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Abstract

Standard psychometric methods aggregate test items into achievement scores
without considering how items relate to economic outcomes. This paper constructs
alternative achievement measures using the estimated relationship between individ-
ual test items and economic outcomes such as school completion and labor market
earnings. Item-anchored scales rank students differently than standard psychomet-
ric scales, and these ranking differences have important implications for estimated
achievement gaps by race, gender, and parental income. Typically, though not always,
item-anchored achievement gaps are substantially larger than gaps calculated using
standard psychometric scores. Black/white and high-/low-income achievement gaps
are generally about 0.2-0.6 standard deviations larger (about 20-60%) when test items
are related to labor market outcomes and 0.06-0.2 standard deviations larger (6-20%)
when high school and college completion are used. Test items can fully explain black-
white earnings differences, but can explain only half of the earnings difference between
youth from high- versus low-income households. Finally, conditional on item-anchored
math scores, item-anchored reading scores have significantly positive relationships
with various economic outcomes in contrast to psychometric scales where the reading
relationships are zero or even negative conditional on math. Keywords: human capital,
educational outcomes, achievement gaps, measurement error. JEL Codes: JEL Codes:
I.24, I.26, C.2.

1 Introduction

Education and human capital are fundamental to understanding economic outcomes.

Group differences in human capital play a key role in economists’ explanations for group

differences in labor market success, health, and many other outcomes. A key question,
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then, is to what extent skill differences drive observed inequalities. Because human capital

is not directly observable, economists often turn to achievement test scores as proxies. Test

scores correlate with economic outcomes across a variety of contexts, justifying their use as

measures of human capital and lending support for policies focused on their improvement.

Indeed, the equation of test scores with human capital is so widespread within economics

that researchers often treat such scores as they would any other economically interpretable,

desirable outcome.1

However, achievement tests measure human capital imperfectly because the skills

emphasized by the test may not be the skills which correspond most directly to human

capital. Ultimately, every test scale may be thought of as a method for combining indi-

vidual test items into a single index. The problem is that psychometric methods combine

items without reference to the economic importance of the skills the items measure. This

is not a failing of the test itself; the problem lies in applying the test to a purpose – mea-

suring human capital – for which it was not designed. Standard achievement scales may

emphasize items that are not predictive of economic success while de-emphasizing items

that are predictive. In turn, this could bias achievement comparisons if different groups

perform differentially better or worse on the items that are related to later success.

Consider the following two question test as an example. Question 1 correlates strongly

with labor market outcomes, while question 2 is uninformative. If the psychometric proce-

dure weights these two questions equally, the test will have three possible scores: none

correct, one correct, or both correct. This example illustrates two important implications

of using test scores to assess labor market outcomes. First, a test can have too many scores

– only question 1 is relevant for understanding labor market outcomes so only 2 scores

(question 1 right or wrong) are needed. Second, irrelevant questions can obfuscate useful

information. Question 2 is superfluous and its inclusion in the test hides the relationship

1There are many, many examples of this approach in economics. For instance, Hanushek and Rivkin
(2012, 2009), Hoxby (2000), Reardon (2011), Clotfelter et al. (2009) all use test scores in this way. This list is
not meant to be exhaustive this use of test scores is the rule rather than the exception in economics.
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between question 1 and labor market success. Some individuals with the middle score

(one right, one wrong) will do well because question 1 is predictive, and some will do

less well because question 2 is not. This will look like unexplained variation in outcomes

conditional on test scores, but this variation would be explained by a better targeted scale

that used only the predictive item.2

This paper studies the alignment between achievement scales and human capital. It

does this using recently available data on individual Armed Forces Qualifying Test (AFQT)

items from the National Longitudinal Survey of Youth 1979 (NLSY79) to assess which items

are most relevant for predicting long-run economic outcomes such as school completion

and labor income. In particular, the paper constructs new, “item-anchored” scores by

weighting test items in proportion to how strongly they correlate with these outcomes.

Based on these item-anchored scores, the paper documents that many achievement gaps by

race, gender, and socioeconomic status are considerably larger than those so far reported

in the literature.

This exercise is only possible because of the item-level data and the long-run outcomes

available in the NLSY79. Most research on achievement gaps would not be able to employ a

similar approach, as both features of the data are unusual. Even where long-run outcomes

have been used to anchor scores (Cunha and Heckman, 2008; Bond and Lang, 2018), item

level data have not been available or have not been used.3 The NLSY79 item-level data is

used by Schofield (2014) to argue that the measurement error in the IRT-derived AFQT

scores is non-normal.

Achievement has no natural units, so in some sense the most fundamental way to

compare different test scales is through their induced rank ordering of students. Even if

the cardinal properties of two scales are different, they might nonetheless rank students

in the same way. However, this is not the case in the NLSY79; the item-anchored scales

2Please see Appendix B for a formal treatment of this example.
3Polachek et al. (2015) take a different approach by estimating human capital production function

parameters for each survey respondent in the NLSY79. They then relate these “human capital” ability
measures to standard measures of cognitive and noncognitive skills.
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often rank students very differently than the given (psychometrically-derived) scales. It

is not uncommon for an individual student’s ranking to differ by 10-20 percentile points

between these alternative scales. Some students do well on items that are predictive of

later success but poorly on uninformative items, resulting in a low given score, while for

other students the situation is reversed.

The item-anchored scales also yield very different achievement gaps once measurement

error is properly handled. Measurement error is a subtle issue in this setting – simply

taking the mean difference in the item-anchored scales will result in an achievement gap

which is biased towards zero. I adapt the empirical approach in Bond and Lang (2018) to

adjust for this bias. My innovation is to leverage the item-level data to estimate multiple

independent item-anchored scores, which can then be used to undo the effect of shrinkage.

It is this method which allows me to estimate the relevant reliabilities of the item-anchored

scales.

The given test-score gaps in the NLSY79 are in line with what has been reported in

the literature (Neal and Johnson (1996); Reardon (2011); Downey and Yuan (2005), and

many others), while the item-anchored gaps are typically much larger. For instance, I

estimate that black-white and high-/low-income math and reading gaps are all around 1

standard deviation (sd) using given scores. By contrast, the high-/low-income gaps are

0.2-0.4 sd larger and the black/white gaps 0.2-0.6 sd larger when I anchor on later-life

earnings. Anchoring to high school completion leads to more modest, though still sizable,

increases on the order of 0.06-0.20 sd. Item-anchoring does not increase all of the gaps,

however – the college anchored black/white math gap is a full 0.20 sd smaller than the

gap calculated using given math scores.

There are two reasons why the item-anchored achievement gap estimates differ from

those calculated in the standard way using given test scores. First, the item-anchored test

reliabilities (the signal-to-noise ratios for the tests) are often much lower than what is

typically assumed in the literature – the anchoring-relevant reliability need bear little
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relation to the psychometrically-derived reliability typically reported. Second, some

groups do particularly well answering items that are particularly predictive of economic

success. Some of these items are not emphasized by the psychometric scoring system, so

that the given test scores effectively “hide” the group’s success.

The item-anchored gaps can be directly compared to the actual outcome gaps. Consis-

tent with prior literature using given test scores (Lang and Manove, 2011), test items pre-

dict larger black/white gaps in school completion than are actually observed – black youth

complete more schooling than can be predicted by their achievement alone. However, the

item-anchored and actual black white earnings and wage gaps are almost identical, a result

reminiscent of Neal and Johnson (1996). Differences in school quality are one explanation

for these results, although Lang and Manove (2011) argue against this interpretation.

Importantly however, my estimates rule out labor market discrimination as an alternative

mechanism because the earnings and wage gaps are estimated only on white men. By

contrast, the item-anchored scales dramatically under-predict both school completion and

adult earnings gaps by parental income.

Finally, the item-anchored scores help resolve the “reading puzzle” – the documented

phenomenon in which reading scores, though positively correlated with income and other

outcomes, are weakly or even negatively correlated with outcomes conditional on math

scores (Sanders, 2016; Kinsler and Pavan, 2015; Arcidiacono, 2004). Joint regressions of

item-anchored reading and math scores on outcomes (including outcomes not used in the

anchoring regressions) suggest a sizable role for reading conditional on math, in contrast

to what regressions using given scores find in the NLSY79. Reading skills do seem to have

explanatory power above and beyond their correlation with math skills, but this is not

visible when reading items are combined as they are in standard psychometric models.

Nonetheless, the item-anchored reading coefficients are still only about half as large as the

math coefficients for most outcomes and most regression specifications.

By leveraging new item-level data and the long-term outcomes available in the NLSY79,
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I am able to advance the literature on achievement gaps by demographic groups. My

results suggest that the standard approach to measuring achievement differences using

psychometric scores may provide biased estimates of human capital differences. Policy

interventions that seek to raise test scores may be focusing their energies in the wrong place

– some improvements in observed test scores may not translate to improvements in actual

economic outcomes, and causal effects estimated on test scores may mask heterogeneous

impacts by race, gender, and socioeconomic status. In turn, this suggests that economists

and policy makers would do well to focus on the construction of achievement tests that

are more closely aligned with the economic outcomes of interest.

The rest of the paper is organized as follows: Section 2 discusses the test item and

outcome data in the NLSY79, while Section 3 presents preliminary evidence that these

items correlate quite differently with different outcomes. Section 4 discusses the general

empirical and conceptual framework. Sections 5 - 6 present the main empirical estimates,

while Section 7 address the relationship between item anchoring and the reading puzzle.

Section 8 concludes. Appendix A presents all tables and figures and Appendix B contains

supplementary discussion and analysis.

2 Data

The NLSY79 is a high quality, nationally representative survey that follows a sample of

roughly 12,500 individuals aged 14-22 in 1979 through to the present. Each round of the

survey collects extensive information on educational and labor market outcomes. These

data allow me to construct school completion and lifetime earnings variables. Additionally,

survey respondents took a battery of achievement tests, the Armed Services Vocational

Aptitude Battery (ASVAB), in the base year of the survey. Importantly, item-level response

data are available for these tests. I now describe each of these pieces, test items and

later-life outcomes, in greater detail.
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The ASVAB, which was administered at the start of the survey, consists of a series of

subject and skill specific tests which collectively are used by the United States military in

making enlistment and personnel decisions. The Armed Forces Qualifying Test (AFQT), a

measure of math and reading achievement widely studied within economics, is based on

a number of the components of the ASVAB. I make use of the individual item response

data for the math and reading components that go into the AFQT.4 Although each survey

respondent in the base year of the NLSY79 should have taken the ASVAB, in practice

about 1,500 individuals do not have and valid item-level data. Throughout, I use only the

subsample of respondents for whom at least some item-level data is available.5

I use longitudinal data in the NLSY79 to construct school completion and labor earnings

variables. Please refer to Nielsen (2015b) for more details on how I construct these

measures. For school completion, I use the highest grade completed reported at any point

in the first 15 years of the survey.6 I define “high school” as an indicator of 12 or more

grades of schooling completed and “college” as an indicator 16 or more grades completed.

The first earnings variable I study is a measure of wages at age 30 (wage_30). For each

survey round, I compute wages by dividing total reported labor income by total reported

hours worked. I then estimate wage_30 by taking the average annual wage for the three

survey rounds closest to each individual’s age-30 round. I average to smooth out transitory

wage/earnings fluctuations. Although I can observe wages at younger ages, I restrict

myself to age 30 because almost all schooling is completed by this age. Additionally, this

4The math items come from the arithmetic reasoning (30 items) and mathematics knowledge (25 items)
ASVAB components, while the reading items come from the paragraph comprehension (15 items) and word
knowledge (35 items) components. The constituent ASVAB components defining the AFQT changed after
the administration of the test in the NLSY79. I use the current definition of math and reading, rather than
the definition which held in 1980.

5I require only that the items used be non-missing. Since some respondents have item data for some
ASVAB components and not for others, in practice this means that the samples used across different ASVAB
components are slightly different. In cases where the items are not entirely missing, I set the missing items to
0, corresponding to “incorrect.” For individuals who took the assessment (so that not all items are missing),
blank (unanswered) items are coded as missing by the NLSY. The assumption I make therefore is that leaving
a question blank and getting the question incorrect amount to the same thing.

6In some cases, the highest grade completed reported by the respondent actually falls between successive
rounds of the survey. My fill-in rule assumes that the higher value is correct.
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age falls shortly after the typical “crossing point” past which more educated adults earn

more on average than less educated adults.

The second earnings variable I study is the present discounted value of lifetime labor

income (pdv_labor). The construction of pdv_labor is complicated because missing data,

the choice of labor force participation, and various survey limitations all become first-

order problems. As with the school completion variables, I follow Nielsen (2015b) in

constructing my measure. First, to deal with missing labor income, I adopt an extreme,

“pessimistic” imputation rule which assigns to each missing labor income the minimum

labor income observed for the individual over the life of the survey. This pessimistic rule is

not meant to be realistic; rather, it will tend to compress the earnings distribution.7 Second,

measuring the labor income budget set requires one to take a stand on selection into and

out of employment. I assume that unemployment is involuntary, so that full income =

observed income. I make this assumption because the alternative, that wage×full-time

hours is the correct measure, is largely driven by estimated wages, which is the other

outcome I study. Third, and finally, the NLSY79 survey respondents are only in their

late 40’s in the most recent survey round; I therefore need to make some assumptions

on their earnings from the present until retirement. I assume that each individual’s

earnings growth after the last survey follows the education-specific growth rates from a

pseudo-panel of male earnings constructed from the 2005 American Community Survey.

Additionally, I assume each respondent retires 20 years after the most recent survey round,

when the respondents are in their mid-late sixties.8

Table 1 in Appendix A presents the summary statistics of the main variables used in

the analysis. The college completion rate in the NLSY79 is about 23%, while the high

7In Nielsen (2015b) I also study “optimistic” imputations which assign the maximum observed income,
rather than the minimum. Though different in levels, these two imputation rules produce income measures
which are quite correlated with each other. I therefore stick with pessimistic imputation to simplify the
discussion.

8A final complication is that the NLSY79 moved to a biennial format after 1994. I impute labor earnings
for the odd-numbered years using linear interpolation after applying the pessimistic imputation rule outlined
above. I use a 5% discount rate throughout.
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school completion rate is 89%. The average wage earned at age 30 is about $19.50 with a

standard deviation of $11.25. The pdv_labor variable has an average of $435,000; changing

the imputation rule and the assumption on labor supply would increase this average

substantially.9 Roughly 9% of the sample is missing each of the ASVAB components.

3 Item-Outcome Correlations

Before delving into the anchoring analysis, I first present some simple evidence that test

items differ widely in how strongly they predict school completion and labor market

success. These large differences open the door for item-anchored scales to have non-trivial

effects on achievement calculations.

Figure 1 shows the distributions of the estimated coefficients and R2’s for bivariate

regressions of each test item on college and high school completion. The left panels

show that each item, taken in isolation, is positively correlated with school completion.

However, there is quite a range in the estimated coefficients – the point estimates range

from 0.07 to over 0.30. Likewise, the right panels show that items differ widely in how

much outcome variation they can explain. Interestingly, the distributions suggest that

math items tend to be more predictive of college completion, while reading items are more

predictive of high school completion. Finally, the bottom two panels plot the distributions

of the differences of the coefficient and R2 estimates for each item across the two school

completion outcomes. The wide spread in these distributions implies that the items that

are highly predictive of one type of school completion are not necessarily predictive of the

other. Figure 2, which repeats the analysis using the labor income outcomes in logs, tells a

similar story: items differ widely in how strongly they predict labor market success.

Similarly, Figure 3 presents the math and reading item coefficient distributions in

multivariate regressions in which all items (both math and reading) are included in the

9For instance, optimistic imputation + fully chosen labor supply results in a pdv_labor measure with an
average of $1.2 million and a standard deviation of over $2 million.
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right hand side. Most of the item coefficients are again positive (although some are

negative) and the distributions are again quite spread out. As before, the items that are

most predictive for one outcome are not generally the items that are most predictive for

other outcomes.

4 Conceptual Framework

This section presents the framework that I use to analyze test items and economic outcomes.

For ease of exposition, I refrain here from discussing the techniques I employ to handle

measurement error in the calculation of item-anchored achievement gaps. That analysis is

presented in Section 6.

Let j ∈ {1, . . . ,M} index a sample of test-taking students drawn independently from

some population, and let Sj denote the economic outcome (school completion, wages, etc.)

of interest for student j. All other observable characteristics of the student (race, gender,

family background, etc.) are denoted by Xj .

Students take an achievement test with N dichotomous items. Let Dj denote the

full vector of item responses from student j: Dj = [D1,j , . . . ,DN,j] where Di,j = 1 if j gets

question i correct, and 0 otherwise. These items are combined using some standard

psychometric framework to produce a standardized (mean 0, standard deviation 1) test

score zj . In the NLSY79 data used in this paper, the zj will be based on a three parameter

logistic IRT model. However, this detail is not important. What matters is that the scores

are constructed from the Dj without reference to Sj . Often, I will refer to the zj scale as

the “given” scale or the “given z scores.”

It is the given z scores, constructed by testing agencies and other data providers, that

are almost always treated by economists as direct measures of human capital rather than as

estimated proxies. As described in the introduction, this introduces two distinct problems,

both of which will be remedied by anchoring at the item level.
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First, the units of zj are not meaningful. Achievement does not have natural units, so

without reference to some external outcome it is not possible to determine whether a given

score represents a lot of achievement or relatively little. This means that changes in the

given scale will also not generally be informative and statistics calculated using the given

scale will generally be biased. In symbols, for outcome Sj , ignoring measurement error,

we might have for some increasing function ψ the relation Sj = ψ(zj). Instead of using the

given z-scores directly, it would therefore be preferable to use the alternative scale ψ(z) as

it is already in interpretable units. Interpretability is not the only reason to prefer ψ(z) to

z, however. When ψ is nonlinear, as it often appears to be empirically, statistics calculated

using the two scales may disagree dramatically – they may even differ in sign (Nielsen,

2015a; Schroeder and Yitzhaki, 2017; Bond and Lang, 2013).

Second, given z scores represent a particular choice about how to map each of the

2N possible sequences of item responses to achievement. Since this map will generally

be chosen without reference to economically interpretable outcomes, it is possible that

scoring procedure will obscure useful information about the relationship between test

items and outcomes.

I propose a framework which overcomes both of these conceptual problems. As in

Bond and Lang (2018), I guarantee cardinal interpretability by defining achievement Aj as

the expected value of Sj :

Sj ≡ Aj + ηj , E[ηj] = E[ηjAj] = 0. (1)

Note that the ηj term is orthogonal by construction. Because only Sj is observed for each

student j, Aj must be estimated. Rather than estimating Aj directly from zj , I instead

propose to estimate it directly from the item-level responses: Âj = Ê[Sj |Dj]. In other

words, I allow test items to enter directly into the anchoring relationship, rather than only

through the given score. In particular, for some flexible function f , I suppose that
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Sj = f (Dj) + εj . (2)

I then use estimates of f to construct outcome-denominated achievement scores. Provided

that f̂ (Dj) approximates E[Sj |Dj] sufficiently well, this approach will produce achievement

measures which are responsive to the relationship between individual test items and

outcomes.

I sometimes condition on Xj as well as Dj in defining the anchoring relationship

Âj = Ê[Sj |Dj ,Xj]. In particular, I use only white men to estimate the anchoring rela-

tionships for labor income outcomes. Doing this avoids selection and interpretation

difficulties stemming from the higher labor force non-participation rates for female and

black respondents.

4.1 Linear Regression and Probit Scales

Because Dj can take on many possible values for tests with even moderate numbers of

items, it is necessary in empirical work to place restrictions on the class of functions

considered for f .10 This section takes the simplest case, linear regression (or probit,

as appropriate) with no interaction terms across items. These simple models produce

anchored scales which, at the mean, look similar to the scales one gets by anchoring

the z-scores directly. Although there is no a priori reason to rule out the possibility that

a given item is only valuable in concert with another item or combination of items, I

find that allowing for such interactions produces qualitatively similar anchored scales

once dimension reduction techniques are employed to limit the number of parameters

estimated.

Therefore, I suppose that the relationship between Sj and Dj is linear. When Sj is

dichotomous, I will sometimes suppose that Sj and Dj are related through the probit

10Of course, in general E[Sj |Dj ] is non-parametrically identified by the population averages of S in each
“bucket” defined by D.
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function. That is, I suppose

Sj = D′jWr + εj , or Sj = Φ(D′jWp + εj). (3)

Let Â(r)
j and Â(p)

j denote the regression and probit-anchored scores (predicted values) for

student j.

It is important to emphasize that the item coefficient vectors Wr and Wp in Equation

3 should not be interpreted as structural parameters; the estimated coefficient on an

individual item is not indicative of any causal relationship between that item and the

outcome S. Rather, the goal is simply to estimate E[Sj |Dj] flexibly. Individual elements

of Ŵr and Ŵp are therefore allowed to be negative even though it may not be plausible

that true causal effect of any of these items should be less than zero. The lack of a

structural interpretation of the item coefficients also implies that they cannot be used

to identify which particular items are valuable or not valuable. However, I care only

about the predicted values of S in my application, properly adjusted for measurement and

estimation error.

5 Empirical Results – Rank Stability

I first assess how the item-anchored test scales estimated using either linear or probit

regressions compare to the given test scales. I next compare the item-anchored scales

to “z-anchored scales” based on models which estimate models relating given z scores to

outcomes.

This exercise yields two main insights. First, the item-anchored scales rank students

very differently than the given scales. There is a wide range of item-anchored scores

associated with each given score; there are typically individuals with very different pre-

dicted outcomes based on their item responses who nonetheless have the same given score.

Second, economic outcomes are not simply linear transformations of the given scores. A
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fixed change in the given score corresponds to a large change in outcomes in some regions

and a small change in others.

Figure 4 plots school completion anchored scales estimated using either the individual

test items or the given z scores against the given z scores. The dotted line in each panel is

the 45-degree line – the given test scale plotted against itself. Because the item-anchored

scores are not simple functions of the given z-scores, I plot the average item anchored

score conditional on the given score.

The schooling-anchored scales using z scores and individual test items are quite similar

to each other and quite different than the given z scale. The college anchored math and

reading scales are convex; differences in achievement at the bottom of the given scale do

not translate to differences in college completion, while differences at the top do. The

situation is reversed for the high school anchored scales. Improvements at the bottom ends

of the given achievement scales translate very strongly changes in high school completion,

while improvements in the top ends are not very valuable. These results are intuitive. Low-

achievement youth are not likely to be on the margin for attending/completing college,

so the college anchored scales should be flat for such students. At the same time, these

students are comparatively likely to be on the high school completion margin, explaining

the steep anchored relationship for below-mean z-scores. Interestingly, the high school

anchored scales are much more concave for math than reading.

The achievement scales depicted in Figure 4 are nonlinear functions of observed scores.

This means that standard statistics, such as regression coefficients and mean differences,

computed using observed scores will be biased if school completion is the outcome of

interest. However, Figure 4 does not make clear why studying test items individually

matters. To understand the difference between item-anchored scales and z-anchored scales,

it is necessary to move beyond the conditional means of the item-anchored distributions.

Figure 5 plots the conditional means along with the interquartile and middle 90 percent
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ranges for the item-anchored school completion scales.11 This figure demonstrates that

there is a whole distribution of item-anchored scores for each given score. Individuals

whose item responses led to the same given score might have very different predicted

school completion based on which particular items they got wrong and right. For college

completion (left panels), this variation is greater at the top end of the observed score

distribution. For instance, among students with given math scores about 1 sd above the

mean, the middle 90% of the item-anchored scores cover almost 2 sd on the item-anchored

scale, while for those 1 sd below the mean, the corresponding range is only about 0.2 sd.

The pattern for high school is reversed – there is a lot of variation in the item-anchored

scores at the bottom of the given scale and very little variation at the top.

The range of item-anchored scores depicted in Figure 5 implies that the item-anchored

scores will rank students differently than the given scores. This is not true for the z-

anchored scales, as these are just monotone transformations of the given scores. In other

words, the item anchored scores do not just disagree with the given scores about how

valuable achievement is (as the anchored z-scores do), they disagree fundamentally about

which students are performing well and which students are not.

The relatively wide 90th percentile ranges depicted in Figure 5 suggest that the ranking

differences between the given scores and the item-anchored scores might be quite sub-

stantial. Indeed, Figure 6, which plots the absolute value of the difference in percentiles

according to different scales, shows that it is not uncommon for the percentile ranking of a

student to differ by 0.1 - 0.2 or more between the given z scale and the school completion

anchored scale.12 Interestingly, the ranking differences between the anchored scales and

the given scales are similar in distribution to the differences between the anchored scales

and the scales anchored on the other school completion variable. There are substantial

fractions of students who rank quite differently in math or reading achievement depending

11In detail, I first divide the NLSY79 sample into ventiles based on the given test scores. I then plot the
means and percentiles of the ventile-specific item anchored distributions on the y-axis.

12The figure plots only the distribution of the absolute percentile differences because the distribution of
percentile differences is symmetric by construction.
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on whether one is interested in college or high school completion.

Figures 7 - 9 repeat the analysis for the log wage and log pdv_labor scales. Compared

to the school-anchored scales, Figure 7 shows that the item-anchored and z-anchored

scales using log labor income are more similar to the given z scale but less similar to each

other. Of course, this implies that the dollar outcome scales, rather than the log dollar

outcome scales, would be nonlinear relative to the given scales. The biggest differences

are seen for pdv_labor; we will see in the next section that this measure also typically

yields the largest (in sd units) achievement gap estimates. As before, Figure 8 shows that

there is substantial variation in the item-anchored scores associated with each observed

(given) score. Unlike with school completion, the spread of these conditional distributions

appears to be fairly constant across the range of observed scores, although the distributions

are a bit more spread out in reading for lower given scores. Finally, Figure 9 shows that the

log pdv_labor-anchored scales display slightly more rank shuffling (relative to the given

scores) than the school completion-anchored scales.

6 Empirical Results – Achievement Gaps

I now turn to the measurement of achievement gaps using item-anchored test scales.

Section 5 showed that relating economic outcomes to individual test items results in test

scales that are quite different in terms of how they rank students and how much emphasis

they place on different parts of the given test score distribution. Both of these differences

raise the possibility that the item-anchored scales will yield different mean achievement

gaps if some groups perform particularly well or poorly on items that are particularly

predictive of outcomes. Empirically, I find that most item-anchored gaps are larger than

the given gaps, but some are smaller.
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6.1 Mean Achievement Gaps, Shrinkage, and Measurement Error

Estimating achievement gaps using the item-anchored scores introduces several issues

related to shrinkage and measurement error. I adapt the framework from Bond and

Lang (2018) to handle these issues. The strategy of using instruments to recover the

relevant “shrinkage term” (to be explained below) is from their work. My innovation lies

in leveraging the item-level data to construct the necessary instruments.

Let h and l denote two groups of students whose achievement we want to compare.

Our goal is to estimate ∆Ah,l ≡ Āh − Āl , where Āg is the average achievement of group g.

Each individual’s achievement is measured with error: Âj = Aj + νj where νj is error that

comes from estimation and specification error. If A ∼N (Ā,σ2
A) and if νj ∼N (0,σ2

ν ) iid in

the population,

E[Sj |Âj] =
σ2
A

σ2
A + σ2

ν
Âj +

σ2
ν

σ2
A + σ2

ν
Ā. (4)

Equation 4 says that the expected outcome of student j conditional on the item-anchored

achievement Âj is “shrunk” towards the population mean Ā. This is intuitive – tests are

noisy, so the best guess about a student’s true score gives weight to both the realized score

and the population expected value, with the observed score weighted more heavily the

less noisy it is.

A naive estimator for ∆Ah,l is the sample mean difference in item-anchored scores.

However, Equation 4 shows that this estimator will be biased towards 0. Letting Âh − Âl

denote the mean difference in item-anchored scores,

plim(Âh − Âl) = RA,ν
(
∆Ah,l

)
, RA,ν =

σ2
A

σ2
A + σ2

ν
. (5)

Given some way to consistently estimate RA,ν , one could use Equation 5 to recover a

consistent estimate of ∆Ah,l . A biased estimator of RA,ν is the regression of Âj on Sj
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Âj = κ+γSj + εj . (6)

The OLS estimate of γ is biased because Sj is a noisy measure of Aj : plimγ̂OLS = RA,νRA,η <

RA,ν . This is a classic errors-in-variables problem, so with the appropriate instrument an

unbiased estimate of γ can be recovered. In general, what is needed are at least two noisy

measures of Sj , where the noise is uncorrelated across measures.

The item-level construction allows one to construct many such noisy measures simply

by estimating different item-anchored scales using disjoint subsets of the test items. For

example, if the items are partitioned into two groups (1) and (2), Equation 3 can be

estimated separately on each group to produce anchored scores Â(1)
j and Â(2)

j . Each of

these scores is a noisy measure of Aj . Now consider estimating Equation 6 using Â(1)
j . An

instrument for Sj in this equation is the average S among students who are not j but who

nevertheless have the same value of Â(2)
j . That is, an instrument using item group (1) as

the base is

ζ
(1)
j =N−1

j

∑
j ′,j: Â(2)

j =Â(2)
j′

Sj ′ (7)

This instrument is relevant because achievement is persistent – test-takers should do

similarly well on tests with similar items. The exogeneity condition is satisfied thanks to

the leave-one-out construction.

There are several things to note about this method. First, groups (1) and (2) can be

interchanged in the above construction. Using group (1) to construct either the scale (Âj)

or the the instruments (ζj) should yield a consistent estimate of ∆Ah,l . Second, there are

many different ways to partition the items into two groups, and each partition yields two

valid estimators by interchanging the roles of the groups. Third, there is no reason to

restrict the partition to two groups. With a partition of the items into K disjoint groups,

K − 1 instruments could be constructed as above and then combined using GMM. For
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now, I restrict the analysis to only 2 groups with equal numbers of test items where I

assign odd-numbered items to group (1) and even numbered items to group (2). To the

extent that the ASVAB component tests organize items by content, this procedure ensures

that items from each content area are included in both groups (1) and (2). Given this

approach, it does not appear to matter very much which of the two groups is used to

construct item-anchored test scale and which is used to construct the instrument. A more

comprehensive treatment of the possibilities suggested by the above discussion is left for

future work.

A technical point concerning the construction of the instrument ζ(1)
j is the selection

of other students {j ′s} such that Â(2)
j = Â(2)

j ′ . With 25 or more items in each group, it will

frequently be the case that no other youth will have the same item-anchored score in group

(2) as youth j. Therefore, I divide the sorted Â(2)
j s into 200 equally sized bins and estimate

ζ
(1)
j using the j ′ in the same bin as j. Putting this all together, my approach consists of the

following steps:

1. Divide the items into groups (1) and (2) such that each group has roughly half of the
total items.

2. Estimate Â(1)
j and Â(2)

j using Equation 3. Let ∆Â(1)
h,l be the raw (unadjusted) mean

achievement gap estimated using the Â(1)
j .

3. Construct the ζ(1)
j as in Equation 7. Estimate γ̂ (1) from Equation 6 using instrumental

variables regression.

4. Estimate the h-l achievement gap using
∆Â

(1)
h,l

γ̂ (1) .

The final question is how to construct the standard errors for the anchored achieve-

ment gaps. The issue is whether to treat the inflation factors 1/γ̂ (1) as estimated or

known. My baseline tables treat these factors as known, consistent with work that uses

psychometrically-derived reliability estimates and consistent with the anchored estimates

I produce which use such reliabilities. In other words, I construct standard errors that
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account only for the sampling variation in ∆Â
(1)
h,l . Therefore, I also produce standard error

estimates which take the sampling distribution of 1/γ̂ (1) into account, either through the

bootstrap or through an asymptotic approximation. These methods yield larger standard

errors, but overall they do not change any of the important empirical conclusions of

the paper. Table 2 demonstrates that the asymptotic and bootstrapped standard errors

are generally about 25-50% larger than naive standard errors that do not adjust for the

variation in 1/γ̂ (1).

6.2 School Completion Gaps

I first present results comparing achievement gaps estimated using given z scores to

those using scores anchored at the item level to various school completion measures.

Table 3 presents three sets of gaps using probit models: white/black, male/female, and

high-/low-income. I present the item-anchored gaps in standard deviation units for

comparability to the z scores and in outcome (school completion probability) units for

economic interpretability.

The item-anchored white/black achievement gaps are quite different than the given

z-score gaps. The given gaps for both math and reading are around 1 sd. The high school

anchored gaps are about 0.13-0.19 sd larger, while the difference is even larger for the

college anchored reading gap, at 0.22 sd. By contrast, the college anchored math gap is

0.19 sd smaller than the given gap. In sum, black/white math achievement inequality is

almost 20% smaller in standard deviation terms when test items are anchored to college

completion, while the other anchored gaps are 15-20% larger. This suggests that black

youth do comparatively well on math items that are particularly predictive of college

completion, although the anchored gap is still quite large in absolute terms. At the same

time, black youth perform relatively poorly on reading items that are predictive of high

school or college completion and math items that are predictive of high school completion.

Turning to male/female differences, the given scores suggest that males have a modest
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0.17 sd advantage in math and a smaller 0.10 sd deficit in reading. Anchoring to school

completion dramatically lowers the male advantage in math; the college-anchored gap,

at 0.13 sd, is 24% lower and the high school-anchored gap, at 0.05 sd, is 71% lower.

Similarly, anchoring to high school completion shrinks the female advantage in reading

by 20% to 0.08 sd, while anchoring to college completion removes the female advantage

entirely – the gap falls to 0. Achievement scales which emphasize items associated with

school completion reduce, or in some cases remove, apparent male-female achievement

differences.

Anchoring to school completion has less dramatic effect on the income-achievement

gap, defined here as the mean difference between the top and bottom household income

quintiles. The high school gap is only 6% (0.06 sd) larger in math and about 9% (0.08 sd)

larger in reading. The college results show the same divergence between math and reading

achievement seen above; the college anchored math gap is about 5% (0.05 sd) smaller than

the corresponding z gap, while the anchored reading gap is 31% (0.28 sd) larger.

Table 3 also presents the estimated item-anchored reliabilities. The math reliabilities

are 0.83 (high school) and 0.88 (college); these are both quite close to the 0.85 reliability

reported in the NLSY. By contrast, the high school reading reliability, at 0.87, is larger

than the reported value of 0.81, while the college reading reliability is much smaller,

at 0.74. A consistent finding is that the outcome-relevant reliabilities are often quite

different from the reliabilities reported by the NLSY and also quite different for the same

test items across different outcomes. These reliabilities are mostly larger than what Bond

and Lang (2018) find using a similar procedure where the anchoring outcome is high

school completion and prior-year lagged test scores are used to construct the instruments

necessary to adjust for shrinkage. One possible explanation for this difference is that any

skill that is predictive of outcomes within a given year that is not predictive across years

will be viewed by Bond and Lang as measurement error but not by my “within year” IV

procedure. Additionally, the assessments studied by Bond and Lang are different than the

21



AFQT and the students are much younger, both of which could independently explain

their lower reliability estimates.

The second column of Table 3 shows gaps calculated by anchoring the given scores

directly to outcomes. Each gap is adjusted by the NLS-reported test reliability. Generally,

these anchored gaps are larger than the item-anchored gaps, sometimes substantially so,

and they are never substantially smaller. These differences are driven both by differences

in the estimated test reliabilities and differences in the “raw” (unadjusted) gaps. One

extreme example is the college-anchored male/female math gap where the z-anchored gap

is the same as the raw gap, at 0.1 sd, while the item-anchored gap is 0.

Because the anchored scores are in school-completion units, it is possible to directly

compare group differences in predicted school completion given the item-response data

with the actually observed group differences in school completion. The predicted black-

/white school completion gaps are uniformly larger than the actual school completion

gaps. For instance, math items predict a college completion gap of 0.2, while the actual

gap is only 0.13. Black youth are more successful at completing high school and college

than their math and reading test results would predict. One possible explanation for

this finding is that black youth may on average be attending lower quality schools where

the probability of graduating is higher for a given level of true achievement. Turning

to male/female gaps, the predicted gaps are usually small and positive in favor of men,

while the actual gaps uniformly favor women slightly. That is, purely on the basis of test

performance, men would be expected to complete both high school and college at slightly

greater rates than women, but in fact women have higher completion rates than men.

Whereas test items over-predict black/white gaps, they under-predict achievement gaps by

parental income. In each case, the predicted gap is about 0.05-0.06 less than the actual gap.

Economically advantaged youth have an even larger school completion advantage than

what would be predicted on the basis of their already high level of academic achievement.

22



6.3 Labor Income andWage Anchored Gaps

I now repeat the analysis of the previous section using test scales anchored to log wages

at age 30, ln(wage_30), and log lifetime labor wealth, ln(pdv_labor). Table 4 presents my

preferred estimates which use only white males to construct the anchored scales. These

are my preferred estimates because white men have the greatest labor force attachment in

the NLSY79 data so selection plays less of a role in the estimates. Moreover, to the extent

that discrimination and other barriers for women and racial minorities are operative in

the labor market, the item-anchored achievement scales estimated using only white males

will be more interpretable. Achievement gaps estimated using these white-male scales

answer the question: “If test items correlated to outcomes for everyone as they do for

white men, what would be the achievement gap between these two groups?” Anchored

scales estimated on the full NLSY79 sample will blend the relationships between skills

and outcomes operative for different demographic subgroups. Nonetheless, I report

full-sample estimates in Table 5 for completeness.

The baseline results presented in Table 4 imply that given scores underestimate achieve-

ment gaps by race, gender, and parental income. The item-anchored white/black gaps

are uniformly much larger than the given gaps. The ln(wage_30) gaps for math and

reading are 20-25% (0.18-0.22 sd) larger, while the ln(pdv_labor) gaps are roughly 40-55%

(0.42-0.63 sd) larger. The already sizable achievement gap between white and black youth

is even larger when one considers the items that are predictive of subsequent labor market

success. Turning to male/female gaps, the item-anchored advantages for men in math

are much larger than the z gaps (+41% or 0.07 sd for ln(wage_30) and +65% or 0.12 sd

for ln(pdv_labor)) while the female advantage in reading stays roughly flat. Finally, the

item-anchored high-/low-income gaps are uniformly much larger (23-33% or 0.20-0.37

sd) than the given gaps.

The estimated reliabilities are again informative. The ln(wage_30) reliability for read-

ing is 0.84, slightly higher than the value reported in the NLSY. However, the other
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item-anchored scales have much lower reliabilities, ranging from 0.64 to 0.074. In par-

ticular, the ln(pdv_labor) reliabilities are both quite low relative to the psychometrically

derived values reported in the NLSY. This again highlights the fact that the economically

relevant amount of measurement error in test scores may be greater than what is captured

by standard methods.

The comparison between the item-predicted and actual outcome gaps again reveals

some interesting patterns. The differences between the predicted and actual black/white

gaps are negligible; the earnings differences between black and white NLSY79 respondents

are almost exactly consistent with their measured achievement differences. This is not the

case for the male/female gap; the test items predict small advantages for men in math

and even smaller advantages for women in reading even though the actual gaps are quite

large in favor of men. The actual ln(wage_30) gap is 0.22, while for ln(pdv_labor) the

gap is even larger, at 0.44. These gaps are more then 4 times as large as what the male

advantage in math would predict. (The larger actual gap for ln(pdv_labor) is consistent

with the fact that women are less likely to be engaged in full time employment, implying

that wage differences understate overall earnings differences.) Finally, the predicted high-

/low-income gaps, though sizable, are only about half as large as the actual gaps. As with

education, the realized advantages for youth from high-income households are greater

than what can be predicted on the basis of their measured achievement alone. This result

stands in stark contrast to the gaps by race which are predicted almost perfectly by test

scores alone.

The black-white wage gaps reported in Table 4 are consistent with Neal and Johnson

(1996). These authors find that adding AFQT to log wage regressions reduces the black-

white gap for men by about two-thirds and actually pushes the black-white gap for women

modestly positive. In order to compare my estimates to theirs, I need to estimate wage

gaps separately by gender. Table6 estimates black/white and high-/low-income gaps on

the male-only subset of my data. The item-anchored scores explain between 75%-90% of
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the observed black/white wage and labor income gaps – less than my full sample results

but more than Neal and Johnson (1996). By contrast, share of the high-/low-income gap

that can be explained actually falls slightly. Table 7 repeats the analysis for the female-only

subsample. Again, the share of the high-/low-income gap that can be explained is quite a

bit lower. Interestingly, and in contrast to Neal and Johnson (1996), I find that test items

over-predict the black/white earnings gap among women: for both wage income and full

labor income, I predict gaps that are about 40% larger than observed.

Using the full sample, rather than just white men, to estimate the anchored scales

yields broadly similar results. Table 5 shows that while the differences between the given

gaps and the anchored gaps are typically (though not uniformly) smaller, the qualitative

conclusions are largely unchanged. The one exception is the male/female reading gap.

The item-anchored and given gaps in reading were very similar to each other using white

male prices. Using the full sample instead to estimate the anchoring relationship yields a

large positive gap for men in reading. That is, the item-anchored scales estimated on the

full sample suggest that men have a sizable advantage in both math and reading, while

the given scores and the item-anchored scores using just white male skill prices find a

significant reading advantage for women and a significant math advantage for men. This

is intuitive – women are half the sample and earn far less than men. The item-anchored

scale estimated on the full sample will thus tend to pick out particularly “male” items in

order to predict earnings, making it appear as though men have a sizable advantage in

both reading and math.

7 The “Reading Puzzle” and Item-Anchoring

Prior research (Sanders, 2016; Kinsler and Pavan, 2015) has noted that in multivariate

regressions of outcomes on math and reading scores, the coefficients on reading are often

much smaller than the coefficients on math. In some cases, the reading coefficients are
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even significantly negative. This section demonstrates that using item-anchored scores

can resolve this puzzle. Item-anchored math and reading scores both have large and

significant coefficient estimates in the types of multivariate regressions that typically give

rise to the the reading puzzle. Nonetheless, the coefficient estimates on item-anchored

reading achievement are still typically smaller than those on math.

Table 8 presents the regression coefficients on math and reading for a number of model

specifications when ln(wage_30) is the outcome variable. The table presents different

specifications which controls or not for education and parental income. The estimated

coefficients are large and significantly positive for math but small and insignificant for

reading when the given scores are used (odd-numbered columns).13 A one standard

deviation increase in the given math score is associated with a 0.1-0.18 increase in log

wages at age 30, while a similar increase in the given reading score corresponds to a -0.01

to 0.03 change in log wages. Switching from the given z scores to the wage_30 item-

anchored scores barely shifts the math coefficient estimates while dramatically increasing

the reading coefficient estimates. The item-anchored scores imply that a one standard

deviation in reading skill corresponds to a 0.05-0.09 increase in log wages. The anchored

reading estimates are typically a bit more than half as large as the math estimates.

It is important to emphasize that these results are not tautological – the anchored

math and reading scales are constructed independently of each other. Nonetheless, the

scales are constructed to be maximally predictive of ln(wage_30). This may make their

predictive significance less surprising. However, Table 9 shows that using item scales

anchored to outcomes other than ln(wage_30) largely yields the same set of results: the

estimated item-anchored reading coefficients are significantly above 0 and much closer to

the corresponding math estimates.

The dependent variable in every model presented in Table 9 is ln(wage_30). Columns

13The smallest difference is between columns (7) and (8) which run the models on the full NLSY79 rather
than the white male subsample. As discussed in section 6 wage data is often missing for women and
minorities limiting the interpretability of these estimates.
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(2) and (5) show that using scales anchored to other wage measures barely changes the

math and reading estimates whether or not additional controls are included. Using high

school anchored scores (columns (4) and (8)) yields math and reading coefficients that are

significantly greater than 0 and very close to each other. The reading coefficients using

college anchored scores (columns (3) and (7)) are comparatively closer to 0.14 Nonetheless,

even in this case, the reading estimates are still significantly above the corresponding

estimates using the given scores, and the gap between the reading and math estimates is

also much smaller.

8 Discussion and Conclusion

This paper demonstrates the value of using item-level data in the economic analysis of

achievement. Alternative test scales based on anchoring item level data to outcomes rank

students very differently than given scales and have important implications for measures

achievement gaps by race, gender, and parental income. Generally, these gaps are 15-

50% larger using scales anchored at the item level to school completion or labor income

outcomes. For example, while black/white earnings inequality can be fully explained by

differences in these item-anchored scales, only about half of the gap in adult earnings

between youth from high- and low-income households can be explained.

In addition to these empirical results, the paper develops a method for using item-level

data to estimate test reliability. This is an important contribution because the relevant

measure of reliability depends on the anchoring outcome and need not be related to the

reliability reported by the test designers. While other work (Bond and Lang, 2018) has

shown how to estimate the anchored reliabilities using lagged test scores in panel data,

panel data is not always available. Moreover, panel methods will classify skills that are

predictive of outcomes but which are not tested in consecutive years as measurement error,

14The smaller reading estimates using college anchored scores may reflect the weaker relationship between
reading items and college completion previously documented.
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whereas the method developed here will not. Nonetheless, there is still more work to be

done methodologically, as the split of items into “test scale” and “instrument” uses was

carried out in an ad hoc, though intuitive, manner. Efficiency gains from an improved

procedure are likely. Additionally, the method allows for the direct estimation of the

relevant measure of test reliability. The direct estimation of reliability has two significant

advantages. First, the the anchoring-relevant reliability may be quite different than the

reliability calculated using psychometric methods. Second, the reliability is estimated, so

its simultaneous estimation allows for the construction of standard errors which take this

estimation into account.

There are a number of potentially interesting extensions to the work presented here.

First, one could carry out the anchoring analysis using the items from various noncogni-

tive/behavioral assays such as the Rotter Locus of Control and the Rosenberg Self Esteem

scales that are included in the NLSY79. Second, one could investigate which test items

are driving the differences between the given and anchored scales. Unfortunately, the

content of the ASVAB items is not publicly available. The best one can do, then, is to

connect the items to the IRT item-level parameters, which are reported. Finally, one could

estimate item-anchored scores in the CNLSY, which has the children of the women in the

NLSY79. Although the achievement tests in the NLSY79 and CNLSY are different, one

might nonetheless be able to estimate a new measure of intergenerational persistence in

human capital.

Overall, the results in this paper suggest that economists would do well to consider

more closely the alignment between the assessments they are using and the economic

outcomes that they are ultimately interested in. Although test scores are strongly related

to outcomes, they are not designed with these outcomes in mind. Achievement test scores

can thus obscure important relationships between skills and outcomes with significant

effects on measured achievement inequality.
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A Appendix

Table 1: Summary Statistics

Variable Mean Std. Dev. N
base year age 17.77 2.33 12686
male 0.51 0.5 12686
black 0.14 0.35 12686
base year hh income ($1,000) 70.12 46.33 12249
high school 0.89 0.31 12686
college 0.23 0.42 12686
highest grade completed 13.26 2.48 12686
pdv_labor ($1,000) 434.85 332.99 12686
wage_30 19.43 11.27 8667
math 99.07 18.95 11878
reading 98.32 19.32 11878
afqt 147.85 27.16 11878
ar missing 0.09 0.29 12686
wk missing 0.09 0.29 12686
pc missing 0.09 0.29 12686
mk missing 0.09 0.29 12686

Note: All statistics use base-year sampling weights. Dollar values in 2017-constant dollars deflated
using the CPI-U. A discount rate of 5% is used to construct pdv_labor.
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Figure 1: School Completion Item-by-Item Regression Coefficient and R2 Distributions
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Note: Panels depict kernel densities across test items (i) for regressions of the form yj = αi +βiDi,j +
εi,j where yj is a school completion indicator (high school or college) for youth j.
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Figure 2: Labor Income Item-by-Item Regression Coefficient and R2 distributions
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Note: Panels depict kernel densities across test items (i) for regressions of the form yj = αi +βiDi,j +
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Figure 3: Item Regression Coefficient, Full Combined Regressions
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Note: Panels depict kernel densities across test items (i) for regressions of the form yj = α +β1D1,j +
. . .+ βNDN,j + εi,j for various indicated outcomes yj .
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Figure 4: Schooling Completion Mean Scales for Math and Reading
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Note: The “probit given z” scales are constructed using simple probits of the age-adjusted z scores
on either high school or college indicators. The “probit item” scales are based on linear, item-level
probit regressions. The mean predicted values of the item-level regressions are plotted for each
ventile of the given z distribution.
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Figure 5: School Completion Scales for Math and Reading
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Note: The “probit item” scales are based on linear, item-level probit regressions. The mean
predicted values of the item-level regressions are plotted for each ventile of the given z distribution,
along with the middle 50% and middle 90% range.
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Figure 6: Percentile Differences, Schooling Scales
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Note: Each panel plots the distribution of the percentile differences between the titular probit
item-anchored scale and (1) the regression item-anchored scale (“vs regression”), (2) the given scale
(“vs given”), and (3) the probit anchored scale using the other schooling outcome (“vs hs” or “vs
college”).
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Figure 7: Labor Income Scale for Math and Reading
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Note: The “reg given z” scales are constructed using simple regressions of the age-adjusted z scores
on the logarithms of the pdv_labor variables. The “reg item” scales are based on linear, item-level
probit regressions (in log space). The mean predicted values of the item-level regressions are
plotted for each ventile of the given z distribution.
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Figure 8: Labor Income Scales for Math and Reading
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Note: The “reg item” scales are based on linear, item-level probit regressions (in log space). The
mean predicted values of the item-level regressions are plotted for each ventile of the given z
distribution, along with the middle 50% and middle 90% range.
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Figure 9: Percentile Differences, Labor Income Scales
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Note: Top panels plot kernel density estimates of the individual-level percentile differences
between the log wage anchored scales and either the log(pdv_labor) scales or the given scales.
Bottom panels repeat the analysis for log(pdv_labor).

39



Table 2: Naive, Asymptotic, and Bootstrapped Standard Errors

Test outcome gap naive asymp boot

Math hs white/black 0.03 0.04 0.06
Reading hs white/black 0.03 0.04 0.05
Math college white/black 0.03 0.03 0.03
Reading college white/black 0.04 0.04 0.04
Math log labor white/back 0.03 0.06 0.06
Reading log labor white/black 0.04 0.06 0.07
Math log wages white/black 0.03 0.05 0.06
Reading log wages white/black 0.03 0.06 0.07

Math hs male/female 0.02 0.02 0.03
Reading hs male/female 0.02 0.02 0.03
Math college male/female 0.02 0.02 0.03
Reading college male/female 0.03 0.03 0.04
Math log labor male/female 0.02 0.03 0.04
Reading log labor male/female 0.02 0.03 0.03
Math log wages male/female 0.02 0.02 0.04
Reading log wages male/female 0.02 0.02 0.03

Math hs high/low 0.03 0.04 0.06
Reading hs high/low 0.03 0.04 0.05
Math college high/low 0.03 0.03 0.05
Reading college high/low 0.04 0.04 0.06
Math log labor high/low 0.03 0.06 0.07
Reading log labor high/low 0.03 0.06 0.07
Math log wages high/low 0.03 0.05 0.07
Reading log wages high/low 0.03 0.06 0.07

Note: The “naive” standard errors are calculated without accounting for the sampling variation in
1/γ̂ (1). The “asymp” standard errors account for this sampling variability using the delta method.
The “boot” standard errors are based on a normal approximation using 250 bootstrapped estimates
where the instruments use Â(2) sorted into 20 (rather than 200) equinumerous bins.

40



Table 3: NLSY79 Item-Anchored School Completion Gaps, Probit

White/Black z noitem z item z predicted actual item R
math, college 0.99 0.98 0.80 0.20 0.13 0.88

(0.03) (0.03) (0.03) (0.01) (0.01) .
reading, college 1.06 1.21 1.28 0.25 0.13 0.74

(0.02) (0.03) (0.04) (0.01) (0.01) .
math, hs 0.99 1.20 1.18 0.15 0.06 0.83

(0.03) (0.03) (0.03) (0.00) (0.01) .
reading, hs 1.06 1.39 1.19 0.16 0.06 0.87

(0.02) (0.03) (0.03) (0.00) (0.01)

Male/Female
math, college 0.17 0.23 0.13 0.03 -0.01 0.88

(0.02) (0.02) (0.02) (0.01) (0.01) .
reading, college -0.10 -0.10 0.00 0.00 -0.01 0.74

(0.02) (0.02) (0.03) (0.01) (0.01) .
math, hs 0.17 0.12 0.05 0.01 -0.03 0.83

(0.02) (0.02) (0.02) (0.00) (0.01) .
reading, hs -0.10 -0.15 -0.08 -0.01 -0.03 0.87

(0.02) (0.02) (0.02) (0.00) (0.01) .

High/Low Income
math, college 0.99 1.06 0.94 0.23 0.29 0.88

(0.03) (0.03) (0.03) (0.01) (0.01) .
reading, college 0.91 1.16 1.19 0.23 0.29 0.74

(0.03) (0.03) (0.04) (0.01) (0.01) .
math, hs 0.99 1.07 1.05 0.13 0.18 0.83

(0.03) (0.03) (0.03) (0.00) (0.01) .
reading, hs 0.91 1.10 0.99 0.13 0.18 0.87

(0.03) (0.04) (0.03) (0.00) (0.01) .

Note: All scales constructed using age indicators in addition to item-level indicators. Instruments
use the outcome scale divided into 200 equinumerous bins. Standard errors treat the estimated
reliabilities as known with certainty.
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Table 4: NLSY79 Item-Anchored Log Labor Earnings Gaps, Regression, White Male Prices

White/Black z noitem z item z predicted actual item R
math, wage 0.99 1.13 1.22 0.24 0.24 0.74

(0.03) (0.03) (0.04) (0.01) (0.02) .
reading, wage 1.06 1.41 1.24 0.23 0.24 0.84

(0.02) (0.03) (0.03) (0.01) (0.02) .
math, pdv_labor 0.99 1.13 1.62 0.48 0.44 0.64

(0.03) (0.03) (0.04) (0.01) (0.03) .
reading, pdv_labor 1.06 1.41 1.48 0.42 0.44 0.70

(0.02) (0.03) (0.04) (0.01) (0.03) .

Male/Female
math, wage 0.17 0.20 0.24 0.05 0.22 0.74

(0.02) (0.02) (0.03) (0.01) (0.01) .
reading, wage -0.10 -0.14 -0.10 -0.02 0.22 0.84

(0.02) (0.02) (0.02) (0.00) (0.01) .
math, pdv_labor 0.17 0.20 0.29 0.09 0.45 0.64

(0.02) (0.02) (0.03) (0.01) (0.02) .
reading, pdv_labor -0.10 -0.14 -0.09 -0.02 0.45 0.70

(0.02) (0.02) (0.03) (0.01) (0.02) .

High/Low Income
math, wage 0.99 1.13 1.20 0.24 0.46 0.74

(0.03) (0.03) (0.04) (0.01) (0.02) .
reading, wage 0.91 1.22 1.11 0.20 0.46 0.84

(0.03) (0.03) (0.03) (0.01) (0.02) .
math, pdv_labor 0.99 1.13 1.36 0.40 0.86 0.64

(0.03) (0.03) (0.04) (0.01) (0.03) .
reading, pdv_labor 0.91 1.22 1.21 0.35 0.86 0.70

(0.03) (0.03) (0.04) (0.01) (0.03) .

Note: All scales constructed using age indicators in addition to item-level indicators. Instruments
use the outcome scale divided into 200 equinumerous bins. Standard errors treat the estimated
reliabilities as known with certainty.
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Table 5: NLSY79 Item-Anchored Log Labor Earnings Gaps, Regression

White/Black z noitem z item z predicted actual item R
math, wage 0.99 1.13 1.18 0.26 0.24 0.84

(0.03) (0.03) (0.03) (0.01) (0.02) .
reading, wage 1.06 1.41 1.34 0.27 0.24 0.81

(0.02) (0.03) (0.03) (0.01) (0.02) .
math, pdv_labor 0.99 1.13 1.23 0.46 0.44 0.86

(0.03) (0.03) (0.03) (0.01) (0.03) .
reading, pdv_labor 1.06 1.41 1.24 0.43 0.44 0.90

(0.02) (0.03) (0.03) (0.01) (0.03) .

Male/Female
math, wage 0.17 0.20 0.24 0.05 0.22 0.84

(0.02) (0.02) (0.02) (0.01) (0.01) .
reading, wage -0.10 -0.14 0.17 0.03 0.22 0.81

(0.02) (0.02) (0.02) (0.00) (0.01) .
math, pdv_labor 0.17 0.20 0.24 0.09 0.45 0.86

(0.02) (0.02) (0.02) (0.01) (0.02) .
reading, pdv_labor -0.10 -0.14 0.15 0.05 0.45 0.90

(0.02) (0.02) (0.02) (0.01) (0.02) .

High/Low Income
math, wage 0.99 1.13 1.13 0.25 0.46 0.84

(0.03) (0.03) (0.03) (0.01) (0.02) .
reading, wage 0.91 1.22 1.21 0.24 0.46 0.81

(0.03) (0.03) (0.03) (0.01) (0.02) .
math, pdv_labor 0.99 1.13 1.04 0.39 0.86 0.86

(0.03) (0.03) (0.03) (0.01) (0.03) .
reading, pdv_labor 0.91 1.22 1.01 0.35 0.86 0.90

(0.03) (0.03) (0.03) (0.01) (0.03) .

Note: All scales constructed using age indicators in addition to item-level indicators. Instruments
use the outcome scale divided into 200 equinumerous bins. Standard errors treat the estimated
reliabilities as known with certainty.
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Table 6: NLSY79 Item-Anchored Log Labor Earnings Gaps, Regression, White Male Prices,
Male Sample

White/Black z noitem z item z predicted actual item R
math, wage 1.04 1.19 1.27 0.25 0.30 0.74

(0.04) (0.05) (0.05) (0.01) (0.03) .
reading, wage 1.07 1.42 1.24 0.23 0.30 0.84

(0.04) (0.05) (0.05) (0.01) (0.03) .
math, pdv_labor 1.04 1.19 1.66 0.49 0.55 0.64

(0.04) (0.05) (0.06) (0.02) (0.04) .
reading, pdv_labor 1.07 1.42 1.50 0.43 0.55 0.70

(0.04) (0.05) (0.06) (0.02) (0.04) .

High/Low Income
math, wage 0.96 1.10 1.14 0.22 0.48 0.74

(0.04) (0.05) (0.05) (0.01) (0.03) .
reading, wage 0.90 1.21 1.14 0.21 0.48 0.84

(0.04) (0.05) (0.05) (0.01) (0.03) .
math, pdv_labor 0.96 1.10 1.32 0.39 0.92 0.64

(0.04) (0.05) (0.06) (0.02) (0.04) .
reading, pdv_labor 0.90 1.21 1.29 0.37 0.92 0.70

(0.04) (0.05) (0.06) (0.02) (0.04) .

Note: All scales constructed using age indicators in addition to item-level indicators. Instruments
use the outcome scale divided into 200 equinumerous bins. Standard errors treat the estimated
reliabilities as known with certainty.
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Table 7: NLSY79 Item-Anchored Log Labor Earnings Gaps, Regression, White Male Prices,
Female Sample

White/Black z noitem z item z predicted actual item R
math, wage 0.93 1.06 1.16 0.23 0.17 0.74

(0.04) (0.04) (0.04) (0.01) (0.03) .
reading, wage 1.06 1.41 1.24 0.23 0.17 0.84

(0.03) (0.04) (0.04) (0.01) (0.03) .
math, pdv_labor 0.93 1.06 1.56 0.46 0.33 0.64

(0.04) (0.04) (0.06) (0.02) (0.04) .
reading, pdv_labor 1.06 1.41 1.46 0.42 0.33 0.70

(0.03) (0.04) (0.05) (0.01) (0.04) .

High/Low Income
math, wage 1.01 1.15 1.23 0.24 0.42 0.74

(0.04) (0.04) (0.05) (0.01) (0.03) .
reading, wage 0.93 1.24 1.10 0.20 0.42 0.84

(0.03) (0.04) (0.05) (0.01) (0.03) .
math, pdv_labor 1.01 1.15 1.37 0.41 0.77 0.64

(0.04) (0.04) (0.06) (0.01) (0.04) .
reading, pdv_labor 0.93 1.24 1.13 0.32 0.77 0.70

(0.03) (0.05) (0.06) (0.02) (0.04) .

Note: All scales constructed using age indicators in addition to item-level indicators. Instruments
use the outcome scale divided into 200 equinumerous bins. Standard errors treat the estimated
reliabilities as known with certainty.
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Table 8: Reading Puzzle Regressions – Wages at Age 30

(1) (2) (3) (4) (5) (6) (7) (8)
z item z z item z z item z z item z

math 0.17∗∗∗ 0.15∗∗∗ 0.11∗∗∗ 0.12∗∗∗ 0.10∗∗∗ 0.11∗∗∗ 0.09∗∗∗ 0.10∗∗∗

(0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.01) (0.01)
read 0.03 0.09∗∗∗ -0.00 0.07∗∗∗ -0.01 0.06∗∗∗ 0.03∗∗ 0.05∗∗∗

(0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.01) (0.01)
education no no yes yes yes yes yes yes
parental income no no no no yes yes yes yes
white male only yes yes yes yes yes yes no no
Observations 2363 2262 2363 2262 2289 2187 8012 7776
Adjusted R2 0.115 0.156 0.138 0.166 0.169 0.194 0.211 0.219

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Table shows the estimated coefficients on math and reading for regression of the form
ln(wage) = α + β1math+ β2read + γX + ε, where X denotes education, race, and parental income
controls (or not, as indicated). Column labels correspond to either the given-z scores or the wage
anchored scores.

Table 9: Reading Puzzle Regressions – Wages at Age 30, Alternative Scales

(1) (2) (3) (4) (5) (6) (7) (8)
ln_w30 ln_p14 college high school ln_w30 ln_p14 college high school

math 0.15∗∗∗ 0.14∗∗∗ 0.13∗∗∗ 0.11∗∗∗ 0.11∗∗∗ 0.09∗∗∗ 0.07∗∗∗ 0.05∗∗

(0.01) (0.01) (0.01) (0.02) (0.01) (0.02) (0.02) (0.02)
read 0.09∗∗∗ 0.08∗∗∗ 0.05∗∗∗ 0.09∗∗∗ 0.06∗∗∗ 0.05∗∗∗ 0.03∗ 0.04∗∗

(0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02)
education no no no no yes yes yes yes
parental income no no no no yes yes yes yes
white male only yes yes yes yes yes yes yes yes
Observations 2262 2262 2262 2262 2187 2187 2187 2187
Adjusted R2 0.156 0.128 0.109 0.080 0.194 0.180 0.163 0.161

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Table shows the estimated coefficients on math and reading for regression of the form
ln(wage) = α + β1math+ β2read + γX + ε, where X denotes education, race, and parental income
controls (or not, as indicated). Column labels correspond to different anchoring outcomes for the
math and reading scales.
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B Additional Analysis and Discussion

B.1 Item Response Theory and Economic Outcomes

This appendix formalizes some of the discussion in the introduction (Section 1) regarding
standard psychometric models and economic outcomes. Throughout, I will consider the
canonical 3PL IRT model; the arguments using other psychometric models are similar. In
the 3PL model, the probability that a test-taker with ability θ answers question i correctly
is

Pi(θ) = ci +
1− ci

1 + e−ai(θ−bi )
,

where (ci ,bi , ai) are item specific parameters that govern how ability θ translates to correct
answers (the item characteristic curve or ICC).15

This set-up shows the general difficulty with using IRT scales in economics research.
The scale of θ is defined as the scale such that Pi(θ) has the above functional form. There
is no economic reason why this scale should be interesting. This scale is generically not
unique – Lord (1975) showed that there exist infinitely many alternative scales that can
fit any set of item-response data equally well, provided that the appropriate changes are
made to the functional form of the ICC curve. More importantly, any two test items that
have the same item-level parameters (ci ,bi , ai) will contribute equally to the estimation of
θ. But the skills measured by two such equivalent questions might differ dramatically in
their importance.

Consider the following example, which expands on the discussion in Section 1. Con-
sider a two question exam, where each item measures a unique skill. Let w denote the
outcome (e.g. wages) that we care about, and suppose that skill 1 (measured by test item 1)
leads to w1 > 0, while skill 2 is worthless (w2 = 0). To make the math as simple as possible,
suppose that guessing is not possible, so that ci = 0, and that each test item has infinite
discrimination for its skill. In other words, the test-taker gets item i correct if and only if
she possesses skill i. Finally, suppose the skills are independent of each other and that
each is possessed by half of the population.

The assumption that the skills are equally prevalent and independent implies that the
3PL model will assign the same item parameters to both questions. Moreover, this implies
that there will be 3 possible values of θ: θL = both items wrong, θM = one item correct
and one item incorrect, and θH = both items correct. In order for θ to be distributed
symmetrically with mean 0 and standard deviation 1, we must have

(θL,θM ,θH ) = (−
√

2,0,
√

2).

How informative is the θ scale? It is straightforward to calculate that E[w|θ] is linear

15The parameter ci is the guessing probability: as θ→−∞, Pi(θ)→ ci . Similarly, ai , the “discrimination,”
is the maximum slope of the ICC. Finally, bi is the “difficulty,” or the point in θ space at which the slope of
ai is realized.
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in θ with a slope that depends on w1:

E[w|θ] =
(
w1

2
√

2

)
θ.

Note that the slope in the above relationship is simply equal to the covariance of w and θ.
Similarly, we can calculate var(w|θ), the variance of w conditional on θ:

var(w|θL) = var(w|θH ) = 0, var(w|θm) =
(
w1√

2

)2

There is no unexplained variation in w when scores are low or high, because the low score
guarantees the valuable skill s1 is not possessed, while the high score guarantees that it
is. There is still residual variance for middle scores because some of the middle score
test-takers have the valuable skill, while others do not.

The conditional expectations and variances above are the best an analyst interested
in outcome w could do if she were restricted to using the IRT-derived θ scale. However,
clearly she could do better using item-level data. In particular, given data on w and each
test item, she could figure out that item one yields w1 always and item 2 is independent
of w. Armed with this information, she could construct a new achievement scale, θ̃ that
using only item 1. This achievement scale would have two values: θ̃L if item 1 is wrong,
θ̃H if item 1 is right. Of course, since the units of w are interpretable by hypothesis, a
convenient to use would be θ̃L = 0 and θ̃H = w1. However, to facilitate the comparison
with θ, let us make θ̃ a z-score by setting

(θ̃L, θ̃H ) = (−1,1).

It is straightforward to see that this scale is more informative than the old scale. First, the
slope of the conditional expectation function is steeper:

E[w|θ̃] =
(w1

2

)
θ̃.

Similarly, because θ̃ perfectly reveals w, the residual variance is always 0:

var(w|θ̃L) = var(w|θ̃H ) = 0.
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