄o)] =

(
¯̄Po − cT

) [
1−H

(
¯̄Po

)]
. (9)

Theorem 1 shows that the incentive compatible premium is rigid for low and intermediate

cost shocks and has an upward discrete jump at cT . Figure 7 illustrates an optimal incentive

compatible pricing rule. By Theorem 1, the life insurance company solves for the premiums{
P̄o,

¯̄Po, Py

}
and the cost thresholds

{
cT , cM

}
subject to (2) and (9). Since the premiums

affect r̄o and vice versa, the optimization problem is complex and it is difficult to obtain

tractable analytical solutions. In the next subsection, we will solve the model numerically.

Po

co

r̄o

P̄o

¯̄Po

cT cM

P ∗o (co)

Figure 7: Incentive compatible premium profile
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4.1 Numerical Analysis

4.1.1 Calibration

The model does not have an explicit closed-form solution.23 We proceed by using the data

and outside knowledge to assume reasonable parameter values and functional forms, and solve

for an equilibrium numerically. Table 3 presents a summary of our calibration. Because we

only focus on two periods, we assume that each period is equivalent to ten years and calibrate

the remaining parameters to the features of ten-year level-term renewable insurance. While

most of the model variables do not have a direct counterpart in the data, we attempt to

make the calibration realistic while also keeping the numerical solution feasible. In what

follows we describe our assumptions on the functional forms and parameter values.

Table 3: Parameter values in the model

Symbol Meaning Value

µ Transaction cost 970
cy Cost shock for insuring young 1090
PNR
y Price of non-renewable insurance 1040
my Mortality rate 0.007
i Annual interest rate 0.04
δ Discount factor 0.68

Cost shock distribution: uniform

c Lower bound 2700
c Upper bound 3500

Valuation distribution: Generalized Pareto

γ Scale parameter 700
κ Shape parameter 0
θ Threshold parameter 3595

Search and health shock distribution: lognormal

ε̄ Mean -0.0104
σε Standard deviation 0.14425

The marginal cost to insure a consumer is computed directly from the data. Cost of

covering the young cy corresponds to the average expected death benefit payout for a 30-

23This is mainly because r̄o affects the degree of rigidity and the size of the discrete jump, but it is also
endogenously determined by the premiums.

24



year old male over the period of ten years.24 This cost ranges from $914 to $1244 in the

data, with a mean of $1090. Because of the relatively small volatility of this variable evident

in Figure 8 below, we simplify the model by taking cy as given and setting it equal to the

average. The cost of covering the old co is associated with the expected death benefit payout

for a 40-year old male who is renewing a policy purchased at age 30. This involves using

different (higher) mortality rates than for new 40-year-old customers who have just passed a

medical exam. This cost ranges from $2717 to $3430 in the data, with an average of $3064.

The distribution of this shock is unlikely to be normal due to the presence of fat tails. This

is confirmed by the Jarque-Bera test which returns a p-value of 0.075, providing grounds to

reject the null hypothesis of normality. In order to make computation of some parts of the

equilibrium analytically feasible, we assume that the distribution is uniform with bounds

[2700, 3500]. Figure 8 illustrates our measure of the cost shocks over time.25

Figure 8: Cost shocks in the data

The distribution of consumers’ private valuations does not have a clear counterpart in

the data. To simplify the algorithm, we assume it to be a Generalized Pareto distribution,

with the shape parameter of 0. This assumption makes it essentially a “shifted” exponential

distribution, which features a constant inverse hazard rate 1−H(·)
h(·) = γ, enabling us to obtain

closed-form solutions for prices P̄o and ¯̄Po (details of the solution method are provided in

24As discussed in Appendix D, we abstract here from the issue of voluntary lapsation and assume that
the consumer will continue to pay the premium for the entire period.

25In reference to the series presented in Figure 5, here we consider a fixed 10-year insurance term only
and do not convert the cost shocks to annual values.
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Appendix C). The scale parameter γ is selected to match the existing evidence on elasticity

of demand for term life insurance. Specifically, Pauly et al. (2003) use the Compulife data

from January 1997 and find the price elasticity of demand to be 0.475 for a median company.

Given our distributional assumption, and the median yearly premium for an ART in January

1997 of $335, we set the value of the scale parameter γ to be 700. The threshold parameter

θ is then calibrated to match the fraction of non-renewable policies among all term policies

underwritten, equal to 11% as reported by LIMRA (1994).

The distribution of the health and search shock ε is assumed to be lognormal, which con-

veniently allows us to calculate the integrals inside of Bren(·) and Bnon(·) of (1) analytically,

rather than numerically. The right skewness of the distribution captures the idea that a con-

sumer who decides to search for a new policy when old may find a better deal in the market,

but is also at a risk of prohibitive premium increases should his health have deteriorated

or lifestyle habits changed.26 We do not have compelling evidence on the probabilities of

getting a table rating. For this reason, we set the parameters of the lognormal distribution

to match two moments: i.) E(ε) = 1, and ii.) V ar(ε) = 0.1452 where 0.145 is the average

coefficient of variation across time for all the prices of 10-year renewable term policies in our

sample. In other words, we calibrate the variance of search shocks to match the observed

dispersion of premiums in the data, and allow the right-skewness of the lognormal distri-

bution to determine the likelihood of adverse health shocks. Notice that by calibrating the

distribution of ε to the empirical price dispersion, we introduce to the model a reduced-form

effect of market competition (Section 5.4.3 provides more evidence on this).

The transaction (or switching) cost µ is the key parameter in our model, and at the same

time probably the most controversial one. It comprises the opportunity cost of researching

the products on the market (and not working or using leisure), the opportunity and mon-

etary cost of attending the medical examination, the opportunity cost of meeting with an

insurance agent and filling out the paperwork (in particular given that our sample starts in

1990s). Additional factors contributing to the dollar value of µ consist of the cognitive cost

of shopping for an insurance policy and undertaking a long-term commitment (for example,

overcoming cognitive dissonance), as well as getting exposure to the contestability period, i.e.

a possibility that the insurance company may reject a benefit claim if death occurs in a short

period after signing the contract. Direct estimation of switching costs in the life insurance

market is beyond the scope of this paper. Instead, we survey the literature for similar recent

estimates across other markets which also feature long-term contracts. Table 4 summarizes

26In practice, below the regular health category life insurance companies use the so-called table ratings to
determine a premium hike. The consumer’s health and lifestyle is evaluated with respect to several categories
and each one may raise the standard rate by 25%.
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our investigation. The switching cost estimates vary significantly for different studies and

markets, ranging between $40 and $700 for markets such as auto insurance, wireless or cable

TV, as well as between $1200 and $5000 for health and retirement plans. In order not to

rely on possibly irrelevant outliers, we adopt a median value between these two groups of

$970, and we analyze the importance of this parameter by performing comparative statics

exercises in the following section.

Table 4: Switching cost estimates in the related literature

Reference Market Dollar value

Honka (2014) Auto insurance 45-190
Cullen and Shcherbakov (2010) Wireless 255
Shcherbakov (2016) Television and satellite 227-395
Weiergräber (2014) Wireless 337-672
Illanes (2016) Pension plans 1285
Miller and Yeo (2012) Medicare 1700-1930
Handel (2013) Health insurance 2250
Nosal (2012) Medicare 4990

Note: Relative to the amounts quoted in original papers, we convert them to 2012 US dollars.

The remaining parameters of the model are calculated directly from the data. The

mortality rate my is the cumulative ten-year probability of dying for the insured 30-year old

male; we find it to be 0.7% using the 2001 Select and Ultimate mortality tables. The annual

interest rate i is assumed to be 4%, which yields the ten-year discount factor δ of 0.68.

Finally, we assume that the non-renewable insurance premium PNR
y is $1040, which implies

that such policies are priced competitively and sold at a slight discount relative to the cost

of renewables cy. This assumption is useful in the model due to the fact that the firm may

choose Py = PNR
y to eliminate its time inconsistency problem. However, with cy > PNR

y ,

this will cause a loss in covering the young encouraging the firm to seek an interior solution

instead. Empirically, the assumption that non-renewable insurance is sold at a discount

relative to the ten-year marginal cost is plausible for at least two reasons. First, consumers

who purchase such policies are likely to actually need it for a shorter time, resulting in higher

lapsation rates. Second, the average health status of renewable policyholders at any given

time tends to be worse than non-renewable policyholders. This is because all non-renewable

policyholders recently had health exams, while some renewable policyholders have renewed

without undergoing a health exam and have likely deteriorated in health. For example, in

the data the cost to insure a pool of 30-year-olds who have held their policies for 10 years

increases the marginal cost by 55%. While in reality such vintage policyholders are likely a
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minority in the pool of 30-year-old customers, their existence naturally elevates the average

cost cy relative to PNR
y , a price only available to the newcomers.

4.1.2 The Equilibrium

Table 5 presents the equilibrium of our model under the discussed calibration. The upper

cost threshold cM is optimally set equal to the upper bound of the cost distribution, c. This

means that the premiums can only be one of two values: P̄o and ¯̄Po. The lower cost threshold

cT is equal to 3054.47, roughly in the middle of the cost domain. This frequency of price

adjustments is reasonable given that we calibrate the model to 10-year renewable level-term

insurance. The predicted rigid premiums, P̄o and ¯̄Po, are equal to 3626.22 and 4074.47,

respectively. As the lower panel of Table 5 shows, this is well in the ballpark of what the

renewing 40-year-olds can expect to pay in the data (expressed in cumulative ten-year terms).

Also, the size of the jump predicted by our model,
( ¯̄Po/P̄o − 1

)
× 100, matches closely the

average size of the premium adjustment observed in the data, around 12%.

Table 5: Equilibrium of the model

Symbol Variable name Value

Π Total profit 310.93
Πo Profit from old 511.21
cT Lower cost threshold 3054.47
cM Upper cost threshold 3500.00
Py Price for young 1050.89
P̄o Lower price for old 3626.22
r̄o Threshold for renewables 3669.27
¯̄Po Upper price for old 4074.47( ¯̄Po/P̄o − 1

)
× 100 Jump between premiums (in %) 12.36

Premiums in the data:
40-year-old average 3549.14
40-year-old median 3489.35
40-year-old standard deviation 817.93
Average change (in %) 11.47

Note: the data section summarizes the premiums for 40-year-old males in

regular health category, for 10-year renewable insurance. Annual premiums

are expressed here as present expected value of the entire ten-year period,

until renewal. Similarly as in section 2.4, we ignore the issue of lapsation.
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4.1.3 Comparative Statics

We now analyze the mechanics of the model by performing several comparative statics

exercises with respect to the key parameters. Figure 9 illustrates how the optimal pricing rule

changes with transaction cost µ. Renewable life insurance contracts become more attractive

compared to non-renewables as µ increases. The firm responds by increasing premiums (Py,

P̄o and ¯̄Po) and restricting quantity, i.e. the pool of covered policyholders (r̄o up). As a

result, the total profit of the firm rises. Crucially though, an increase in the transaction cost

also worsens the hold-up problem. In order to attract consumers ex ante, the firm responds

by increasing cT so that it is more committed to the low premium P̄o, and by raising the size

of the jump up to the high premium ¯̄Po. Notice that beyond a certain level of µ, the terms

of the optimal contract become invariant. This is due to the fact that search becomes too

expensive for a vast majority of consumers and only the ones with high enough demand for

coverage when old decide to buy.

Figure 10 shows a similar exercise when we vary the mode of the lognormal health and

search shock distribution, while holding the mean equal to 1. Higher mode means that

consumers face more adverse health shocks and become more locked-in to the contract, but

it also makes renewables more desirable than non-renewables. Once again, the decrease in

competition from non-renewables leads the firm to raise equilibrium premiums and restrict

the quantity supplied. By the same logic as with the transaction cost, to attract more

consumers ex ante the equilibrium cost threshold cT goes up, promising a wider interval of

rigid low-price insurance, and the jump between ¯̄Po and P̄o widens.

Finally, in Figure 11 we vary the inverse hazard rate of the distribution of consumers’

valuations. As γ goes up, the price elasticity of demand decreases and the company enjoys

more monopoly power resulting in a higher P̄o. Importantly though, lower demand elasticity

does not alter the strength of the consumers’ hold-up problem and as a result the equilibrium

cost threshold falls, imposing high premiums over a wider range of cost shocks, while the jump

between ¯̄Po and P̄o becomes smaller. The increase in profit from higher renewal premiums

would be bigger with a larger pool of policyholders, which is why Py falls as γ rises to attract

more customers in the spirit of the switching cost literature (Klemperer, 1987). However,

it is important to note that ¯̄Po can be inversely related to γ. This is because the profit for

smaller cost shocks (co ∈ Co) has increased with higher γ, so for (9) to hold, the profit for

larger cost shocks (co ∈ Co) must also go up. Since ¯̄Po is too high compared to the frictionless

premium near cT , the firm lowers ¯̄Po to increase profits for cost shocks near and above cT .
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Figure 9: Varying the transaction cost µ in the model
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Figure 10: Varying the mode of the health shock distribution in the model
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Figure 11: Varying the inverse hazard rate γ in the model

5 Testing the Model’s Predictions

Now we turn directly to our dataset of insurance premiums to test the main predictions

of the model. In particular, as the consumer’s hold-up problem becomes weaker (through a

lower transaction cost µ or less adverse distribution of health shocks), the equilibrium cost

thresholds cT and cM in the model fall, leading to more frequent price adjustments. At the

same time, a weaker hold-up problem leads to a reduced magnitude of premium changes due

to both a smaller jump between the rigid intervals of the premium schedule, and a higher

likelihood of adjustments within the frictionless pricing region. We test these predictions

by looking at average probability and size of premium adjustments across time and across

renewal terms. Finally, we show that the marginal cost presented in Figure 5 is positively

correlated with the hazard of premium adjustment, rather than size, indicating that life

insurance firms tend to respond to cost shocks on the extensive margin. In the concluding

part of this section, we use the data to address common alternative theories of price rigidity

in the context of life insurance.
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5.1 Premium Changes Across Time

In the first test, we divide our sample into two sub-periods: 1990-1999 and 2000-2009. It

can be argued that between these two time intervals, the consumer hold-up problem became

weaker mainly for two reasons. First, the emergence of on-line pricing tools led to a reduced

transaction cost needed to search for a life insurance policy and compare premiums across

different companies and products. The internet also enabled customers to purchase policies

directly from the insurance firms, avoiding the need to meet an agent physically.27 Second,

mortality rates among the insured dropped significantly in the 2000s as documented by the

two vintages of Select and Ultimate mortality tables issued in 2001 and 2008. For example,

a cumulative 20-year probability of death for a 30-year-old male policyholder decreased from

2.36% to less than 1.96%, while for a 40-year-old male policyholder the cumulative 20-year

death rate fell from 5.19% to 4.39%. Analogous to a reduction in the transaction cost, a

leftward shift in the distribution of health shocks in the model leads to more frequent and

less sizable premium adjustments.

Table 6 presents the average fraction of premium changes and the average size of ad-

justments for the two sub-periods. Between the 1990s and the 2000s, the average fraction

of life insurance policies adjusting premiums in any month increased from 2.31% to 2.76%,

while the average size of the adjustment fell from 12.02% to 10.22%. Both differences are

statistically significant at the 5% confidence level.

Table 6: Testing the difference in frequency and size of premium adjustments over time

Period Months % adjusting St. err. p-value

1990-1999 116 2.31 0.19
2000-2009 120 2.76 0.20
Difference −0.45 0.27 0.05

Period Months size (in %) St. err. p-value

1990-1999 106 12.02 0.60
2000-2009 111 10.22 0.59
Difference 1.80 0.84 0.02

Note: One sided t-test for equality of means, with alternative hypotheses

Ha : diff(% adjusting) < 0 and Ha : diff(size) > 0, respectively.

Average premium changes are computed only for the months where at

least one is observed, hence the difference in the number of observations.

27A similar assertion is made by Brown and Goolsbee (2002) to argue that the popularization of internet
pricing tools over that period of time led to an overall decrease in the level of life insurance premiums.
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5.2 Premium Changes Across Renewal Terms

In the second test, we investigate whether the frequency and size of price adjustments

vary with the length of renewability term. As the term extends, the level of marginal cost,

premiums, and consumers’ valuations increase, while the one-time transaction cost remains

unchanged (it takes the same amount nominally to invest in purchasing ART or 10-year

level-term). In other words, the transaction cost falls relative to the size of the consumer’s

surplus as we move from one-year term to 10- and 20-year term. Suppose we calibrate our

model to three different term lengths, and normalize the lower rigid price P̄o to be equal to

100 across all calibrations. The normalized value of the transaction cost parameter µ would

then decrease as the term extends. Figure 9 shows that in the model this leads to a drop

in both cost thresholds, more flexibility in adjusting premiums, and a smaller jump between

the two rigid parts of the premium schedule.

Table 7 presents the frequency of premium changes, along with the average magnitude

of adjustments, for the four standard lengths of level-term renewable insurance. Two stark

observations arise from this test. First, as the term extends, we indeed observe a larger

frequency of price changes, climbing monotonically from 1.07% for ART policies up to 3.57%

for 20-year level-term. The analysis of variance between and within the groups confirms that

these differences are statistically significant. Second, ART policies exhibit a significantly

higher average size of the premium adjustment at 15%, compared to roughly 10% for all

the remaining term lengths. Interestingly, the term length above one year is not informative

about the expected size of a premium change and the mean of squares within these three

groups exceeds the means of squares between them (with p-value of the F test equal to 0.56).

Table 7: Testing the difference in frequency and size of premium adjustments across terms

Term length N obs. % adjusting St. err. Variance analysis

1 year 13, 644 1.07 0.08 MSB 1.69
5 years 6, 537 2.07 0.18 MSW 0.02
10 years 20, 959 2.99 0.12 F-stat 68.01
20 years 14, 689 3.57 0.15 p-value 0.00

Term length N obs. size (in %) St. err. Variance analysis

1 year 146 15.01 1.00 MSB 1017.36
5 years 135 10.85 0.75 MSW 84.04
10 years 626 10.02 0.34 F-stat 21.11
20 years 525 10.38 0.40 p-value 00.00
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5.3 Relationship Between Premium Changes and Cost Shocks

We now focus on the dynamics of life insurance premiums over time using the entire

available sample. Figure 12 plots the 12-month moving averages of the fraction of products

that adjust their premium and the average size of the adjustment. Recall from Figure 5 that

the largest shocks to marginal cost in our sample roughly occur in the late 1990s, around

2005, late 2008, and 2012. Figure 12(a) shows that each of those episodes was accompanied

by an increase of at least one percentage point in the fraction of companies that adjusted

their premium schedules, and the increase is statistically significant. On the other hand,

Figure 12(b) reveals no such apparent correlation between the cost shock and the average

magnitude of changes (except for late 2008, in the presence of a record-high cost). The most

apparent observation from that time series is probably the gradual decline in the average

size of premium jumps discussed in the previous section.

Table 8 formalizes these findings by computing correlations between the cost shock and

the frequency and average size of premium changes. This relationship is generally positive for

the fraction of firms that adjust and was the strongest during the 1990s, when the consumer’s

hold-up problem was likely to be more severe, as discussed in Section 5.1. On the other hand,

the average adjustment size turns out to be negatively related to the marginal cost shock.

In light of our theory, this evidence suggests therefore that life insurers respond to industry-

wide shocks predominantly with an increased hazard of adjusting the premium schedule,

rather than altering the magnitude of such an adjustment.

(a) Fraction of products that adjust premium (b) Average size of premium adjustment

Note: 6-month moving averages applied. Gray areas depict the 95% confidence intervals.

Figure 12: Fraction and average size of premium changes
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Table 8: Correlation between the cost shock and frequency/size of premium changes

Correlation with cost: % adjusting adjustment size

1990-1999 0.67 0.24
2000-2009 0.20 −0.03
Full sample 0.28 −0.18

5.4 Alternative theories

We now investigate whether the rigidity of life insurance premiums could potentially be

explained by existing models of price stickiness. Following Klenow and Kryvtsov (2008), we

consider two broad classes of models: time-dependent and state-dependent pricing models.

Then, we investigate if a model of competition can generate realistic premium rigidity.

5.4.1 Time-Dependent Models of Sticky Prices

In time-dependent pricing frameworks, for example Taylor (1980) or Calvo (1983), firms

adjust prices with exogenous frequency. The spell duration is subject to a random shock

and every period a fixed number of firms reoptimize their price. The longer an individual

price remains staggered, the more shocks accumulate in the meantime, resulting in larger

average size of the adjustment. In a time-dependent pricing setup, we would expect to

observe variation on the intensive margin, and much less so on the extensive margin which

is determined exogenously. Figure 12 shows that the opposite appears to be the case in the

life insurance market, where the firms tend to respond to cost shock predominantly on the

extensive margin. In addition, Figure 13 shows a plot of all premium changes in our data

(expressed in absolute value) as function of premium duration. As can be noticed, the points

are scattered with no clear pattern and the correlation of the two variables is about 0.13.

Table 9 confirms this in a regression analysis. The relationship between premium duration

and size of the adjustment is rather weak (albeit positive), with the slope of 0.07% and

R-squared of less than 0.02. We conclude that the standard time-dependent models are not

a promising alternative to explain premium rigidities observed in the life insurance market.

Table 9: Regression results (dependent variable: abs change)

coefficient s.e. P > |z|
constant 9.372 0.372 0.000 No. of obs. 1432
duration 0.066 0.014 0.000 Adj. R-sq. 0.016
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Figure 13: Premium duration and adjustment size in the life insurance market

5.4.2 State-Dependent Models of Sticky Prices

By contrast, in state-dependent pricing models, for example Dotsey et al. (1999) or

Golosov and Lucas (2007), individual firms are subject to heterogeneous “menu costs” and

can choose when to adjust their prices. Changes then occur predominantly on the extensive

margin, and the hazard of price change is an increasing function of duration because incoming

shocks move the optimal price away from the one currently posted. Figure 14 plots the hazard

of premium adjustment in our dataset at all durations for which we observe multiple changes.

Notice that the relationship is generally negative, with the correlation of −0.44. Table 10

summarizes the regression results of change hazard on duration. An additional month of

premium duration tends to reduce the hazard by 0.01%, but only 18% of the variation in

hazard can be explained through this channel. Interestingly, it appears that the increasing

hazard may be a local feature of the premiums that have remained staggered for more than

50 months. We do not have enough observations to make this assertion robust though. We

conclude that state-dependent pricing theories are not readily capable of explaining premium

rigidity in the life insurance market.

Table 10: Regression results (dependent variable: hazard)

coefficient s.e. P > |z|
constant 0.0309 0.00176 0.000 No. of obs. 88
duration −0.0001 0.00003 0.000 Adj. R-sq. 0.184
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Figure 14: Premium duration and adjustment hazard in the life insurance market

5.4.3 Competition

Our model accounts for market competition in a reduced form, allowing consumers to

search for an outside option in the renewable insurance market. It has been shown in the

literature though that explicit modeling of competition can also generate price rigidity. In

a monopolistically competitive market, Nishimura (1986) shows that prices become rigid as

the price elasticity of demand approaches infinity if a firm cannot infer whether a transient

cost shock is market-wide or firm-specific. Firms set prices based on the expectation of other

firms’ prices. If a firm responds to the cost shock by increasing its price then, with elastic

demand, it will attract few consumers when the shock is firm-specific. On the other hand, if

a firm responds to the cost shock by lowering its price, then it would attract many consumers

when the shock is firm-specific, but the lower price is not profitable. As a result, equilibrium

prices become less sensitive to transient shocks as markets become more competitive.

Even though competition can generate price rigidity in an incomplete information envi-

ronment, it also entails price concentration. Indeed, if prices were dispersed, then firms with

high prices would not be competitive. However, the dispersion in life insurance premiums

(measured by the coefficient of variation) is generally high suggesting that life insurance

markets are not competitive. Table 11 summarizes the premium dispersion for our four

standard term lengths. The dispersion decreases with term length, with an exception for the

20-year level-term which also has a much higher standard deviation so its premiums may not

be statistically more dispersed than shorter-term contracts. From Table 7, premiums adjust

more frequently as the term length increases. This suggests that the relationship between

price dispersion and rigidity runs counter to the prediction of Nishimura (1986).
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Table 11: Coefficient of variation of premiums across terms

Term length Mean St. dev. Min. Max.

1 year 0.18 0.02 0.15 0.23
5 years 0.17 0.03 0.11 0.28
10 years 0.15 0.03 0.11 0.21
20 years 0.17 0.05 0.06 0.28

Note: For each term length, this table shows the distribution of cross-sectional co-

efficients of variation over time. The total number of observations is 282 months.

6 Conclusion

We show that the market for life insurance has exhibited a remarkable degree of price

rigidity since 1990. Firms that changed premiums in the analyzed sample did so on average

every 39 months, preferring one-time jumps of large magnitude to more frequent and gradual

price adjustments. We build a theoretical model to explain this phenomenon, based on the

assumption that consumers are locked-in due to a relationship-specific investment. In line

with what we find in the data, the model predicts that premiums remain constant for a wide

range of cost shock realizations, while potential changes take the form of discrete jumps.

Our hypothesis is obviously not the only explanation for the observed rigidity of life

insurance premiums. As Table 7 shows, even the 20-year level-term premiums are quite

rigid which leaves room for complementary theories. At the same time however, we provide

guidelines for future research by showing that life insurance data does not support the

standard price stickiness models.

The broader implications of our work include providing microfoundations for price sticki-

ness observed in the markets characterized by long-term commitment. In particular, we show

that the price rigidity arises endogenously as a solution to a time inconsistency problem that

could otherwise deter consumers from buying the good. Future research should investigate

the pricing behavior of other financial or contractual services, and find out if similar products

also exhibit pricing anomalies such as the ones found in life insurance contracts.

There are also several other potential applications of the model developed in this paper

for future research. One of them is to apply our theory to other environments plagued by

the hold-up problem. As we have noted, the theoretical model is quite general and can be

adapted to other settings to explain why adjustments may be drastic rather than gradual.

For example, if it is difficult for employees to switch jobs, our theory may potentially explain

why employers prefer layoffs over wage cuts during economic downturns, in order to attract

quality employees ex ante.
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Appendices (for online publication)

A Nominal and Real Rigidity

This section analyzes the effect of inflation on life insurance premiums. We first show that

nominal rigidity implies real rigidity per dollar of real face value, and vice versa. Next, we

discuss how inflation affects the pricing behavior of life insurers and how it relates to the

results of our paper.

Consider a simple framework where perfectly competitive life insurance companies face

a constant mortality rate m and a constant interest rate r, The (nominal) face value of a

generic policy is Ft, and its real counterpart is FR
t , where t = 0 is the base year. Let PN

t

denote the nominal premium for a one-period (non-renewable) insurance and PR
t be the

real premium. Let π be a (constant) inflation rate. Then, Lemma 4 shows that nominal

premiums are rigid if and only if real premiums per dollar of real face value are rigid.

Lemma 4 For any t, PN
t = PN if and only if for all t,

PRt
FRt

= P̄R.

Proof To show sufficiency, suppose that in a competitive market for non-renewable insur-

ance, nominal premiums are rigid (i.e. the mortality rate, interest rate and nominal face

value are fixed): for all t,

PN
t =

m

1 + r
Ft =

m

1 + r
F.

The real premium is given by

PR
t =

PN

(1 + π)t

=
m

1 + r

F

(1 + π)t

=
m

1 + r
FR
t .

The real premium per dollar of real face value is

PR
t

FR
t

F0 =
m

1 + r
F0 ≡ P̄R,

where F0 is the face value in the base year. This shows that nominal rigidity of premiums

implies that premiums are also rigid for a policy with fixed real face value.

The proof for necessity follows exactly the steps shown above in the reverse order.
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From the proof of Lemma 4, notice that as the nominal premium is rigid by assumption,

the real premium decreases over time at the constant rate of inflation π. However, this is

not the insurance product that we consider in our model, because its real face value also

decreases over time. Our model assumes a constant real face value, so the focus of Lemma

4 is on the real premium per dollar of real face value.

Now, consider a two-period renewable insurance policy. Let PN
t,a denote the nominal

premium in period t dollars for age a individual, and let PR
t,a be the real premium. The

nominal payment over time is
(
PN
t,a, P

N
t+1,a+1

)
. The next lemma uses Lemma 4 to establish the

equivalence relation between nominal and real rigidity in a competitive market for renewable

insurance. The result can be generalized to any n-period renewable insurance.

Lemma 5 For any t and age a, PN
t,a = PN

a if and only if for any t and any age a,
PRt,a
FRt

= P̄R
a .

Proof To prove sufficiency, we define the actuarially fair premiums for renewable insurance

according to the backward induction approach of Huntington (1958) (for details, see Ap-

pendix D). In t+1, a policy bought in t at age a, becomes non-renewable and the actuarially

fair premium satisfies PN
t+1,a+1 = m

1+r
F. In t, nominal premiums satisfy a zero-profit condition

PN
t,a +

1−m
1 + r

PN
t+1,a+1 = F

[
m

1 + r
+
m (1−m)

(1 + r)2

]
. (10)

Converting nominal premiums to real ones yields

PR
t,a(1 + π)t +

1−m
1 + r

PR
t+1,a+1(1 + π)t+1 = F

[
m

1 + r
+
m (1−m)

(1 + r)2

]
⇐⇒

PR
t,a

FR
t

F +
1−m
1 + r

PR
t+1,a+1

FR
t+1

F = F

[
m

1 + r
+
m (1−m)

(1 + r)2

]
.

The second lines follows from the fact that FR
t = F0

(1+π)t
and F0 = F, since t = 0 is the base

year. By Lemma 4, PN
t+1,a+1 = PN

a+1 if and only if
PRt+1,a+1

FRt
= P̄R

a+1 for any t and a. As a result,

if for all t and a, PN
t,a = PN

a and PN
t+1,a+1 = PN

a , it immediately follows that
PRt,a
FRt

= P̄R
a .

The proof for necessity follows exactly the steps above in the reverse order.

Lemmas 4 and 5 show that the nominal rigidity observed in the data is equivalent to real

rigidity per dollar of real face value in the simplest case of actuarially fair premiums. As

inflation erodes the value of premiums paid by consumers over time, it does so with the value

of death benefits as well. From this point of view, a theory of real price rigidity (such as the

one presented in this paper) is informative for explaining the nominal rigidity observed in

the data.
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Naturally, the presence of inflation may affect the pricing strategy of insurers by inducing

them to change the age profile of premiums. As pointed out by Hendel and Lizzeri (2003),

life insurance premiums are typically front-loaded which implies that the majority of the

profit comes from initial premiums. For example, an increase in expected inflation may lead

to more front-loading and higher profit because the nominal value of death benefits will be

eroded more than the value of premiums. This suggests that a model in real terms may

not capture the full dynamics of front-loaded nominal premiums. In other words, in a world

without inflation we would expect premiums to be even more rigid than what we already

observe in the data and document in Section 2. Therefore, a theory of real premium rigidity

is needed to explain these facts.

B Proofs

Proof of Lemma 1: First note that Bren (ro; t) ≥ Bnon (ro; t) and Bren (ro; t) , B
non (ro; t) ≥

0 for all ro and for all t. This is because there are more options available for renewable

policyholders and consumers can always choose to forgo coverage.

Next, we show that Bnon (ro; t) and Bren (ro; t) are weakly increasing in ro for any t. Note

that there exists r̃o such that for all ro < r̃o, B
non (ro; t) = 0 and for ro ≥ r̃o, we have

Bnon (ro; t) =

∫ c

c

[∫
ε

max {0, ro − εco,t+1} dZ (ε)− µ
]
dG (co,t+1)

=

∫ c

c

∫ ro
co,t+1

0

(ro − εco,t+1) g (co,t+1) z (ε) dεdco,t+1 − µ.

Differentiating Bnon (ro; t) with respect to ro yields
∫ c
c
Z
(

ro
co,t+1

)
dG (co,t+1) , so Bnon (ro; t)

is strictly increasing for ro ≥ r̃o. Since Bren (ro; t) ≥ Bnon (ro; t) , B
ren (ro; t) is also strictly

increasing for ro ≥ r̃o.

Suppose there exists valuation r̂o such that Bren (r̂o; t) > Bnon (r̂o; t) . We will show that

Bren (ro; t) − Bnon (ro; t) is increasing in ro ≥ r̂o. If Bren (r̂o; t) > Bnon (r̂o; t) , then there

exists a set Ĉ with strictly positive measure defined as Ĉ = {co,t+1|r̂o > Po,t+1 (co,t+1)} . Since

if Ĉ is empty or measure zero, then it cannot be the case that Bren (r̂o; t) > Bnon (r̂o; t) . For

44



ro ≥ r̂o, we have

Bren (ro; t)−Bnon (ro; t) ≥∫
Ĉ

max

{
ro − Po,t+1 (co,t+1) ,

∫
ε

max {ro − Po,t+1 (co,t+1) , ro − εco,t+1} dZ (ε)− µ
}
dG (co,t+1)

−
∫
Ĉ

[∫
ε

max {0, ro − εco,t+1} dZ (ε)− µ
]
dG (co,t+1) . (11)

The inequality comes from the fact that for higher valuations the set of costs such that

ro > Po,t+1 (co,t+1) should be weakly larger. Let Ĉr denote the set of cost realizations where

the policyholder would renew immediately and Ĉs denote the set where the policyholders

search. Define the two sets such that they are mutually exclusive (if policyholders are

indifferent, they renew), then the right-hand side of (11) can be rewritten as∫
Ĉr

[ro − Po,t+1 (co,t+1)] dG (co,t+1)︸ ︷︷ ︸
renew immediately

+

∫
Ĉs

roZ (Po,t+1 (co,t+1)

co,t+1

)
− co,t+1

∫ Po,t+1(co,t+1)
co,t+1

0

εdZ (ε)

 dG (co,t+1)

︸ ︷︷ ︸
search and sign non-renewable

+

∫
Ĉs

[ro − Po,t+1 (co,t+1)]

[
1− Z

(
Po,t+1 (co,t+1)

co,t+1

)]
dG (co,t+1)︸ ︷︷ ︸

search and then renew

−
∫
Ĉ

∫ ro
co,t+1

0

(ro − εco,t+1) dZ (ε) dG (co,t+1)︸ ︷︷ ︸
sign non-renewable

.

Differentiating the above expression with respect to ro yields
∫
Ĉ

[
1− Z

(
ro

co,t+1

)]
dG (co,t+1) ,

which is strictly positive so Bren (ro; t)−Bnon (ro; t) is strictly increasing in ro ≥ r̂o.

Finally, since Bren (ro; t) − Bnon (ro; t) , B
ren (ro; t) and Bnon (ro; t) are increasing for

sufficiently large ro, consumers of any generation would purchase renewables if their

valuation is sufficiently large.

Proof of Lemma 2: For part (i.), by (4) we have the following demand for co ∈ Co,

Do(Py, Po(co)) = (1−my) [1−H (r̄o)] .
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The insurance company takes r̄o as given, so for costs in Co, the demand is independent of

the variations in Po (co) .

Suppose co ∈ Co is the actual cost and the insurance company reports c′o ∈ Co, then

the incentive compatible premium schedule requires Po(co) ≥ Po(c
′
o). Now suppose c′o is the

actual cost and the insurance company reports co, then the incentive compatibility requires

Po(co) ≤ Po(c
′
o). Therefore, we have Po(co) = Po(c

′
o) for any co, c

′
o ∈ Co.

Finally, to show that Co = {co | Po(co) < r̄o} has strictly positive measure, first assume

that Co is measure zero. This implies that for almost all co ∈ [c, c] , Po (co) ≥ r̄o. By (2),

0 =
Py−PNRy

1−my , which is a contradiction when Py > PNR
y .

For part (ii.), if the premium schedule is incentive compatible, then for any co ∈ [c, c]

and ε > 0 such that co + ε ∈ [c, c] we have

[Po (co)− co]Do (Py, Po (co)) ≥ [Po (co + ε)− co]Do (Py, Po (co + ε)) ,

[Po (co + ε)− (co + ε)]Do (Py, Po (co + ε)) ≥ [Po (co)− (co + ε)]Do (Py, Po (co)) .

Summing the incentive constraints yields Do (Py, Po (co)) ≥ Do (Py, Po (co + ε)) . Since Do is

weakly decreasing in Po, incentive compatible premiums have to be weakly increasing in cost.

Finally, the existence of a cutoff follows immediately from the fact that Po is weakly

increasing in cost and Po(co) ≥ Po (c′o) for any co ∈ Co and c′o ∈ Co.

Proof of Lemma 3: For part (i.), suppose Po (co) < P ∗o (co) for some co ∈ (c′o, c
′′
o) . Since

Po (co) is strictly increasing and continuous, then there exists ε > 0 such that Po (co) <

Po (co + ε) < P ∗o (co) . The hazard rate is non-decreasing, so (Po − co) (1−H (Po)) is single

peaked. This implies

[Po (co + ε)− co] [1−H (Po (co + ε))] > [Po (co)− co] [1−H (Po (co))] ,

which violates incentive compatibility at co. The argument also applies for Po (co) > P ∗o (co) .

For part (ii.), it is trivial to show that r̄o > P̄o from (2) when Py > PNR
y . To show that

Po
(
cT
)
> r̄o, we only need to rule out r̄o = Po

(
cT
)
. If r̄o = Po

(
cT
)
, then by (8), we have

P̄o = r̄o. By (2), it implies that 0 =
Py−PNRy

1−my , which is a contradiction when Py > PNR
y .

Next, we will establish the fact that the frictionless premium is not incentive compatible

for Co. By (2), r̄o > P̄o. Suppose Po (co) = P ∗o (co) for all co ∈ Co, then (8) implies

LHS ≡
(
P̄o − cT

)
[1−H (r̄o)] = RHS ≡

(
P ∗o
(
cT
)
− cT

) [
1−H

(
P ∗o
(
cT
))]

.

Notice the following: LHS <
(
P̄o − cT

) [
1−H

(
P̄o
)]
. Since RHS is the optimal frictionless
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profit, it follows that RHS > LHS, and is only equal when Py ≤ PNR
y and with strict

inequality when Py > PNR
y . Hence, it cannot be the case that Po (co) = P ∗o (co) for all

co ∈ Co.
Finally, we will show there is rigidity in Co. Define P+

o

(
cT
)
≡ limco→cT Po (co) and

cM = P ∗−1
o

(
P+
o

(
cT
))
. Consider co ∈

(
cT ,min

{
cM , c

})
, then P+

o

(
cT
)
> P ∗o (co) . By Lemma

2, Po is weakly increasing, so Po (co) ≥ P+
o

(
cT
)

for any co ∈
(
cT ,min

{
cM , c

})
. Suppose

there exists ĉo ∈
(
cT ,min

{
cM , c

})
such that Po (ĉo) > P+

o

(
cT
)
. This implies the follow-

ing ordering: Po (ĉo) > P+
o

(
cT
)
> P ∗o (ĉo) . However, (P − ĉo) (1−H (P )) is single peaked

around P ∗o (ĉo) , so

(
P+
o

(
cT
)
− ĉo

) (
1−H

(
P+
o

(
cT
)))

> (Po (ĉo)− ĉo) (1−H (Po (ĉo))) .

This violates incentive compatibility, so Po (co) is rigid for co ∈
(
cT ,min

{
cM , c

})
.

Proof of Theorem 1: From Proposition 1 of Melumad and Shibano (1991), the premium

schedule is globally incentive compatible. From Lemma 1 and Lemma 3, the optimal incen-

tive compatible premium has to take this form.

C Solving the Model

To solve the model, we use the theory presented in section 4 and formulate the profit maxi-

mization problem for insuring old consumers as follows:

Π∗o = max
P̄o,

¯̄Po,cT ,cM

∫ cT

c

(
P̄o − co

)
[1−H (r̄o)] g (co) dco

+

∫ cM

cT

(
¯̄Po − co

) [
1−H

(
¯̄Po

)]
g (co) dco

+

∫ c

cM
(P ∗o (co)− co) [1−H (P ∗o (co))] g (co) dco

subject to (9) and ¯̄Po = P ∗o (cM). Let λ denote the Lagrange multiplier on (9). Given

the distributional assumptions: h (ro) = 1
γ

exp−
(ro−θ)
γ and g (co) = 1

c−c , from the first-order

conditions, we can derive the following premiums:

P̄o =
γ
∂r̄o
∂P̄o

+ cT − 0.5(cT − c)2

λ(c− c) + cT − c
, (12)
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¯̄Po = γ + cT − 0.5(cM − cT )2

λ(c− c)− cM + cT
. (13)

The monopoly premium is P ∗o (co) = γ + co. Since ¯̄Po = P ∗o (cM), we have

cM = cT + 2λ (c− c) . (14)

To solve for λ and cT , we need (9) and the first-order condition on cT :

cT − c
c− c

[
P̄o − 0.5

(
cT + c

)] ∂r̄o
∂cT

= λ

[
γ

(
e−

¯̄Po−r̄o
γ − 1

)
− ∂r̄o
∂cT

(
P̄o − cT

)]
. (15)

To solve for the model equilibrium, we apply the following numerical algorithm:

1. Choose Py to maximize the firm’s total profit (7).

2. Given the choice of Py, select cT such that the FOC (15) holds under two cases:

(a) the upper cost threshold hits a corner, i.e. cM = c.

(b) the upper cost threshold is interior and calculated according to (14).

Compare the resulting profit from the old (6) for each case and select the lower cost

threshold cT for which it is maximized.

3. Given {Py, cT , cM}, find the value of λ for which the IC constraint (9) holds.

4. Given {Py, cT , cM , λ}, compute the upper rigid price ¯̄Po using (13), and select the value

of lower rigid price P̄o for which the FOC (12) holds.

5. Given {Py, cT , cM , λ, P̄o, ¯̄Po}, find the value of r̄o that makes condition (2) hold with

equality. Approximate partial derivatives { ∂r̄o
∂P̄o

, ∂r̄o
∂cT
} necessary to compute the FOCs.

The algorithm is executed backwards, effectively nesting a sequence of five optimization or

root-finding problems.
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D Estimating the Marginal Cost of Life Insurance

In what follows, let mt,n,n̄ denote the period t mortality rate of age n individuals who

bought life insurance at age n̄,28 and let N be the maximum attainable age according to the

corresponding mortality tables. Let Rt(i) be the (annualized) interest rate on zero-coupon

risk-free securities with maturity i at time t. The schedule of net premiums for an ART policy

acquired at age n for ages up to N per dollar of death benefit is defined as {Pt(i)}i=n,n+1,...,N

and obtained by solving the following equation

N−s∑
i=1

∏i−2
j=0(1−mt,s+j,n)mt,s+i−1,n

Ri
t(i)

= Pt(s) +
N−s−1∑
i=1

∏i−1
j=0(1−mt,s+j,n)Pt(s+ i)

Ri
t(i)

(16)

recursively for every age s = N − 1, N − 2, ..., n. Following the method presented by Hunt-

ington (1958), we calculate the full schedule of net premiums backwards, starting from the

highest admissible age. Formula (16) can further be augmented to account for two addi-

tional features of renewable term policies. First, at certain age Nc < N the consumer may

choose to convert to a universal life insurance and pay a fixed premium for all the remaining

periods up to N . Second, the premium may be renewed at frequencies lower than one year,

in particular in 5-, 10- or 20-year intervals.

Notice that formula (16) does not take into account potential lapsation of policies, that is

the possibility that a consumer may choose not to renew it. This is because there is currently

no industry-wide standard for insurance pricing with lapsation, and data lapsation is scarce

and varies widely across different policies and time. Similarly as in Koijen and Yogo (2015,

2016), for simplicity we ignore lapsation in our analysis.

In our calculation of the net premium we use the mortality tables issued by the American

Society of Actuaries. We apply the 1980 Commissioners Standard Ordinary (CSO) table

for all years prior to January 2001, the 2001 Valuation Basic Table (VBT) prior to January

2008 and the 2008 VBT for the time period following January 2008. We use geometric

averaging on the monthly basis to smooth the transition between any two vintages of the

mortality tables. It is important to emphasize that these tables are created based on the

actual mortality rates among the insured rather than the general population. For this

reason, they account for a potential adverse selection in the market for life insurance.29 For

the risk-free interest rate we use the U.S. Treasury zero-coupon yield curve.30

28It is important to keep track of different cohorts of the insured due to adverse selection, i.e. individuals
who have already held a policy tend to have significantly higher mortality rates than the same-age newcomers.

29Cawley and Philipson (1999) found no strong evidence of adverse selection in the term life insurance.
30Taken from Gurkaynak et al. (2007) and averaged for each month.
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