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Abstract: We present a model of risky choice in which the perception of a lottery payoff is noisy and
optimally depends on the payoff distribution to which the decision maker has adapted. The perceived value
of a payoff is precisely defined according to a core idea in neuroscience called the efficient coding
hypothesis, which indicates that more perceptual resources are allocated to those stimuli that occur more
frequently. We show that this principle implies that, for a given choice set of lotteries, risk taking varies
systematically with the recently encountered distribution of payoffs. We test our model in two laboratory
experiments. In the first experiment, we manipulate the distribution from which payoffs are drawn.
Consistent with efficient coding of lottery payoffs, we find that risk taking is more sensitive to payoffs that
are encountered more frequently in the choice set. Furthermore, sensitivity to extreme payoffs is initially
small, but grows over time after repeated exposure. Our second experiment consists of a purely perceptual
task, in which subjects classify which of two symbolic numbers is larger. We find that accuracy depends
on the distribution of numbers to which the subject has adapted, which provides support for our key model
assumption that perception of numerical payoffs is noisy and changes across environments.
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l. Introduction

When choosing between two lotteries, the decision maker (called “DM” hereafter) first
perceives the set of payoffs from each lottery, and then executes a decision. Because there are
constraints on the degree to which the brain can process information, the perception of numerical
payoffs is inherently imperfect (Dehaene, 2011). Understanding precisely how these constraints
affect perception has the potential to generate new insights about risk taking, and in particular, its
instability over time. For example, decades of experiments have shown that one source of
instability is the sequence of past outcomes that the subject experiences: past gains and losses
have a systematic effect on subsequent risk taking (Thaler and Johnson, 1990; Weber and
Camerer, 1998; Imas, 2016). A different potential source of instability is variation in perception,

which can occur independently of past outcomes or changes in wealth.

Why would the DM’s perception of a given risky payoff vary across different
environments? If the mechanism used for perceiving payoffs is similar to the one used for
perceiving sensory stimuli such as light or sound, then it may in fact be optimal to hold different
perceptions of the same payoff in different environments. Specifically, a core idea in
neuroscience called the efficient coding hypothesis states that the brain should allocate resources
so that perception is more sensitive to those stimuli that are expected to occur more frequently
(Barlow, 1961; Laughlin, 1981). This principle explains why we are temporarily “blinded” when
moving from a dark room to a brightly lit one, because resources have not yet been adjusted for
perceiving objects in the new bright environment. If the efficient coding hypothesis extends to
the domain of risky choice, this can provide a normative explanation for the systematic variation

of risk taking across environments.

In this paper, we present a model of choice under risk in which the perception of payoffs
is governed by efficient coding; we then test the model experimentally to assess whether risk
taking varies with the recently encountered payoff distribution. Our model builds on the recent
theoretical work of Woodford (2012) and Khaw, Li, and Woodford (2018) (hereafter “KLW”),
who assume that the perception of risky payoffs is imperfect and is estimated through Bayesian

inference. Our main theoretical contribution is to provide, within the KLW framework, a



microfoundation for imperfect perception of risky payoffs that is governed by efficient coding.
Specifically, we derive the optimal set of likelihood functions according to a capacity constraint
and the payoff distribution to which the DM has adapted. This jointly constrains the DM’s prior
and the likelihood functions through the distribution of payoffs, which provides an extra layer of
discipline in the Bayesian framework (Wei and Stocker, 2015; 2017). We then show
theoretically that, for a given choice set, risk taking will vary systematically with the payoff
distribution to which the subject has adapted. Our main theoretical prediction is that both
perception and risk taking are more sensitive to payoffs that are more likely to appear in the

DM’s choice set.

An important consequence of this result is that the subjective value function is malleable,
and undergoes precisely defined changes when there is a shift in the payoff distribution. For
example, if the upside of a risky lottery is often in the range between $10 and $20, then
perceptual resources are allocated towards discriminating between payoffs in this range. In this
same environment, if the upside is occasionally increased from $30 to $40, then risk taking will
not increase much because the DM’s perceptual system cannot easily distinguish between these
two infrequent amounts. However, if the overall distribution of payoffs changes, so that the
upside frequently falls between $30 and $40, then the DM perceives this difference to be large,
and risk taking will increase substantially when the upside is increased from $30 to $40. Thus,
diminishing sensitivity emerges as part of the optimal solution of allocating resources away from
payoffs that are unlikely to appear in the choice set. As in Woodford (2012) and KLW, our
model predicts that the value function is itself stochastic, but our efficient coding criterion makes
additional predictions about the shape and the noise structure of the value function as we change

the payoff distribution.

To test our theory, we conduct a laboratory experiment in which subjects make a series of
decisions between a risky lottery and a certain option. We experimentally manipulate the
distribution of risky payoffs across two conditions: one in which payoffs in the choice set are
drawn from a distribution with high volatility, and another in which the distribution has low

volatility. We find that, within subjects, risk taking is more sensitive to payoffs in the low



volatility condition, compared to the high volatility condition. This is consistent with our main
theoretical prediction, that risk taking is more sensitive to payoffs that are expected to appear in

the choice set more frequently.

We also find that after the payoff distribution switches from low volatility to high
volatility, the sensitivity to extreme payoffs increases over time. This suggests that the
perception of an “outlier payoff” is time-varying: extreme values which begin to appear more
frequently are no longer perceived as outliers, and thus are subject to less noisy encoding. Our
data indicate that this change in perception occurs relatively quickly, within five trials (Payzan-
LeNestour and Woodford, 2018). Conversely, we find evidence that the sensitivity to
intermediate payoffs decreases over time in the high volatility condition. The interpretation here
is that as intermediate values become less frequent (relative to the low volatility condition),
perceptual resources are allocated away from these intermediate values. Overall, our
experimental results provide novel evidence that the perception of risky payoffs depends on the
recently encountered payoff distribution, similar to how our perception of light depends on the

environment to which our eyes have recently adapted.

While we formally present the full model later in the paper, we briefly explain the key
assumptions and mechanisms here. There are two basic building blocks of our model. First, as in
KLW, we assume the decision maker encodes the absolute value of each risky payoff with noise,
conditional on the choice set that is perfectly observable to the econometrician. Specifically,
when the DM is presented with a choice set in which a risky lottery pays X dollars in some state,
we assume that the DM perceives this payoff as some noisy mental representation, Ry, which is
governed by a probability density function p(Rx | X). This assumption captures a fundamental
feature of numerical cognition, which holds that our perception of numerical quantities is noisy,
even when these quantities are presented in symbolic form—for example, through Arabic

numerals (Dehaene, 2011).

The second building block is that the DM understands that numerical quantities are

encoded with noise, and unconsciously performs Bayesian inference to form an optimal estimate



of the numerical payoff under consideration. This assumption may appear heroic, but it is guided
by the literature on sensory perception which finds a tight link between quantitative predictions
from a Bayesian framework and data from controlled experiments (Stocker and Simoncelli,
2006; Girshick, Landy, and Simoncelli, 2011; Dehaene, 2014; Wei and Stocker, 2015; 2017).
We assume that the DM forms a prior through learning the distribution of previously encountered
payoffs, and we endogenize the likelihood function through efficient coding. Interestingly, for
some prior distributions, the likelihood functions that we derive exhibit logarithmic compression,
which resembles the likelihood functions that are assumed in KLW. A key difference, however,
is that our likelihood functions are inextricably linked to the parameters of the payoff distribution
to which the DM has adapted. Once the DM performs Bayesian inference on the payoffs from
each lottery, she chooses the lottery with the maximum expected value, conditional on the

optimal estimate of each payoff.

The model we present here is meant to capture intuitive judgments about choice under
risk, such as the judgments between simple gambles that Kahneman and Tversky (1979) sought
to explain with prospect theory. Our model does not apply to all decisions under risk, and in
particular, it should not be applied to high stakes decisions that are based on explicit symbolic
calculations. These decisions are less affected by the imperfect perception that drives our model,
and instead are likely to be governed by a separate decision-making system. At the same time,
our model is not necessarily confined to low stakes decisions, and we believe that it is reasonable
to apply in situations similar to those where prospect theory has found success (see Barberis

2013 for a review).

Within our model, there are two limitations worth emphasizing. First, the model is not
dynamic and thus makes no explicit predictions about how the speed with which the DM adapts
to new environments affects risk taking. Instead, our model makes precise comparative static
predictions, which we use to guide our experimental design. Second, we assume that only
payoffs are subject to noisy encoding, but that probabilities are perceived without noise. This
assumption is for simplicity, and in reality, state probabilities are also likely to be encoded with

noise. To further test whether our experimental results are indeed generated by the noisy



encoding of payoffs, we run an additional experiment in which the subject still needs to perceive
numerical quantities, but there is no need to perceive probabilities or integrate them with payoffs.
We run a riskless choice experiment where we incentivize subjects to classify whether a
sequence of numbers is above or below a reference number. We find that even in this simpler
environment, accuracy depends on the distribution of numbers to which the subject has adapted.
For a given number, subjects exhibit greater classification accuracy if the number has occurred
more frequently in the recent past. This provides some support for our basic model assumption

that the perception of numerical symbols is noisy and changes across environments.

Our paper contributes to a recent literature that examines the effect of imperfect
perception and Bayesian inference on economic choice. Gabaix and Laibson (2017) show
theoretically that a DM with a discount rate of one will appear impatient if payoffs delivered
farther in the future are perceived with more noise. Woodford (2012) and KLW provide a
framework in which a DM with linear utility can appear risk averse if payoffs are encoded with
noise. Steiner and Stewart (2016) show that Bayesian inference can generate an overweighting of
small probability events, as in prospect theory.* Both of our experiments provide evidence that
supports the type of perceptual processes proposed in these Bayesian models of economic

choice.

Our results also contribute to a literature that uses attention and basic neural
computations to constrain patterns of risky choice (Bordalo, Gennaioli, and Shleifer, 2012; 2017;
Tymula and Glimcher, 2017; Landry and Webb, 2018). A particularly relevant neural
computation is that of normalization, in which the brain normalizes stimulus values according to
the distribution of values in the environment. Several experiments have found evidence
consistent with normalization in the brain (Tobler, Fiorillo, and Schultz, 2005; Carandini and
Heeger, 2012; Rangel and Clithero, 2012; Louie and Glimcher, 2012), but there is less evidence
that this process has an associated effect on behavior. Khaw, Glimcher, and Louie (2017) show

that the valuation of consumer items negatively correlates with the average value of recently

Y In related work, Bhui and Gershman (2018) show how efficient coding can provide a normative foundation for a
model of multi-attribute decision making called decision by sampling (Stewart, Chater, and Brown, 2006).
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encountered items, and Polania, Woodford, and Ruff (2018) show that valuation depends on the
entire distribution. Here, we demonstrate that these adaptation effects extend into the domain of

risky choice.?

The paper proceeds as follows. In Section 1, we lay out the basic elements of the model.
Section 111 examines the model’s implications. Section 1V describes the main experiment of the
paper, a risky choice experiment, and discusses its results. Section V follows with a riskless

choice experiment. Section VI concludes and suggests directions for future research.
1. The Model

In this section, we develop a model of risky choice based on efficient coding and
Bayesian decoding, following the recent work of KLW and Wei and Stocker (2015, 2017).

11.1. Choice environment

The DM faces a choice set that contains two options: a certain option and a risky lottery.
The certain option, denoted as (C, 1), pays C dollars with certainty. The risky lottery, denoted as
(X, p; 0,1 —p), pays X dollars with a probability p and zero dollars with the remaining

probability 1 — p. The DM’s task is to choose between these two options.
Under expected utility theory, a DM with utility U(-) chooses the risky lottery over the
certain option if and only if
p-U(X)+(@1-p)-U(0)=U(C). 1)
Conditional on X, C, and p, the DM’s choice is non-stochastic.

Motivated by the literature on sensory perception, we assume that the DM imperfectly
perceives the payoffs of X and C (Deheane, 2011; Girshick et al., 2011; Wei and Stocker, 2015).°

2 See Payzan-LeNestour, Balleine, Berrada, and Pearson (2016) for experimental evidence on adaptation to variance,
and Zimmermann, Glimcher, and Louie (2018) for evidence on adaptive behavior in monkeys in the realm of risky
choice.

3 Further evidence for this assumption comes from recent experimental work which demonstrates that humans have
single neurons that selectively and stochastically respond to “preferred” numbers (Kutter, Bostroem, Elger,

7



Specifically, before observing the choice set, the DM has a prior over the distributions of X and
C.# Upon observing the choice set, the presentations of X and C elicit a noisy sensory
representation of X, Ry, and a noisy sensory representation of C, Rc, each randomly drawn from a
distinct likelihood function; this process of creating a sensory representation of a stimulus value
is called encoding. The DM then uses Bayesian inference to form optimal estimates of X and C,
E[X|R,] and E[C|R_]; this process of combining priors with the likelihood functions to form
posterior beliefs is called decoding.® As in KLW, we further assume that the DM has linear

utility, and thus chooses the risky lottery if and only if p-E[X R, 1> E[C]| R.].

It is worth noting that the encoding process described above is conditional on the values
of X and C, which we assume are perfectly observable to the econometrician. This is different
from learning about the realizations of X and C in future choice sets. We also note that, because
the encoding process is noisy, sensory representations Rx and R vary from trial to trial
conditional on X and C. Given this, the DM’s choice between the certain option and the risky

lottery is intrinsically stochastic.
I1.2. The likelihood function

Consider a probability density function of a noisy representation m for a given stimulus
value 6. We denote such a function as p(m|6). The likelihood function mentioned above is then

formally defined as
L(6|m) = p(m|6). (2)

This function governs the likelihood for each stimulus value 6 conditional on the noisy
representation m. We assume an efficient coding criterion proposed in Wei and Stocker (2015) to

constrain the likelihood function. This criterion requires

Mormann, and Nieder, 2018). Such “number neurons” are likely to generate the noisy perception of symbolic
numbers.

4 We assume in this model that the probability p is perceived without noise. In our experimental design in Section
IV, we set p to a constant across trials so that, through learning, it is plausible that the DM perceives the precise
value of p.

> See von Helmholtz (1925), Curry (1972), and Knill and Richards (1996) for earlier work on sensory perception as
a form of Bayesian inference.



J3(0) < p(o), 3)

where Fisher information J(0) is given by
o/ p(m| 6
CRIETE )j p(m | ©)dm, @

and p(0) is the true probability density function of the stimulus value 6.

Intuitively, Fisher information J(6) measures the amount of coding resources allocated
towards accurate perception of a given stimulus value 0. As a result, the efficient coding
condition (3) implies that encoding accuracy is greater for stimulus values that occur more

frequently.

To find a likelihood function for a fixed distribution p(0) that satisfies the efficient
coding condition in (3), we transform the stimulus space into a “sensory space” through a change
of variable 6 = F (), where F(0) = _[1 p(y)dy is the cumulative density function of 0. It is easy
to show that the efficient coding condition is satisfied in the sensory space if the transformed

likelihood function L(6|m) is location-independent:
L(6|m)=g(6-m), (5)

where g(-) is some smooth density function that integrates to one.

In this paper, we further assume that g(-) takes the form of a normal probability density

function
6-m 1 (6-m)?
g(e m)__d)[ o j_m-ﬁexp( 262 j’ (6)

where ¢(-) stands for the probability density function of a standard normal distribution, m takes
the range of (-0, ), and parameter o represents the amount of coding resources available to the
DM: a lower ¢ means a larger amount of coding resource available, and therefore a narrower

likelihood function.®

& Our model’s implications are qualitatively robust to the assumption that g(-) is normal; other forms of smooth
function lead to similar implications.



Given that the DM’s objective is to decode in the stimulus space, we need to transform

L(6|m) back to L(6|m), which simply requires

L©m) = g(F(e)—m)=ﬁexp£—%j- ™

In the context of our choice environment, we assume that the probability density

functions of X and C are lognormal

P(X;p,.0,) = ﬁexp{—wj,
X 8)

l 2
p(C;uc,Gc)=mexp[—T)}

We now construct the likelihood functions for X and C. First, the cumulative density

functions that we use for the transformation are

X /n X —
F(X;MX’GX)E.[O p(y,ux,cx)dy=©(—uxj,
(e

X

(9)

c /nC—
F(C;“c’cc) = -[0 p(y’“c’cc)dy = (D(—“cjv

c

where ®(-) stands for the cumulative density function of a standard normal distribution. We then

follow (7) to construct the likelihood functions as

L(X|R) = P(R, | X) = —— exp[_@((fnx—ux)/cx)—Rx)zj’

J2rn-o 26°
2 (10)
L(C|R,)= p(RC|C)=\/%.Gexp(_(CD((fnC—;t;)zlcsc)—Rc) ]

The expressions in (10) characterize the likelihood functions for each value of X and C in the
stimulus space, and we emphasize that they depend directly on parameters of the stimulus

distributions, px, ox, L, and oc.

To illustrate these likelihood functions, we plot in Figure 1 the stimulus distribution of X

and the resulting likelihood function L(X | R,) given several values of Ry, for a low volatility
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distribution (ox = 0.15) and a high volatility distribution (ox = 0.4). To get a sense of the relative

magnitude for the values of Ry, we also plot the distribution of Ry defined as

p(R) =] P(R, | X)p(X)dX. (11)

It is easy to check that, under assumptions of (8) and (10), the shape of p(Rx) does not depend on
ux and ox. More broadly, the shape of p(Rx) does not depend on the shape of the stimulus

distribution: all continuous stimulus distributions lead to the same p(Rx). Furthermore, as ¢ goes
to zero—that is, as the amount of coding resource available goes to infinity—p(Rx) converges to
a uniform distribution between zero and one. A more detailed discussion of properties of p(Rx) is

left to the Appendix.
[Place Figure 1 about here]

Figure 1 highlights some important features of the likelihood function L(X |R,). For a
given stimulus distribution—that is, holding ux and ox fixed—the shape of the likelihood
function depends heavily on the sensory representation Rx. Moreover, for a fixed value of Ry,
shifting the stimulus distribution—in particular, shifting ox—alters the shape of the likelihood
function. For example, a higher standard deviation of the stimulus distribution results in higher

dispersion of the likelihood function.

It is useful to compare the likelihood function we derive to the one assumed in the model
of KLW. As discussed above, for a continuous stimulus distribution p(X) over the range of [0,
o), the cumulative density function is F(X) = IOX p(y)dy. The corresponding likelihood function

is

L(X|R)=g(F(X)-R) = M] (12)

1
\/Z-G p( 26°

In comparison, the KLW likelihood function is

Lww (X |R,) = \/%-V exp(—W], (13)
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where v is a positive coefficient. This likelihood function captures the well-established finding of
“scalar variability,” whereby larger numbers are encoded with more noise than smaller numbers
(Dehaene, 2011). When comparing (12) with (13), one can see that the two likelihood functions
are, in general, quite different. However, when F(X) and /nX have similar shapes, the likelihood
function derived from efficient coding will resemble the KLW likelihood function. In particular,
because the derivative of /nX is 1/X, which is a monotonically decreasing function, we
conjecture that a monotonically decreasing stimulus distribution p(X) will generate a likelihood

function that resembles the one assumed in KLW.

In Figure 2, we present a specific example with the stimulus distribution taking a form of

a gamma distribution

1
X:k,0) = X Klg=X18 14
p( ) O (14)

where I'(+) is the gamma function, 6 > 0 and k > 0. We choose parameter values for 6 and k so

that p(X; k, 0) is a monotonically decreasing function.
[Place Figure 2 about here]

Figure 2 shows that, with a monotonic stimulus distribution, the likelihood functions in
(12) (middle panel) and the KLW likelihood functions (bottom panel) look reasonably similar.’
One difference, however, is that for right-tail values of Ry, efficient coding tends to generate
likelihood functions that are more positively skewed compared to the likelihood functions in
KLW. More generally, the likelihood functions in KLW are invariant to the parameters 6 and k,
whereas efficient coding implies that the likelihood functions will depend closely on the entire
shape of the stimulus distribution. When comparing Figures 1 and 2, one can see that efficient

coding implies very different likelihood functions when the stimulus distribution is lognormal,

" Dehaene and Mehler (1992) provide evidence that a monotonically decreasing distribution provides a good
approximation of the distribution of numbers in natural settings. This suggests that scalar variability may arise as a
consequence of efficient coding when combined with the distribution of naturally occurring numbers. The
monotonic decline in the frequency of numbers holds across different cultures, with the exception that there are
small increases at round numbers such as 10, 20, and 50.
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compared to when it is monotonic. For the rest of the paper, we retain the assumption of (8) that

the stimulus distribution is lognormal.

We conclude our discussion on the likelihood function by making a remark on
adaptation. Notice first that our model is static. As a result, it does not make explicit predictions
about how the likelihood function evolves over time. However, the comparative static
predictions of the model shed light on the perception of outliers. Figure 1 above shows that,
when the stimulus distribution has a low volatility of ox = 0.15, the value X = 30 is perceived as
an outlier for frequently occurring values of Ry, because it is located in the right tail of the
associated likelihood functions. However, when the stimulus distribution has a higher volatility
of ox = 0.4, the value X = 30 is much less of an outlier as the likelihood functions become more
dispersed and they assign higher likelihood to the value X =30. This comparative static result
suggests that as the DM adapts to a different payoff distribution, her perception of outliers

changes.
11.3. Bayesian decoding

The likelihood functions derived in the previous section, in conjunction with prior beliefs
of the true stimulus distribution, can be used for Bayesian decoding of the realized sensory

representations. That is, estimates of X and C conditional on Ry and Re, E[X |R, ]Jand E[C|R ], are

given by
“P(R, | X) py (X)XdX
Hde:Lf<x|)m(> -
[ PRIX) po(X)dX
and
<. | pR.IC)p(C)CdC
E[C|R.]=" (16)

[ p(R. IC)po(CYAC

where p,(X)and p,(C) are the DM’s prior beliefs about X and C. Here, we equate these priors

with the true stimulus distributions described in (8)
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pO(X) = p(X;Mx’Gx)' pO(C) = p(C;Mc'Gc)' (17)

We assume that learning leads the DM to adapt her priors to the true stimulus distribution. While
we do not explicitly incorporate the adaptation process in our model, we provide some

experimental evidence of the speed of adaptation in Section IV.

Because the DM has linear utility by assumption, she chooses the risky lottery over the
certain option if p-E[X R, ]> E[éch]. Conversely, she chooses the certain option if

A key feature of our model is that we jointly constrain both the prior and the likelihood
functions by the true stimulus distribution. It follows that shifting the true stimulus distribution
affects both the encoding and the decoding process. In the next section, we develop the model’s

implications for risky choice behavior.
1. Model Implications

In this section, we examine the implications of the model. We begin by studying how the
probability of choosing the risky lottery changes with the stimulus payoff distribution. We then
look at the model’s implication for risk preferences. Finally, we discuss the subjective value

function derived from the model.
I11.1. Probability of risk taking

Conditional on X and C, the sensory representations Ry and R are drawn from the
probability density functions p(R, | X) and p(R,|C). For given Rx and Rc, the DM chooses
between the risky lottery and the certain option based on (15), (16), and (17). Holding X, C, and
the stimulus distribution fixed, we can compute the probability of risk taking—that is, the
probability of choosing the risky lottery over the certain option—over many realizations of Ry

and R

Prob(risk taking | X,C) = ji I:l{pm[imxbla[él&]} p(R, | X)p(R, |C)dR dR.. (18)
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To understand the determinants of the probability of risk taking, Figure 3 plots this
probability against the natural logarithm of X over C, /n(X/C), for different volatility levels of the
stimulus distribution: ox = oc = 0.4, 0.8, and 1.5. Specifically, for each volatility level, we set C

toexp(u, ++o2) while changing the value of X.

[Place Figure 3 about here]

Naturally, a higher ratio of X over C increases the attractiveness of the risky lottery and
hence increases the probability of risk taking. Notice that, under expected utility theory and no
background wealth, the probability of risk taking should be a step function of /n(X/C) with a
single step at £n(X/C) = ¢n[U~((U(C) - (1 — p)U(0))/p)/C]. However, with the Bayesian
inference process described above, the probability of risk taking has an S-shaped relationship
with ¢n(X/C). Moreover, the overall slope of this function is negatively related to volatility of the
stimulus distribution. That is, risk taking is more sensitive to payoff values in the low volatility
condition, compared to the high volatility condition. The intuition is that, lower stimulus
volatility increases the encoding accuracy of stimulus values that occur more frequently in this
environment relative to the high volatility condition, and hence improves the discriminability of

these values.

More generally, (18) shows that the probability of risk taking is a two-dimensional
function of X and C. Figure 4 plots the probability for two different volatility levels of the

stimulus distribution: ox = ¢ = 0.19 (low volatility) and ox = oc = 0.55 (high volatility).
[Place Figure 4 about here]

Figure 4 makes it obvious that /n(X/C) is not a sufficient statistic of the probability of risk
taking. Instead, X and C jointly affect this probability. For instance, with ox = 6c = 0.55, ux =
3.05, and pc = 2.35, setting X to exp(u, ++c2)=24.6 and setting C to exp(n, ++c7)=12.2
gives X/C = 2.01 and a risk-taking probability of 77.7%. On the other hand, setting X to
exp(u, +2-c2)=238.7 and setting C to exp(u, +2-c>)=19.2 gives the same ratio of X/C =
2.01 but a lower risk-taking probability of 74.3%.
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I1.2 Risk preferences

Here we examine the set of values of X and C for which the DM is indifferent between
the two options—that is, when our model predicts a 50% probability of risk taking. Because risk
taking is a two-dimensional function of X and C, we can trace out an “indifference curve.” That

is, for a given value of X, we compute the value of C such that Prob(risk taking | X,C) =0.5.
[Place Figure 5 about here]

We plot this indifference curve in Figure 5. With the parameter values of uyx = 3.05, uc = 2.35, p
=0.59, ox=0.55, 6 = 0.55, and o = 0.1, we find that for X > 20.7, C(X) < X-p, implying that the
DM is risk averse. For X < 13.7, C(X) > X-p, implying that the DM is risk seeking. Finally, for X
between 13.7 and 20.7, C(X) ~ X-p, implying that the DM is about risk neutral. For a very large
value of X, efficient coding implies that it is hard to discriminate between nearby values—which
is similar to the logarithmic compression assumed in KLW—and this leads to risk aversion.
Conversely, for a very small value of X, efficient coding again implies a lack of discriminability

between nearby values. However, this now gives rise to risk-seeking behavior.
11.3 Value function

The probability density function p(R,|X)and the posterior belief E[X |R Jtogether

generate a subjective valuation of X
v(X)=["E[X R Ip(R, | X)dR,. (19)

We call v(X) the DM’s subjective value function. Given the randomness in the mental

representation of a stimulus value, we can also compute the standard deviation of v(X) as

o(X) = [L(BIX IR1)* PR, X)dR, ~v*(X) | (20)

Figure 6 plots, for both X and C and for both ox = oc = 0.19 (low volatility) and ox = o¢c =
0.55 (high volatility), the subjective values v(X) and v(C), as well as their one-standard-deviation
bounds v(X) + o(X) and v(C) £ o(C).
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[Place Figure 6 about here]

Figure 6 leads to several observations. First, consistent with prospect theory (Kahneman
and Tversky, 1979), the lack of discriminability among outliers generates diminishing
sensitivity: the marginal utility v'(X) decreases as X becomes either extremely large or extremely
small. Second, diminishing sensitivity is more pronounced when stimulus volatility is lower. In
this case, a wider range of stimulus values become outliers, and are therefore difficult to
discriminate. Third, both the shape of the utility function and the randomness in utility come
from noisy encoding: for very large values of X, low discriminability leads to both lower
marginal utility v'(X) and higher randomness in utility o(X). Finally, the value of X that has the
highest slope for v(X), which typically corresponds to the “reference point” in prospect theory,
arises endogenously in our framework. Here, it corresponds to the stimulus value that has the

highest degree of local discriminability.
V. An Experimental Test

In this section we provide an experimental test of our model. Our experiment is designed
specifically to test whether risk taking varies with the payoff distribution that the subject

encounters.
IV.1. Design

On each trial in the experiment, subjects choose between a risky lottery and a certain
option. The risky lottery delivers a positive payoff X with probability p, and zero otherwise. The
certain option delivers a positive payoff C with certainty. The experiment consists of eight
blocks, with sixty trials in each block. Each subject therefore completes a total of four hundred
eighty trials, which we index by t =1, 2, ..., 480. At the end of the experiment, subjects are paid

according to their decision on one randomly selected trial.

We experimentally manipulated the distribution from which payoffs in the choice set are

drawn. On each trial, the values of X and C were jointly drawn from a lognormal distribution
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We set the mean values to px = 3.05 and pc = 2.35, so that on average, the risky lottery offers a
higher expected value than the certain option. Our treatment variable is the standard deviation,
which we varied across two conditions: high volatility and low volatility. In the high volatility
condition, we set ¢ = 0.55, and in the low volatility condition, we set o = 0.19. The first block of
the experiment was a high volatility block, and the blocks alternated deterministically, so that the
experimented ended with a low volatility block (Figure 7). We set the correlation between ¢/n(X)
and /n(C) at p = 0.5. Although this positive correlation is not part of the model we developed in
the previous section, it helped to reduce the number of trivial choice sets where X < C (and as a
result, the certain option stochastically dominates the risky lottery). The values of X and C were
drawn from their associated distribution (high volatility or low volatility) at the subject-trial

level, and thus each subject faced a unique path of payoffs during the experiment.

[Place Figure 7 about here]

For all trials, we set the probability that the risky lottery paid X to p = 0.59. Following
KLW, we chose this design feature for two reasons. First, we used a “non-round” number so that
subjects could not easily compute the expected value of the risky lottery—which was more likely
to happen if we used, for example, p = 0.5 or p = 0.6. Second, even though our model assumes
that the subject does not encode the probability p with noise, in reality, this variable is also likely
to be encoded with noise. By presenting the same value of 0.59 on each trial, this increased the
plausibility of our simplifying assumption that subjects precisely encoded this variable. Later in
the paper, we conduct an additional experiment to directly test the noisy encoding of payoffs,

without appealing to any assumptions about probability encoding.

Before the experiment began, subjects were told that they would be asked to choose
between two lotteries on each of four hundred eighty trials and these trials would be separated
into eight parts. However, subjects were not given any information about the distribution of X
and C, nor were they told that these distributions changed across blocks. The exact instructions

that were given to subjects before the experiment are provided in the Appendix.
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IV.2. Experimental procedures

We recruited N = 34 subjects for this experiment, which was conducted across three
sessions at Caltech and USC. Before starting the experiment, subjects went through a set of ten
practice trials to become familiar with the task and the software. Figure 7 shows an example trial
from the experiment, in which the risky lottery is presented on the left as a colored bar chart, and
the value X is displayed at the bottom next to its associated probability of 0.59. The certain
option is presented on the right side of the screen. On each trial, subjects were instructed to select
the left or right option by pressing one of two keys. The location of the risky lottery was
randomized across subjects and trials, and subjects had unlimited time to make their decision on
each trial. At the end of each block of sixty trials, a progress screen appeared, which reported

how many of the eight blocks the subject had completed.

At the end of the eighth block, the computer randomly selected one of the four hundred
eighty trials from the experiment. If the subject chose the risky lottery on this trial, a random
number generator determined whether the subject received the payoff of $X or the payoff of $0,
according to the probabilities associated with these payoffs. If the subject chose the certain
option, she received the amount of $C. In addition to the earnings from this randomly selected
trial, each subject received a $7 show-up fee. The average earning, including the show-up fee,
was $25.89.

IV.3. Experimental results
IV.3.A. Treatment effects

Subjects chose the risky lottery on 40.5% of trials in the low volatility condition and on
42.7% of trials in the high volatility condition. One subject did not exhibit any variation in risk
taking in the low volatility condition (choosing the certain option on each trial), and we exclude

this subject from all subsequent analyses.

[Place Figure 8 about here]
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Figure 8 plots the proportion of trials on which subjects chose the risky lottery, as a
function of the natural logarithm of X over C, /n(X/C). Recall that the probability p stays
constant across all trials, and thus /n(X/C) provides a good—though insufficient—statistic that
summarizes the attractiveness of the risky lottery relative to the certain option. The figure shows
that risk taking increases in ¢n(X/C) in both conditions, which provides a basic consistency check
on the data. One can also see that the slope of the curve in the low volatility condition appears to
be steeper than that in the high volatility condition. This is consistent with a basic prediction of
our model: when the stimulus distribution becomes more concentrated, choice sensitivity

increases.

To conduct formal empirical tests, we run regressions where the dependent variable takes
the value of one (zero) if the subject chose the risky lottery (certain option) on trial t. We pool all
15,840 trials across subjects and conditions, and run a logistic regression. The results in Column
(1) of Table 1A show that the regression coefficient on n(X/C), which provides a measure of the
sensitivity of risk taking in the low volatility condition, is positive and strongly significant. high
is a dummy variable that takes the value of one if the trial is in the high volatility condition, and
zero otherwise. The coefficient of interest is on the interaction term ¢n(X/C)xhigh, which is
significantly negative, indicating that risk taking becomes less sensitive to ¢n(X/C) in the high
volatility condition. This provides formal support for a difference in choice sensitivity between

the high and low volatility conditions.
[Place Table 1 about here]

Our model predicts that this difference in choice sensitivity stems from different
perceptions of X and C across conditions. However, the distributions of X and C themselves vary
across conditions, and thus the difference we detect may simply be driven by a different response
to extreme values of /n(X/C). In particular, the range of /n(X/C) in the low volatility condition is
(0.02, 1.36), but in the high volatility condition, there are many trials for which ¢n(X/C) falls

outside this range.
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To help address this concern, we restrict our regression to trials with similar levels of
¢n(X/C) across the two volatility conditions. We re-estimate the regression in Column (1) using
only trials for which 0.02 < /n(X/C) < 1.36; this represents the set of values of ¢n(X/C) which
appear in both conditions of our experiment. Column (2) shows that our results are quite similar
on this subset of data. Given this, it is unlikely that differences in the current choice set drive the
full effect; however, we note that this is not a perfect control because the distribution of ¢n(X/C)
still differs within this restricted domain. Columns (3) and (4) show that our main result holds
within each half of a block. Column (3) is estimated using data from the first half of each block
(the first thirty trials), while column (4) uses data from the second half (the last thirty trials), and

the main result holds in both of these subsets of the data.

Column (5) shows our results hold even within the first ten trials of each block. In fact, if
we restrict to the first trial of each block (Column (6)), we find that the coefficient on the
interaction term remains significantly negative (p-value of 0.046). This result is potentially
concerning, because it is consistent with a theory where the subject adapts to the new distribution
instantly. However, another more plausible explanation is based on the perception of outliers. On
the first trial of each block of the high volatility condition, the subject has just faced sixty choice
sets from the low volatility condition, and presumably has adapted to a narrow range of /n(X/C).
On the first trial of the high volatility block, there is a good chance that ¢n(X/C) falls outside this
range (or near the extremes of this range), and thus this value will be perceived as an outlier.®
Because the subject’s coding resources do not adjust immediately following the low volatility

block, the perception of the outlier will be noisy.®

8 In our experiment, there is a 21% chance that £n(X/C) falls outside the range (0.02, 1.36) on the first trial of a high
volatility block.

9 We note that in each specification in Table 1A, the coefficient on the high dummy variable is significantly positive.
This is likely because ¢n(X/C) is not a sufficient statistic for risk taking and may contribute to model
misspecification. Table 1B presents regression results where we separately enter the X and C regressors, as well as
their associated interaction terms. We see that the coefficient on the high dummy variable is no longer significant in
these regressions; moreover, consistent with the result in Table 1A, we also find that risk taking becomes less
sensitive to both X and C in the high volatility condition.
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IV.3.B. Adaptation and dynamics

The above logic can be extended more generally to all trials in the high volatility block.
Consider a value of /n(X/C) that is extreme within the context of the low volatility block, but not
within the high volatility block. If the subject encounters this value early in a high volatility
block, it will be perceived as an outlier, but the presentation of this value should lead to a
subsequent adjustment of coding resources through adaptation. When a value of /n(X/C) that was
perceived as extreme early in a high volatility block is presented a few times, then later in the
high volatility block, it will no longer be perceived as an outlier because coding resources have
been allocated to a wider range of payoffs. Therefore, risk taking should become more sensitive

to extreme values over the course of the high volatility block.

To test this prediction, we examine how risk taking varies in the presence of outliers,
over the course of the high volatility block. We define an outlier as a value of /n(X/C) that is
more than three standard deviations from the mean. The standard deviation and mean are
computed at the subject-block level, using the sixty trials from the immediately preceding low
volatility block (we restrict analysis to blocks 3, 5 and 7, so that each of these high volatility
block can be matched to an immediately preceding low volatility block). Under this definition,

30.4% of trials in the high volatility block are considered outliers.

We define a dummy called outlier that takes the value of one if the value of /n(X/C) is an
outlier, and zero otherwise. We also define a dummy called second which takes the value of one
if the trial takes place in the second half of the block (i.e., in the last thirty trials). We then

estimate the following logistic regression, using only data from the high volatility blocks:

risky, =a+f,-/n [Lj +B,-4n (ﬁj xoutlier
C C

(22)
+B5-4n [ﬁj x second + 3, - /n [ﬁj x second x outlier +e,.
C C

t t

In Column (1) of Table 2, the regression coefficient 1 on ¢n(X/C) provides the sensitivity of risk

taking among intermediate value (non-outlier) trials in the first half of the high volatility block.
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As expected, this coefficient is significantly positive. Furthermore, the coefficient 3. on the
interaction ¢n(X/C)xoutlier is significantly negative. This indicates that in the first half of the
block, shortly after experiencing sixty low volatility trials, subjects are less sensitive to outliers

than to intermediate values.
[Place Table 2 about here]

The next two rows allow these coefficients to differ in the second half of the block. The
coefficient B4 on ¢n(X/C)xsecondxoutlier provides the change in sensitivity of risk taking among
outlier trials from the first to second half of the block. Here, we expect the coefficient, B4, to be
positive, because exposure to outliers during the first half of the high volatility block should
trigger adjustment of coding resources to these extreme values in the second half of the block.
Conversely, the coefficient B3 on /n(X/C)xsecond provides the change in sensitivity of risk
taking on intermediate value trials between the first and second halves of the block. As the DM
allocates more coding resources to outliers over the course of the high volatility block, the
corresponding resources allocated to intermediate values decrease; we thus expect this

coefficient, B3, on ¢n(X/C)xsecond to be negative.

We find that the signs of these two coefficients, 33 and 4, are consistent with these
predictions, but neither coefficient is significantly different from zero. To allow for the
possibility that adaptation take place more quickly than the first thirty trials, Columns (2) — (4)
use more restricted subsets of the data. After restricting to the first and last ten trials of each
block in Column (3), we find significant results on both coefficients. We find similar results in
Column (4), which suggests that adaptation takes place on the order of five trials, consistent with
recent work on adaptation speeds in perceptual decision-making (Payzan-LeNestour and

Woodford, 2018).
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IV.3.C. Heterogeneity across subjects
[Place Figure 9 about here]

The data presented in Figure 8 are pooled across subjects, and therefore mask any
potential heterogeneity in the change in risk taking across volatility conditions. To investigate
this potential heterogeneity, for each subject and condition, we run the following logistic

regression:

risky, =a+f-/n (%j+8t. (23)

t

We record the estimates B for each subject in the high and low conditions, and plot these against
each other in Figure 9. We see there is substantial heterogeneity across subjects in the sensitivity
to /n(X/C). Moreover, subjects who are more sensitive in the high condition are also more
sensitive in the low condition. Most importantly, we see that, for a majority of subjects, the data
lie above the blue forty-five degree line. This confirms that the increase in choice sensitivity in

the low volatility condition is present within most of our subjects.
IV.3.D. Assumptions about noiseless encoding process

All of the results in our theoretical model are driven by the noisy encoding of X and C. In
particular, we make two simplifying assumptions: i) there is no noise in encoding the probability
p; and ii) there is no noise in computing the product of p and E[X |R, ] (which is used as the
estimate of the expected value of the risky lottery). In reality, there is likely to be noise in both of
these processes, which could potentially be responsible for some of the above experimental
results. However, because the noisy encoding of payoffs is sufficient to generate our main
theoretical predictions, we should still find evidence that the perception of X depends on the
recent stimulus distribution, even when there is no need to perceive p. To investigate this, we run
a follow-up experiment in which the subject still needs to perceive X, but does not need to

perceive p or integrate probabilities with payoffs.
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V. Riskless Choice Experiment
IV.1. Experimental design

The design of our second experiment is informed by decades of work from the literature
on perception of numerical quantities (Moyer and Landauer, 1967). Our experimental design
builds on that of Dehaene, Dupoux, and Mehler (1990), who on each trial of their experiment,
present subjects with an Arabic numeral between 31 and 99. The subject’s task is simply to
classify whether the Arabic numeral presented on the screen is larger or smaller than the
reference level of 65. Their main result is that as the stimulus numeral gets closer to the reference
level, response times increase and classification accuracy decreases. These results are consistent
with the noisy encoding of Arabic numerals, which lies at the foundation of both our model of

risk taking and that of KLW.

One notable feature of the Dehaene, Dupoux, and Mehler (1990) experiment is that the
stimulus distribution is held constant throughout the experiment. Here, we exogenously vary the
stimulus distribution, in much the same way that we varied the distribution of monetary amounts
in our previous experiment. We have a high volatility distribution (uniform over integers in the
range [31, 99]) and a low volatility distribution (uniform over integers in the range [51, 79]).
Subjects are incentivized to correctly classify whether each Arabic numeral, which we denote by
X, is larger or smaller than 65, over sixteen blocks of trials. The blocks alternate between the
high volatility condition and the low volatility condition. Each block consists of eighty trials, for

a total of 1,280 trials per subject (Figure 10).
[Place Figure 10 about here]

We pay subjects as a function of both their accuracy and their speed. In addition to a $7
participation fee, subjects earn a payoff of $(20xaccuracy — 10xavgseconds), where accuracy is

the percentage of correctly classified trials, and avgseconds is the average response time (in
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seconds) across all trials in the experiment.? In this design, the subject still needs to perceive the
value X, but there are no probabilities to encode, nor any need to integrate probabilities with
payoffs. Therefore, this design provides a clean setting in which we can test whether the

perception of an Arabic numeral, X, depends on the recently observed stimulus distribution.
IV.2. Experimental procedures

We recruited an additional N = 13 subjects from Caltech for this experiment. Before the
first block, subjects went through a set of ten practice trials to become familiar with the task. On
each trial, the stimulus numeral is displayed in white font against a black background, on the
center of the screen (Figure 10). Subjects were instructed to press one of two keys to indicate
whether the stimulus is smaller or greater than 65. After responding on each trial, a white
fixation cross appeared for 500 milliseconds, followed by the stimulus from the next trial. At the
end of each block of eighty trials, a progress screen appeared, which reported how many of the
sixteen blocks remained. The progress screen was self-paced, and subjects were given the
opportunity to take a break during this screen. The average earning, including the show-up fee,
was $20.58.

IV.3. Experimental results

Subjects accurately classified the stimuli on 90.4% of trials with an average response
time of 0.45 seconds. Figure 11 shows the proportion of trials that subjects classified the
stimulus as greater than 65, for each value of X. If subjects had accurately classified all stimuli,
the figure would generate a step function, with a single step at X = 65. Instead, the figure
replicates results from several previous experiments in the literature, which show that errors
decrease in the distance between the two numbers under comparison (Moyer and Landauer,
1967; Dehaene, Dupoux, and Mehler, 1990). To be clear, while it is unsurprising that subjects
make errors in general, the more important result is that the error rate is correlated with the

distance between the stimulus number and the reference level of 65. It is also worth noting that

10 From an experimental economics perspective, the fact that our design is incentive compatible provides a small
methodological improvement over similar past experiments in the literature on numerical cognition.
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the average subject from Caltech has very high mathematical aptitude, and thus the error rates

reported here are likely to be close to a lower bound for the error rates among other samples.!!
[Place Figure 11 about here]

Turning to a comparison of our two experimental conditions, we find that subjects
correctly classify stimuli on 91.4% of trials in the high volatility condition, and on 89.4% of
trials in the low volatility condition. A more informative statistic is the difference in accuracy
between conditions, when restricting to stimuli that are common to both conditions: 51 < X < 79.
This controls for the fact that, on average, trials in the high volatility condition are “easier,” in
the sense that the average distance to the reference level is greater than in the low volatility
condition. We find that accuracy among these trials in the high volatility condition is 86.5%,
which is significantly lower than the 89.4% accuracy in the low volatility condition (p-value =
0.004). This is consistent with the efficient coding hypothesis: in the low volatility condition,
subjects adapt and devote more coding resources to the concentrated range 51 < X < 79. In the
high volatility condition, subjects need to “spread” these coding resources over a wider range,
which leads to increased noise when encoding stimuli in the concentrated range (relative to the

low volatility condition).

A sharper test of the efficient coding hypotheses is to compare the slopes in Figure 10. As
in our previous experiment, we expect a steeper slope in the low volatility condition. The figure
provides suggestive visual evidence for a difference in slopes, and to formally test this, we run a
series of logistic regressions. The dependent variable in our logistic regression takes on the value
of one if the subject classified X as above 65, and zero otherwise. Column (1) of Table 3 shows
that the coefficient on ¢n(X/65) is significantly positive, which indicates that subjects’ propensity
to classify X as greater than 65 is increasing in /n(X/65). More importantly, we find that the
coefficient on the interaction term, /n(X/65)xhigh, is significantly negative, indicating that

choices are noisier on trials in the high volatility condition.

11 There is evidence that accurate perception of non-symbolic representations of numbers (e.g., a visual array of dots)
is positively correlated with mathematical aptitude (Halberda, Mazzocco, and Feigenson, 2008), though it is unclear
whether this correlation extends to tasks like ours that use symbolic numerical representations.
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[Place Table 3 about here]

To control for the difference in distributions of X, we re-estimate the regression using
data only in the range 51 < X < 79. When restricting to this range, the distribution of X on the
current trial is the same across conditions, and the only difference is the distribution of
previously encountered stimuli. Column (2) provides these estimation results, and we find the
slope remains steeper in the low volatility condition (though the difference in slopes is smaller

compared to the estimates using the full sample in Column (1)).

One assumption we make in interpreting the results in these first two columns, is that
there is no “external stimulus” noise: the stimulus number is displayed clearly on the screen and
the font is easy to read (as opposed to, e.g., fuzzy text). We assume that the noise that corrupts
the mental representation of the stimulus is based on the internal noise in the subject’s nervous
system. Nonetheless, it is plausible that comparing 59 with 65 may be easier than comparing 60
with 65, not because of the distance, but because the first digits are visually distinct. To address
this, we re-estimated the regression in Column (1) using only trials for which the first digit
differs from the first digit of the reference level: {X < 60, X > 70}. Column (3) shows that the
slope in the low volatility condition remains steeper, indicating that such a “first-digit” effect

cannot explain the full extent of the shift in slope.

To summarize this experiment, we find that the accuracy of classifying an Arabic
numeral is affected by i) the distance to a reference level, and ii) the distribution of previously
encountered stimuli. The latter result provides useful evidence supporting a basic assumption of
our model of risky choice. Specifically, in an experimental task where there is no need to encode
probabilities or integrate with payoffs, we find that choice sensitivity depends on the distribution

of previously encountered stimuli.

V. Conclusion

In this paper, we derive the implications for risk taking when the perception of payoffs is

noisy and governed by efficient coding. Our main theoretical contribution is to endogenize the
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likelihood function in the KLW framework, which can normatively justify why some payoffs are
encoded with more noise than others. Earlier work by Woodford (2012) provides a model of
efficient coding of risky payoffs, but in that model, imperfect perception is applied to the net
gain of a payoff. The model of KLW that we build on here instead assumes that the DM encodes
the absolute value of a symbolic number. This is a more realistic assumption, as the perceptual
system responsible for noisy encoding of numerosity is unlikely to support negative numbers
(Feigenson, Dehaene, and Spelke, 2004).12

To test our model, we conduct two laboratory experiments in which we find evidence
consistent with efficient coding of risky payoffs. Specifically, risk taking becomes more sensitive
to those payoffs that appear more frequently in the choice set. Such adaptation takes place
relatively quickly, on the order of five experimental trials. In our second experiment, where
subjects need only classify whether a stimulus is larger than a reference level, we find that
classification accuracy changes with the distribution of recently experienced numbers. This
provides evidence supporting our basic model assumption, that perception of numerical payoffs
IS noisy and changes across environments. In our model, this optimal change in perception is
driven by the entire stimulus distribution, but in reality, this process can only be approximately
implemented due to computational and data constraints. A better understanding of which features
of the payoff distribution are most important in driving adaptation is an important topic for future

work.

12 As in KLW, negative numbers can be accommodated in our model by first encoding the absolute value, and then
performing multiplication.
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Figure 1. The stimulus distribution and the likelihood function. The upper graph plots the
stimulus distribution of X according to (8). The middle graph plots the resulting likelihood
function L(X |Rx) according to (10), for Rx = 0.15, 0.2, 0.5, 0.8, and 0.85. The lower graph plots
the density function for Ry according to (11). The parameter values are: ux = 3.05 and ¢ = 0.1.
For the low volatility condition (plots on the left), ox = 0.15. For the high volatility condition
(plots on the right), ox = 0.4.
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Figure 2. A monotonic stimulus distribution and the resulting likelihood functions with
increasing dispersion. The upper graph plots a stimulus distribution of X taking the form of a
gamma distribution in (14). The middle graph plots the likelihood function implied by efficient
coding, according to (12), for Rx=0.15, 0.2, 0.5, 0.8, and 0.85. The lower graph plots the KLW
likelihood function in (13), for Ry=0.1, 0.5, 1.5, 2.2, and 2.4. The parameter values are: k=1, 0
=5,0=0.1,and v=0.15.
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Figure 3. The probability of risk taking as a function of £n(X/C). The figure plots, for each
volatility level of the stimulus distribution, ox = oc = 0.4, 0.8, and 1.5, the probability of risk
taking computed in (18) against the natural logarithm of X over C, /n(X/C). Specifically, for each
volatility level, C is set to exp(u, ++ o) while we change the value of X. The other parameter
values are: px = 3.05, e =2.35, p=0.59, and 6 = 0.1.
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Figure 4. The probability of risk taking as a function of X and C. The figure plots, for two
different volatility levels of the stimulus distribution, ox = oc = 0.19 (low volatility) and cx = 6¢c =
0.55 (high volatility), the probability of risk taking computed in (18) as a function of both X and
C. The parameter values are: px = 3.05, pc = 2.35, p=0.59, and 6 = 0.1.
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Figure 5. Indifference curves. Each curve plots the values C(X) for which the DM is indifferent
between the risky lottery and the certain option (that is, when Prob(risk taking | X,C(X))=0.5).
The red dotted line plots the values for a DM that exhibits noiseless perception (o = 0). The blue
line plots the values for a DM who exhibits noisy perception (c = 0.1). The parameter values are:
Mx = 3.05, e = 2.35, p= 0.59, ox = 0.55, and o¢ = 0.55.
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Figure 6. Subjective value function shifts with the stimulus distribution. The figure plots, for
X (left) and C (right), and for both o, =, =0.19 (low-volatility condition, in red) and

o, = o, = 0.55 (high-volatility condition, in blue), the subjective valuesv(X)andv(C), their one-
standard-deviation bounds v(X) +c(X)andv(C) +c(C), as well as the forty-five degree line.

The parameter values are: px = 3.05, pc = 2.35, and o = 0.1.
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8 blocks

High Volatility | —» Low Volatility | ——p» eesas —p High Volatility | —» Low Volatility

60 trials/block

example trial

$0

$10.42

2291

Figure 7. Experimental design for risky choice task. The task consists of eight blocks, which
alternated between a high volatility condition and a low volatility condition. In the example trial
screenshot above, the risky lottery is shown on the left, and the certain option is shown on the
right. In each trial, the subject has unlimited time to decide which of the two options she prefers.
After completing each block, the subject is allowed to take a self-paced break, after which the
next block begins.
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Figure 8. Average levels of risk taking across conditions. Data are pooled across trials and
subjects. For each of the two experimental conditions, we bin the ¢n(X/C) variable into two-
hundred bins such that each bin has an equal number of trials.
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Figure 9. Individual subject estimated treatment effects. For each subject, and each condition,
we run a logistic regression of the form: risky: = a + B-¢n(X¢/Ct)+<t. The x-axis measures the
estimated [ in the high volatility condition, while the y-axis measures the estimated f in the low
volatility condition. Each point represents a single subject, and the length of each black bar
denotes two standard errors of the mean. The blue line is the forty-five degree line.
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Figure 10. Experimental design for riskless choice task. The task consists of sixteen blocks,
which alternated between a high volatility condition and a low volatility condition. On each trial,
the subject is incentivized to classify as quickly and accurately as possible, whether the stimulus
integer is larger or smaller than the number 65. In the high volatility condition, the integers are
drawn uniformly from [31, 99], while in the low volatility condition, the integers are drawn
uniformly from [51, 79].
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Figure 11. Classification of numbers in riskless choice task. The x-axis denotes the integer X
that is presented on each trial. The y-axis denotes the proportion of trials for which the subject
classified the integer X as greater than 65. Data are disaggregated by high and low volatility
condition. In the high volatility condition, the integers are drawn uniformly from [31, 99], while
in the low volatility condition, the integers are drawn uniformly from [51, 79].
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Panel A

1) 2 (3) 4) () (6)
Dependent variable: "Choose Alld 0.02<¢n(X/C)<136 | First half of block d half of block | Fi ials of each block | First trial of each block
risky lottery” ata . 2 . First half of blocl Second half of blocl First 10 trials of eac C First trial of eacl C
high 0.99%** 0.68%** 0.84%** 1.15%** 1.10%** 2.05%*
(0.28) (0.26) (0.30) (0.32) (0.29) (1.04)
/n(X/C) 4.21*** 4.21*** 4.05*** 4.37*** 3‘94*** 5.05***
(0.62) (0.62) (0.62) (0.65) (0.70) (1.27)
{n(X/C)xhigh —1.35%%* —0.92%** —1.11%x* —1.59%** —1.14%** —2.43**
(0.38) (0.32) (0.40) (0.42) (0.41) (1.22)
Constant —3.38*** —3.38%** —3.26%** —3.51%** —3.26%** —4.15%*
(0.47) (0.47) (0.47) (0.50) (0.50) (0.96)
Pseudo R -squared 0.17 0.13 0.18 0.17 0.17 0.19
Observations 15,840 14,101 7,920 7,920 2,640 264
Panel B
€ e (3 4 (5)
Dependent variable: "Choose . . . L
. , All data First half of block | Second half of block | First 10 trials of each block | First trial of each block
risky lottery’
high -0.10 -0.20 -0.01 0.03 -0.42
(0.29) (0.30) (0.33) (0.49) (1.18)
X 0.18*** 0.19*** 0.17*** 0.18*** 0.21%**
(0.03) (0.03) (0.03) (0.03) (0.07)
C —0.41%** —0.42%** —0.41%** —0.39*** —0.54***
(0.06) (0.07) (0.06) (0.07) (0.14)
Xxhigh —0.08*** —0.09*** —0.08*** —0.07*** —0.13**
(0.02) (0.02) (0.02) (0.03) (0.06)
C xhigh 0.18*** 0.19*** 0.16*** 0.17*** 0.34**
(0.04) (0.04) (0.04) (0.04) (0.14)
Constant 0.03 -0.05 0.12 -0.19 0.59
(0.42) (0.43) (0.45) (0.53) (1.19)
Pseudo R -squared 0.15 0.15 0.15 0.15 0.16
Observations 15,840 7,920 7,920 2,640 264

Table 1. Logistic regressions of probability of risk taking. In both panels A and B, the
dependent variable takes the value of one if the subject chose the risky lottery, and zero if the
subject chose the certain option. The dummy variable high takes the value of one if the trial
belongs to the high volatility condition, and zero if it belongs to the low volatility condition.
Standard errors are clustered at the subject level, and ***, ** * denote statistical significance at
the 1%, 5%, and 10% levels, respectively.
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1) ) ©)) (4)
Dependent valrcl) ZZI;:'Choose risky All data First and last 20 trials First and last 10 trials First and last 5 trials
n(X/C) 3.07*** 3.10%** 3.41%** 3.40%**
(0.46) (0.46) (0.49) (0.50)
n(X/C)xoutlier —0.39** —0.38** —0.61*** -0.70*
(0.18) (0.127) (0.23) (0.41)
¢n(X/C)xsecond -0.08 -0.08 -0.53** —0.63***
(0.09) (0.13) (0.21) (0.27)
¢n(X/C)xsecond xoutlier 0.15 0.02 0.57* 1.14**
(0.18) (0.20) (0.31) (0.53)
Constant _2.51*** _2.47*** _2.53*** _2.43***
(0.37) (0.36) (0.35) (0.38)
Pseudo R -squared 0.25 0.25 0.27 0.27
Observations 5,940 3,960 1,980 990

Table 2. Adaptation and sensitivity to outliers. Logistic regression results using only data
from the high volatility blocks (except for the first block, which does not have an immediately
preceding low volatility block). The dependent variable outlier takes the value of one if the value
of /n(X/C) is more than three standard deviations from the mean, where these statistics are
calculated using the sample moments from the sixty trials in the immediately preceding low
volatility block. The dummy variable second takes the value of one if the trial belongs to the
second half of the block (trials 31-60), and zero if it belongs to the first half of the block (trials 1-
30). Standard errors are clustered at the subject level, and ***, ** * denote statistical
significance at the 1%, 5%, and 10% levels, respectively.
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1) (2) 3)
Dependent variable: "Classifiy as greater than 65" All data 51 <X <79 X <60orX >70
high 0.00 0.04 -0.07
(0.02) (0.05) (0.04)
In(X/65) 19.53*** 19.53*** 17.45%**
(2.09) (2.09) (1.58)
In(X/65)xhigh —9.71%** —3.56*** —7.98***
(1.11) (0.95) (0.69)
Constant 0.20*** 0.20%** 0.30***
(0.07) (0.07) (0.08)
Pseudo R -squared 0.53 0.48 0.63
Observations 16,640 11,892 12,807

Table 3. Classification in riskless choice task. Logistic regression where the dependent
variable takes the value of one if the subject classified the stimulus, X, as larger than 65, and zero
otherwise. The dummy variable high takes the value of one if the trial belongs to the high
volatility condition, and zero if it belongs to the low volatility condition. In the high volatility
condition, the integer X is drawn uniformly from [31, 99], while in the low volatility condition,
the integer is drawn uniformly from [51, 79]. Standard errors are clustered at the subject level,
and *** ** * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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Appendix A: Theoretical Derivations
A.1l. Properties of p(Rx)
Given p(X; w, ox) in (8) and p(Rx | X) in (10), the distribution of Ry can be derived as

p(R) =], P(R,1X)p(X)dX

zzij:exp[—@«mx_“*)/G*)_RX)ZJ 1x exp[—wjdx (Al)
o G

2
20 . o,

_ L el L @RI [V
=5 Io exp( = jexp[ > jdy.

Notice that this expression does not depend on distribution parameter p, and ox. Furthermore, this
“invariance” result is a general statement independent of the specific assumption of lognormal
distribution for p(X): all continuous stimulus distributions lead to the same p(Ry). To see this, we write in
general

PR, 1X)=g(]” p(y)dy-R,). (A2)
Then
p(R) =], P(R I X)p(X)dX

=["9([” p(y)dy-R)p(X)dX = [ g(z-R)dz, (A3)

X
where z= LO p(y)dy.

This equation makes it clear that not only is the case that p(Rx) does not depend on pix and oy, it does not
depend on the entire shape of the distribution p(X). A sufficient condition for this “invariance” result is
that i) the likelihood function is location-independent in the sensory space (as we assume in equation (5)
in the main text), and ii) the transformation function from stimulus space to the sensory space is the
cumulative density function of the stimulus value.

Next, we look at the asymptotic behavior of p(Rx) as o goes to zero. From (A3) we know that

1 0<R <1

- (Ad)
0 otherwise

p(R,) = Iolg(z - Rx)dzw)jolg(z ~R )dz :{

where 3(-) represents the Dirac delta function. That is, in the limiting “noiseless” case, p(Rx) converges to
a uniform distribution between zero and one.
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Appendix B: Experimental Instructions

B.1. Instructions for Risky Choice Task

Experiment Instructions

Thank you for participating in this experiment. Before we begin, please turn off all cell phones
and put all belongings away. For your participation, you have already earned $7, and you will have the
opportunity to earn more money depending on your answers during the experiment.

In the experiment, you will be asked to make a series of decisions about choosing a “risky gamble” or a
“sure thing”. The risky gamble will pay a positive amount with 59% chance, and $0 with 41% chance.
The amount shown for the sure thing will be paid with 100% chance, if chosen. Below is an example
screen from the experiment:

$0

$10.42

$22.51

In this example, the risky gamble pays $22.51 with 59% chance, and $0 with 41% chance. The sure thing
pays $10.42 with 100% chance. You will be asked to select one of the two options for each question in
the experiment. The experiment is broken down into eight parts, and each part contains sixty questions.

At the end of the experiment, one trial will be randomly selected, and you’ll be paid according to your
decision on that trial. For example, if the above trial was chosen, and you selected the sure thing you
would be paid a total of $10.42 + $7 = $17.42. If instead you chose the risky gamble, you’d be paid either
$7 or ($22.51 + $7) = $29.51, depending on which outcome the computer randomly selects. Before we
begin, you will see 10 practice trials to familiarize yourself with the software. These 10 practice trials will
not count towards the real experiment.
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B.2. Instructions for Riskless Choice Task

Experiment Instructions

Thank you for participating in this experiment. Before we begin, please turn off all cell phones
and put away all belongings until the end of the experiment. For your participation, you have already
earned $7, and you will have the opportunity to earn more money depending on your answers during the
experiment.

In the experiment, you will see a series of numbers and will be asked to classify whether the number is
larger or smaller than the number “65”. If the number is larger than 65, press the “?” key, and if it is
smaller than 65, press the “z” key. At the end of the experiment, you will be paid depending on the speed
and accuracy of your classifications. Specifically, you will be paid:

Payout = $(20x accuracy — 10 x avgseconds),

where “accuracy” is the percentage of trials where you correctly classified the number as larger or smaller
than 65. “avgseconds” is the average amount of time it takes you to classify a number throughout the
experiment, in seconds. For example, if you correctly classified all trials and it took you 0.3 seconds to
respond to each question, you would earn $(20x 100% — 10x0.3) = $17.00 (plus the $7 show-up fee). If
instead you only answer 75% of the questions accurately and took 1 second to respond to each question,
you would be paid $(20x 75% — 10x 1) = $5.00 (plus the $7 show-up fee). Therefore, you will make the
most money by answering as quickly and as accurately as possible.

The experiment will be separated into sixteen parts, and each part will contain 80 trials. In between each
part, you can take a short (~1 minute) break, and then continue at your own pace. When you finish all
sixteen parts, please raise your hand and do not disturb other subjects.

Before you begin the experiment, you will go through 10 practice trials to familiarize yourself with the
software. These 10 practice trials will not be counted when computing your final payout.
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