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Abstract: We present a model of risky choice in which the perception of a lottery payoff is noisy and 
optimally depends on the payoff distribution to which the decision maker has adapted. The perceived value 
of a payoff is precisely defined according to a core idea in neuroscience called the efficient coding 
hypothesis, which indicates that more perceptual resources are allocated to those stimuli that occur more 
frequently. We show that this principle implies that, for a given choice set of lotteries, risk taking varies 
systematically with the recently encountered distribution of payoffs. We test our model in two laboratory 
experiments. In the first experiment, we manipulate the distribution from which payoffs are drawn. 
Consistent with efficient coding of lottery payoffs, we find that risk taking is more sensitive to payoffs that 
are encountered more frequently in the choice set. Furthermore, sensitivity to extreme payoffs is initially 
small, but grows over time after repeated exposure. Our second experiment consists of a purely perceptual 
task, in which subjects classify which of two symbolic numbers is larger. We find that accuracy depends 
on the distribution of numbers to which the subject has adapted, which provides support for our key model 
assumption that perception of numerical payoffs is noisy and changes across environments. 
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I.        Introduction 

When choosing between two lotteries, the decision maker (called “DM” hereafter) first 

perceives the set of payoffs from each lottery, and then executes a decision. Because there are 

constraints on the degree to which the brain can process information, the perception of numerical 

payoffs is inherently imperfect (Dehaene, 2011). Understanding precisely how these constraints 

affect perception has the potential to generate new insights about risk taking, and in particular, its 

instability over time. For example, decades of experiments have shown that one source of 

instability is the sequence of past outcomes that the subject experiences: past gains and losses 

have a systematic effect on subsequent risk taking (Thaler and Johnson, 1990; Weber and 

Camerer, 1998; Imas, 2016). A different potential source of instability is variation in perception, 

which can occur independently of past outcomes or changes in wealth.  

Why would the DM’s perception of a given risky payoff vary across different 

environments? If the mechanism used for perceiving payoffs is similar to the one used for 

perceiving sensory stimuli such as light or sound, then it may in fact be optimal to hold different 

perceptions of the same payoff in different environments. Specifically, a core idea in 

neuroscience called the efficient coding hypothesis states that the brain should allocate resources 

so that perception is more sensitive to those stimuli that are expected to occur more frequently 

(Barlow, 1961; Laughlin, 1981). This principle explains why we are temporarily “blinded” when 

moving from a dark room to a brightly lit one, because resources have not yet been adjusted for 

perceiving objects in the new bright environment. If the efficient coding hypothesis extends to 

the domain of risky choice, this can provide a normative explanation for the systematic variation 

of risk taking across environments. 

In this paper, we present a model of choice under risk in which the perception of payoffs 

is governed by efficient coding; we then test the model experimentally to assess whether risk 

taking varies with the recently encountered payoff distribution. Our model builds on the recent 

theoretical work of Woodford (2012) and Khaw, Li, and Woodford (2018) (hereafter “KLW”), 

who assume that the perception of risky payoffs is imperfect and is estimated through Bayesian 

inference. Our main theoretical contribution is to provide, within the KLW framework, a 
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microfoundation for imperfect perception of risky payoffs that is governed by efficient coding. 

Specifically, we derive the optimal set of likelihood functions according to a capacity constraint 

and the payoff distribution to which the DM has adapted. This jointly constrains the DM’s prior 

and the likelihood functions through the distribution of payoffs, which provides an extra layer of 

discipline in the Bayesian framework (Wei and Stocker, 2015; 2017). We then show 

theoretically that, for a given choice set, risk taking will vary systematically with the payoff 

distribution to which the subject has adapted. Our main theoretical prediction is that both 

perception and risk taking are more sensitive to payoffs that are more likely to appear in the 

DM’s choice set. 

An important consequence of this result is that the subjective value function is malleable, 

and undergoes precisely defined changes when there is a shift in the payoff distribution. For 

example, if the upside of a risky lottery is often in the range between $10 and $20, then 

perceptual resources are allocated towards discriminating between payoffs in this range. In this 

same environment, if the upside is occasionally increased from $30 to $40, then risk taking will 

not increase much because the DM’s perceptual system cannot easily distinguish between these 

two infrequent amounts. However, if the overall distribution of payoffs changes, so that the 

upside frequently falls between $30 and $40, then the DM perceives this difference to be large, 

and risk taking will increase substantially when the upside is increased from $30 to $40. Thus, 

diminishing sensitivity emerges as part of the optimal solution of allocating resources away from 

payoffs that are unlikely to appear in the choice set. As in Woodford (2012) and KLW, our 

model predicts that the value function is itself stochastic, but our efficient coding criterion makes 

additional predictions about the shape and the noise structure of the value function as we change 

the payoff distribution.  

To test our theory, we conduct a laboratory experiment in which subjects make a series of 

decisions between a risky lottery and a certain option. We experimentally manipulate the 

distribution of risky payoffs across two conditions: one in which payoffs in the choice set are 

drawn from a distribution with high volatility, and another in which the distribution has low 

volatility. We find that, within subjects, risk taking is more sensitive to payoffs in the low 
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volatility condition, compared to the high volatility condition. This is consistent with our main 

theoretical prediction, that risk taking is more sensitive to payoffs that are expected to appear in 

the choice set more frequently. 

We also find that after the payoff distribution switches from low volatility to high 

volatility, the sensitivity to extreme payoffs increases over time. This suggests that the 

perception of an “outlier payoff” is time-varying: extreme values which begin to appear more 

frequently are no longer perceived as outliers, and thus are subject to less noisy encoding. Our 

data indicate that this change in perception occurs relatively quickly, within five trials (Payzan-

LeNestour and Woodford, 2018). Conversely, we find evidence that the sensitivity to 

intermediate payoffs decreases over time in the high volatility condition. The interpretation here 

is that as intermediate values become less frequent (relative to the low volatility condition), 

perceptual resources are allocated away from these intermediate values. Overall, our 

experimental results provide novel evidence that the perception of risky payoffs depends on the 

recently encountered payoff distribution, similar to how our perception of light depends on the 

environment to which our eyes have recently adapted.  

While we formally present the full model later in the paper, we briefly explain the key 

assumptions and mechanisms here. There are two basic building blocks of our model. First, as in 

KLW, we assume the decision maker encodes the absolute value of each risky payoff with noise, 

conditional on the choice set that is perfectly observable to the econometrician. Specifically, 

when the DM is presented with a choice set in which a risky lottery pays X dollars in some state, 

we assume that the DM perceives this payoff as some noisy mental representation, Rx, which is 

governed by a probability density function p(Rx | X). This assumption captures a fundamental 

feature of numerical cognition, which holds that our perception of numerical quantities is noisy, 

even when these quantities are presented in symbolic formfor example, through Arabic 

numerals (Dehaene, 2011).  

The second building block is that the DM understands that numerical quantities are 

encoded with noise, and unconsciously performs Bayesian inference to form an optimal estimate 
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of the numerical payoff under consideration. This assumption may appear heroic, but it is guided 

by the literature on sensory perception which finds a tight link between quantitative predictions 

from a Bayesian framework and data from controlled experiments (Stocker and Simoncelli, 

2006; Girshick, Landy, and Simoncelli, 2011; Dehaene, 2014; Wei and Stocker, 2015; 2017).  

We assume that the DM forms a prior through learning the distribution of previously encountered 

payoffs, and we endogenize the likelihood function through efficient coding. Interestingly, for 

some prior distributions, the likelihood functions that we derive exhibit logarithmic compression, 

which resembles the likelihood functions that are assumed in KLW. A key difference, however, 

is that our likelihood functions are inextricably linked to the parameters of the payoff distribution 

to which the DM has adapted. Once the DM performs Bayesian inference on the payoffs from 

each lottery, she chooses the lottery with the maximum expected value, conditional on the 

optimal estimate of each payoff. 

 The model we present here is meant to capture intuitive judgments about choice under 

risk, such as the judgments between simple gambles that Kahneman and Tversky (1979) sought 

to explain with prospect theory. Our model does not apply to all decisions under risk, and in 

particular, it should not be applied to high stakes decisions that are based on explicit symbolic 

calculations. These decisions are less affected by the imperfect perception that drives our model, 

and instead are likely to be governed by a separate decision-making system. At the same time, 

our model is not necessarily confined to low stakes decisions, and we believe that it is reasonable 

to apply in situations similar to those where prospect theory has found success (see Barberis 

2013 for a review).     

Within our model, there are two limitations worth emphasizing. First, the model is not 

dynamic and thus makes no explicit predictions about how the speed with which the DM adapts 

to new environments affects risk taking. Instead, our model makes precise comparative static 

predictions, which we use to guide our experimental design. Second, we assume that only 

payoffs are subject to noisy encoding, but that probabilities are perceived without noise. This 

assumption is for simplicity, and in reality, state probabilities are also likely to be encoded with 

noise. To further test whether our experimental results are indeed generated by the noisy 
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encoding of payoffs, we run an additional experiment in which the subject still needs to perceive 

numerical quantities, but there is no need to perceive probabilities or integrate them with payoffs. 

We run a riskless choice experiment where we incentivize subjects to classify whether a 

sequence of numbers is above or below a reference number. We find that even in this simpler 

environment, accuracy depends on the distribution of numbers to which the subject has adapted. 

For a given number, subjects exhibit greater classification accuracy if the number has occurred 

more frequently in the recent past. This provides some support for our basic model assumption 

that the perception of numerical symbols is noisy and changes across environments.  

Our paper contributes to a recent literature that examines the effect of imperfect 

perception and Bayesian inference on economic choice. Gabaix and Laibson (2017) show 

theoretically that a DM with a discount rate of one will appear impatient if payoffs delivered 

farther in the future are perceived with more noise. Woodford (2012) and KLW provide a 

framework in which a DM with linear utility can appear risk averse if payoffs are encoded with 

noise. Steiner and Stewart (2016) show that Bayesian inference can generate an overweighting of 

small probability events, as in prospect theory.1 Both of our experiments provide evidence that 

supports the type of perceptual processes proposed in these Bayesian models of economic 

choice.  

 Our results also contribute to a literature that uses attention and basic neural 

computations to constrain patterns of risky choice (Bordalo, Gennaioli, and Shleifer, 2012; 2017; 

Tymula and Glimcher, 2017; Landry and Webb, 2018). A particularly relevant neural 

computation is that of normalization, in which the brain normalizes stimulus values according to 

the distribution of values in the environment. Several experiments have found evidence 

consistent with normalization in the brain (Tobler, Fiorillo, and Schultz, 2005; Carandini and 

Heeger, 2012; Rangel and Clithero, 2012; Louie and Glimcher, 2012), but there is less evidence 

that this process has an associated effect on behavior. Khaw, Glimcher, and Louie (2017) show 

that the valuation of consumer items negatively correlates with the average value of recently 

                                                           
1 In related work, Bhui and Gershman (2018) show how efficient coding can provide a normative foundation for a 
model of multi-attribute decision making called decision by sampling (Stewart, Chater, and Brown, 2006). 
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encountered items, and Polania, Woodford, and Ruff (2018) show that valuation depends on the 

entire distribution. Here, we demonstrate that these adaptation effects extend into the domain of 

risky choice.2 

The paper proceeds as follows. In Section II, we lay out the basic elements of the model. 

Section III examines the model’s implications. Section IV describes the main experiment of the 

paper, a risky choice experiment, and discusses its results. Section V follows with a riskless 

choice experiment. Section VI concludes and suggests directions for future research.  

II.        The Model 

In this section, we develop a model of risky choice based on efficient coding and 

Bayesian decoding, following the recent work of KLW and Wei and Stocker (2015, 2017).  

II.1. Choice environment 

 The DM faces a choice set that contains two options: a certain option and a risky lottery. 

The certain option, denoted as (C, 1), pays C dollars with certainty. The risky lottery, denoted as 

(X, p; 0, 1 − p), pays X dollars with a probability p and zero dollars with the remaining 

probability 1 − p. The DM’s task is to choose between these two options. 

Under expected utility theory, a DM with utility U(⋅) chooses the risky lottery over the 

certain option if and only if   

 ( ) (1 ) (0) ( ).p U X p U U C⋅ + − ⋅ ≥   (1) 

Conditional on X, C, and p, the DM’s choice is non-stochastic.  

 Motivated by the literature on sensory perception, we assume that the DM imperfectly 

perceives the payoffs of X and C (Deheane, 2011; Girshick et al., 2011; Wei and Stocker, 2015).3 

                                                           
2 See Payzan-LeNestour, Balleine, Berrada, and Pearson (2016) for experimental evidence on adaptation to variance, 
and Zimmermann, Glimcher, and Louie (2018) for evidence on adaptive behavior in monkeys in the realm of risky 
choice. 
3 Further evidence for this assumption comes from recent experimental work which demonstrates that humans have 
single neurons that selectively and stochastically respond to “preferred” numbers (Kutter, Bostroem, Elger, 
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Specifically, before observing the choice set, the DM has a prior over the distributions of X and 

C.4 Upon observing the choice set, the presentations of X and C elicit a noisy sensory 

representation of X, Rx, and a noisy sensory representation of C, Rc, each randomly drawn from a 

distinct likelihood function; this process of creating a sensory representation of a stimulus value 

is called encoding. The DM then uses Bayesian inference to form optimal estimates of X and C, 

[ | ]xX R   and [ | ;]cC R   this process of combining priors with the likelihood functions to form 

posterior beliefs is called decoding.5 As in KLW, we further assume that the DM has linear 

utility, and thus chooses the risky lottery if and only if | ].[ ]| [x cX R Rp C>⋅     

 It is worth noting that the encoding process described above is conditional on the values 

of X and C, which we assume are perfectly observable to the econometrician.  This is different 

from learning about the realizations of X and C in future choice sets. We also note that, because 

the encoding process is noisy, sensory representations Rx and Rc vary from trial to trial 

conditional on X and C. Given this, the DM’s choice between the certain option and the risky 

lottery is intrinsically stochastic. 

II.2. The likelihood function 

 Consider a probability density function of a noisy representation m for a given stimulus 

value θ. We denote such a function as p(m|θ). The likelihood function mentioned above is then 

formally defined as  

 ( | ) ( | ).L m p mθ = θ   (2) 

This function governs the likelihood for each stimulus value θ conditional on the noisy 

representation m. We assume an efficient coding criterion proposed in Wei and Stocker (2015) to 

constrain the likelihood function. This criterion requires   

                                                           
Mormann, and Nieder, 2018). Such “number neurons” are likely to generate the noisy perception of symbolic 
numbers.    
4 We assume in this model that the probability p is perceived without noise. In our experimental design in Section 
IV, we set p to a constant across trials so that, through learning, it is plausible that the DM perceives the precise 
value of p.  
5 See von Helmholtz (1925), Curry (1972), and Knill and Richards (1996) for earlier work on sensory perception as 
a form of Bayesian inference. 
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 (( ) ),pJ θ ∝ θ   (3) 

where Fisher information J(θ) is given by  

 
2n ( | )) )( ( | ,p m p dmJ m∂ θ θ = θ ∂θ ∫

   (4) 

and p(θ) is the true probability density function of the stimulus value θ.  

 Intuitively, Fisher information J(θ) measures the amount of coding resources allocated 

towards accurate perception of a given stimulus value θ. As a result, the efficient coding 

condition (3) implies that encoding accuracy is greater for stimulus values that occur more 

frequently.  

 To find a likelihood function for a fixed distribution p(θ) that satisfies the efficient 

coding condition in (3), we transform the stimulus space into a “sensory space” through a change 

of variable ( ),Fθ = θ  where (( ) )p y dyF
θ

−∞
θ = ∫  is the cumulative density function of θ. It is easy 

to show that the efficient coding condition is satisfied in the sensory space if the transformed 

likelihood function |( )L mθ is location-independent:  

 ( | ) ( ),L m g mθ = θ −    (5) 

where )(g ⋅ is some smooth density function that integrates to one.   

 In this paper, we further assume that )(g ⋅ takes the form of a normal probability density 

function  

 
2

2

1 1 (
22

)( ) exp ,m mg m −
   θ − θ −

θ − ≡ φ =   σ σ σπ ⋅σ   

 

   (6) 

where φ(⋅) stands for the probability density function of a standard normal distribution, m takes 

the range of (−∞, ∞), and parameter σ represents the amount of coding resources available to the 

DM: a lower σ means a larger amount of coding resource available, and therefore a narrower 

likelihood function.6  

                                                           
6 Our model’s implications are qualitatively robust to the assumption that g(⋅) is normal; other forms of smooth 
function lead to similar implications.  
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 Given that the DM’s objective is to decode in the stimulus space, we need to transform 

( | )L mθ  back to ( | ),L mθ which simply requires  

 
2

2

) )( | ) ( ( ) ) e1 ( (x .
22

p mL m g F Fm
 θ −

θ = θ − =  σπ ⋅σ  
−   (7) 

 In the context of our choice environment, we assume that the probability density 

functions of X and C are lognormal 

 

2

2

2

2

( n( ; ) exp ,
2

( ; ) exp

)1,
2

( n )1,
2

.
2

c

cc

x
x x

xx

c c

p X

p

X

C
C

X

C

−
−

−
−

 µ
µ σ =  σπ ⋅σ  

 µ
µ σ =  σπ ⋅σ  





 (8) 

We now construct the likelihood functions for X and C. First, the cumulative density 

functions that we use for the transformation are 

 
0

0

( ; ) ( ; ) n, ,

n

,

( ; ,, ) ,( ; )

X x
x x x x

x

C

c c c
c

c
c

F X p y dy

F C p y d

X

Cy

 µ
µ σ ≡ µ σ = Φ  σ 

 µ
µ σ ≡ µ σ = Φ  σ

−

 

−

∫

∫





  (9) 

where Φ(⋅) stands for the cumulative density function of a standard normal distribution. We then 

follow (7) to construct the likelihood functions as 

 

2

2

2

2

(( n ) / ) )( | ) ( exp ,

(( n ) / ) )(

(1| )
22

(| ) ( exp
22

.1| )

x x x
x x

c
c

c c
c

X RL X R p R

C RL

X

p CC R R

 Φ µ σ −
=  σπ ⋅σ  

 Φ µ

−
=

σ −
=  σπ ⋅σ 

−

−
= −







 (10) 

The expressions in (10) characterize the likelihood functions for each value of X and C in the 

stimulus space, and we emphasize that they depend directly on parameters of the stimulus 

distributions, µx, σx, µc, and σc.  

To illustrate these likelihood functions, we plot in Figure 1 the stimulus distribution of X 

and the resulting likelihood function )( | xL X R given several values of Rx, for a low volatility 
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distribution (σx = 0.15) and a high volatility distribution (σx = 0.4). To get a sense of the relative 

magnitude for the values of Rx, we also plot the distribution of Rx defined as 

 
0

| ) ( )( ) ( .x x X p X dp p R XR
∞

= ∫  (11) 

It is easy to check that, under assumptions of (8) and (10), the shape of p(Rx) does not depend on 

µx and σx. More broadly, the shape of p(Rx) does not depend on the shape of the stimulus 

distribution: all continuous stimulus distributions lead to the same p(Rx). Furthermore, as σ goes 

to zerothat is, as the amount of coding resource available goes to infinityp(Rx) converges to 

a uniform distribution between zero and one. A more detailed discussion of properties of p(Rx) is 

left to the Appendix. 

 [Place Figure 1 about here] 

 Figure 1 highlights some important features of the likelihood function .( | )xL X R  For a 

given stimulus distributionthat is, holding µx and σx fixedthe shape of the likelihood 

function depends heavily on the sensory representation Rx. Moreover, for a fixed value of Rx, 

shifting the stimulus distributionin particular, shifting σxalters the shape of the likelihood 

function. For example, a higher standard deviation of the stimulus distribution results in higher 

dispersion of the likelihood function.      

 It is useful to compare the likelihood function we derive to the one assumed in the model 

of KLW. As discussed above, for a continuous stimulus distribution p(X) over the range of [0, 

∞), the cumulative density function is
0

( ) ( ) .
X

F X p y dy= ∫ The corresponding likelihood function 

is  

 
2

2

) )( | ) ( ( ) ) e ( (1 xp
22

.x
x x

F X RL X R g F X R
 −

= − =  σπ ⋅ 
− 

σ 
  (12) 

In comparison, the KLW likelihood function is  

 
2

2( exp ,( n )1| )
22

x
KLW xL RX X R−

= −
 
 νπ ⋅ν  



 (13) 
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where ν is a positive coefficient. This likelihood function captures the well-established finding of 

“scalar variability,” whereby larger numbers are encoded with more noise than smaller numbers 

(Dehaene, 2011). When comparing (12) with (13), one can see that the two likelihood functions 

are, in general, quite different. However, when F(X) and nX have similar shapes, the likelihood 

function derived from efficient coding will resemble the KLW likelihood function. In particular, 

because the derivative of nX is 1/X, which is a monotonically decreasing function, we 

conjecture that a monotonically decreasing stimulus distribution p(X) will generate a likelihood 

function that resembles the one assumed in KLW.   

 In Figure 2, we present a specific example with the stimulus distribution taking a form of 

a gamma distribution 

 1 /( ; , )
( )

1 ,k
k

Xp X k X
k

e− θ−θ =
Γ θ

 (14) 

where Γ(⋅) is the gamma function, θ > 0 and k > 0. We choose parameter values for θ and k so 

that p(X; k, θ) is a monotonically decreasing function.  

[Place Figure 2 about here] 

 Figure 2 shows that, with a monotonic stimulus distribution, the likelihood functions in 

(12) (middle panel) and the KLW likelihood functions (bottom panel) look reasonably similar.7 

One difference, however, is that for right-tail values of Rx, efficient coding tends to generate 

likelihood functions that are more positively skewed compared to the likelihood functions in 

KLW. More generally, the likelihood functions in KLW are invariant to the parameters θ and k, 

whereas efficient coding implies that the likelihood functions will depend closely on the entire 

shape of the stimulus distribution.  When comparing Figures 1 and 2, one can see that efficient 

coding implies very different likelihood functions when the stimulus distribution is lognormal, 

                                                           
7 Dehaene and Mehler (1992) provide evidence that a monotonically decreasing distribution provides a good 
approximation of the distribution of numbers in natural settings. This suggests that scalar variability may arise as a 
consequence of efficient coding when combined with the distribution of naturally occurring numbers. The 
monotonic decline in the frequency of numbers holds across different cultures, with the exception that there are 
small increases at round numbers such as 10, 20, and 50.  
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compared to when it is monotonic.  For the rest of the paper, we retain the assumption of (8) that 

the stimulus distribution is lognormal.  

 We conclude our discussion on the likelihood function by making a remark on 

adaptation. Notice first that our model is static. As a result, it does not make explicit predictions 

about how the likelihood function evolves over time. However, the comparative static 

predictions of the model shed light on the perception of outliers. Figure 1 above shows that, 

when the stimulus distribution has a low volatility of σx = 0.15, the value X = 30 is perceived as 

an outlier for frequently occurring values of Rx, because it is located in the right tail of the 

associated likelihood functions. However, when the stimulus distribution has a higher volatility 

of σx = 0.4, the value X = 30 is much less of an outlier as the likelihood functions become more 

dispersed and they assign higher likelihood to the value X =30. This comparative static result 

suggests that as the DM adapts to a different payoff distribution, her perception of outliers 

changes. 

II.3. Bayesian decoding 

The likelihood functions derived in the previous section, in conjunction with prior beliefs 

of the true stimulus distribution, can be used for Bayesian decoding of the realized sensory 

representations. That is, estimates of X and C conditional on Rx and Rc, [ | ]xX R  and [ | ],cC R  are 

given by 

 
0

0

0

0

( ) ( )
[ |

( ) (

|
]

| )

x
x

x

p p X XdX
X R

p p X

R X

R X dX

∞

∞= ∫
∫

    (15) 

and 

 
0

0 0

0

|( ) ( )
[ | ,

( ) ( )
]

|

c
c

c

p R p C CdC
C R

p R p C

C

C C d

∞

∞= ∫
∫

    (16) 

where 0 ( )p X and 0 ( )p C are the DM’s prior beliefs about X and C. Here, we equate these priors 

with the true stimulus distributions described in (8) 
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 0 0( ) ( ; , ), ( ) ( ; , ).c cx xp pX p X C p Cµ = µ σ= σ   (17) 

We assume that learning leads the DM to adapt her priors to the true stimulus distribution. While 

we do not explicitly incorporate the adaptation process in our model, we provide some 

experimental evidence of the speed of adaptation in Section IV. 

Because the DM has linear utility by assumption, she chooses the risky lottery over the 

certain option if [ | ].]| [x cX R Rp C>⋅    Conversely, she chooses the certain option if 

[ | [ | ].]x cX Rp C R⋅ ≤     

A key feature of our model is that we jointly constrain both the prior and the likelihood 

functions by the true stimulus distribution. It follows that shifting the true stimulus distribution 

affects both the encoding and the decoding process.  In the next section, we develop the model’s 

implications for risky choice behavior. 

III.        Model Implications 

In this section, we examine the implications of the model. We begin by studying how the 

probability of choosing the risky lottery changes with the stimulus payoff distribution. We then 

look at the model’s implication for risk preferences. Finally, we discuss the subjective value 

function derived from the model. 

III.1. Probability of risk taking 

 Conditional on X and C, the sensory representations Rx and Rc are drawn from the 

probability density functions ( | )xp R X  and ( | ).cp R C  For given Rx and Rc, the DM chooses 

between the risky lottery and the certain option based on (15), (16), and (17). Holding X, C, and 

the stimulus distribution fixed, we can compute the probability of risk takingthat is, the 

probability of choosing the risky lottery over the certain optionover many realizations of Rx 

and Rc 

 [ | ] [{ ]}|rob(  | , ) ( ) ( .| )|
x c x x cX R C R cprisk ta X C dRking X C p R p R dR

∞ ∞

⋅ >−∞ −∞
= ∫ ∫ 1  



 (18) 
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 To understand the determinants of the probability of risk taking, Figure 3 plots this 

probability against the natural logarithm of X over C, n(X/C), for different volatility levels of the 

stimulus distribution: σx = σc = 0.4, 0.8, and 1.5. Specifically, for each volatility level, we set C 

to 1
2

2exp( )c c+µ σ while changing the value of X. 

[Place Figure 3 about here] 

 Naturally, a higher ratio of X over C increases the attractiveness of the risky lottery and 

hence increases the probability of risk taking. Notice that, under expected utility theory and no 

background wealth, the probability of risk taking should be a step function of n(X/C) with a 

single step at n(X/C) = n[U−1((U(C) − (1 − p)U(0))/p)/C]. However, with the Bayesian 

inference process described above, the probability of risk taking has an S-shaped relationship 

with n(X/C). Moreover, the overall slope of this function is negatively related to volatility of the 

stimulus distribution. That is, risk taking is more sensitive to payoff values in the low volatility 

condition, compared to the high volatility condition. The intuition is that, lower stimulus 

volatility increases the encoding accuracy of stimulus values that occur more frequently in this 

environment relative to the high volatility condition, and hence improves the discriminability of 

these values.  

 More generally, (18) shows that the probability of risk taking is a two-dimensional 

function of X and C. Figure 4 plots the probability for two different volatility levels of the 

stimulus distribution: σx = σc = 0.19 (low volatility) and σx = σc = 0.55 (high volatility). 

[Place Figure 4 about here] 

Figure 4 makes it obvious that n(X/C) is not a sufficient statistic of the probability of risk 

taking. Instead, X and C jointly affect this probability. For instance, with σx = σc = 0.55, µx = 

3.05, and µc = 2.35, setting X to 1
2

2exp( )x x+µ σ = 24.6 and setting C to 1
2

2exp( )c c+µ σ = 12.2 

gives X/C = 2.01 and a risk-taking probability of 77.7%. On the other hand, setting X to 
2exp( 2 )x x+µ ⋅σ = 38.7 and setting C to 2exp( 2 )c c+µ ⋅σ = 19.2 gives the same ratio of X/C = 

2.01 but a lower risk-taking probability of 74.3%.   
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II.2 Risk preferences 

 Here we examine the set of values of X and C for which the DM is indifferent between 

the two optionsthat is, when our model predicts a 50% probability of risk taking. Because risk 

taking is a two-dimensional function of X and C, we can trace out an “indifference curve.” That 

is, for a given value of X, we compute the value of C such that rob(  | , ) 0.5.risk taking X C =    

[Place Figure 5 about here] 

We plot this indifference curve in Figure 5. With the parameter values of µx = 3.05, µc = 2.35, p 

= 0.59, σx = 0.55, σc = 0.55, and σ = 0.1, we find that for X > 20.7, C(X) < X⋅p, implying that the 

DM is risk averse. For X < 13.7, C(X) > X⋅p, implying that the DM is risk seeking. Finally, for X 

between 13.7 and 20.7, C(X) ≈ X⋅p, implying that the DM is about risk neutral. For a very large 

value of X, efficient coding implies that it is hard to discriminate between nearby valueswhich 

is similar to the logarithmic compression assumed in KLWand this leads to risk aversion. 

Conversely, for a very small value of X, efficient coding again implies a lack of discriminability 

between nearby values. However, this now gives rise to risk-seeking behavior. 

II.3 Value function 

 The probability density function |( )xp R X and the posterior belief [ | ]xX R  together 

generate a subjective valuation of X 

 |( ) [ | ] ( ) .x x xv X X R Xp R dR
−

∞

∞
= ∫    (19) 

We call v(X) the DM’s subjective value function. Given the randomness in the mental 

representation of a stimulus value, we can also compute the standard deviation of v(X) as 

 2
/

2
1 2

0
( ) [ | ] ( )( ) | ( ) .x x xX v XX X R p R dR

∞ σ =   
−∫     (20) 

Figure 6 plots, for both X and C and for both σx = σc = 0.19 (low volatility) and σx = σc = 

0.55 (high volatility), the subjective values v(X) and v(C), as well as their one-standard-deviation 

bounds v(X) ± σ(X) and v(C) ± σ(C). 
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[Place Figure 6 about here] 

Figure 6 leads to several observations. First, consistent with prospect theory (Kahneman 

and Tversky, 1979), the lack of discriminability among outliers generates diminishing 

sensitivity: the marginal utility v′(X) decreases as X becomes either extremely large or extremely 

small. Second, diminishing sensitivity is more pronounced when stimulus volatility is lower. In 

this case, a wider range of stimulus values become outliers, and are therefore difficult to 

discriminate. Third, both the shape of the utility function and the randomness in utility come 

from noisy encoding: for very large values of X, low discriminability leads to both lower 

marginal utility v′(X) and higher randomness in utility σ(X). Finally, the value of X that has the 

highest slope for v(X), which typically corresponds to the “reference point” in prospect theory, 

arises endogenously in our framework. Here, it corresponds to the stimulus value that has the 

highest degree of local discriminability.  

IV.        An Experimental Test 

 In this section we provide an experimental test of our model. Our experiment is designed 

specifically to test whether risk taking varies with the payoff distribution that the subject 

encounters. 

IV.1. Design 

On each trial in the experiment, subjects choose between a risky lottery and a certain 

option. The risky lottery delivers a positive payoff X with probability p, and zero otherwise. The 

certain option delivers a positive payoff C with certainty. The experiment consists of eight 

blocks, with sixty trials in each block. Each subject therefore completes a total of four hundred 

eighty trials, which we index by t = 1, 2, …, 480. At the end of the experiment, subjects are paid 

according to their decision on one randomly selected trial.  

We experimentally manipulated the distribution from which payoffs in the choice set are 

drawn. On each trial, the values of X and C were jointly drawn from a lognormal distribution 
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We set the mean values to µx = 3.05 and µc = 2.35, so that on average, the risky lottery offers a 

higher expected value than the certain option. Our treatment variable is the standard deviation, 

which we varied across two conditions: high volatility and low volatility. In the high volatility 

condition, we set σ = 0.55, and in the low volatility condition, we set σ = 0.19. The first block of 

the experiment was a high volatility block, and the blocks alternated deterministically, so that the 

experimented ended with a low volatility block (Figure 7). We set the correlation between n(X) 

and n(C) at ρ = 0.5. Although this positive correlation is not part of the model we developed in 

the previous section, it helped to reduce the number of trivial choice sets where X < C (and as a 

result, the certain option stochastically dominates the risky lottery). The values of X and C were 

drawn from their associated distribution (high volatility or low volatility) at the subject-trial 

level, and thus each subject faced a unique path of payoffs during the experiment.  

[Place Figure 7 about here] 

For all trials, we set the probability that the risky lottery paid X to p = 0.59. Following 

KLW, we chose this design feature for two reasons. First, we used a “non-round” number so that 

subjects could not easily compute the expected value of the risky lotterywhich was more likely 

to happen if we used, for example, p = 0.5 or p = 0.6. Second, even though our model assumes 

that the subject does not encode the probability p with noise, in reality, this variable is also likely 

to be encoded with noise. By presenting the same value of 0.59 on each trial, this increased the 

plausibility of our simplifying assumption that subjects precisely encoded this variable. Later in 

the paper, we conduct an additional experiment to directly test the noisy encoding of payoffs, 

without appealing to any assumptions about probability encoding.  

Before the experiment began, subjects were told that they would be asked to choose 

between two lotteries on each of four hundred eighty trials and these trials would be separated 

into eight parts. However, subjects were not given any information about the distribution of X 

and C, nor were they told that these distributions changed across blocks. The exact instructions 

that were given to subjects before the experiment are provided in the Appendix. 
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IV.2. Experimental procedures 

We recruited N = 34 subjects for this experiment, which was conducted across three 

sessions at Caltech and USC.  Before starting the experiment, subjects went through a set of ten 

practice trials to become familiar with the task and the software. Figure 7 shows an example trial 

from the experiment, in which the risky lottery is presented on the left as a colored bar chart, and 

the value X is displayed at the bottom next to its associated probability of 0.59. The certain 

option is presented on the right side of the screen. On each trial, subjects were instructed to select 

the left or right option by pressing one of two keys. The location of the risky lottery was 

randomized across subjects and trials, and subjects had unlimited time to make their decision on 

each trial. At the end of each block of sixty trials, a progress screen appeared, which reported 

how many of the eight blocks the subject had completed.  

At the end of the eighth block, the computer randomly selected one of the four hundred 

eighty trials from the experiment. If the subject chose the risky lottery on this trial, a random 

number generator determined whether the subject received the payoff of $X or the payoff of $0, 

according to the probabilities associated with these payoffs. If the subject chose the certain 

option, she received the amount of $C. In addition to the earnings from this randomly selected 

trial, each subject received a $7 show-up fee. The average earning, including the show-up fee, 

was $25.89.  

IV.3. Experimental results 

IV.3.A. Treatment effects 

Subjects chose the risky lottery on 40.5% of trials in the low volatility condition and on 

42.7% of trials in the high volatility condition. One subject did not exhibit any variation in risk 

taking in the low volatility condition (choosing the certain option on each trial), and we exclude 

this subject from all subsequent analyses.  

[Place Figure 8 about here] 
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Figure 8 plots the proportion of trials on which subjects chose the risky lottery, as a 

function of the natural logarithm of X over C, n(X/C). Recall that the probability p stays 

constant across all trials, and thus n(X/C) provides a goodthough insufficientstatistic that 

summarizes the attractiveness of the risky lottery relative to the certain option. The figure shows 

that risk taking increases in n(X/C) in both conditions, which provides a basic consistency check 

on the data. One can also see that the slope of the curve in the low volatility condition appears to 

be steeper than that in the high volatility condition. This is consistent with a basic prediction of 

our model: when the stimulus distribution becomes more concentrated, choice sensitivity 

increases.  

To conduct formal empirical tests, we run regressions where the dependent variable takes 

the value of one (zero) if the subject chose the risky lottery (certain option) on trial t. We pool all 

15,840 trials across subjects and conditions, and run a logistic regression. The results in Column 

(1) of Table 1A show that the regression coefficient on n(X/C), which provides a measure of the 

sensitivity of risk taking in the low volatility condition, is positive and strongly significant. high 

is a dummy variable that takes the value of one if the trial is in the high volatility condition, and 

zero otherwise. The coefficient of interest is on the interaction term n(X/C)×high, which is 

significantly negative, indicating that risk taking becomes less sensitive to n(X/C) in the high 

volatility condition. This provides formal support for a difference in choice sensitivity between 

the high and low volatility conditions. 

[Place Table 1 about here] 

Our model predicts that this difference in choice sensitivity stems from different 

perceptions of X and C across conditions. However, the distributions of X and C themselves vary 

across conditions, and thus the difference we detect may simply be driven by a different response 

to extreme values of n(X/C). In particular, the range of n(X/C) in the low volatility condition is 

(0.02, 1.36), but in the high volatility condition, there are many trials for which n(X/C) falls 

outside this range.  
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To help address this concern, we restrict our regression to trials with similar levels of 

n(X/C) across the two volatility conditions. We re-estimate the regression in Column (1) using 

only trials for which 0.02 < n(X/C) < 1.36; this represents the set of values of n(X/C) which 

appear in both conditions of our experiment. Column (2) shows that our results are quite similar 

on this subset of data. Given this, it is unlikely that differences in the current choice set drive the 

full effect; however, we note that this is not a perfect control because the distribution of n(X/C) 

still differs within this restricted domain. Columns (3) and (4) show that our main result holds 

within each half of a block. Column (3) is estimated using data from the first half of each block 

(the first thirty trials), while column (4) uses data from the second half (the last thirty trials), and 

the main result holds in both of these subsets of the data.  

Column (5) shows our results hold even within the first ten trials of each block. In fact, if 

we restrict to the first trial of each block (Column (6)), we find that the coefficient on the 

interaction term remains significantly negative (p-value of 0.046). This result is potentially 

concerning, because it is consistent with a theory where the subject adapts to the new distribution 

instantly. However, another more plausible explanation is based on the perception of outliers. On 

the first trial of each block of the high volatility condition, the subject has just faced sixty choice 

sets from the low volatility condition, and presumably has adapted to a narrow range of n(X/C). 

On the first trial of the high volatility block, there is a good chance that n(X/C) falls outside this 

range (or near the extremes of this range), and thus this value will be perceived as an outlier.8 

Because the subject’s coding resources do not adjust immediately following the low volatility 

block, the perception of the outlier will be noisy.9  

 

                                                           
8 In our experiment, there is a 21% chance that n(X/C) falls outside the range (0.02, 1.36) on the first trial of a high 
volatility block. 
9 We note that in each specification in Table 1A, the coefficient on the high dummy variable is significantly positive. 
This is likely because n(X/C) is not a sufficient statistic for risk taking and may contribute to model 
misspecification. Table 1B presents regression results where we separately enter the X and C regressors, as well as 
their associated interaction terms. We see that the coefficient on the high dummy variable is no longer significant in 
these regressions; moreover, consistent with the result in Table 1A, we also find that risk taking becomes less 
sensitive to both X and C in the high volatility condition. 
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IV.3.B. Adaptation and dynamics 

The above logic can be extended more generally to all trials in the high volatility block. 

Consider a value of n(X/C) that is extreme within the context of the low volatility block, but not 

within the high volatility block. If the subject encounters this value early in a high volatility 

block, it will be perceived as an outlier, but the presentation of this value should lead to a 

subsequent adjustment of coding resources through adaptation. When a value of n(X/C) that was 

perceived as extreme early in a high volatility block is presented a few times, then later in the 

high volatility block, it will no longer be perceived as an outlier because coding resources have 

been allocated to a wider range of payoffs. Therefore, risk taking should become more sensitive 

to extreme values over the course of the high volatility block.  

To test this prediction, we examine how risk taking varies in the presence of outliers, 

over the course of the high volatility block. We define an outlier as a value of n(X/C) that is 

more than three standard deviations from the mean. The standard deviation and mean are 

computed at the subject-block level, using the sixty trials from the immediately preceding low 

volatility block (we restrict analysis to blocks 3, 5 and 7, so that each of these high volatility 

block can be matched to an immediately preceding low volatility block). Under this definition, 

30.4% of trials in the high volatility block are considered outliers. 

 We define a dummy called outlier that takes the value of one if the value of n(X/C) is an 

outlier, and zero otherwise. We also define a dummy called second which takes the value of one 

if the trial takes place in the second half of the block (i.e., in the last thirty trials). We then 

estimate the following logistic regression, using only data from the high volatility blocks: 

 
1 2

3 4

n n

n n

risky

.

t t
t

t t

t t
t

t t

X X
C C

X X
C

outlier

second second outlier
C

   
α + β ⋅ + β ⋅ ×   

   

   
+β ⋅ × + β ⋅ × × + ε   

   

=  

 

 (22) 

In Column (1) of Table 2, the regression coefficient β1 on n(X/C) provides the sensitivity of risk 

taking among intermediate value (non-outlier) trials in the first half of the high volatility block. 
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As expected, this coefficient is significantly positive. Furthermore, the coefficient β2 on the 

interaction n(X/C)×outlier is significantly negative. This indicates that in the first half of the 

block, shortly after experiencing sixty low volatility trials, subjects are less sensitive to outliers 

than to intermediate values.  

[Place Table 2 about here] 

The next two rows allow these coefficients to differ in the second half of the block. The 

coefficient β4 on n(X/C)×second×outlier provides the change in sensitivity of risk taking among 

outlier trials from the first to second half of the block. Here, we expect the coefficient, β4, to be 

positive, because exposure to outliers during the first half of the high volatility block should 

trigger adjustment of coding resources to these extreme values in the second half of the block. 

Conversely, the coefficient β3 on n(X/C)×second provides the change in sensitivity of risk 

taking on intermediate value trials between the first and second halves of the block. As the DM 

allocates more coding resources to outliers over the course of the high volatility block, the 

corresponding resources allocated to intermediate values decrease; we thus expect this 

coefficient, β3, on n(X/C)×second to be negative.  

We find that the signs of these two coefficients, β3 and β4, are consistent with these 

predictions, but neither coefficient is significantly different from zero. To allow for the 

possibility that adaptation take place more quickly than the first thirty trials, Columns (2) – (4) 

use more restricted subsets of the data. After restricting to the first and last ten trials of each 

block in Column (3), we find significant results on both coefficients. We find similar results in 

Column (4), which suggests that adaptation takes place on the order of five trials, consistent with 

recent work on adaptation speeds in perceptual decision-making (Payzan-LeNestour and 

Woodford, 2018).   
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IV.3.C. Heterogeneity across subjects 

[Place Figure 9 about here] 

The data presented in Figure 8 are pooled across subjects, and therefore mask any 

potential heterogeneity in the change in risk taking across volatility conditions. To investigate 

this potential heterogeneity, for each subject and condition, we run the following logistic 

regression:   

 risky n .t
t t

t

X
C

 
α + β⋅ + ε 


=


  (23) 

We record the estimates β̂  for each subject in the high and low conditions, and plot these against 

each other in Figure 9. We see there is substantial heterogeneity across subjects in the sensitivity 

to n(X/C). Moreover, subjects who are more sensitive in the high condition are also more 

sensitive in the low condition. Most importantly, we see that, for a majority of subjects, the data 

lie above the blue forty-five degree line. This confirms that the increase in choice sensitivity in 

the low volatility condition is present within most of our subjects.  

IV.3.D. Assumptions about noiseless encoding process 

All of the results in our theoretical model are driven by the noisy encoding of X and C. In 

particular, we make two simplifying assumptions: i) there is no noise in encoding the probability 

p; and ii) there is no noise in computing the product of p and ][ | xX R (which is used as the 

estimate of the expected value of the risky lottery). In reality, there is likely to be noise in both of 

these processes, which could potentially be responsible for some of the above experimental 

results. However, because the noisy encoding of payoffs is sufficient to generate our main 

theoretical predictions, we should still find evidence that the perception of X depends on the 

recent stimulus distribution, even when there is no need to perceive p. To investigate this, we run 

a follow-up experiment in which the subject still needs to perceive X, but does not need to 

perceive p or integrate probabilities with payoffs.  
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IV.        Riskless Choice Experiment 

IV.1. Experimental design 

The design of our second experiment is informed by decades of work from the literature 

on perception of numerical quantities (Moyer and Landauer, 1967). Our experimental design 

builds on that of Dehaene, Dupoux, and Mehler (1990), who on each trial of their experiment, 

present subjects with an Arabic numeral between 31 and 99. The subject’s task is simply to 

classify whether the Arabic numeral presented on the screen is larger or smaller than the 

reference level of 65. Their main result is that as the stimulus numeral gets closer to the reference 

level, response times increase and classification accuracy decreases. These results are consistent 

with the noisy encoding of Arabic numerals, which lies at the foundation of both our model of 

risk taking and that of KLW.  

One notable feature of the Dehaene, Dupoux, and Mehler (1990) experiment is that the 

stimulus distribution is held constant throughout the experiment. Here, we exogenously vary the 

stimulus distribution, in much the same way that we varied the distribution of monetary amounts 

in our previous experiment. We have a high volatility distribution (uniform over integers in the 

range [31, 99]) and a low volatility distribution (uniform over integers in the range [51, 79]). 

Subjects are incentivized to correctly classify whether each Arabic numeral, which we denote by 

X, is larger or smaller than 65, over sixteen blocks of trials. The blocks alternate between the 

high volatility condition and the low volatility condition. Each block consists of eighty trials, for 

a total of 1,280 trials per subject (Figure 10). 

[Place Figure 10 about here] 

We pay subjects as a function of both their accuracy and their speed. In addition to a $7 

participation fee, subjects earn a payoff of $(20×accuracy – 10×avgseconds), where accuracy is 

the percentage of correctly classified trials, and avgseconds is the average response time (in 
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seconds) across all trials in the experiment.10 In this design, the subject still needs to perceive the 

value X, but there are no probabilities to encode, nor any need to integrate probabilities with 

payoffs. Therefore, this design provides a clean setting in which we can test whether the 

perception of an Arabic numeral, X, depends on the recently observed stimulus distribution. 

IV.2. Experimental procedures 

 We recruited an additional N = 13 subjects from Caltech for this experiment. Before the 

first block, subjects went through a set of ten practice trials to become familiar with the task. On 

each trial, the stimulus numeral is displayed in white font against a black background, on the 

center of the screen (Figure 10). Subjects were instructed to press one of two keys to indicate 

whether the stimulus is smaller or greater than 65. After responding on each trial, a white 

fixation cross appeared for 500 milliseconds, followed by the stimulus from the next trial. At the 

end of each block of eighty trials, a progress screen appeared, which reported how many of the 

sixteen blocks remained. The progress screen was self-paced, and subjects were given the 

opportunity to take a break during this screen. The average earning, including the show-up fee, 

was $20.58.  

IV.3. Experimental results  

Subjects accurately classified the stimuli on 90.4% of trials with an average response 

time of 0.45 seconds. Figure 11 shows the proportion of trials that subjects classified the 

stimulus as greater than 65, for each value of X. If subjects had accurately classified all stimuli, 

the figure would generate a step function, with a single step at X = 65. Instead, the figure 

replicates results from several previous experiments in the literature, which show that errors 

decrease in the distance between the two numbers under comparison (Moyer and Landauer, 

1967; Dehaene, Dupoux, and Mehler, 1990). To be clear, while it is unsurprising that subjects 

make errors in general, the more important result is that the error rate is correlated with the 

distance between the stimulus number and the reference level of 65. It is also worth noting that 

                                                           
10 From an experimental economics perspective, the fact that our design is incentive compatible provides a small 
methodological improvement over similar past experiments in the literature on numerical cognition.  



27 
 

the average subject from Caltech has very high mathematical aptitude, and thus the error rates 

reported here are likely to be close to a lower bound for the error rates among other samples.11  

[Place Figure 11 about here] 

Turning to a comparison of our two experimental conditions, we find that subjects 

correctly classify stimuli on 91.4% of trials in the high volatility condition, and on 89.4% of 

trials in the low volatility condition. A more informative statistic is the difference in accuracy 

between conditions, when restricting to stimuli that are common to both conditions: 51 ≤ X ≤ 79. 

This controls for the fact that, on average, trials in the high volatility condition are “easier,” in 

the sense that the average distance to the reference level is greater than in the low volatility 

condition. We find that accuracy among these trials in the high volatility condition is 86.5%, 

which is significantly lower than the 89.4% accuracy in the low volatility condition (p-value  = 

0.004). This is consistent with the efficient coding hypothesis: in the low volatility condition, 

subjects adapt and devote more coding resources to the concentrated range 51 ≤ X ≤ 79. In the 

high volatility condition, subjects need to “spread” these coding resources over a wider range, 

which leads to increased noise when encoding stimuli in the concentrated range (relative to the 

low volatility condition).  

A sharper test of the efficient coding hypotheses is to compare the slopes in Figure 10. As 

in our previous experiment, we expect a steeper slope in the low volatility condition. The figure 

provides suggestive visual evidence for a difference in slopes, and to formally test this, we run a 

series of logistic regressions. The dependent variable in our logistic regression takes on the value 

of one if the subject classified X as above 65, and zero otherwise. Column (1) of Table 3 shows 

that the coefficient on n(X/65) is significantly positive, which indicates that subjects’ propensity 

to classify X as greater than 65 is increasing in n(X/65). More importantly, we find that the 

coefficient on the interaction term, n(X/65)×high, is significantly negative, indicating that 

choices are noisier on trials in the high volatility condition.  

                                                           
11 There is evidence that accurate perception of non-symbolic representations of numbers (e.g., a visual array of dots) 
is positively correlated with mathematical aptitude (Halberda, Mazzocco, and Feigenson, 2008), though it is unclear 
whether this correlation extends to tasks like ours that use symbolic numerical representations. 
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 [Place Table 3 about here] 

 To control for the difference in distributions of X, we re-estimate the regression using 

data only in the range 51 ≤ X ≤ 79. When restricting to this range, the distribution of X on the 

current trial is the same across conditions, and the only difference is the distribution of 

previously encountered stimuli. Column (2) provides these estimation results, and we find the 

slope remains steeper in the low volatility condition (though the difference in slopes is smaller 

compared to the estimates using the full sample in Column (1)).  

One assumption we make in interpreting the results in these first two columns, is that 

there is no “external stimulus” noise: the stimulus number is displayed clearly on the screen and 

the font is easy to read (as opposed to, e.g., fuzzy text). We assume that the noise that corrupts 

the mental representation of the stimulus is based on the internal noise in the subject’s nervous 

system. Nonetheless, it is plausible that comparing 59 with 65 may be easier than comparing 60 

with 65, not because of the distance, but because the first digits are visually distinct. To address 

this, we re-estimated the regression in Column (1) using only trials for which the first digit 

differs from the first digit of the reference level: {X < 60, X ≥ 70}. Column (3) shows that the 

slope in the low volatility condition remains steeper, indicating that such a “first-digit” effect 

cannot explain the full extent of the shift in slope. 

 To summarize this experiment, we find that the accuracy of classifying an Arabic 

numeral is affected by i) the distance to a reference level, and ii) the distribution of previously 

encountered stimuli. The latter result provides useful evidence supporting a basic assumption of 

our model of risky choice. Specifically, in an experimental task where there is no need to encode 

probabilities or integrate with payoffs, we find that choice sensitivity depends on the distribution 

of previously encountered stimuli.   

IV.        Conclusion 

 In this paper, we derive the implications for risk taking when the perception of payoffs is 

noisy and governed by efficient coding. Our main theoretical contribution is to endogenize the 
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likelihood function in the KLW framework, which can normatively justify why some payoffs are 

encoded with more noise than others. Earlier work by Woodford (2012) provides a model of 

efficient coding of risky payoffs, but in that model, imperfect perception is applied to the net 

gain of a payoff. The model of KLW that we build on here instead assumes that the DM encodes 

the absolute value of a symbolic number. This is a more realistic assumption, as the perceptual 

system responsible for noisy encoding of numerosity is unlikely to support negative numbers 

(Feigenson, Dehaene, and Spelke, 2004).12   

 To test our model, we conduct two laboratory experiments in which we find evidence 

consistent with efficient coding of risky payoffs. Specifically, risk taking becomes more sensitive 

to those payoffs that appear more frequently in the choice set. Such adaptation takes place 

relatively quickly, on the order of five experimental trials. In our second experiment, where 

subjects need only classify whether a stimulus is larger than a reference level, we find that 

classification accuracy changes with the distribution of recently experienced numbers. This 

provides evidence supporting our basic model assumption, that perception of numerical payoffs 

is noisy and changes across environments. In our model, this optimal change in perception is 

driven by the entire stimulus distribution, but in reality, this process can only be approximately 

implemented due to computational and data constraints. A better understanding of which features 

of the payoff distribution are most important in driving adaptation is an important topic for future 

work.  

 

 

 

 

 

 

 

 

                                                           
12 As in KLW, negative numbers can be accommodated in our model by first encoding the absolute value, and then 
performing multiplication.  
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Figure 1. The stimulus distribution and the likelihood function. The upper graph plots the 
stimulus distribution of X according to (8). The middle graph plots the resulting likelihood 
function L(X |Rx) according to (10), for Rx = 0.15, 0.2, 0.5, 0.8, and 0.85. The lower graph plots 
the density function for Rx according to (11). The parameter values are: µx = 3.05 and σ = 0.1. 
For the low volatility condition (plots on the left), σx = 0.15. For the high volatility condition 
(plots on the right), σx = 0.4. 
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Figure 2. A monotonic stimulus distribution and the resulting likelihood functions with 
increasing dispersion. The upper graph plots a stimulus distribution of X taking the form of a 
gamma distribution in (14). The middle graph plots the likelihood function implied by efficient 
coding, according to (12), for Rx = 0.15, 0.2, 0.5, 0.8, and 0.85. The lower graph plots the KLW 
likelihood function in (13), for Rx = 0.1, 0.5, 1.5, 2.2, and 2.4. The parameter values are: k = 1, θ 
= 5, σ = 0.1, and ν = 0.15.  
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Figure 3. The probability of risk taking as a function of n(X/C). The figure plots, for each 
volatility level of the stimulus distribution, σx = σc = 0.4, 0.8, and 1.5, the probability of risk 
taking computed in (18) against the natural logarithm of X over C, n(X/C). Specifically, for each 
volatility level, C is set to 1

2
2exp( )c c+µ σ while we change the value of X. The other parameter 

values are: µx = 3.05, µc = 2.35, p = 0.59, and σ = 0.1. 
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Figure 4. The probability of risk taking as a function of X and C. The figure plots, for two 
different volatility levels of the stimulus distribution, σx = σc = 0.19 (low volatility) and σx = σc = 
0.55 (high volatility), the probability of risk taking computed in (18) as a function of both X and 
C. The parameter values are: µx = 3.05, µc = 2.35, p = 0.59, and σ = 0.1. 
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Figure 5. Indifference curves.  Each curve plots the values C(X) for which the DM is indifferent 
between the risky lottery and the certain option (that is, when rob(  | , ( ))risk taking X C X = 0.5). 
The red dotted line plots the values for a DM that exhibits noiseless perception (σ = 0). The blue 
line plots the values for a DM who exhibits noisy perception (σ = 0.1). The parameter values are: 
µx = 3.05, µc = 2.35, p = 0.59, σx = 0.55, and σc = 0.55. 
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Figure 6. Subjective value function shifts with the stimulus distribution. The figure plots, for 
X (left) and C (right), and for both 0.19x c= =σ σ (low-volatility condition, in red) and 

0.55x c= =σ σ (high-volatility condition, in blue), the subjective values ( )v X and ( ),v C their one-
standard-deviation bounds )( () Xv X ± σ and )( () ,v C C± σ as well as the forty-five degree line. 
The parameter values are: µx = 3.05, µc = 2.35, and σ = 0.1. 
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Figure 7. Experimental design for risky choice task. The task consists of eight blocks, which 
alternated between a high volatility condition and a low volatility condition. In the example trial 
screenshot above, the risky lottery is shown on the left, and the certain option is shown on the 
right. In each trial, the subject has unlimited time to decide which of the two options she prefers. 
After completing each block, the subject is allowed to take a self-paced break, after which the 
next block begins. 
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Figure 8. Average levels of risk taking across conditions. Data are pooled across trials and 
subjects. For each of the two experimental conditions, we bin the n(X/C) variable into two-
hundred bins such that each bin has an equal number of trials.  
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Figure 9. Individual subject estimated treatment effects. For each subject, and each condition, 
we run a logistic regression of the form: riskyt = α + β⋅n(Xt/Ct)+εt. The x-axis measures the 
estimated β in the high volatility condition, while the y-axis measures the estimated β in the low 
volatility condition. Each point represents a single subject, and the length of each black bar 
denotes two standard errors of the mean. The blue line is the forty-five degree line.  
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Figure 10. Experimental design for riskless choice task. The task consists of sixteen blocks, 
which alternated between a high volatility condition and a low volatility condition. On each trial, 
the subject is incentivized to classify as quickly and accurately as possible, whether the stimulus 
integer is larger or smaller than the number 65. In the high volatility condition, the integers are 
drawn uniformly from [31, 99], while in the low volatility condition, the integers are drawn 
uniformly from [51, 79]. 
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Figure 11. Classification of numbers in riskless choice task. The x-axis denotes the integer X 
that is presented on each trial. The y-axis denotes the proportion of trials for which the subject 
classified the integer X as greater than 65. Data are disaggregated by high and low volatility 
condition. In the high volatility condition, the integers are drawn uniformly from [31, 99], while 
in the low volatility condition, the integers are drawn uniformly from [51, 79]. 
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Panel A 

 
 
Panel B 

 
 

Table 1. Logistic regressions of probability of risk taking. In both panels A and B, the 
dependent variable takes the value of one if the subject chose the risky lottery, and zero if the 
subject chose the certain option. The dummy variable high takes the value of one if the trial 
belongs to the high volatility condition, and zero if it belongs to the low volatility condition. 
Standard errors are clustered at the subject level, and ***, **, * denote statistical significance at 
the 1%, 5%, and 10% levels, respectively. 
 
 
 
 

(1) (2) (3) (4) (5) (6)

Dependent variable: "Choose 
risky lottery"

All data 0.02 < n(X /C ) < 1.36 First half of block Second half of block First 10 trials of each block First trial of each block

high 0.99*** 0.68*** 0.84*** 1.15*** 1.10*** 2.05**
(0.28) (0.26) (0.30) (0.32) (0.29) (1.04)

n(X /C )
4.21*** 4.21*** 4.05*** 4.37*** 3.94*** 5.05***
(0.62) (0.62) (0.62) (0.65) (0.70) (1.27)

n(X /C )×high −1.35*** −0.92*** −1.11*** −1.59*** −1.14*** −2.43**

(0.38) (0.32) (0.40) (0.42) (0.41) (1.22)

Constant −3.38*** −3.38*** −3.26*** −3.51*** −3.26*** −4.15**

(0.47) (0.47) (0.47) (0.50) (0.50) (0.96)

Pseudo R -squared 0.17 0.13 0.18 0.17 0.17 0.19
Observations 15,840 14,101 7,920 7,920 2,640 264

(1) (2) (3) (4) (5)

Dependent variable: "Choose 
risky lottery"

All data First half of block Second half of block First 10 trials of each block First trial of each block

high −0.10 −0.20 −0.01 0.03 −0.42
(0.29) (0.30) (0.33) (0.49) (1.18)

X 0.18*** 0.19*** 0.17*** 0.18*** 0.21***
(0.03) (0.03) (0.03) (0.03) (0.07)

C −0.41*** −0.42*** −0.41*** −0.39*** −0.54***
(0.06) (0.07) (0.06) (0.07) (0.14)

X ×high −0.08*** −0.09*** −0.08*** −0.07*** −0.13**
(0.02) (0.02) (0.02) (0.03) (0.06)

C ×high 0.18*** 0.19*** 0.16*** 0.17*** 0.34**
(0.04) (0.04) (0.04) (0.04) (0.14)

Constant 0.03 −0.05 0.12 −0.19 0.59
(0.42) (0.43) (0.45) (0.53) (1.19)

Pseudo R -squared 0.15 0.15 0.15 0.15 0.16
Observations 15,840 7,920 7,920 2,640 264
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Table 2. Adaptation and sensitivity to outliers. Logistic regression results using only data 
from the high volatility blocks (except for the first block, which does not have an immediately 
preceding low volatility block). The dependent variable outlier takes the value of one if the value 
of n(X/C) is more than three standard deviations from the mean, where these statistics are 
calculated using the sample moments from the sixty trials in the immediately preceding low 
volatility block. The dummy variable second takes the value of one if the trial belongs to the 
second half of the block (trials 31-60), and zero if it belongs to the first half of the block (trials 1-
30). Standard errors are clustered at the subject level, and ***, **, * denote statistical 
significance at the 1%, 5%, and 10% levels, respectively. 
 
 
 
 
 
 
 
 
 
 

(1) (2) (3) (4)

Dependent variable: "Choose risky 
lottery"

All data First and last 20 trials First and last 10 trials First and last 5 trials

n(X /C ) 3.07*** 3.10*** 3.41*** 3.40***

(0.46) (0.46) (0.49) (0.50)

n(X /C )×outlier −0.39** −0.38** −0.61*** −0.70*

(0.18) (0.17) (0.23) (0.41)

n(X /C )×second −0.08 −0.08 −0.53** −0.63***

(0.09) (0.13) (0.21) (0.27)

n(X /C )×second ×outlier 0.15 0.02 0.57* 1.14**

(0.18) (0.20) (0.31) (0.53)

Constant −2.51*** −2.47*** −2.53*** −2.43***

(0.37) (0.36) (0.35) (0.38)

Pseudo R -squared 0.25 0.25 0.27 0.27
Observations 5,940 3,960 1,980 990
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Table 3. Classification in riskless choice task. Logistic regression where the dependent 
variable takes the value of one if the subject classified the stimulus, X, as larger than 65, and zero 
otherwise. The dummy variable high takes the value of one if the trial belongs to the high 
volatility condition, and zero if it belongs to the low volatility condition. In the high volatility 
condition, the integer X is drawn uniformly from [31, 99], while in the low volatility condition, 
the integer is drawn uniformly from [51, 79]. Standard errors are clustered at the subject level, 
and ***, **, * denote statistical significance at the 1%, 5%, and 10% levels, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

(1) (2) (3)

Dependent variable: "Classifiy as greater than 65" All data 51  ≤ X  ≤ 79 X  < 60 or X   ≥ 70
high 0.00 0.04 −0.07

(0.02) (0.05) (0.04)

n(X /65) 19.53*** 19.53*** 17.45***

(2.09) (2.09) (1.58)

n(X /65)×high −9.71*** −3.56*** −7.98***

(1.11) (0.95) (0.69)

Constant 0.20*** 0.20*** 0.30***
(0.07) (0.07) (0.08)

Pseudo R -squared 0.53 0.48 0.63
Observations 16,640 11,892 12,807
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 Appendix A: Theoretical Derivations 
 

A.1. Properties of p(Rx) 
  

Given p(X; µx, σx) in (8) and p(Rx | X) in (10), the distribution of Rx can be derived as 
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Notice that this expression does not depend on distribution parameter µx and σx. Furthermore, this 
“invariance” result is a general statement independent of the specific assumption of lognormal 
distribution for p(X): all continuous stimulus distributions lead to the same p(Rx). To see this, we write in 
general  
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This equation makes it clear that not only is the case that p(Rx) does not depend on µx and σx, it does not 
depend on the entire shape of the distribution p(X). A sufficient condition for this “invariance” result is 
that i) the likelihood function is location-independent in the sensory space (as we assume in equation (5) 
in the main text), and ii) the transformation function from stimulus space to the sensory space is the 
cumulative density function of the stimulus value.   
   

Next, we look at the asymptotic behavior of p(Rx) as σ goes to zero. From (A3) we know that  
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where δ(⋅) represents the Dirac delta function. That is, in the limiting “noiseless” case, p(Rx) converges to 
a uniform distribution between zero and one. 
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Appendix B: Experimental Instructions 
 

B.1. Instructions for Risky Choice Task 
 

Experiment Instructions 

 Thank you for participating in this experiment. Before we begin, please turn off all cell phones 
and put all belongings away. For your participation, you have already earned $7, and you will have the 
opportunity to earn more money depending on your answers during the experiment.  
 
In the experiment, you will be asked to make a series of decisions about choosing a “risky gamble” or a 
“sure thing”. The risky gamble will pay a positive amount with 59% chance, and $0 with 41% chance. 
The amount shown for the sure thing will be paid with 100% chance, if chosen. Below is an example 
screen from the experiment: 

 
       $0 

    
 
                                         

  
     $10.42 

 
 
 
 

      $22.51 
 
 
In this example, the risky gamble pays $22.51 with 59% chance, and $0 with 41% chance. The sure thing 
pays $10.42 with 100% chance. You will be asked to select one of the two options for each question in 
the experiment. The experiment is broken down into eight parts, and each part contains sixty questions.  
 
At the end of the experiment, one trial will be randomly selected, and you’ll be paid according to your 
decision on that trial. For example, if the above trial was chosen, and you selected the sure thing you 
would be paid a total of $10.42 + $7 = $17.42. If instead you chose the risky gamble, you’d be paid either 
$7 or ($22.51 + $7) = $29.51, depending on which outcome the computer randomly selects. Before we 
begin, you will see 10 practice trials to familiarize yourself with the software. These 10 practice trials will 
not count towards the real experiment.  
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B.2. Instructions for Riskless Choice Task 
 
 

Experiment Instructions 

 Thank you for participating in this experiment. Before we begin, please turn off all cell phones 
and put away all belongings until the end of the experiment. For your participation, you have already 
earned $7, and you will have the opportunity to earn more money depending on your answers during the 
experiment.  

 

In the experiment, you will see a series of numbers and will be asked to classify whether the number is 
larger or smaller than the number “65”. If the number is larger than 65, press the “?” key, and if it is 
smaller than 65, press the “z” key. At the end of the experiment, you will be paid depending on the speed 
and accuracy of your classifications. Specifically, you will be paid: 

 

Payout = $(20×accuracy – 10×avgseconds), 

 

where “accuracy” is the percentage of trials where you correctly classified the number as larger or smaller 
than 65. “avgseconds” is the average amount of time it takes you to classify a number throughout the 
experiment, in seconds. For example, if you correctly classified all trials and it took you 0.3 seconds to 
respond to each question, you would earn $(20×100% − 10×0.3) = $17.00 (plus the $7 show-up fee). If 
instead you only answer 75% of the questions accurately and took 1 second to respond to each question, 
you would be paid $(20×75% − 10×1) = $5.00 (plus the $7 show-up fee). Therefore, you will make the 
most money by answering as quickly and as accurately as possible. 

 

The experiment will be separated into sixteen parts, and each part will contain 80 trials. In between each 
part, you can take a short (~1 minute) break, and then continue at your own pace. When you finish all 
sixteen parts, please raise your hand and do not disturb other subjects. 

 

Before you begin the experiment, you will go through 10 practice trials to familiarize yourself with the 
software. These 10 practice trials will not be counted when computing your final payout.    
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