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Abstract

We consider a three-player Bayesian persuasion game in which the sender designs
a signal about an unknown state of the world, the agent exerts a private effort that
determines the distribution of the underlying state, and the receiver takes an action
after observing the signal and its realization. The sender must not only persuade the
receiver to select a desirable action, but also incentivize the agent’s effort. We develop
a general method of characterizing an optimal signal in this environment. We apply
our method to derive concrete results in several natural examples and discuss their
economic implications.
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1 INTRODUCTION

We study optimal information design in the presence of moral hazard, introducing an ad-
ditional player—the agent—into the Bayesian persuasion framework. As in the standard
setting, the sender designs a signal structure that transmits information about an unknown
state to a receiver, who selects an action. Unlike the standard setting, the distribution of the
underlying state is determined by the agent’s unobservable effort. Thus, the signal structure
influences the receiver’s beliefs through two distinct channels: it determines the prior belief
by incentivizing the agent’s effort, and it affects the posterior belief by generating informa-
tion about the realized state. Therefore, in our model, the sender is concerned with both
information and incentive provision. In this paper, we study the tradeoff between these two
objectives and explore its implications for optimal information design.

To understand the underlying issues more clearly, consider the following example, which
is borrowed from Kamenica and Gentzkow (2011) (KG, hereafter), but cast into a different
context. A school (the sender) wishes to place a student (the agent) in a job. The student’s
ability to perform the job is uncertain: he may be skilled (type s) or unskilled (type u).
The school and student both obtain payoff 1 if the student is hired and payoff 0 otherwise.
However, the firm prefers to hire only skilled students. Thus, the firm (receiver) offers the
job if and only if it believes that the student is skilled with probability at least 1/2. Initially,
the school and firm believe that the student is skilled with probability 3/10. Thus, the firm
will not hire the student based solely on the prior. The school commits to a grading policy,
which assigns a student either grade g or b, where (π(g|s), π(g|u)) represent the probabilities
that the student is issued grade g given his type.

Because the prior belief is exogenous, the school is not concerned with providing incen-
tives, only information. Applying ideas from KG, it is easy to show that the optimal grading
policy “inflates” the grades of unskilled students. Because it brings bad news about the
student’s skill, grade b never generates a job offer. In contrast, g generates a job offer if and
only if it conveys sufficient good news. Thus, the school’s goal is to assign grade g as often
as it can, while maintaining sufficient informativeness to generate an offer. Clearly, it is
optimal to always assign g to a skilled student, π(g|s) = 1. By increasing π(g|s), the school
increases both the frequency of g and the good news it conveys. In contrast, by increasing
π(g|u), the school increases the frequency of grade g but reduces its informativeness. In this
example, maintaining the informativeness of grade g constrains π(g|u) ≤ 3/7. Therefore, the
optimal grading policy is π(g|s) = 1 and π(g|u) = 3/7. Under the optimal grading policy,
the student gets the job with probability 3/5, even though he is skilled with probability 3/10.
The probability that the student is skilled is 1/2 conditional on grade g and 0 conditional

1



on grade b. Therefore, either the firm is indifferent between offering the job and not (if the
grade is g), or it strictly prefers not to offer the job (if b). Regardless, its payoff is the same
as if it acts on its prior belief and rejects the student. In other words, observing the grade
does not improve the firm’s payoff.

Now suppose that the probability that the student is skilled depends on his unobservable
effort. In particular, after the grading policy is set by the school, the student privately chooses
whether to shirk or work. In the former case, the student is unskilled with probability 1,
while in the latter case, the student is skilled with probability 3/10. The student’s disutility
of work is c = 1/5.

Because the student’s private effort determines the distribution of his type, the school
must be concerned with both incentive and information provision when it designs its grading
policy. Indeed, if the grading policy fails to provide incentives for the student to work, then
the firm infers that the student is unskilled and never offers the job, resulting in the worst
outcome for both school and student. Furthermore, even if the student works, he will never
get an offer if grade g does not convey sufficient good news. Therefore, the school must
design its grading policy to ensure both that the student prefers to work,
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and that grade g is sufficiently informative to generate an offer when the firm anticipates
that the student works (π(g|u) ≤ 3/7).

Both incentive and information provision shape the optimal grading policy. On one hand,
increases in π(g|s) are beneficial to both information and incentive provision, resulting in a
more informative grade g and a higher payoff difference between work and shirk. Therefore,
π(g|s) = 1 is also optimal with moral hazard. On the other hand, increases in π(g|u) are
detrimental to both information and incentive provision, reducing the informativeness of g
and the payoff difference between work and shirk. Provided g leads to an offer, inducing
student effort requires π(g|u) ≤ 1/3, which is more restrictive than the condition on infor-
mativeness.1 Thus, the optimal grading policy is π(g|s) = 1 and π(g|u) = 1/3. In order to
eliminate shirking, the school inflates grades less than in the preceding case (1/3 < 3/7).
Under the optimal policy, the probability of a job placement is equal to 8/15. This place-
ment probability falls short of the optimal outcome in the absence of moral hazard (3/5),
demonstrating the cost of moral hazard for the student and school. In contrast, moral hazard
benefits the firm: its belief conditional on grade g is 9/16(> 1/2) and, therefore, it has a

1Given π(g|s) = 1, and that the constraint on informativeness is satisfied, work is preferred when 3/10+
(7/10)π(g|u)− c ≥ π(g|u).
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strict preference to hire a student with grade g.
In what follows, we explore the interaction of incentive and information provision in the

Bayesian persuasion framework. Our model has the same basic structure as the preceding
example, but it is considerably more general, allowing for any finite number of underlying
states, arbitrary preferences, and a continuous effort choice for the agent. Our analysis
proceeds in two steps. We first develop a general characterization of the sender’s optimal
signal. We then apply it to derive additional results in two tractable environments.

Our characterization of the optimal signal extends the elegant concavification method in
Aumann and Maschler (1995) and KG. In KG, this method works because the sender’s prob-
lem can be reformulated as a constrained optimization problem in which both the objective
function (the sender’s expected utility) and the constraint (Bayes-Plausibility) can be writ-
ten as expectations taken with respect to the distribution of posteriors. In our model, the
sender faces an additional constraint that, as in standard moral hazard models, ensures that
the agent has an incentive to choose the effort level intended by the sender. We show that
this incentive compatibility constraint can also be expressed as an expectation with respect
to the posterior belief distribution. Exploiting this feature, we describe how to concavify the
sender’s objective function and the incentive constraint simultaneously, characterizing the
optimal signal geometrically and analytically.

Two general results highlight the role of moral hazard, which distinguishes our analysis
from the most relevant literature (Kamenica and Gentzkow 2011, Alonso and Câmara 2016).
First, absent the need to provide incentives, if the sender’s utility is concave in the receiver’s
posterior belief, then it is optimal for the sender to reveal no information. In our model, such
a signal leads to no effort by the agent and, therefore, cannot be optimal in any non-trivial
environment.2 Second, absent the need to provide incentives, if there are N possible states,
then an optimal signal utilizes at most N signal realizations. In our model, the number
increases by 1; that is, an optimal signal may require N + 1 realizations. This difference
arises from the incentive constraint, which necessitates an extra degree of freedom.

We provide additional concrete results in two tractable environments: one with two
states (and many actions for the receiver) and another with two actions for the receiver
(and many states). In both environments, we characterize the set of implementable effort
levels under some natural economic assumptions. In the binary-state environment, a fully
informative signal maximizes the agent’s effort, but in the binary-action environment, this
is not necessarily the case. Furthermore, we explicitly characterize the optimal signal. In
the binary-state environment, we derive conditions under which the optimal signal garbles

2Providing no information is optimal, for example, if the agent has fully opposing preferences from those
of the sender (i.e., the sender wishes to minimize the agent’s utility).
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information about only one state, and apply our results to obtain novel economic insights
into media censorship and the design of social monitoring systems. In the binary-action
environment, we show that the optimal signal is a binary partition, illustrating how it is
affected by incentive provision and moral hazard.

One particularly interesting question is the effect of transparency, which allows the re-
ceiver to observe the agent’s effort. Intuitively, it is reasonable to expect that transparency
“crowds out” incentive provision, reducing the informativeness of the equilibrium signal. At
the same time, because the agent’s effort is observed, the agent can directly affect the re-
ceiver’s inference by increasing his effort, which gives an additional incentive for the agent to
work. Thus, it is natural to expect that transparency introduces a tradeoff for the receiver:
more effort, but less information. This tradeoff appears in some of the environments we
consider, but not in all of them. In particular, we provide an example in which transparency
reduces both the informativeness of the equilibrium signal and the agent’s effort. Further-
more, we provide a simple example in which transparency increases equilibrium effort, yet
the receiver prefers not to have transparency because it leads to worse information about the
realized state. These results offer a perspective on the adverse consequences of transparency
that does not stem from pandering incentives (Prat 2005, Levy 2007).

Since a pioneering contribution by Kamenica and Gentzkow (2011), the literature on
Bayesian persuasion has been growing rapidly. The basic framework has been extended to
accommodate, for example, multiple senders (Boleslavsky and Cotton 2015, Li and Norman
2015, Au and Kawai 2017, Gentzkow and Kamenica 2017, Boleslavsky and Cotton 2018),
multiple receivers (Alonso and Câmara 2016, Chan et al. 2017), a privately informed re-
ceiver (Guo and Shmaya 2017, Kolotilin 2017, Kolotilin et al. 2017), dynamic environments
(Ely 2017, Renault et al. 2017), and the possibility of falsification (Perez-Richet and Skreta
2017). More broadly, optimal information design has been incorporated in various economic
contexts, including price discrimination (Bergemann et al. 2015), monopoly pricing (Roesler
and Szentes 2017), and auctions (Bergemann et al. 2017). To our knowledge, this is the first
paper that incorporates moral hazard into the Bayesian persuasion framework.

Two contemporary papers, Rodina (2017) and Rodina and Farragut (2017), study a
similar three-player game to ours. The main difference lies in the sender’s objective. In our
model, the sender has general preferences over the receiver’s actions. The sender is indirectly
concerned with the agent’s effort, because the receiver’s posterior beliefs (and the actions
they induce) depend on the receiver’s conjecture about the agent’s effort. In contrast, in
both Rodina (2017) and Rodina and Farragut (2017), the sender is concerned only with
maximizing the agent’s effort.3 On one hand, this objective can be accommodated in our

3In this sense, these papers are related to Hörner and Lambert (2016), who characterize the rating system
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analysis by specifying that the sender’s payoff is linear in the receiver’s posterior belief. On
the other hand, these authors provide a more thorough analysis of this case than we do,
analyzing multiple settings with different assumptions about information asymmetry and
the production technology.

Also related is Boleslavsky and Cotton (2015), who analyze a Bayesian persuasion model
of school competition. In their baseline model, students are passive, but they also consider
an extension in which each student must exert effort in order to acquire skill. Their main
focus is on a tradeoff between school investment and loose academic standards. Furthermore,
their analysis relies heavily on the assumptions of binary actions for the receiver (evaluator
in their model) and binary effort for the students.

Rosar (2017) studies the design of an optimal test when a privately informed agent
chooses whether or not to participate. The participation decision signals some of the agent’s
private information, which leads to an endogenous prior belief. Focusing on an environment
with binary states, the author derives conditions under which the participation constraint
can be summarized by a single indifference condition for the threshold type and characterizes
an optimal test via concavification of the Lagrangian, similar to what we do in this paper.
He finds that the optimal test is a “no false-positive” test. In contrast, in our binary-state
environment, both “no false-positive” and “no false-negative” signals can be optimal.

Two recent papers combine elements of information design and moral hazard in novel
ways. Barron et al. (2017) consider a canonical principal-agent model in which the agent
can engage in “gaming” (adding mean-preserving noise) after observing an intermediate
output (which effectively enables the agent to concavify his compensation) and show that if
the agent is risk neutral, then a linear contract is optimal. Georgiadis and Szentes (2018)
introduce endogenous monitoring into a dynamic principal-agent model and, by applying
the ideas in information design and zero-sum games, show that the optimal contract has a
simple binary structure (a base salary plus a fixed performance-based bonus).

The remainder of this paper is organized as follows. Section 2 introduces our general
model. Section 3 explains how to reformulate the sender’s problem as a constrained opti-
mization problem and characterize the solution to the problem. Section 4 considers the case
where there are two states, and Section 5 analyzes the case where there are two actions.
Section 6 concludes.
that maximizes the agent’s effort in a dynamic career concerns model with various information sources.
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2 THE MODEL

The game. There are three players, sender (S), agent (A), and receiver (R), and an
unobservable state ω ∈ Ω ≡ {1, ..., N} whose distribution is endogenously determined. The
game unfolds in three stages. In the first stage, the sender designs and publicly reveals a
signal structure π, which consists of a message space Σ and a set of conditional probability
distributions {π(·|ω)}ω∈Ω over Σ. As in KG, we impose no structural restriction on the
sender’s choice of π; that is, we assume that the sender can choose any finite set Σ and any
conditional probabilities π(·|ω) over this set. In the second stage, the agent observes the
chosen signal structure π and exerts an unobservable effort e ∈ [0, 1]. Given e, the state is
drawn according to the probability vector η(e) = (η(1|e), ..., η(N |e)) ∈ ∆(Ω).4 In the third
stage, a message s ∈ Σ is realized according to the given signal structure π. The receiver
observes π and s and chooses an action x from a compact set of feasible actions X.

The sender’s utility, uS(x, ω), and the receiver’s utility, uR(x, ω), depend on the receiver’s
action and the underlying state. The agent’s utility depends on the receiver’s action and
his own effort e.5 For convenience, we assume that the agent’s utility function is additively
separable and given by uA(x) − c(e). We impose standard restrictions to ensure that the
agent’s problem is well-behaved: uA(x) is non-negative and bounded, while c(e) is strictly
increasing, convex and twice continuously differentiable, with c(0) = c′(0) = 0 and c′(1)

sufficiently large.6 All agents are risk neutral and maximize their expected utility.

Reformulation. Let µ ∈ ∆(Ω) denote the receiver’s belief about the state ω. For any
µ, let x∗(µ) denote the set of the receiver’s optimal mixed actions: x∗(µ) ≡ ∆(x(µ)) where
x(µ) ≡ argmaxx∈XEµ[uR(x, ω)]. Then, we can reformulate the agent’s and the sender’s
payoffs as follows:

vA(µ) ≡ uA(x
∗(µ)) and vS(µ) ≡ Eµ[uS(x

∗(µ), ω)].

In other words, inducing a particular action x ∈ X is identical to inducing a posterior µ
under which the receiver’s optimal action is x. As in KG, this reformulation allows us to

4As is standard, we let ∆(Y ) denote the set of all probability distributions (vectors) over finite set Y .
5We assume that the agent’s utility does not depend on the state ω for two reasons. From a technical

perspective, this assumption enables us to redefine the agent’s utility as a function of the receiver’s posterior
belief, as explained shortly. From an economic perspective, this assumption implies that the agent’s moti-
vation for effort is purely extrinsic: he exerts effort not because he inherently cares about the realization of
the state, but to induce the receiver to take a desirable action. For example, in the context of education, a
student exerts effort to increase the probability of getting a job, not because he values education itself.

6The assumption on c′(1) is only to ensure that the agent’s optimal effort always lies in the interior. The
necessary bound for c′(1) varies across different specifications and will be provided when necessary.
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abstract away from details of the receiver’s actual decision problem without incurring any
loss of generality. Note that x∗(µ) is not necessarily a singleton and, therefore, both vA and
vS are correspondences in general. For ease of exposition, we treat x∗(µ) (and vA(·) and
vS(·)) as a function unless necessary and noted otherwise.7

Linear production technology. We restrict attention to the following production tech-
nology: for two probability vectors µ and µ in ∆(Ω),

(1) η(e) = (1− e)µ+ eµ,

where both µ and µ have full support on Ω. In other words, the probability distribution
that generates the underlying state ω is linear in the agent’s effort e. One may imagine
that the state is the realization of a compound lottery in which the agent’s effort represents
the probability that the state is drawn from µ rather than µ. As shown in Section 3.1, this
technology guarantees that the agent’s optimal effort under any signal is fully characterized
by the first-order condition of the agent’s optimization (i.e., the first-order approach is valid),
which streamlines the formulation of the sender’s signal design problem.

Equilibrium definition. We study perfect Bayesian equilibria of this game. An equilib-
rium consists of a signal π, the agent’s effort e (for each possible signal), and a belief system
(µs ∈ ∆(Ω), s ∈ Σ) (also for each possible signal), which satisfy the following properties: (i)
given any signal π and the receiver’s belief system (µs ∈ ∆(Ω), s ∈ Σ), the agent’s effort e
maximizes his expected utility, (ii) the receiver’s belief system (µs ∈ ∆(Ω), s ∈ Σ) is consis-
tent with the agent’s effort choice e and the signal π, and (iii) the chosen signal π maximizes
the sender’s expected utility.

Vector operations. We make use of the following vector operations.8 For any y, z ∈ RN ,

Inner product: ⟨y, z⟩ ≡ y(1)z(1) + ...+ y(N)z(N),

Hadamard product: y ⊙ z ≡ (y(1)z(1), ..., y(N)z(N)) , and
Hadamard division: y ⊘ z ≡ (y(1)/z(1), ..., y(N)/z(N)) .

7Our subsequent arguments can be applied verbatim if the graphs of vA(·) and vS(·) are closed.
8Clearly, if z(i) = 0 for some i, then Hadamard division is undefined. In our analysis, this scenario never

arises.
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3 GENERAL CHARACTERIZATION

In this section, we provide a general characterization of the sender’s optimal signal. In
particular, we show how to extend the geometric characterization in Kamenica and Gentzkow
(2011) to allow for the agent’s moral hazard.

3.1 FORMULATING THE SENDER’S PROBLEM

We first analyze the equilibrium of the subgame between the receiver and the agent and use
it to reformulate the sender’s choice as a constrained optimization problem.

Subgame. Suppose that the sender has chosen a signal π : Σ × Ω → [0, 1], where π(s|ω)
denotes the probability that s ∈ Σ is realized when the state is ω. Let ê denote the receiver’s
conjecture about the agent’s effort and µ∗(s, π, ê) represent the receiver’s updated belief
given ê and π. Then, by Bayes’ rule, for any s ∈ Σ,

(2) µ∗(s, π, ê) ≡
(

π(s|1)η(1|ê)∑
ω′ π(s|ω′)η(ω′|ê)

, ...,
π(s|N)η(N |ê)∑
ω′ π(s|ω′)η(ω′|ê)

)
=
π(s|·)⊙ η(ê)

⟨π(s|·), η(ê)⟩
∈ ∆(Ω).

Thus, (2) defines the receiver’s belief structure.
The agent’s payoff depends on his effort, the sender’s signal structure, and the receiver’s

belief structure. In particular, the effort and signal structure together determine the proba-
bility of each signal realization, while the belief structure determines the associated reward.
To formulate the agent’s problem, let vA(ω|π, µ′

s) ≡
∑

s π(s|ω)vA(µ′
s) denote the agent’s

expected payoff conditional on generating state ω given the sender’s signal π and the re-
ceiver’s belief structure {µ′

s}s∈Σ, and let vA(π, µ′
s) ≡ (vA(1|π, µ′

s), ..., vA(N |π, µ′
s)) denote the

corresponding vector. The agent’s problem can be written as

max
e∈[0,1]

∑
ω

(∑
s

π(s|ω)vA(µ′
s)

)
η(ω|e)− c(e) = ⟨η(e), vA(π, µ′

s)⟩ − c(e).

The first term is linear in e, because η(e) = (1− e)µ+ eµ, while the second term is convex.
Therefore, the agent’s optimal effort is characterized by the following first-order condition:9

⟨ηe(e), vA(π, µ′
s)⟩ = ⟨µ− µ, vA(π, µ

′
s)⟩ = c′(e).

The receiver’s belief structure depends on the conjectured effort, while the agent’s optimal
9Recall our maintained assumption that c(0) = c′(0) = 0, while c′(1) is sufficiently large, which ensures

that the agent’s optimal effort is always in the interior.
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effort depends on the receiver’s belief structure. In equilibrium, the conjectured effort should
coincide with the agent’s actual effort choice. Therefore, the equilibrium belief structure
{µs}s∈Σ must be based on the equilibrium effort level e, and this effort level must be optimal
for the agent given the receiver’s belief structure. This yields the following equilibrium
conditions, which fully summarize the unique equilibrium in the subgame between the agent
and the receiver given signal π:

(3) µs = µ∗(s, π, e) and ⟨µ− µ, vA(π, µs)⟩ = c′(e).

Sender’s problem. Note that the sender’s payoff depends on both the agent’s effort
level and the receiver’s belief structure. As above, let vS(ω|π, µs) ≡

∑
s π(s|ω)vS(µs) de-

note the sender’s expected payoff conditional on the state being ω, given the sender’s
signal structure π and the receiver’s belief system {µs}s∈Σ. In addition, let vS(π, µs) ≡
(vS(1|π, µs), ..., vS(N |π, µs)) be the corresponding vector. Given the preceding characteriza-
tion of the subgame, the sender’s problem can be written as

max
π,e

⟨η(e), vS(π, µs)⟩ subject to the two conditions in (3).

In other words, the sender chooses π and e in order to maximize his expected payoff
⟨η(e), vS(π, µs)⟩ subject to the constraint that e and {µs}s∈Σ must be an equilibrium ef-
fort level and belief structure in the subgame following the sender’s choice of π.

For most of the paper, we consider the sender’s optimization problem given a particular
target effort level. In other words, we treat e as a parameter of the sender’s optimization,
rather than a choice variable. Given the characterization of optimal π, it suffices to iden-
tify the effort level that maximizes the sender’s (indirect) expected payoff, which is often
straightforward. Note that for some effort levels e ∈ [0, 1], there may not exist a signal
that generates them as part of a subgame equilibrium. We fully characterize the set of
implementable efforts in more specific environments in Sections 4 and 5.

The following result allows us to reformulate the sender’s problem so that he chooses a
distribution of posteriors τ ∈ ∆(∆(Ω)) instead of a signal π, which increases tractability.

Proposition 3.1 Given target effort e, there exists a signal π that satisfies the two conditions
in (3) if and only if there exists a distribution of posteriors τ ∈ ∆(∆(Ω)) such that

(i) Eτ [µ] = η(e) (Bayes-Plausibility), and

(ii) Eτ

[
Eµ

[
ηe(ω|e)
η(ω|e)

]
vA(µ)]

]
= c′(e) (Incentive Compatibility).
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The Bayes-Plausibility and incentive compatibility conditions are restatements of the
equilibrium conditions in (3) in the space of posterior beliefs. To understand the link, fix
a signal structure π and effort level e. Without loss of generality, assume that for each
realization s ∈ Σ, the receiver has a distinct Bayesian update µs. Then, the probability that
the Bayesian update is µs, denoted by τ(µs), is simply

τ(µs) =
∑
ω

π(s|ω)η(ω|e) = ⟨π(s|·), η(e)⟩.

Plugging this into µs = µ∗(s, π, e) and arranging the terms, we get

(4) µs =
π(s|·)⊙ η(e)

⟨π(s|·), η(e)⟩
=
π(s|·)⊙ η(e)

τ(µs)
⇒ π(s|·) = τ(µs)(µs ⊘ η(e)).

Clearly, starting with the signal structure and an equilibrium effort level, we can calculate
the distribution of posterior beliefs generated by the signal. Equation (4) shows that the
process can also be reversed: given any Bayes-plausible distribution of posteriors, one can also
derive the underlying signal structure that yields the distribution. To recover the incentive
compatibility condition, it suffices to combine equation (4) with equation (3):

⟨µ− µ, vA(π, µs)⟩ =
∑
ω

(∑
s

π(s|ω)vA(µs)

)
(µ(ω)− µ(ω))

=
∑
ω

(∑
s

τ(µs)
µs(ω)

η(ω|e)
vA(µs)

)
(µ(ω)− µ(ω))

=
∑
s

τ(µs)
∑
ω

(
µ(ω)− µ(ω)

η(ω|e)
µs(ω)

)
vA(µs)

=
∑
s

τ(µs)
∑
ω

(
ηe(ω|e)
η(ω|e)

µs(ω)

)
vA(µs) = Eτ

[
Eµ

[ηe(ω|e)
η(ω|e)

]
vA(µ)

]
.

Two aspects of (IC) are worth highlighting. First, (IC) immediately implies that a
degenerate posterior distribution can implement only e = 0.10 In other words, dispersion
in the posterior belief distribution is necessary to provide the agent with incentives to exert
effort. As shown later, however, it is not necessarily the case that more dispersion induces

10For a degenerate distribution to satisfy Bayes-plausibility, the unique posterior belief must be equal to
the prior, that is, µ = η(e). Then, it is easy to show that it violates the IC constraint whenever e > 0:

Eτ

[
Eµ

[
ηe(ω|e)
η(ω|e)

]
vA(µ)

]
=
∑
ω

[µ(ω)− µ(ω)]vA(η(e)) = 0 < c′(e) for any e > 0.
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more effort. Furthermore, in the absence of (IC), the sender would use an uninformative
signal (degenerate posterior distribution) whenever his payoff function is concave in µ. Thus,
the desire to motivate the agent forces the sender to introduce distortions in this case.

Second, the likelihood ratio term ηe(ω|e)/η(ω|e) also appears in the standard moral
hazard model (where the principal controls the agent’s rewards). There, this term arises from
the principal’s optimization, reflecting the benefit/cost of distorting the agent’s compensation
away from the first best for a particular output (state) realization (Hölmstrom 1979). In
contrast, in our model, these terms emerge from the agent’s optimization, appearing directly
in his first-order condition via the inversion of Bayes’ rule. Despite this difference, existing
insights in the literature help us to interpret (IC). In the standard model, this likelihood
ratio is interpreted as a statistical estimate of the agent’s effort from the observed output
(state), where a high value suggests high effort. Thus, the principal acts as if he estimates
the agent’s effort from the output and rewards the agent according to this estimate. In our
model, allocating mass to a particular posterior belief has a bigger impact on (IC) when (i)
the agent derives a larger benefit from the realization (vA(µ) is high) or (ii) the posterior
belief realization generates a high expected value for the receiver’s statistical estimate of
the agent’s effort (Eµ[ηe(ω)/η(ω)] is high). Thus, in our model the agent acts as if he is
rewarded when the receiver’s estimate of his effort is high, even though his reward depends
only on the receiver’s action.11

3.2 MAIN CHARACTERIZATION

We now characterize the sender’s optimal signal structure. Proposition 3.1 implies that the
sender’s problem can be written as

(5) max
τ∈∆(∆(Ω))

Eτ [vS(µ)], subject to (BP ) Eτ [µ] = η(e), and (IC) Eτ [h(µ)] = 0,

where

(6) h(µ) ≡ Eµ

[
ηe(ω|e)
η(ω|e)

]
vA(µ)− c′(e) for each µ ∈ ∆(Ω).

We let τ e denote an optimal solution to this problem (i.e., an optimal distribution of posteri-
ors that implements effort e) and V e denote the corresponding expected utility of the sender

11In particular, given a Bayes-Plausible distribution of posteriors, the equilibrium effort can be derived
from the following optimization problem: maxeEτ [Eµ[log(η(ω|e))]vA(µ)]− c(e). Thus, equilibrium effort is
identical to the effort choice of a “virtual agent” who takes the distribution of the posterior belief as given
and has payoff Eµ[log(η(ω|e))]vA(µ)]− c(e) at each µ. The “virtual” payoff function weighs the agent’s true
payoff vA(µ) by the expected value of the log-likelihood function. By implication, the virtual agent derives
utility from the perception, ex post, that he exerted effort.
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(i.e., V e ≡ Eτe [vS(µ)]). Crucially, in (5), the objective function and the two constraints are
expectations of certain functions of µ with respect to τ . This property allows us to extend
the geometric characterization in Aumann and Maschler (1995) and KG to our problem.

Consider the following curve in RN+2:

Ke ≡ {(µ, h(µ), vS(µ)) : µ ∈ ∆(Ω)}.

By construction, each element of Ke corresponds to ex post values for the three objects in (5):
the first N components are (µ(1), ..., µ(N)), which are the ex post values of each component
of (BP). The last two components are the ex post values of (IC) and the sender’s payoff,
respectively. Now construct the convex hull of Ke, denoted by co(Ke). By definition, co(Ke)

consists of all convex combinations of the elements of Ke. Therefore, co(Ke) captures all ex
ante values of (BP), (IC), and sender payoff that can be generated by choosing a probability
measure over ∆(Ω). Roughly, this can be interpreted as the “production possibility set” for
the Bayesian persuasion problem, specifying which values of (BP), (IC), and sender payoff
are feasible (consistent) with the sender’s “technology.” The problem is then to find the
maximal expected utility of the sender inside of co(Ke), while respecting the two constraints,
as formally stated in the following proposition. The result on the cardinality of the support
follows from Caratheodory’s theorem.12

Proposition 3.2 In problem (5), the maximal utility the sender can obtain given target
effort e is equal to

V e = max{v : (η(e), 0, v) ∈ co(Ke)}.

In addition, there exists an optimal distribution of posteriors τ e ∈ ∆(∆(Ω)) whose support
contains at most N + 1 posteriors (i.e., |supp(τ e)| ≤ N + 1).

Proof. Consider the following subset of co(Ke):

He ≡ {(y1, y2, y3) ∈ co(Ke) : y1 = η(e), y2 = 0}.

By construction, He includes all the points that are convex combinations of the elements of
Ke (i.e., y1 = Eτ [µ], y2 = Eτ [h(µ)], and y3 = Eτ [vS(µ)]) and satisfy the two constraints (i.e.,
y1 = η(e) and y2 = 0). Therefore, max{v : (η(e), 0, v) ∈ co(Ke)} is the maximal value to
the problem in (5). Because Ke is closed, co(Ke) is also closed, and hence, this maximum is
attained. For the result on the cardinality of the support of τ e, see the appendix.

12To be precise, it is not a direct application of Caratheodory’s theorem, which states that any point on the
boundary of a convex set in RN+2 can be composed of at most N+2 extreme points (realizations). However,
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Figure 1: The left panel depicts the curve Ke, while the right panel depicts its convex hull
co(Ke). In this example, n = 2 and µ represents the probability that ω = 2. In addition,
η(e) = E[µ] = 0.4, vA(µ) = µ, and uS(µ) = 1− (1− µ)4.

Figure 1 illustrates the argument in the binary-state case. Here, the receiver’s belief
can be represented by a single variable µ(2) ∈ [0, 1]. In a slight abuse of notation, we
replace µ(2) by µ and η(2|e) by η(e). The left panel depicts the 3-dimensional curve Ke ≡
{(µ, h(µ), vS(µ) : µ ∈ [0, 1]}, while the right panel shows its convex hull co(Ke). The vertical
rod in both panels is built upon (η(e), 0, 0). In order to find V e, it suffices to move up along
the rod and identify the highest point in co(Ke). Clearly, the optimal point (η(e), 0, V e) is
on the boundary of co(Ke) ⊂ R3. By Caratheodory’s theorem for the boundary, (η(e), 0, V e)

is a convex combination of no more than three elements of Ke.
In the absence of moral hazard (i.e., without (IC)), h(µ) is irrelevant. Therefore, the

component of co(Ke) representing h(µ) can be eliminated, and our geometric argument re-
duces to the one in KG. In this case, the boundary of co(Ke) reduces to the concave envelope
of vS(·), and the sender’s payoff is the value of the concave envelope at the prior belief η(e).
In Figure 1, eliminating the dimension corresponding to h(µ) projects co(Ke) into the plane
of (µ, vS(µ)), which is identical to the concave envelope in KG. From a technical perspective,
moral hazard introduces an additional dimension (IC) into the sender’s optimization prob-
lem, constraining the sender’s choice of posterior belief distribution along this dimension and
(possibly) increasing the number of required realizations by 1.

There are two other noteworthy points regarding Proposition 3.2. First, it does not
crucially depend on our restriction to the linear production technology (i.e., η(e) ≡ (1 −
e)µ+eµ). The same logic goes through unchanged as long as the subgame equilibrium effort
level is fully characterized by the agent’s first-order condition (i.e., the first-order approach is

one dimension can be eliminated, because ∆(Ω) is an (N − 1)-dimensional simplex (i.e.,
∑

ω µ(ω) = 1 for
any µ ∈ ∆(Ω)). Therefore, we can reduce the necessary number of realizations by 1.
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valid). As explained above, the linear production technology guarantees this latter property
but is not necessary for it. Second, our argument also extends to other settings in which a
game between the receiver and the agent (or agents) imposes additional constraints on the
sender’s problem, provided that these constraints can be written as expectations with respect
to τ (i.e. each constraint can be written as Eτ [F (µ)] = 0 for some function F (·)). The only
difference is that when there are a total of k constraints (including the BP constraint), the
maximal necessary number of posterior belief realizations is n+ k − 1.

3.3 OPTIMALITY CONDITIONS

While useful for understanding the structure of the sender’s problem, Proposition 3.2 does
not establish explicit necessary and sufficient conditions for optimality. We now develop
such conditions using our preceding characterization. The result is based on the observation
that (η(e), 0, V e) lies on the boundary of a convex set co(Ke) and, therefore, there exists a
supporting hyperplane to co(Ke) at (η(e), 0, V e).

Proposition 3.3 A distribution of posteriors τ e is a solution to the sender’s problem (5) if
and only if it satisfies (BP), (IC), and there exist λ0 ∈ R, ψ ∈ R, and λ1 ∈ RN such that

L(µ, ψ) ≡ vS(µ) + ψh(µ) ≤ λ0 + ⟨λ1, µ⟩, for all µ ∈ ∆(Ω),

with equality for all µ such that τ e(µ) > 0.

Proof. Here, we illustrate only how the existence of the supporting hyperplane leads to
the inequality above, relegating the rest of the proof to the appendix. Given the supporting
hyperplane, we can find a normalized direction vector d ≡ (−λ1(1), ...,−λ1(N), ψ, 1) ∈ RN+2

and a scalar λ0 such that ⟨d, y⟩ ≤ λ0 for all y ∈ co(Ke), with equality for y = (η(e), 0, V e). It
follows that ⟨d, z⟩ ≤ λ0 for any vector z ∈ Ke. Expanding this inner product and rearranging
yields L(µ, ψ) ≤ λ0 + ⟨λ1, µ⟩ for all µ ∈ ∆(Ω).

Figure 2 illustrates Proposition 3.3 for the binary-state case where vS(µ) is an increasing
concave function of µ = Pr{ω = 2}. If ψ = 0, then the condition is identical to the
corresponding condition in KG. An optimal signal can be found by first drawing a line
λ0+λ1µ that supports vS(µ) above η(e). The straight line is, in essence, the concave closure
of vS(µ), the sender’s payoff is the value of the line at η(e), and the optimal signal is supported
on the posterior beliefs at which the supporting line meets the sender’s payoff function. In
Figure 2, vS(µ) is concave, and thus, in the absence of moral hazard the sender’s maximal
utility is achieved with a degenerate posterior distribution.

14
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Figure 2: The concave solid curve depicts uS(µ), while the other solid curve depicts L(µ, ψ) =
vS(µ) + ψh(µ), with the same data as in Figure 1.

Moral hazard requires two changes. First, concavification applies to L(·, ψ) rather than
vS(·), which are different whenever ψ ̸= 0 (which is typically the case and always the case if
vS(·) is concave). Second, (IC) must hold, which also imposes restrictions on the Lagrangian
and optimal posterior distribution. Note that (IC) implies Eτe [L(µ, ψ)] = Eτe [vS(µ)]. Graph-
ically, Eτe [L(µ, ψ)] is the value of the Lagrangian’s supporting line (the dashed red line)
evaluated at η(e). Similarly, Eτe [vS(µ)] can be obtained by constructing the corresponding
chord of the sender’s payoff function (the blue dashed line) and evaluating it at η(e). If (IC)
is satisfied, then the chord of the payoff function and the supporting line of the Lagrangian
intersect above η(e). In some cases, as shown in Section 4.4, satisfying (IC) requires a third
realization, in which case the supporting line meets the Lagrangian at three distinct values
of µ, each of which receives positive probability in the optimal signal. In the binary case of
KG, this is inconsequential: vS(·) may meet the supporting line at more than two points,
but an optimal distribution of posteriors can always be supported on only two such points.

4 BINARY STATES

In this section, we consider a tractable environment in which there are only two states (i.e.,
Ω = {1, 2}) and, therefore, the receiver’s belief can be represented by a scalar. In a slight
abuse of notation, we treat µ, µ, µ, and η(e) as scalars between 0 and 1 and use them to
represent the probability that ω = 2. We first offer some general characterization results
and then provide a more comprehensive analysis of three representative examples.
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We maintain the following simplifying assumptions through this section.

(i) Monotonicity: both vA(·) and vS(·) are increasing in µ, and vA(µ) < vA(µ).

(ii) Normalization: vA(0) = vS(0) = 0 and vA(1) = vS(1) = 1.

(iii) Interior effort: c′(1) > µ− µ.

Assumption (i) implies that the interests of the sender and the agent are aligned: both want
the receiver’s belief to be as high as possible. Assumption (ii) is purely for convenience.
Assumption (iii) ensures that the agent’s equilibrium effort level is less than 1.

4.1 IMPLEMENTABLE AND INCENTIVE-FREE EFFORT LEVELS

We say that a target effort level is implementable if there exists a signal π (equivalently,
a distribution of posteriors τ) that satisfies both (BP) and (IC). The following proposition
shows that an effort level is implementable if and only if it is below a certain threshold.

Proposition 4.1 In the binary-state model, let e be the value such that c′(e) = µ−µ. Then,
e is implementable if and only if e ≤ e. The maximum effort e is incentive compatible if and
only if the signal is fully informative.

Proof. See the appendix.

For the intuition, notice that with binary states, equation (3) reduces to

(µ− µ)(vA(2)− vA(1)) = c′(e),

where vA(ω) is the agent’s expected payoff when the realized state is ω. Therefore, the
agent’s incentive depends exclusively on the difference in the expected rewards in the two
possible states, vA(2)−vA(1). Given the assumptions on vA(·), this difference cannot exceed
1, and achieves 1, if and only if the sender uses a fully informative signal, because it is
necessary and sufficient that vA(2) = 1 and vA(1) = 0.

In the absence of moral hazard, a fully informative signal (which maximally disperses
the distribution of posteriors) is optimal if vS(·) is convex, while a fully uninformative signal
(which induces a degenerate posterior) is optimal if vS(·) is concave. An immediate, but
important, corollary of Proposition 4.1 is that the former result continues to hold, while the
latter result fails in the model with moral hazard.

Corollary 4.2 In the binary-state model, a fully informative signal is optimal when vS(·) is
convex in µ, while a fully uninformative signal is never optimal when vS(·) is concave.
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Proof. See the appendix.
If vS(·) is convex, then a fully informative signal maximizes the sender’s expected utility

under any fixed prior η(e). Simultaneously, a fully informative signal maximizes η(e), which
also benefits the sender. For the second (concave) result, recall that a fully uninformative
signal induces a degenerate posterior distribution and, therefore, results in e = 0. The sender
can do better, for example, by using a posterior belief distribution supported on {µ, 1}, which
induces the agent to choose a positive effort level: the sender’s ex post payoff is bounded
from below by vS(µ) and is strictly greater than vS(µ) with positive probability.

For the general case, let V̂ e denote the maximal attainable value to the sender in the
relaxed problem without (IC):

V̂ e ≡ max
τ∈∆(∆(Ω))

Eτ [vS(µ)] subject to (BP) Eτ [µ] = η(e).

Obviously, V e ≤ V̂ e for any e ≤ e. Let e be the maximal value of e such that V e = V̂ e. Our
preceding result implies that e = 0 if vS(·) is concave, while e = e if vS(·) is convex. If vS(·)
is neither concave nor convex, then e can be found by first solving the relaxed problem and
then verifying whether the resulting optimal distribution of posteriors satisfies (IC).13

The following result shows that the sender (weakly) prefers an effort level e ∈ [e, e] to
any effort level less than e and, therefore, it suffices to consider those effort levels. It also
shows that implementing e > e requires a distortion from the relaxed problem.

Proposition 4.3 In the sender’s problem (5), if e < e, then V e ≤ V e. Furthermore, for
any e ∈ (e, e], the solution to (5) has ψ > 0.

Proof. See the appendix.
We now apply our characterization to study three representative environments. For ease

of exposition, we focus on the case in which µ = 0 and µ = 1. This implies that η(e) = e.14

In addition, the function h(µ) in (IC) reduces to

h(µ) = Eµ

[
ηe(ω|e)
η(ω|e)

]
vA(µ)− c′(e) =

µ− e

e(1− e)
vA(µ)− c′(e),

because η(e) = (1−e, e) when written as a vector, and thus, ηe(e)⊘η(e) = (−1/(1−e), 1/e).
13An alternative interpretation of e is as follows: suppose the sender designs, or can revise, a signal after

the agent chooses e. In this case, the sender necessarily adopts an optimal signal in the sense of KG and,
anticipating this, the agent adjusts his effort choice. e is the maximal effort attainable under such a scenario.
Therefore, it is the sender’s power to commit that enables him to implement e ∈ (e, e].

14Strictly speaking, µ = 0 and µ = 1 do not have full support. However, for any e ∈ (0, 1), the prior belief
η(e) = e does have full support. Therefore, Proposition 3.1 and the subsequent characterizations apply to
these cases unchanged.
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Figure 3: Both panels depict the Lagrangian function L(µ, ψ). In the left panel v′′′S (·) < 0,
while in the right panel v′′′S (·) > 0.

4.2 CONCAVE/LINEAR PREFERENCES

We begin with the case in which the agent’s payoff is linear in the receiver’s belief (i.e.,
vA(µ) = µ), while the sender’s payoff vS(·) is strictly increasing, concave, and twice differen-
tiable (i.e., v′S(·) > 0 and v′′S(·) < 0). This arises, for example, if the sender suffers a convex
cost as the receiver’s posterior belief falls from the sender’s ideal point 1.

Fix e ∈ (0, e) and consider the Lagrangian function L(µ, ψ) introduced in Proposition
3.3. Because vA(·) is linear, h(·) is quadratic in µ, and the second derivative of L with respect
to µ takes the following form:

Lµµ ≡ ∂2L(µ, ψ)
∂µ2

= v′′S(µ) +
2ψ

e(1− e)
.

Although v′′S(·) < 0, the Lagrangian is not necessarily concave because of the (positive)
second term. In fact, at the sender’s optimal solution, Lµµ cannot be negative everywhere:
if the Lagrangian is concave, then the optimal signal is degenerate and, therefore, cannot
implement e > 0. Conversely, Lµµ also cannot be positive everywhere: if the Lagrangian is
convex, then the optimal signal is fully informative and implements e (see Proposition 4.1).
Therefore, Lµµ must have both positive and negative regions, and the Lagrangian must have
at least one point of inflection.

A sharp result can be derived for the case where Lµµ is monotone. In this case, L cannot
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have more than one inflection point and must have at least one at the optimum. Furthermore,
the change in curvature at the inflection point does not depend on ψ. Thus, if v′′′S (·) < 0

(resp. v′′′S (·) > 0), then L switches once from convex to concave (resp. concave to convex) at
the optimum. Applying Proposition 3.3, it follows that the optimal distribution is supported
on two posterior beliefs, one of which must be either 0 or 1 (see Figure 3)

Proposition 4.4 Consider the binary-state model with v′′S(·) < 0 and vA(µ) = µ.

(i) If v′′′S (·) < 0, then the optimal distribution of posteriors that implements e ∈ (0, e) is
supported on {0, µU} with τ e(µU) = e/µU , where µU ≡ e+ (1− e)c′(e).

(ii) If v′′′S (·) > 0, then the optimal distribution of posteriors that implements e ∈ (0, e) is
supported on {µD, 1} with τ e(µD) = (1− e)/(1− µD), where µD ≡ e(1− c′(e)).

For an economic intuition, notice that if vA(µ) = µ then h(µ) simplifies to

(7) h(µ) =
µ(µ− e)

e(1− e)
− c′(e).

Since Eτ [µ] = e (due to (BP)),

E[h(µ)] =
E[µ(µ− e)]

e(1− e)
− c′(e) =

Var(µ)
e(1− e)

− c′(e) = 0.

Thus, (IC) constrains the variance of the posterior belief to a specific value, e(1 − e)c′(e),
while (BP) constrains the mean to e. Therefore, if vA(µ) = µ then our search for an optimal
signal reduces to finding the posterior distribution that maximizes the sender’s expected
payoff among those with a particular mean and variance.

The sender’s problem is identical to the decision problem under uncertainty studied
by Menezes et al. (1980). These authors formalize the notion of downside risk (how an
individual perceives a small probability of big losses) and show that it is determined by the
third derivative of von Neumann-Morgenstern utility function: if v′′′S (·) > 0 then the decision-
maker (sender) is downside risk averse and always prefers to shift all necessary dispersion
to the top of the distribution, while compressing the bottom as much as possible.15 In
our sender’s problem, this manifests as the optimality of a binary distribution whose larger
realization is 1. Conversely, if v′′′S (·) < 0, then the decision-maker (sender) is downside risk

15Menezes et al. (1980) define a mean-variance preserving transformation, which combines a mean-
preserving spread over high values with a mean-preserving contraction over low values, while preserving
the mean and variance of the distribution. They show that if an individual is downside risk averse, then
he always prefers a mean-variance preserving transformation, while the opposite is true if an individual is
downside risk loving.
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loving and prefers to shift all necessary dispersion to the bottom of the distribution, resulting
in a binary distribution whose smaller realization is 0.

Transparency I. To further examine the interplay between information and incentive
provision, consider a benchmark model in which the agent’s effort is observable. In that
case, given any Bayes-Plausible distribution of posteriors τ , the agent’s problem reduces to

max
e
Eτ [vA(µ)]− c(e) = Eτ [µ]− c(e) = e− c(e),

whose unique optimal solution is given by e, as defined in Proposition 4.1. Importantly, this
holds for any signal structure, that is, the agent chooses e regardless of π (or τ). It follows
that it is optimal for the sender, who has concave preferences, to reveal no information. In
this example, transparency “crowds out” the sender’s concern for incentive provision, severing
the link between the signal structure and effort. Therefore, the sender is only concerned with
information provision, adopting the optimal policy in KG. This result highlights a potential
tradeoff for the receiver: with transparency, the agent exerts effort e, but the receiver acquires
no further information about the state. Depending on the relative importance of these two
effects, transparency may harm the receiver.

Application: media bias and government accountability. Our results can be used
to gain new insights on the issues of media bias and government accountability.16 We can
identify the government as the agent, the media as the sender, and a representative citizen
as the receiver in our model. The government exerts effort e to increase the probability of
state ω = 2, which is beneficial for the citizen (for example, reduced corruption or increased
economic development), but the citizen observes neither the government’s effort nor the
realized state. Instead, information about the realized state is communicated to the general
public by an independent news media. As in Gehlbach and Sonin (2014) and Gentzkow et al.
(2015), the media commits to a reporting strategy π(·|ω), which is observed by the citizen.

Under standard conditions on his decision problem, the citizen’s interim payoff function
vR(·) is increasing and convex in his belief µ about the state. If the media shares the citizen’s
preferences (i.e., vS(·) is also convex), either because it is altruistic or because it can extract
the citizen’s total surplus through an access price, then the optimal reporting policy is a

16Freedom of the press is essential to democracy, which is built on the fundamental notion that government
is accountable to the people. Thus, in its role as a government watchdog, the free press has a “clear,
instrumental role in preventing corruption, financial irresponsibility, and underhanded dealings” (Sen 2001,
p. 40). However, there is significant concern that the media’s economic or political interests may undermine
their incentive to report the information needed for proper oversight (see, e.g., Besley and Prat 2006).
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fully informative one (Corollary 4.2). It not only provides the most accurate information
but also maximizes the government’s effort (Proposition 4.1).

Now suppose that the government’s payoff is linear in “public opinion” (µ) and the
media’s payoff is concave. In this case, Proposition 4.4 has interesting implications for the
media’s reporting strategy. Depending on the media’s downside risk aversion, it either uses a
binary signal which perfectly reveals the bad state (but not good), or a binary signal which
perfectly reveals the good state (but not bad). Specifically, if v′′′S (·) < 0, then the media
reports good news for sure if ω = 2 and some of the time even if ω = 1. In other words,
the media commits to censoring bad news, sometimes replacing a “truthful” bad report with
a nominally good report, reducing the good report’s overall credibility while suppressing
unfavorable information. Conversely, if v′′′S (·) > 0, then the media reports bad news for sure
if ω = 1 and some of the time even if ω = 2. In this case the media commits to censoring
good news about the state, sometimes replacing truthful good news with nominally bad news.
In the presence of moral hazard, this “hostile” reporting policy arises in equilibrium, even
though the media and government both prefer to keep public opinion high.

4.3 IDENTICAL CONCAVE PREFERENCES

We now consider an environment in which the sender and the agent have identical concave
preferences. Specifically, vS(µ) = vA(µ) = v(µ) with v′′(·) < 0, and the sender also internal-
izes the agent’s effort cost.17 This perfect alignment of interests could arise, for example, if
the sender and the agent are the same entity, or if the sender is a monopolist who designs a
signal to maximize the agent’s expected payoff, which she then extracts by charging a fee.

The analysis is similar to Section 4.2. Given target effort level e ∈ (0, e),

Lµµ = v′′(µ) + ψ
2v′(µ) + (µ− e)v′′(µ)

e(1− e)
.

Since e = 0 (due to the sender’s concave preferences), ψ > 0 for any e > 0 (see Proposition
4.3). It then follows that

(8) Lµµ > 0 ⇔ e(1− e− ψ)

2ψ
+
µ

2
<

1

r(µ)
,

where r(µ) ≡ −v′′(µ)/v′(µ) is the Arrow-Pratt measure of risk aversion. As in Section 4.2, at
17To be precise, the sender’s underlying utility function uS now depends on the agent’s effort but not on

the state, that is, uS(x, e) = uA(x) − c(e). The assumption that the sender internalizes the agent’s effort
cost plays no role in the characterization of the optimal signal. However, it does affect the sender’s optimal
effort choice.
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the sender’s solution, L should be neither concave nor convex and have at least one inflection
point. Furthermore, if the right-hand side is linear, then the number of inflection points is
at most one. Using similar logic to Propositions 4.4, we obtain the following result.

Proposition 4.5 In the binary-state model, suppose that the sender and the agent have
identical HARA (Hyperbolic Absolute Risk Aversion) preferences: for any µ ∈ [0, 1], vS(µ) =
vA(µ) = v(µ) and 1/r(µ) = αµ+ β for some (α, β).

(i) If α < 1/2, then the optimal distribution of posteriors that implements e ∈ (0, e) is
supported on {0, µU}, with τ(µU) = e/µU .

(ii) If α > 1/2, then the optimal distribution of posteriors that implements e ∈ (0, e) is
supported on {µD, 1}, with τ(µD) = (1− e)/(1− µD).

Transparency II. Suppose that the agent’s effort is observable by the receiver. Since the
agent and the sender have identical preferences, the problem reduces to:

max
e,τ

Eτ [v(µ)]− c(e) subject to Eτ [µ] = e.

Since v(·) is concave, given any e, it is optimal to reveal no information. Thus, the objective
function can be further simplified to v(e)− c(e), for which the optimal effort is characterized
by v′(e) = c′(e). Unlike in Section 4.2, the equilibrium observable effort may fall short of
e: it is smaller than e if and only if v′(e) < 1. Therefore, it is not necessarily the case that
transparency enhances the agent’s effort. In fact, it is possible that transparency reduces
both the agent’s equilibrium effort and the informativeness of the equilibrium signal, as
shown in the following example.

Example. Suppose that v(µ) = 1 − (1 − µ)2 and c(e) = ce2/2. If the agent’s effort is
unobservable then, by Proposition 4.5, the optimal signal induces posteriors 0 and µU , be-
cause 1/r(µ) = 1 − µ in this case. Using the equilibrium conditions that Eτ [µ] = e and
Eτ [h(µ)] = 0, one can find that the sender’s optimal signal is such that

µU = e+ ce(1− e), τ(µU) =
e

e+ ce(1− e)
, and V e = (2− e− ce(1− e))e− c

2
e2.

From this explicit solution, it is immediate that the optimal effort is 2/(3c) whenever c ∈
(2/3, 1). If the agent’s effort is observable, then the equilibrium effort is given by

v′(e) = 2− 2e = c′(e) = ce⇒ e =
2

2 + c
.

It follows that transparency lowers the agent’s equilibrium effort if c ∈ (2/3, 1).
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Application: optimal monitoring and prosocial behavior. In social interactions,
individuals sometimes undertake costly actions that may generate benefits exclusively for
others. One explanation in the literature is that such individuals are motivated by social
pressure or social norms that reward those who are believed to have generated such benefits
(see, e.g., Bénabou and Tirole 2006, Daughety and Reinganum 2010). Such rewards and
punishments are, fundamentally, derived from the beliefs that society holds about an indi-
vidual’s actions and their consequences. In this context, an important question is how such
information should be transmitted, on which our results can be used to shed new light.

We interpret e as the amount of effort an agent devotes to a prosocial activity. Effort
translates into social benefits stochastically: the agent produces a positive benefit to others
(ω = 2, good state) with probability e and no benefit (ω = 1, bad state) with probability
1 − e. The agent is motivated by “social pressure,” which rewards the agent to the extent
that society believes a benefit was generated. In this context, the agent’s payoff is given by
v(µ)−c(e), where µ denotes the society’s belief about the agent’s realized social contribution.
The problem of designing a monitoring system that maximizes the agent’s ex ante welfare
then becomes identical to the sender’s problem in this subsection.

Proposition 4.5 shows that when the agent’s effort is unobservable, then the optimal
monitoring system takes an intriguing form. If α < 1/2, then it searches for conclusive
evidence that no benefit was realized. Such evidence can be found only in the bad state,
but even in this state, the system only discovers it with a known probability, which depends
on the exhaustiveness of the search. If evidence is uncovered, then it is unveiled, revealing
the bad state (µ = 0). If no evidence is discovered, then a null message is generated, which
improves beliefs to the extent that the search was exhaustive (µ = µU). Thus, for α < 1/2,
the monitoring system conducts a limited search for conclusive evidence of the bad state,
disclosing anything that it uncovers. Conversely, for α > 1/2 the optimal monitoring system
conducts a limited search for evidence of the good state, disclosing anything that it uncovers.

In this environment, transparency may be harmful to society. Suppose that society
weighs both the agent’s welfare and his social contribution. With transparency, the optimal
monitoring system never conveys information and the optimal effort equates the marginal
benefit and cost of effort (v′(e) = c′(e)). With private effort, the agent is potentially harmed
in two ways. First, the monitoring system induces dispersed posteriors, which reduces his
payoff because he has concave preferences. Second, as shown in the example above, the
agent’s equilibrium effort may also be higher, resulting in a larger effort cost. However, if
the agent’s effort is higher, then social benefits are also more likely to accrue. Thus, if privacy
increases the agent’s effort, and society places a sufficiently large weight on the benefits it
generates, then society may prefer not to observe the agent’s effort.
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Figure 4: The step function represents vS(µ) = I{µ≥θ}, while the solid curve depicts L(µ, ψ)
when vA(µ) = µ.

4.4 DISCRETE/LINEAR PREFERENCES

In our final example, vS(·) is a step function at θ ∈ (0, 1) (vS(µ) = I(µ ≥ θ)), while vA(·)
is linear. Thus, the agent would like to increase the receiver’s belief that the state is good,
while the sender would like this belief to be “good enough.” In order to reduce the number
of cases to consider, we assume that c′(θ) > 1, so that e < θ.

Unlike in the previous cases, vS(·) is neither convex nor concave, which allows for the
possibility that e ∈ (0, e). In the absence of moral hazard, it is optimal for the sender to use
a binary posterior distribution supported on {0, θ} for any e < θ (see KG). It follows that
the unique incentive-free effort level e is given by the value that satisfies

Eτ [h(µ)] =
θ(θ − e)

e(1− e)
τ(θ) =

θ − e

1− e
− c′(e) = 0.

From now on, we restrict attention to e ∈ (e, e).
Given the preferences of the sender and the agent,

L(µ, ψ) =

 ψ
(

(µ−e)µ
e(1−e)

− c′(e)
)
, if µ < θ,

1 + ψ
(

(µ−e)µ
e(1−e)

− c′(e)
)
, if µ ≥ θ.

Thus, L is a quadratic function of µ, with an upward jump discontinuity of 1 at µ = θ (see
Figure 4). Because L is convex over the domains µ < θ and µ > θ, there are three ways
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in which the supporting line λ0 + λ1µ can intersect L(µ, ψ) at the solution of the sender’s
problem. The intersections can occur (i) at µ = 0 and θ, (ii) at µ = 0 and 1, or (iii) at
µ = 0, θ, and 1. However, (i) implements e (as explained above), while (ii) implements
e (Proposition 4.1). Therefore, (iii) is the only possibility; that is, at the optimum, the
supporting line must intersect L(·, ψ) at all three points, {0, θ, 1}, as shown in Figure 4.

Proposition 4.6 In the binary-state model with vS(µ) = I{µ ≥ θ}, vA(µ) = µ, and c′(θ) >
1, for any e ∈ (e, e), the optimal distribution of posteriors τ e is supported on {0, θ, 1}, where

τ e(0) = (1− e)(1− τ e(θ)), τ e(θ) =
e(1− e)(1− c′(e))

θ(1− θ)
, and τ e(1) = e− τ e(θ)θ.

Proof. The result on the use of three posteriors follows from the discussion above. The
probabilities of each realization can be calculated from the following three equations: (i)
τ e(0) + τ e(θ) + τ e(1) = 1, (ii) (BP) Eτe [µ] = e, and (iii) (IC) Eτe [h(µ)] = 0.

This result demonstrates that the result on the maximal number of necessary posteriors
in Proposition 3.2 is binding in the binary-state model. As shown in the previous subsections,
it is often the case that a binary signal is optimal with binary states. However, as Proposition
4.6 shows, three distinct posteriors (equivalently, three signal realizations) may be necessary
in our model, which is never the case in the absence of moral hazard.

Transparency III. The analysis when the agent’s effort is observable is essentially iden-
tical to that in Section 4.2: the agent chooses the maximal effort e, regardless of the signal
structure, and the sender chooses a signal as if there is no moral hazard. Because e < θ, and
the sender’s payoff is a step function at θ, the optimal signal is supported on {0, θ}.

This result shows in a particularly simple fashion that the receiver may prefer not to
observe the agent’s effort, despite the fact that the agent’s effort under transparency is
higher. To be concrete, suppose that the receiver’s payoff as a function of his belief µ is
given by max{µ − θ, 0}; for example, the receiver has a binary action and faces the usual
tradeoff between Type I and Type II error.18 In this case, if the agent’s effort is observable,
then the receiver’s expected payoff is equal to 0. In contrast, Proposition 4.6 shows that the
receiver obtains a strictly positive expected payoff, because posterior belief µ = 1 is realized
with positive probability.

18For example, suppose that the receiver has two actions, approve or reject, and his payoffs are given as
follows: rejecting when ω = 1 yields payoff θ, approving when ω = 2 gives payoff 1−θ, and making a mistake
(approving when ω = 1 or rejecting when ω = 2) leads to payoff 0. Note that the agent’s payoff is continuous
in µ, which cannot be generated by binary actions but can arise if the receiver’s action is two-dimensional,
one dimension determining the sender’s payoff and the other determining the agent’s payoff.

25



5 BINARY ACTIONS

In this section, we analyze another tractable environment in which there are only two actions
available to the receiver and both the sender and the agent prefer one action to the other.
Since the underlying Bayesian persuasion problem is fully studied by Alonso and Câmara
(2016), we adopt an analogous political interpretation to theirs: the receiver is a dictator
(or a representative voter) who solely decides whether to keep the status quo or adopt a
new policy.19 The agent is a politician, while the sender is a party leader. Both want
the new policy to be implemented. Different from Alonso and Câmara (2016), the sender
communicates with the dictator, and the agent can improve the quality of the proposal (the
prior belief about the merit of the policy) through effort.

5.1 THE MODEL

Setup. The receiver (dictator) decides whether to take action x0 (keeping the status quo)
or x1 (adopting a new policy). If she selects x0, then her payoff is θ > 0, regardless of the
state. If she selects x1, then her payoff is vω in state ω. Without loss of generality, the states
are ordered from the worst to the best for the receiver and the payoffs are normalized so
that v1 = 0 < v2 < ... < vN . The sender’s (party leader) and the agent’s (politician) payoffs
depend on the receiver’s action, and both prefer x1: both receive 0 if x = x0 and 1 if x = x1.

Define vector vR ≡ (v1, v2, ..., vN), which lists the receiver’s payoffs by state. Then, the
receiver prefers x1 to x0 if and only if ⟨µ, vR⟩ ≥ θ and, therefore,

vA(µ) = uS(µ) =

{
1 if ⟨µ, vR⟩ ≥ θ, and
0 if ⟨µ, vR⟩ < θ.

We refer to the set of beliefs at which the receiver selects xi as Xi(⊂ ∆(Ω)) for i ∈ {0, 1}.
We also refer to states ω such that vω < θ as rejection states, states such that vω ≥ θ as
acceptance states, and to the largest rejection state as the rejection threshold, ωr.

Assumptions. To avoid trivialities, we assume that µ ∈ X0 and µ ∈ X1. In other words,
in the absence of additional information, the receiver selects x0 if she thinks that the agent
makes no effort and x1 if she thinks that the agent makes the maximal effort. For ease of
exposition, we make four additional assumptions on µ and µ.

19Alonso and Câmara (2016) consider a more general problem in which an action is chosen by a set of
voters according to a fixed voting rule. Although we restrict attention to the dictator model, our subsequent
analysis applies unchanged if the electorate can be represented by a representative voter. Alonso and Câmara
(2016) derive conditions under which such a representation is possible.
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Assumption 1 Monotone likelihood ratio property: µ(ω)/µ(ω) is increasing in ω.

This assumption ensures that higher states are more likely to be realized when the agent
exerts greater effort. Notice that, since both µ and µ are probability vectors, µ(ω)/µ(ω)
crosses 1 once from below. We refer to states such that µ(ω) > µ(ω) as bad-news states and
the other states as good-news states.

Assumption 2 Let ωe denote the largest ω such that µ(ω) > µ(ω). Then, ωe ≤ ωr.

This assumption implies that an increase in effort increases the probability of all acceptance
states (above ωr), and in the case of a strict inequality, also increases the probability of some
of the (higher) rejection states (between ωe and ωr).

Assumption 3

Eµ[vω|ω ̸= 1] =
⟨µ, vR⟩
1− µ(1)

≥ θ.

This assumption states that even with belief µ, if the worst state (state 1) is ruled out, then
the resulting belief vector induces x1. This assumption is not essential, but streamlines the
exposition considerably by reducing the number of equilibrium cases.

Assumption 4 ∑
ω>ωe

(µ(ω)− µ(ω)) < c′(1).

This is a technical assumption that corresponds to c′(1) > µ− µ in the binary-state model,
ensuring the interior optimality of the agent’s effort. The specific form is clarified shortly.

Binary signals. With binary actions, the number of induced posteriors (|supp(τ)|) does
not need to exceed |X| = 2. In particular, the set of posterior belief realizations can always
be partitioned into two subsets, those in X0 and those in X1. Replacing each subset with a
single realization at its center of mass does not change the sender’s expected payoff because
both X0 and X1 are convex. Furthermore, because both (BP) and (IC) are linear in µ, the
value attained by the constraints is also unaffected by the transformation. Thus, from now
on, we focus on binary distributions. Clearly, e > 0 can be induced only when each realization
induces a different action. In light of these observations, we fix the set of signal realizations
with Σ = {b, g} and let µ− and µ+ denote the posteriors corresponding to realizations b and
g, respectively. In addition, we take for granted that µ− ∈ X0 and µ+ ∈ X1.
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5.2 IMPLEMENTABLE EFFORTS

The following lemma is a counterpart to Proposition 4.1 for the binary-state model and fully
characterizes the set of implementable efforts in the binary-action model.

Proposition 5.1 In the binary-action model, e is implementable if and only if e ≤ e, where

(9)
∑
ω>ωe

(µ(ω)− µ(ω)) = c′(e).

Proof. See the appendix.
In the binary-action model, the agent’s incentive to exert effort stems from the possibility

that he can switch the receiver’s action from x0 to x1. Therefore, this incentive is strongest
when x1 is selected in all states that are more likely to be realized as the agent puts in
more effort (the good-news states, ω > ωe) and only in such states. A binary signal which
distinguishes between bad-news states and good-news states has this property: recall that,
due to Assumption 3, any posterior belief supported only on the good-news states induces
x1, while, due to Assumption 2, all bad-news states lead to x0. The left-hand side in equation
(9) is the agent’s marginal benefit of increasing e under this binary signal.

One intriguing implication of this result is that, in contrast to the binary-state model,
a fully informative signal does not necessarily induce the maximal effort e. The following
result provides a necessary and sufficient condition under which it does lead to e.

Corollary 5.2 In the binary-action model, a fully informative signal induces e if and only
if ωe = ωr.

Proof. The result is immediate from Proposition 5.1 and the following observation: if a
signal is fully informative then, by the definition of ωr and Assumption 1, the receiver selects
x1 if and only if ω > ωr.

If ωe < ωr, then an increase in effort increases not only the probability of all acceptance
states but also the probability of some rejection states (between ωe and ωr). When a signal is
fully informative, the former is beneficial to the agent, but the latter is not. This undermines
the agent’s incentive. If instead all states above ωe are pooled together, then the receiver
selects x1 for all states above ωe. Therefore, the agent benefits from increasing probabilities
of all states above ωe and has a stronger incentive to exert effort.

5.3 INCENTIVE-FREE EFFORT

In the binary-action model, the sender introduces dispersion in the distribution of posteriors
even absent moral hazard, as long as the prior η(e) belongs to the rejection region X0. Thus,
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a positive effort can be induced even if the sender ignores the IC constraint. We solve for
such an incentive-free effort level in two steps. We first consider a relaxed problem without
(IC) and with an exogenously given e ∈ [0, e]:

max
τ∈∆(∆(Ω))

Eτ [uS(µ)] subject to (BP ) Eτ [µ] = η(e).

We then find the effort level for which (IC) holds. The following proposition provides a
closed-form characterization for the incentive-free effort level.

Proposition 5.3 In the binary-action model, there exists a unique incentive-free effort level
e ∈ (0, e). Effort e is implemented by the following binary posterior distribution:

µ− = (1, 0, ..., 0), µ+ =
η(e)⊙ (1− r, 1, ..., 1)

⟨η(e), (1− r, 1, ..., 1)⟩
, and τ(µ+) = 1− η(1|e)r,

where
r ≡ θ − ⟨µ(e), vR⟩

θη(1|e)
∈ (0, 1).

The incentive free effort level satisfies (µ(1)− µ(1))r = c′(e).

Proof. See the online appendix.
To understand this result, consider the following class of binary signals, which reveal

state 1 with probability r ∈ [0, 1] but provide no further information:

(10) π(g|ω) =

{
1− r if ω = 1, and
1 if ω > 1.

Clearly, realization b reveals state 1, while realization g generates Bayesian update

µ+ =
η(e)⊙ (1− r, 1, ..., 1)

⟨η(e), (1− r, 1, ..., 1)⟩
=

1

1− rη(1|e)
((1− r)η(1|e), η(2|e), ..., η(n|e)) .

In addition, the signal generates realization b with probability τ(µ−) = η(1|e)r and realiza-
tion g with probability τ(µ+) = 1 − η(1|e)r. The optimality of this class of binary signals
(in the absence of moral hazard) stems from Assumption 3: since ruling out state 1 with
probability 1 moves the receiver’s belief into the interior of the acceptance region X1, it
suffices to reveal state 1 with a positive probability to induce x1.

Within this class, the optimal signal is determined by the sender’s incentive for informa-
tion provision. On one hand, realization b leads to rejection. Therefore, the sender wants
to minimize r. On the other hand, if r is too small, then the receiver does not become
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sufficiently optimistic and will not choose x1 following realization g. Thus, the sender would
like to reveal state 1 just often enough that the receiver is indifferent between x0 and x1:

⟨µ+, vR⟩ =
1

1− η(1|e)r
⟨η(e)⊙ (1− r, 1, ..., 1), vR⟩ = θ.

This condition allows us to identify the optimal value of r (using the fact that, since v1 = 0,
⟨η(e)⊙ (1− r, 1, ..., 1), vR⟩ = ⟨η(e), vR⟩):

(11) r =
θ − ⟨η(e), vR⟩

θη(1|e)
.

The above discussion suggests that given e, the binary signal of the form in equation
(10) with r in equation (11) is optimal in the absence of (IC). For an incentive-free effort, e,
this optimal signal also satisfies (IC). Therefore, e is (uniquely) determined by the following
equation:

τ(µ+)Eµ+

[
ηe(ω|e)
η(ω|e)

]
= c′(e) ⇒ ⟨µ− µ, (1− r, 1, ..., 1)}⟩ = (µ(1)− µ(1))r = c′(e).

Example with three states. Figure 5 provides a graphical illustration of Proposition 5.3
for the case of three states, where beliefs can be represented by a 2-dimensional simplex,20

effort increases the probabilities of states 2 and 3, but only state 3 is an acceptance state
(i.e., ωe = 1 and ωr = 2). The shaded blue region represents the acceptance region X1 ≡
{µ : ⟨µ, vR⟩ ≥ θ}. State distributions µ and µ are represented by the hollow red dots, and
increased effort moves the prior η(e) = (1− e)µ+ eµ along the red line segment.

In order to find an incentive-free effort, fix an effort level e. In the solution of the relaxed
problem, we seek a hyperplane, λ0 + ⟨λ1, µ⟩, that supports the sender’s objective function
inside ∆(Ω). Since vS(µ) = 1 if µ ∈ X1 (the blue shaded region), while vS(µ) = 0 if µ ∈ X0,
such a hyperplane must touch the sender’s objective at two locations: (1, 0, 0), which is the
farthest point from η(e) among all vectors in X0, and the lower boundary of X1 (defined by
⟨µ, vR⟩ = θ), which are closest to η(e) among all vectors in X1, as illustrated in the right
panel.21 In other words, λ0 + ⟨λ1, (1, 0, 0)⟩ = 0, and λ0 + ⟨λ1, µ⟩ = 1 whenever ⟨µ, vR⟩ = θ.
It follows that λ0 = 0 and λ1 = (1/θ)vR. Jointly imposing the binary-signal restriction
and (BP), we find that that µ− = (1, 0, 0), and µ+ is the unique point that intersects the
boundary of X1 and the extended line that connects (1, 0, 0) and η(e).

The search for an incentive-free effort level amounts to varying e continuously from 0 to
20We adopt a canonical interpretation of the 2-dimensional simplex, as in Mas-Colell et al. (1995), p. 169.
21Notice that this is effectively identical to concavifying the graph {(µ, vS(µ)) : µ ∈ ∆(Ω)}, which gives

rise to the same hyperplane over the shaded red part of X0 and the flat (constant) hyperplane over X1.
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Figure 5: Illustration of Proposition 5.3.

e (which varies η(e) along the red line segment) and finding e such that the optimal signal
associated with η(e) also satisfies (IC). Such a point exists: at µ, the agent has an incentive
to exert positive effort, because the marginal cost is 0 when e = 0 (i.e., c′(0) = 0), while
effort linearly increases the probability of µ+. At η(e), the signal characterized above does
not provide the right incentive for the agent to exert effort e: recall that the agent chooses
e only when action x1 is taken if and only if ω > ωe (see Proposition 5.1) but, because µ+ is
on the boundary of X1, action x1 is selected with a positive probability even when ω = 1.

5.4 OPTIMAL SIGNAL

We now study optimal information design for e ∈ (e, e). In order to facilitate the analysis,
as well as simplify the notation, we partition the set [e, e] as follows: for each k ≤ ωe, let ek
be the unique value that satisfies

(12)
∑
ω>k

(µ(ω)− µ(ω)) = c′(ek).

Notice that the left-hand side is the marginal benefit of effort under a signal that separates
between states weakly below k and those above k. Therefore, ek is the effort level induced by
such a signal. Proposition 5.3 implies that e < e1 (because the optimal signal for e reveals
state 1 with probability less than 1), while Proposition 5.1 implies that e = eωe . In addition,
Assumptions 1 and 2 ensure that the left-hand side increases in k as long as k ≤ ωe and,
therefore, ek < ek+1 for any k = 1, ..., ωe − 1. For notational convenience, we define e0 ≡ e.

The following proposition provides a closed-form characterization for the optimal signal
that corresponds to each e ∈ (e, e].
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Proposition 5.4 In the binary-action model, for k = 1, ..., ωe, effort e ∈ (ek−1, ek] is opti-
mally implemented by the following binary distribution of posteriors:

µ− =
η(e)⊙ ρ−

⟨η(e), ρ−⟩
, µ+ =

η(e)⊙ ρ+

⟨η(e), ρ+⟩
, and τ(µ+, e) = ⟨η(e), ρ+⟩,

where ρ+ = (1, ..., 1)− ρ− ∈ Rn+1 and

ρ−(ω) =


1 for 1 ≤ ω ≤ k − 1,
c′(e)−c′(ek−1)

µ(k)−µ(k)
for ω = k, and

0 for k + 1 ≤ ω ≤ n.

Proof. See the online appendix.
The optimal signal varies continuously and systematically, revealing more bad-news

states, as e increases from e(= e0) to e(= eωe). In addition, from ek−1 to ek, the probability
of revealing state k (i.e., inducing µ−, so that the receiver selects x0) continuously increases
from 0 to 1: notice that c′(e)− c′(ek−1) increases from 0 to c′(ek)− c′(ek−1) = µ(k)− µ(k).
This is due to the underlying Bayesian persuasion problem: as shown in the analysis for the
incentive-free effort, it is optimal for the sender to reveal only the lowest states. On the
other hand, moral hazard forces the sender to reveal state 1 with a higher probability and, if
e > e1, some other low states as well. This is a distortion from a pure information-provision
perspective, but necessary to generate an incentive for the agent to exert more effort than e.

The receiver benefits from the distortion: in the absence of moral hazard, the receiver
strictly prefers x0 to x1 following realization b and is indifferent between x0 and x1 following
realization g (i.e., ⟨µ+, vR⟩ = θ) and, therefore, the receiver derives no benefit from com-
munication. With moral hazard, the receiver’s belief following realization g is such that
⟨µ+, vR⟩ > θ and, therefore, he strictly prefers x1 to x0.

Example with three states. Consider the same three-state example as in Section 5.3,
in which ωe = 1 and, therefore, e = e1. To implement e ∈ (e, e), it is necessary to introduce
more dispersion into the distribution of posteriors. However, µ− = (1, 0, 0) is already an
extremal point and, therefore, µ+ must move further apart along the extended line that
crosses (1, 0, 0) and η(e). By implication, the sender must reveal state 1 with a higher
probability, moving µ+ into the interior of X1, as depicted in the left panel of Figure 6.

To see how our general characterization (Proposition 3.2) applies to this problem, recall
that we are seeking a hyperplane λ0 + ⟨λ1, µ⟩ that supports L(µ, ψ) inside ∆(Ω). Since
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Figure 6: Illustration of Proposition 5.4.

vA(µ) = 0 if µ ∈ X0, vA(µ) = 1 if µ ∈ X1, and Eµ[ηe(ω|e)/η(ω|e)] = ⟨ηe(e)⊘ η(e), µ⟩,

h(µ) =

{
−c′(e) if µ ∈ X0, and
⟨µ, ηe(e)⊘ η(e)⟩ − c′(e), if µ ∈ X1.

Combining this with the same discrete structure for vS(µ) yields

L(µ, ψ) =

{
−ψc′(e) if µ ∈ X0, and
1 + ψ (⟨µ, ηe(e)⊘ η(e)⟩ − c′(e)) , if µ ∈ X1.

Notice that L is linear in µ ∈ X1, and therefore, it defines a hyperplane over X1. Thus,
there are three possibilities for our supporting hyperplane λ0 + ⟨λ1, µ⟩, depending on ψ:22

(i) λ0 + ⟨λ1, µ⟩ meets the lower boundary of X1 (i.e., {µ ∈ X1 : ⟨µ, vR⟩ = θ}).

(ii) λ0 + ⟨λ1, µ⟩ meets the upper boundary of X1 (i.e., {µ ∈ X1 : µ(1) = 0}).

(iii) λ0 + ⟨λ1, µ⟩ coincides with L over X1.

In the first case, µ+ belongs to the lower boundary of X1. As explained in Section 5.3, this
does not provide a sufficient incentive for the agent to choose e > e. To the contrary, in
the second case, µ+ belongs to the upper boundary of X1, which induces e, as discussed in
Section 5.2. Therefore, (iii) is the relevant case for e ∈ (e, e). In other words, at the optimal

22If ψ is sufficiently small, then L increases slowly over X1 and, therefore, the supporting hyperplane
touches L at (1, 0, 0) and the lower boundary of X1, just as in the case for the incentive-free effort. If ψ is
sufficiently large, then L increases fast over X1, in which case the supporting hyperplane stays strictly above
L at any interior value of µ. If ψ is just right, then the last case arises.
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solution, ψ is such that the supporting hyperplane λ0+ ⟨λ1, µ⟩ exactly coincides with L over
X1, as depicted in the right panel of Figure 6. This observation allows us to fully determine
the optimal values of λ0, λ1, and ψ. The optimal value of µ+ can also be found from the two
equality constraints: Eτ [µ] = η(e) and Eτ [h(µ)] = 0.

6 CONCLUSION

In this paper, we study Bayesian persuasion when the prior about the underlying state is
generated by an agent’s unobservable effort. Thus, the sender is concerned with both in-
formation provision and incentive provision in her information design. We show that the
sender’s problem can be analyzed by extending the concavification technique in Aumann and
Maschler (1995) and KG and provide a useful necessary and sufficient condition for an opti-
mal signal (Section 3). We apply the general characterization to two tractable environments,
one with binary states (Section 4) and the other with binary receiver actions (Section 5), and
derive a number of concrete and economic implications. We also show that transparency,
which allows the receiver to observe the agent’s effort, may reduce the informativeness of
the equilibrium signal and harm the receiver.

Our framework can be used to provide insights into a variety of economic problems. For
example, both information and incentive provision are relevant when a credit ratings agency
interacts with security issuers and investors, or when a retailer deals with both producers
and consumers. Furthermore, our main technique can be applied to Bayesian persuasion
problems with other kinds of frictions, provided that the relevant conditions can be written
as expectations with respect to the distribution of posterior beliefs.

APPENDIX: OMITTED PROOFS

Continuation of Proof of Proposition 3.2. For the result on the cardinality of the
support of τ e, we present a slightly different but equivalent construction. Note that the
dimension of (BP) can be reduced by 1. In particular, since µ, η(e) ∈ ∆(Ω), if (BP) is
satisfied for any N − 1 components, then it is also satisfied for the remaining component.
Therefore, consider the following curve in RN+1:

Ke ≡ {(µ(2), ..., µ(N), h(µ), vS(µ)) : µ ∈ ∆(Ω)},

and let co(Ke) denote its convex hull. As in the text, y ∈ co(Ke) if and only if there exists
a distribution of posteriors τ such that y = (Eτ [µ(2)], ..., Eτ [µ(N)], Eτ [h(µ)], Eτ [vS(µ)]).
V e = maxv{v : (η(2|e), ..., η(N |e), 0, v) ∈ co(Ke)}. Because the graphs of h(·|e) and vS(·)
are closed, Ke is closed, and hence, co(Ke) is closed. Thus, (η(2|e), ..., η(N |e), 0, V e) is on
the boundary of co(Ke). By Caratheodry’s thoerm, any vector that belongs to the boundary
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of the convex hull of a set Y in RN+1 can be written as a convex combination of no more
than N + 1 elements of Y . Hence, (η(2|e), ..., η(N |e), 0, V e) can be made of at most N + 1
elements in Ke.
Continuation of Proof of Proposition 3.3. Necessity. Given the partial proof in the
main text, it suffices to show that L(µ, ψ) = λ0+⟨λ1, µ⟩ for all µ such that τ e(µ) > 0. Suppose
that L(µ, ψ) < λ0 + ⟨λ1, µ⟩ for some µ such that τ e(µ) > 0. Because L(µ, ψ) ≤ λ0 + ⟨λ1, µ⟩
for all µ ∈ ∆(Ω), it follows that Eτe [L(µ, ψ)] < λ0 + ⟨λ1, η(e)⟩. Using (IC) on the left hand
side, V e < λ0 + ⟨λ1, η(e)⟩. Rearranging the terms, ⟨d, (η(e), 0, V e)⟩ < λ0, which contradicts
⟨d, (η(e), 0, V e)⟩ = λ0.

Sufficiency. If vS(µ) + ψh(µ) ≤ λ0 + ⟨λ1, µ⟩ for all µ ∈ ∆(Ω), then for any τ ,

Eτ [vS(µ)] + ψEτ [h(µ)] ≤ λ0 + Eτ [⟨λ1, µ⟩].

If τ satisfies both (BP) and (IC), then Eτ [vS(µ)] ≤ λ0 + ⟨λ1, η(e)⟩. If τ e is such that
L(µ, ψ) = λ0 + ⟨λ1, µ⟩ for any τ e(µ) > 0, then Eτe [vS(µ)] = λ0 + ⟨λ1, η(e)⟩, that is, τ e
achieves the upper bound of the sender’s expected utility. Thus, it is optimal.
Proof of Proposition 4.1. We first show that e is the upper bound to the set of
implementable effort levels. Under any signal π, the agent chooses e to maximize

((1− e)(1− µ) + e(1− µ))E[vA(µ)|ω = 1] + ((1− e)µ+ eµ)E[vA(µ)|ω = 2]− c(e).

Since the first two terms are linear, while c(e) is strictly convex, in e, the optimal effort level
is determined by

(µ− µ)(E[vA(µ)|ω = 2]− E[vA(µ)|ω = 1]) = (µ− µ)
∑
s

(π(s|2)− π(s|1))vA(µs) = c′(e).

Since vA is weakly increasing,

(µ− µ)

(∑
s

π(s|2)vA(µs)−
∑
s

π(s|1)vA(µs)

)
≤ (µ− µ)((vA(2)− vA(1)) = µ− µ.

These imply that e such that c′(e) > µ−µ, which is equivalent to e > e, is not implementable.
Fix e ∈ [0, e], and consider the following distribution of posteriors, which can be inter-

preted as a convex combination of a fully informative signal and a fully noisy signal:

τ(0) = (1− η(e))
c′(e)

µ− µ
, τ(η(e)) = 1− c′(e)

µ− µ
, τ(1) = η(e)

c′(e)

µ− µ
.

This distribution is well-defined, because η(e) ∈ [µ, µ] and c′(e) ≤ c′(e) < µ−µ. It is easy to
verify that this distribution satisfies both (BP) and (IC) and, therefore, e is implementable.

Finally, we show that a fully informative signal is a necessary condition for implementing
e. If vA(2) − vA(1) = 1, then vA(2) = 1 and vA(1) = 0, which can be satisfied only when
v(µs) = 1 for any s such that π(s|2) > 0 and v(µs) = 0 for any s such that π(s|1) > 0. Thus,
the posterior belief distribution is supported on {0, 1}, and hence, it is fully informative.
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Proof of Corollary 4.2. The first (convex) result is immediate from the fact that e = e
if vS is convex. For the second (concave) result, first notice that if vS is concave then
e = 0, which implies that the sender’s expected utility is equal to vS(µ) if she adopts a fully
uninformative signal. Consider an alternative signal that induces either µ or 1. Under the
assumption that vA(µ) < vA(1), the agent chooses a strictly positive effort level. Under this
signal, the sender’s expected payoff is

Eτ [vS(µ)] = τ(µ)vS(µ) + τ(1)vS(1) > vS(µ),

because η(e) > µ only when τ(1) > 0.
Proof of Proposition 4.3. The result that V e ≥ V e for any e ≤ e is immediate from the
fact that V̂ e is increasing in e (due to monotone vS(µ)), V e ≤ V̂ e for any e, and V e = V̂ e.

We now prove that at the optimal solution, ψ > 0 whenever e > e. For e ∈ (e, e), let
τ̂(µ, e) denote the solution to the sender’s relaxed problem and V̂ (e) denote the corresponding
seller payoff. Applying Proposition 3.3 to the relaxed problem (without (IC) and with ψ = 0),
there exist λ̂0 and λ̂1 such that

(13) vS(µ) ≤ λ̂0 + λ̂1µ for all µ ∈ [0, 1], with equality if τ̂(µ, e) > 0.

For later use, define H(e) ≡ Eτ̂ [h(µ)]. Similarly, let τ(µ, e) denote the solution to the
sender’s original (unrelaxed) problem and apply Proposition 3.3. Then, there exist λ0, λ1,
and ψ such that

(14) vS(µ) + ψh(µ) ≤ λ0 + λ1µ for all µ ∈ [0, 1], with equality if τ̂(µ, e) > 0.

Note that, whereas τ̂(µ, e) satisfies only (BP), τ(µ, e) satisfies both (BP) and (IC).

Step 1. We show that if H(e) ≡ Eτ̂ [h(µ)] < 0 then ψ > 0. Taking the expectation of
equation (14) with respect to τ (not τ̂), we get

Eτ [vS(µ)] + ψEτ [h(µ)] = λ0 + λ1Eτ [µ] = λ0 + λ1e,

where the last equality is due to (BP). Doing the same with equation (13), we get

Eτ [vS(µ)] ≤ λ̂0 + λ̂1Eτ [µ] = λ̂0 + λ̂1e.

Combining these two equations, we find that

(15) λ0 + λ1e ≤ λ̂0 + λ̂1e.

Now taking the expectations of equations (13)) and (14) with respect to τ̂ , we have

Eτ̂ [vS(µ)] = λ̂0 + λ̂1Eτ̂ [µ] = λ̂0 + λ̂1e and
Eτ̂ [uS(µ)] + ψEτ̂ [h(µ)] ≤ λ0 + λ1Eτ [µ] = λ0 + λ1e.
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Combining these two conditions, we get

(16) λ̂0 + λ̂1e+ ψH(e) ≤ λ0 + λ1e.

Subtracting (15) from (16),

λ̂0 + λ̂1e+ ψH(e)− (λ̂0 + λ̂1e) ≤ λ0 + λ1e− (λ0 + λ1e) ⇒ ψH(e) ≤ 0,

which implies that if H(e) < 0 then ψ ≥ 0. Strict inequality follows from the fact that if
ψ = 0 then τ = τ̂ and, therefore, V̂ (e) = V (e), which contradicts e > e.

Step 2. We now show that if e ∈ (e, e) then H(e) < 0. Suppose H(e) ≡ Eτ̂ [h(µ)] > 0.
Case 1: Suppose that there exists another solution τ̂ ′(µ) such that Eτ̂ ′ [h(µ)] < 0. Because

(BP) is convex, for any w ∈ [0, 1] the posterior distribution τw(µ) = wτ̂(µ, e)+(1−w)τ̂ ′(µ, e)
is feasible. Furthermore, Eτw [vS(µ)] = wEτ̂ [vS(µ)] + (1 − w)Eτ̂ ′ [vS(µ)] = V̂ e. This means
thatτw(e) is also optimal in the relaxed problem. Next, note that Eτw [h(µ)] = wEτ̂ [h(µ)] +
(1− w)Eτ̂ ′ [h(µ)], and hence, there exists some w∗ ∈ (0, 1) such that Eτw [h(µ)] = 0, that is,
(IC) is satisfied. This implies that τw is an optimal solution to the sender’s original problem,
which can be the case only when e ≤ e.

Case 2: Suppose that for all solution(s) of the relaxed problem, H(e) > 0. Note that
that any solution to the relaxed problem must induce at least two posteriors: if a signal
is degenerate, then it must put all mass on µ = e and, therefore, H(e) = −c′(e) < 0. In
addition, there must exist µL < e < µH such that τ̂(µL, e) > 0 and τ̂(µH , e) > 0: otherwise,
(BP) cannot hold. Now, applying Proposition 3.3 to the relaxed problem, we have

(17) λ̂0 + λ̂1µ ≥ vS(µ), with equality if µ = µL, µH .

Now for each ẽ ∈ [e, µH ], consider the following distribution, which clearly satisfies (BP):

τ̃(µH) =
ẽ− µL

µH − µL

and τ̃(µL) =
µH − ẽ

µH − µL

.

Since (17) applies regardless of ẽ, t̃ is an optimal solution to the sender’s relaxed problem.
Next, observe that

H(ẽ) =
1

ẽ(1− ẽ)

( µH − ẽ

µH − µL

(µL − ẽ)vA(µL) +
ẽ− µL

µH − µL

(µH − ẽ)vA(µH)
)
− c′(ẽ).

By assumption, with any solution to the relaxed problem, H(e) > 0. To the contrary, it is
clear from direct substitutions that if ẽ = µH then H(ẽ) < 0. Since H(ẽ) is a continuous
function, there must exist e∗ ∈ (e, µH) such that the solution to the relaxed problem satisfies
(IC), that is, τ is a solution to the sender’s original problem. This implies that V (e∗) = V̂ (e∗),
which contradicts e∗ > e > e.
Proof of Proposition 5.1. Since ηe(e) = µ − µ and the agent’s payoff depends only on
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whether the receiver selects x1 or not, the agent’s first-order condition (3) can be written as

(18) ⟨µ− µ, Pr{x1|·}⟩ − c′(e) = 0,

where Pr{x1|·} denotes the probabilities that action x1 is selected depending on the state.
By Assumptions 1 and 2, the first term in (18) is bounded from above by

⟨µ− µ, Pr{x1|·}⟩ ≤
∑
i>ωe

(µ(ω)− µ(ω)).

Since c′(e) is strictly increasing, equation (18) cannot hold for any e > e. Notice also that
Assumption 4 ensures that e < 1.

We now show that e can be induced by the following binary signal:

π(g|ω) = 1− π(b|ω) =
{

0 if ω ≤ ωe, and
1 if ω > ωe.

This signal distinguishes between bad-news states (that become less likely as e increases) and
good-news states (that become more likely as e increases) and correctly reports which subset
contains the true state. By construction, this signal attains the upper bound of the marginal
benefit of effort above and, therefore, induces e as long as the receiver selects x0 following
realization b and x1 following realization g. The former (x0 after realization b) follows from
the fact that realization b reveals that ω ≤ ωe ≤ ωr (i.e., the true state is a rejection state
for sure), while the latter (x1 after realization g) is due to Assumptions 1 and 3: even when
the prior is µ, the receiver is willing to take x1 as soon as state 1 is excluded, but realization
g rules out weakly more rejection states from 1 to ωe (without ruling out any acceptance
states). In addition, an increase in e makes higher states to be realized with higher states,
which further strengthens the receiver’s incentive to select x1. As in the binary-state model,
a convex combination of this signal and one which reveals no information implements any
effort below e.
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Online Appendix
Proof of Proposition 5.3. We prove the result in three steps. First, we define a useful
function r(e), which determines the probability of revealing state 1, and establish its basic
properties. Second, we show that a specific signal is a unique binary solution to the relaxed
problem without (IC). Finally, we show that there exists a unique incentive-effort level e.

Step 1. Let ẽ ∈ [0, e] be the maximal value such that ⟨η(ẽ), vR⟩ ≤ θ. Then, let

r(e) ≡ θ − ⟨η(e), vR⟩
θη(1|e)

for each e ∈ [0, ẽ].

We show that r(e) ∈ [0, 1] for all e ≤ e. r(e) ≥ 0 follows from the fact that ⟨η(e), vR⟩ ≤
⟨η(ẽ), vR⟩ ≤ θ. To show r(e) ≤ 1, note that

θ − ⟨η(e), vR⟩
θη(1|e)

≤ 1 ⇐⇒ θ − θη(1|e) ≤ ⟨η(e), vR⟩

⇐⇒ θ(1− η(1|e)) = θ⟨η(e), (0, 1, ..., 1)⟩ ≤ ⟨η(e), vR⟩

⇐⇒ ⟨η(e), vR⟩
η(1|e)

=
⟨η(e), vR⟩

⟨η(e), (0, 1, ..., 1)⟩
≥ θ.

For the inequality, recall the maintained assumption that ⟨µ, vR⟩ > θ and Assumption 3:

⟨µ, vR⟩
1− µ(1)

=
⟨µ, vR⟩

⟨µ, (0, 1, ..., 1)⟩
≥ θ

Combining these with the facts that η(e) = (1−e)µ+eµ and 1 = ⟨µ, (1, ..., 1)⟩ ≥ ⟨µ, (0, 1, ..., 1)⟩,
the desired result is obtained as follows:

⟨η(e), vR⟩ = ⟨(1− e)µ+ eµ, vR⟩ = (1− e)⟨µ, vR⟩+ e⟨µ, vR⟩
≥ (1− e)θ⟨µ, (0, 1, ..., 1)⟩+ eθ⟨µ, (1, 1, ..., 1)⟩
≥ (1− e)θ⟨µ, (0, 1, ..., 1)⟩+ eθ⟨µ, (0, 1, ..., 1)⟩
= θ⟨(1− e)µ+ eµ, (0, 1, ..., 1)⟩ = θ⟨η(e), (0, 1, ..., 1)⟩.

Step 2. We show that for any e ∈ [0, ẽ), the binary solution of the relaxed problem is

µ− = (1, 0, ..., 0), µ+(e) =
η(e)⊙ (1− r(e), 1, ..., 1)

⟨η(e), (1− r(e), 1, ..., 1)⟩
, and τ(µ+(e), e) = 1− η(1|e)r(e).

We first show that this signal satisfies (BP). Since τ(µ+(e), e) = ⟨η(e), (1− r(e), 1, ..., 1)⟩,

τ(µ+(e), e)µ+(e) + (1− τ(µ+(e), e))µ−

= η(e)⊙ (1− r(e), 1, ..., 1) + η(1|e)r(e)(1, 0, ..., 0)
= η(e)⊙ (1− r(e), 1, ..., 1) + η(e)⊙ (r(e), 1, ..., 1)

= ⟨η(e), (1, ..., 1)⟩ = η(e).
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To verify the optimality of the signal, we apply a necessary and sufficient condition in
Proposition 3.3 with ψ = 0. In other words, we show that there exists a hyperplane that
supports vS(µ) inside ∆(Ω). Let λ0 = 0 and λ1 = 1/θ · vR, so that

λ0 + ⟨λ1, µ⟩ = λ0 + ⟨1
θ
vR, µ⟩ =

1

θ
⟨µ, vR⟩.

For µ ∈ X0, vS(µ) = 0, and therefore vS(µ) ≤ λ0+⟨λ1, µ⟩ = 1
θ
⟨vR, µ⟩, with equality holding if

and only if µ = µ− = (1, 0, ..., 0). For µ ∈ X1, vS(µ) = 1, while λ0+⟨λ1, µ⟩ = 1/θ ·⟨vR, µ⟩ ≥ 1
with equality holding if and only if ⟨µ, vR⟩ = θ. It suffices to show that µ+(e) belongs to the
point where uS(µ) = λ0 + ⟨λ1, µ⟩. This follows from

⟨µ+(e), vR⟩ = ⟨η(e)⊙ (1− r(e), 1, ..., 1)

⟨η(e), (1− r(e), 1, ..., 1)⟩
, vR⟩

=
⟨η(e), vR⟩

1− η(1|e)r(e)
=

⟨η(e), vR⟩
1− θ−⟨η(e),vR⟩

θ

=
θ⟨η(e), vR⟩
⟨η(e), vR⟩

= θ.

Note that we use the fact that, since vR(0) = 0, ⟨η(e), (1−r(e), 1, ..., 1)⟩ = η(e) in the second
inequality and apply the definition of r(e), given in Step 1, in the third equality.

Step 3. We now prove that there exists a unique value of e ∈ (0, e) such that the optimal
binary distribution defined above satisfies (IC). Note that for the optimal binary signal,

Eτ [h(µ)] = τ(µ+(e), e)⟨µ+(e), (µ− µ)⊘ η(e)⟩ − c′(e)

= ⟨τ(µ+(e), e)µ+(e), (µ− µ)⊘ η(e)⟩ − c′(e)

= ⟨η(e)⊙ (1− r(e), 1, ..., 1), (µ− µ)⊘ η(e)⟩ − c′(e)

= ⟨(1− r(e), ..., 1), µ− µ⟩ − c′(e) = r(e)(µ(1)− µ(1))− c′(e),

where the last equality is due to ⟨(1, ..., 1), µ− µ⟩ = 0. Eτ [h(µ)] is positive if e = 0 (because
r(0) > 0 while c′(0) = 0) and negative if e = ẽ (because if ẽ < e then r(ẽ) = 0, while if ẽ = e
then r(ẽ)(µ(1) − µ(1)) <

∑
ω>ωe

(µ(ω) − µ(ω)) = c′(e)). Since Eτ [h(µ)] is continuous in e,
there exists e such that Eτ [h(µ)] = 0, that is, (IC) holds. For uniqueness, notice that c′(e)
increases in e. Therefore, it is sufficient that r(e) decreases in e, which we establish below.

Observe that

r′(e) =
−⟨µ− µ, vR⟩θη(1|e)− (θ − ⟨η(e), vR⟩) θ(µ(1)− µ(1))

(θη(1|e))2
≤ 0

⇐⇒
⟨µ− µ, vR⟩
µ(1)− µ(1)

≥ θ − ⟨η(e), vR⟩
η(1|e)

.

We prove this inequality by establishing the following two inequalities:

⟨µ− µ, vR⟩
µ(1)− µ(1)

≥ θ and θ ≥ θ − ⟨η(e), vR⟩
η(1|e)

.
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The second inequality is straightforward from the fact that r(e) ≤ 1 (see Step 1):

θ − θ − ⟨η(e), vR⟩
η(1|e)

= θ − θr(e) = θ(1− r(e)) ≥ 0.

In order to establish the first inequality, notice that it can rewritten as

⟨µ− µ, vR⟩ = ⟨µ− µ, (0, v1, ..., vn)⟩ ≥ θ(µ(1)− µ(1)) = θ⟨µ− µ, (0, 1, ..., 1)⟩,

which is equivalent to

⟨µ− µ, (0, v1 − θ, ..., vn − θ)⟩ =
∑
ω≥1

(µ(ω)− µ(ω))(vω − θ) ≥ 0.

The expression can be decomposed into three pieces as follows:
ωe∑
ω=1

(µ(ω)− µ(ω))(vω − θ) +
ωr∑

ω=ωe+1

(µ(ω)− µ(ω))(vω − θ) +
n∑

ω=ωr+1

(µ(ω)− µ(ω))(vω − θ) ≥ 0.

Recall that µ(ω) − µ(ω) < 0 if and only if ω ≤ ωe, while vω < θ if and only if ω ≤ ωr.
Therefore, the first and the third terms are positive, while the second term is negative. We
show that the sum of the second and the third terms is positive.

If ωr = ωe, then the second term is vacuous and, therefore, the result is straightforward.
For the case where ωe < ωr, note that, by Assumption 1 (MLRP), 1− µ(ω)/µ(ω) increases
in ω. Combining this with the fact that vω − θ < 0 if and only if ω ≤ ωr,

ωr∑
ω=ωe+1

(µ(ω)− µ(ω))(vω − θ) +
n∑

ω=ωr+1

(µ(ω)− µ(ω))(vω − θ)

=
ωr∑

ω=ωe+1

(
1−

µ(ω)

µ(ω)

)
(vω − θ)µ(ω) +

n∑
ω=ωr+1

(
1−

µ(ω)

µ(ω)

)
(vω − θ)µ(ω)

≥
ωr∑

ω=ωe+1

(
1−

µ(ωr + 1)

µ(ωr + 1)

)
(vω − θ)µ(ω) +

n∑
ω=ωr+1

(
1−

µ(ωr + 1)

µ(ωr + 1)

)
(vω − θ)µ(ω)

=

(
1−

µ(ωr + 1)

µ(ωr + 1)

) n∑
ω=ωe+1

(vω − θ)µ(ω)

≥
(
1−

µ(ωr + 1)

µ(ωr + 1)

) n∑
ω=0

(vω − θ)µ(ω) =

(
1−

µ(ωr + 1)

µ(ωr + 1)

)
⟨vR − θ, µ⟩ > 0,

where the second last inequality is because vω ≤ θ when ω ≤ ωe.

Proof of Proposition 5.4. We prove the result in three steps. First, we show that
the proposed distribution of posteriors satisfies the two constraints. Second, we specify the
multiplier ψ, explicitly construct a hyperplane λ0 + ⟨λ1, µ⟩, and show that the hyperplane
is above the Lagrangian function everywhere (i.e., λ0 + ⟨λ1, µ⟩ ≥ L(µ, ψ) for all µ ∈ ∆(Ω).
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Third, we show that the hyperplane meets the Lagrangian function at the support of the
distribution τ , that is, λ0 + ⟨λ1, µ⟩ = L(µ, ψ) if µ = µ− or µ = µ+. The last two steps
establish the optimality of the proposed binary signal via Proposition 5.4.

Step 1. We first show that the proposed distribution satisfies (BP) and (IC). For (BP),

Eτ [µ] = τ(µ+, e)µ+ + τ(µ−, e)µ− = η(e)⊙ ρ+ + η(e)⊙ ρ− = η(e)⊙ (ρ+ + ρ−) = η(e).

To verify (IC),

Eτ [h(µ)] =τ(µ
+, e)⟨µ+, (µ− µ)⊘ η(e)⟩ − c′(e)

=⟨η(e)⊙ ρ+, (µ− µ)⊘ η(e)⟩ − c′(e)

=ρ+ ⊙ (µ− µ)− c′(e)

=
∑
ω≥k

(µ(i)− µ(i))− c′(e)− c′(ek−1)

µ(k)− µ(k)
(µ(k)− µ(k))− c′(e)

=
∑

ω>k−1

(µ(i)− µ(i))− c′(ek−1) = 0.

The last equality is due to the definition of ek−1 (see equation (12)).

Step 2. We now verify the optimality of the proposed solution by constructing a supporting
hyperplane that meets L(µ, ψ) at µ− and µ+. Let

ψ = − f(k|e)
µ(k)− µ(k)

, λ0 = 1− ψc′(e), and λ1(ω) =

{
−1 if ω ≤ k,

ψ
µ(ω)−µ(ω)

f(ω|e) if ω ≥ k + 1.

Note that µ(k) − µ(k) < 0 (because k ≤ ωe) and, therefore, ψ > 0. In addition, with this
specification,

λ0 + ⟨λ1, µ⟩ = 1− ψc′(e)−
k∑

ω=0

µ(ω) +
n∑

ω=k+1

ψ
µ(ω)− µ(ω)

f(ω|e)
µ(ω)

= 1− ψc′(e)−

(
1−

n∑
ω=k+1

µ(ω)

)
+

n∑
ω=k+1

ψ
µ(ω)− µ(ω)

f(ω|e)
µ(ω)

=
n∑

ω=k+1

(
1 + ψ

µ(ω)− µ(ω)

f(ω|e)

)
µ(ω)− ψc′(e).

The following fact is useful in what follows.

Lemma 6.1 For any k ≤ ωe,

1 + ψ
µ(ω)− µ(ω)

f(ω|e)
= 1− f(k|e)

µ(k)− µ(k)

µ(ω)− µ(ω)

f(ω|e)

{
< 0 if ω < k
> 0 if ω > k.
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Proof. Since µ(k)− µ(k) < 0,

1− f(k|e)
µ(k)− µ(k)

µ(ω)− µ(ω)

f(ω|e)
< 0 ⇐⇒

µ(k)− µ(k)

f(k|e)
−
µ(ω)− µ(ω)

f(ω|e)
> 0.

Arranging the terms with the fact that f(ω|e) = (1− e)µ(ω) + eµ(ω),

µ(k)− µ(k)

f(k|e)
−
µ(ω)− µ(ω)

f(ω|e)
=

µ(ω)µ(k)

f(k|e)f(ω|e)

(
µ(ω)

µ(ω)
−
µ(k)

µ(k)

)
.

The desired result follows from the fact that, by Assumption 1 (MLRP), this expression is
positive if ω < k and negative if ω > k.

We first establish that λ0 + ⟨λ1, µ⟩ ≥ L(µ, ψ) for all µ ∈ ∆(Ω). Consider µ ∈ X0. For
such µ, L(µ, ψ) = −ψc′(e). Therefore,

λ0 + ⟨λ1, µ⟩ − L(µ, ψ) =
n∑

ω=k+1

(
1− ψ

µ(ω)− µ(ω)

f(ω|e)

)
µ(ω)− ψc′(e)− (−ψc′(e)).

=
n∑

ω=k+1

(
1− ψ

µ(ω)− µ(ω)

f(ω|e)

)
µ(ω) ≥ 0,

where the inequality follows from the above lemma. Next, consider µ ∈ X1. For such µ,

L(µ, ψ) = 1 + ψ
(
⟨(µ− µ)⊘ η(e), µ⟩ − c′(e)

)
= 1 + ψ

(∑
ω

µ(ω)− µ(ω)

f(ω|e)
µ(ω)− c′(e)

)

=
∑
ω

(
1 + ψ

µ(ω)− µ(ω)

f(ω|e)

)
µ(ω)− ψc′(e)

=
k∑

ω=1

(
1 + ψ

µ(ω)− µ(ω)

f(ω|e)

)
µ(ω)− ψc′(e) +

n∑
ω=k+1

(
1 + ψ

µ(ω)− µ(ω)

f(ω|e)

)
µ(ω)− ψc′(e)

=
k−1∑
ω=1

(
1 + ψ

µ(ω)− µ(ω)

f(ω|e)

)
µ(ω)− ψc′(e) +

n∑
ω=k+1

(
1 + ψ

µ(ω)− µ(ω)

f(ω|e)

)
µ(ω)− ψc′(e),

where the last equality is due to the fact that 1 + ψ(µ(k)− µ(k))/f(k|e) = 0. Therefore,

λ0 + ⟨λ1, µ⟩ − L(µ, ψ) = −
k−1∑
ω=1

(
1 + ψ

µ(ω)− µ(ω)

f(ω|e)

)
µ(ω) ≥ 0,

where the inequality is, again, due to the above lemma.
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Step 3. We now show that λ0 + ⟨λ1, µ⟩ coincides with L(µ, ψ) when µ = µ− and µ = µ+.
Since µ− ∈ X0, as shown above,

λ0 + ⟨λ1, µ−⟩ − L(µ−, ψ, e) =
n∑

ω=k+1

(
1− ψ

µ(ω)− µ(ω)

f(ω|e)

)
µ−(ω).

The desired result that λ0 + ⟨λ1, µ−⟩ − L(µ−, ψ) = 0 follows from the fact that µ−(ω) = 0
for all ω ≥ k + 1: recall that µ− = 1/⟨η(e), ρ−⟩ · η(e) ⊙ ρ− where ρ−(ω) = 0 for ω ≥ k + 1.
µ+ ∈ X1 and, therefore,

λ0 + ⟨λ1, µ+⟩ − L(µ+, ψ, e) = −
k−1∑
ω=1

(
1 + ψ

µ(ω)− µ(ω)

f(ω|e)

)
µ+(ω).

Similarly to the above, the desired result follows because µ+(ω) = 0 for all ω ≥ k: recall
that µ+ = 1/⟨η(e), ρ+⟩ · η(e)⊙ ρ+ where ρ+(ω) = 0 for ω ≤ k.
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