Monetary Policy, Capital Controls, and International Portfolios

Sebastian Fanelli

NBER-IFM October 26th, 2018

Sebastian Fanelli

Monetary Policy, Capital Controls, and Int. Portfolios

10/26/18 1/18

- Large literature on optimal monetary policy in open economies...
 - Terms-of-trade management
 - Currency of pricing
 - Financial frictions
- Yet, little about the role of asset market structure...
 - Most studies have a single bond or complete markets
 - Potentially relevant! Large increase in size of external balance sheets across many asset classes, valuation effects...

This paper

- Small open economy model
 - $\textcircled{0} Incomplete markets + Home asset \rightarrow insurance objective$
 - **2** Nominal rigidities \rightarrow demand-management objective
 - $\textcircled{O} \text{ More than one asset} \rightarrow \text{portfolio problem}$
- Analytical characterization using a small-risks approximation of
 - Optimal monetary policy
 - Optimal portfolio
 - Taxes on financial assets
- Quantitative model: Deviate from inflation targeting?

Related Literature: Contributions

- Optimal Monetary Policy in Open Economies with Incomplete Markets
 - Closest: Benigno (2009a, 2009b) and Senay and Sutherland (2017)
- \Rightarrow Fully optimal policy with portfolio choice; interaction with capital controls
- Joint monetary and portfolio/macroprudential policy problem
 - Closest: Farhi-Werning (2016), Engel and Park (2017), Ottonello and Perez (2017)
- \Rightarrow Tighter characterization using approximation; problem with commitment
- Solving DSGE models with portfolio choice
 - Closest: Judd and Guu (2001), Devereux and Sutherland (2011), Tille and van Wincoop (2010)
- \Rightarrow equivalence result; role of portfolio tax

Model

- Today: Two period model
 - Specific preferences, technology & shocks
 - Two assets (home and foreign currency bonds)
- Results are much more general
 - Dynamic, general preferences, technology & shocks
 - Arbitrary asset market structure
- Important assumption: Perfect stabilization under complete markets
 - No financial friction, exogenous terms-of-trade, no mark up shocks, single nominal rigidity...

10/26/18 5/18

Preferences

Home households

$$\mathbb{E}\ln(C^{\alpha}_{Ts}C^{1-\alpha}_{Ns}-\frac{1-\alpha}{1+\psi}L^{1+\psi}_{s})$$

- Own firms and tradable endowment $\{Y_{Ts}\}$
- Foreign households

 $\mathbb{E}\ln(\mathcal{C}^*_{\mathit{Ts}})$

• Foreign is large: C^*_{Ts} taken as given

Technology and Market Structure

Technology

$$Y_{Ns} = Z_s Y_s^I$$
$$Y_s^I(i) = L_s(i)$$

- Y_{Ns}: competitive
- Y_s^I : fixed price $P_s^I(i) = 1 \ \forall s$

• Foreign-currency bond B^*

 $1 \rightarrow R^*$

Obmestic-currency bond B

 $1
ightarrow {\it RE_0E_s^{-1}}$

• Free access to all markets by all agents (i.e., no financial friction)

• Foreign-currency bond B^*

 $1{\rightarrow}1$

Obmestic-currency bond B

 $1
ightarrow {\it RE}_{s}^{-1}$

• Free access to all markets by all agents (i.e., no financial friction)

< □ > < □ > < □ > < □ > < □ >

• Monetary policy: exchange rate rule $\{E_s\}_{s\in S}$

money rule

⁽²⁾ Capital controls: portfolio tax τ_B on home asset

$$(1 + \tau_B)B + B^* + T_0 = 0$$

- $\textcircled{O} Lump-sum subsidies $T_0 \rightarrow$ rebate tax revenue$
 - Problem under commitment

Equilibrium conditions

• Simplifying,

$$\begin{aligned} \frac{\alpha L_s}{(1-\alpha)C_{Ts}} &= E_s \\ Y_{Ts} + (RE_s^{-1} - 1)B &= C_{Ts} \\ \mathbb{E}((1+\tau_B)^{-1}RE_s^{-1} - 1)u_T(s) &= 0 \\ \mathbb{E}(RE_s^{-1} - 1)C_s^{*-1} &= 0 \end{aligned}$$

• Note that using the first equation we may write

$$\{C_{Ns}(C_{Ts}, E_s), L_s(C_{Ts}, E_s)\}$$

Sebastian Fanelli

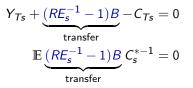
10/26/18 10/18

< □ > < □ > < □ > < □ > < □ >

Planning problem

$$\max_{\{C_{Ts}, E_s^{-1}\}_{s \in S}, R, B} \mathbb{E} \underbrace{V(C_{Ts}, E_s; Z_s)}_{\text{indirect utility}}$$

subject to



 \Rightarrow V was obtained replacing { $C_{Ns}(C_{Ts}, E_s), L_s(C_{Ts}, E_s)$ }

• Monetary policy $\{E_s\}$

2 Portfolio *B* (i.e., decentralized via the portfolio tax τ_B)

Sebastian Fanelli

・ロト ・四ト ・ヨト ・ヨト

Approximation Method

- Parametrize shocks $\xi_s = \bar{\xi} + \epsilon u_s$ and study limit $\epsilon o 0$
- Two steps
 - Derive standard LQ problem (as in Benigno Woodford 2012) around arbitrary steady-state portfolio
 - 2 Maximize over steady-state portfolio
- FOC of approximate problem coincide with perturbation approach on FOCs of nonlinear problem •more
 - This is true **only** if you have a portfolio tax (or if you do not need it)
 - Otherwise: Additional quadratic constraint (see paper)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Approximate Welfare

• Around arbitrary \bar{B} ,

$$\mathbb{E}_{0}V(s) = -k_{0}\mathbb{E}_{0}\left[\frac{1}{2}\chi(1+\bar{B}\mu)^{2}\underbrace{(e_{s}-\frac{e_{s}^{dm}(0)}{1+\bar{B}\mu})^{2}}_{\text{demand-management}} + \frac{1}{2}\underbrace{(\bar{B}e_{s}+\mathcal{T}_{s})^{2}}_{\text{insurance}}\right] + t.i.p. + O(\epsilon^{3})$$

- Two key statistics:
 - Desired transfer under complete markets and flexible prices

$$\mathcal{T}_{s} = \alpha y_{Ts} + c_{Ts}^{*}$$

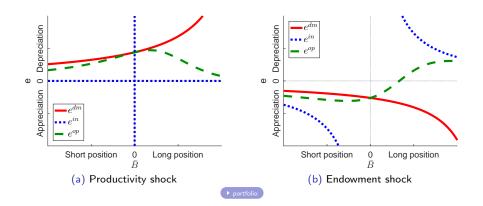
• Exchange rate that closes the output gap without home-currency bonds

$$e_s^{dm}(0) = rac{1-lpha}{lpha+\psi} z_s - rac{\psi}{lpha+\psi} y_{Ts}$$

• Two important parameters:

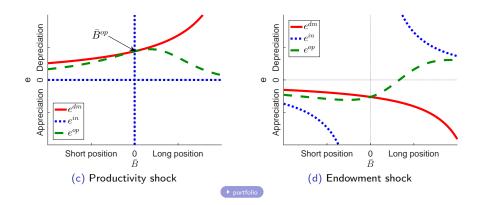
•
$$\chi = (1-lpha) lpha(\psi+lpha) > 0$$
 : insurance vs. demand-management

•
$$\mu = -rac{\psi}{lpha(\psi+lpha)} < 0$$
 : wealth effect



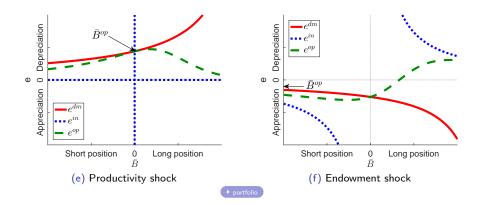
10/26/18 14/18

・ロト ・回ト ・ヨト ・ヨ



10/26/18 14/18

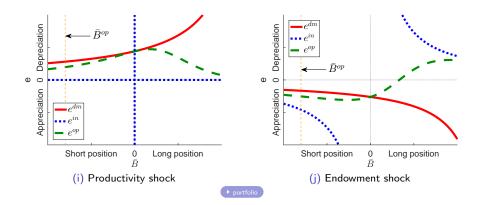
・ロト ・回ト ・ヨト ・ヨ



10/26/18 14/18



10/26/18 14/18



10/26/18 14/18

・ロト ・回ト ・ヨト ・ヨ

Proposition: Optimal portfolio

If μ is not too large, positions become **larger** (in absolute value) when the insurance motive becomes more important ($\uparrow \sigma_{T}^{2} / \sigma_{e^{dm}(0)}^{2}$ or $\downarrow \chi$)

- Shocks map differently to statistics $e_s^{dm}(0)$ and \mathcal{T}_s
 - High $|B| \Rightarrow$ costly to accomodate $e_s^{dm}(0)$
 - High $|B| \Rightarrow$ easy to create \mathcal{T}_s
- General asset structure: *sensitivity of portfolio to MP* (see paper)

Implications for exchange rate volatility

Proposition: Optimal exchange rate volatility

- Suppose the portfolio decision is constrained (i.e. |B
 | = K
). Then exchange rate volatility σ_e²/σ_{e^{dm}(0)} increases with the importance of the insurance motive (↑ σ_T²/σ_{e^{dm}(0)} or ↓ χ)
- Suppose µB
 ≥ 0 and the optimum B
 is interior. Then, exchange rate volatility σ_e²/σ_{e^{dm}(0)} decreases with the importance of the insurance motive. If µB
 < 0, the result is ambiguous.

• General asset structure: sensitivity of excess returns to MP (see paper)

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・ …

Portfolio choices are approximately efficient

Proposition

Private portfolio decisions are efficient in the limit, i.e., $\tau_B = O(\epsilon^3)$

- No differential tax on home vs. foreign-currency bond
- Key: Economy would be efficient if markets were complete
- Not key: Simple asset structure; static model \rightarrow result much more general

Conclusion

- Framework to study joint optimal monetary policy and portfolio choice
 - Much more general than this particular setup!
 - Caveat: "Steady-state" portfolio tax important for tractability in general
- When market incompleteness is important...
 - \uparrow sensitivity of external balance sheet to MP
 - Lowers cost of creating transfers ex post
 - Prevents accomodating demand to avoid undesirable transfers
- Market incompleteness alone: weak argument for portfolio taxes

Optimal monetary policy given \bar{B}

Proposition: Optimal exchange rate

The optimal exchange rate is given by

$$\mathbf{e}_{s}^{op}(\bar{B}) = (1 - \omega(\bar{B}))\mathbf{e}_{s}^{dm}(\bar{B}) + \omega(\bar{B})\mathbf{e}_{s}^{in}(\bar{B}) + O(\epsilon^{2})$$

where where e_s^{dm} and e_s^{in} are the demand-management and insurance targets,

$$egin{aligned} &e^{dm}_s(m{B}) = rac{1}{1+\muar{B}}e^{dm}_s(m{0})\ &e^{in}_s(m{B}) = -rac{1}{B}\mathcal{T}_s \end{aligned}$$

and ω is given by

$$\omega = \frac{\bar{B}^2}{\bar{B}^2 + \chi(1 + \mu\bar{B})^2}.$$

10/26/18 19/18

More in the paper...

- Dynamic model
 - Everything goes through analytically
 - New "cost-minimization problem": Solve optimal way of creating excess-return at 0 (use savings taxes!)
- Calibration for Canada
 - Weight on insurance target: around 8% (sensitive to cost of inflation)
 - Welfare gains of completing markets (including an additional financial asset) significantly larger under optimal policy relative to inflation targeting

10/26/18 20/18

- Solution under cooperation (when $m < \infty$)
 - Analytical: as-if *m* was twice as large ($\uparrow |B|$, $\downarrow \sigma_{rr}^2$) and no portfolio tax
 - Large quantitative gains due to small m
- General asset structures
 - Model with equity in non-tradable sector: χ increases with price flexibility
 - Any: Sufficient statistic of "exposure" to monetary policy in static model
 - No portfolio tax result $(m = \infty)$ robust

- Solution without time-varying capital controls
 - Results go through, but $\uparrow \chi$ (higher cost of providing insurance)
 - Quantitatively similar due to long bond duration
- Solution with no capital controls whatsoever
 - If $m < \infty$, need to solve additional degree of indeterminacy (Lagrange multiplier)

Money supply rule

Modify utility to

$$\max_{\{C_{Ts}, C_{Ns}, M_s, B\}} \mathbb{E}\left\{u(C_{Ts}, C_{Ns}, L_s, s) + \nu L(M_s/E_s)\right\}$$

• Yields money demand,

 $L'(M_s/E_s) \propto u_T(s)$

- \Rightarrow Invert this to obtain E_s as a function of M_s
- $\Rightarrow~$ Take $\nu \rightarrow 0$ so that it does not enter planning problem

back

10/26/18 23/18

< □ > < □ > < □ > < □ > < □ >

Optimization: Consumers

Home consumer

$$u_N(s)/u_T(s) = P_{Ns}/E_s \tag{1}$$

$$-u_L(s)/u_T(s) = W_s/E_s$$
⁽²⁾

$$\mathbb{E}((1+\tau_B)^{-1}RE_s^{-1}-1)u_T(s) = 0$$
(3)

$$(1+\tau_B)B+B^*=T_0 \tag{4}$$

$$E_s C_{Ts} + P_{Ns} C_{Ns} = E_s Y_{Ts} + W_s L_s + \Pi_s$$
$$+ RB + E_s B^* + T_s \ \forall s \tag{5}$$

• Foreign consumer

$$\mathbb{E}(RE_{s}^{-1}-1)u_{T}^{*}(s) = 0$$
(6)

$$B^f + B^{*f} = 0 (7)$$

$$E_{s}C_{Ts}^{*} = E_{s}Y_{Ts}^{*} + RB^{f} + E_{s}B^{*f}$$
(8)

< □ > < □ > < □ > < □ > < □ >

Optimization: Firms and government

• Firms

$$P_{Ns}F_{Y^{l}}(s) = P_{s}^{l} \tag{9}$$

$$P_s^{I}(i) = \frac{\eta}{\eta - 1} (1 + \tau^L) W_s \forall i \in (\phi, 1]$$
(10)

Government

$$T_0 + B^g + B^{g*} = \tau_B B \tag{11}$$

$$T_s = \tau_L W_s L_s + R B^g + E_s B^{g*} \tag{12}$$

< □ > < □ > < □ > < □ > < □ >

10/26/18 25/18

æ

Market clearing

$$Y_{Ns} = F(s) \tag{13}$$

< □ > < □ > < □ > < □ > < □ >

$$B + B^g + mB^f = 0 \tag{14}$$

$$B^* + B^{g*} + mB^{*f} = 0. (15)$$

• Ricardian equivalence holds $\rightarrow B^g = B^{g*} = 0$ wlog

▶ back

Proposition: Equivalence to perturbation approach

Suppose u, u^* and F are locally analytic functions around the steady state. Then, maximizing

$$\mathbb{E}_0 V(s) = k_0 \mathbb{E}_0 \left[-\frac{1}{2} \underbrace{(\bar{B} e_s + \mathcal{T}_s)^2}_{\text{insurance}} - \frac{1}{2} \chi \underbrace{((1 + \bar{B} \mu) e_s - e_s^{dm}(0))^2}_{\text{demand-management}} \right] + t.i.p. + O(\epsilon^3)$$

with respect to $\{e_s\}$ and \tilde{B} yields a linear approximation of a solution to the first-order conditions of problem \mathcal{P} around $(\tilde{B}, \epsilon = 0)$ for $\{e_s\}$ and a bifurcation point of the system \tilde{B} .

Approximating the solution

• $m = \infty$ to simplify

• FOC:

$$V_{1s} - \lambda_s = 0 \tag{16}$$

$$V_2 + BR\lambda_s + \varphi BRu'^*(s) = 0 \tag{17}$$

$$B\mathbb{E}_{0}E_{s}^{-1}\lambda_{s} + B\varphi\mathbb{E}_{0}E_{s}^{-1}u^{\prime *}(s) = 0$$
(18)

$$Y_{Ts} + B(RE_s^{-1} - 1) - C_{Ts} = 0$$
(19)

$$\mathbb{E}_0(RE_s^{-1}-1)\lambda_s = 0 \tag{20}$$

イロト イヨト イヨト イヨト

$$\mathbb{E}_0(RE_s^{-1}-1)u'^*(s) = 0 \tag{21}$$

• Apply IFT around (B, ϵ) to (16) - (20)

$$\Rightarrow \{C_{T}(B,\epsilon), , E_{s}^{-1}(B,\epsilon), R_{s}^{-1}(B,\epsilon), \lambda_{s}(B,\epsilon), \varphi(B,\epsilon)\}$$

Approximating the solution

Let

$$H(B,\epsilon) \equiv \mathbb{E}_{0}(R(B,\epsilon)E_{s}^{-1}(B,\epsilon)-1)(\lambda_{s}(B,\epsilon)-\varphi(B,\epsilon)u^{*}(B,\epsilon))$$

• Can show

$$\frac{\partial H}{\partial B} = 0$$
$$\frac{\partial^2 H}{\partial B \partial \epsilon} = 0$$

• Solve singularity

$$\hat{H}(\theta, \epsilon) = \left\{ \begin{array}{l} \frac{H(\theta, \epsilon)}{\frac{\partial}{\partial t}} \text{ if } \epsilon \neq 0 \\ \frac{\frac{\partial}{\partial H}}{\partial \epsilon} \text{ if } \epsilon = 0 \end{array} \right\}$$

• $\frac{\partial \hat{H}}{\partial B} = 0$ when $\epsilon = 0$. Bifurcation point solves:

$$\frac{\partial \hat{H}}{\partial \epsilon} = 0$$

Sebastian Fanelli

■ ■ つへで 10/26/18 29/18

Approximating the solution

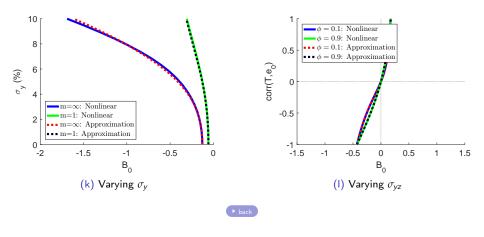
Theorem

(Bifurcation Theorem). Suppose $H : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, H is analytic for (x, ϵ) in a neighborhood of $(x_0, 0)$, and $H(x, 0) = 0 \quad \forall x \in \mathbb{R}$. Furthermore, suppose that

$$H_x(x_0, 0) = 0 = H_{\epsilon}(x_0, 0), H_{x\epsilon} \neq 0.$$

Then $(x_0, 0)$ is a bifurcation point and there is an open neighborhood \mathcal{N} of $(x_0, 0)$ and a function $h(\varepsilon)$, $h(\varepsilon) \neq 0$ for $\varepsilon \neq 0$, such that h is analytic and $H(h(\varepsilon), \varepsilon) = 0$ for $(h(\varepsilon), \varepsilon) \in \mathcal{N}$.

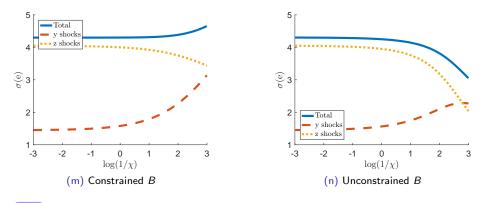
Example: portfolio



10/26/18 31/18

< □ > < □ > < □ > < □ > < □ >

Example: MP shifts the volatility



▶ back

10/26/18 32/18

• FOC with respect to *E* yields, to first-order:

$$\hat{V}_{E}(s) = k_2 \hat{V}_{C_{T}} + O(\epsilon^2)$$

• Intuition: deviate from $\hat{V}_E = 0$ to provide insurance, i.e. to stabilize \hat{V}_{C_T}

Portfolio optimality implies

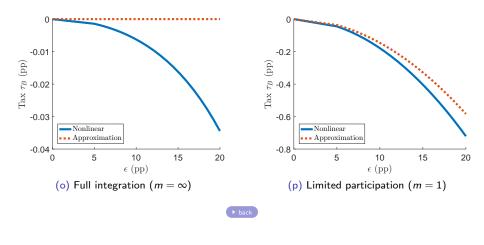
$$\mathbb{E}e_{s}\hat{V}_{C_{T}}=O(\epsilon^{3})$$

• Since AD is the only externality, we have

$$\hat{V}_{C_T} = \hat{U}_{C_T} + k_3 \hat{V}_E + O(\epsilon^2)$$

Putting these together implies Home Euler holds to second-order.

Example: taxes



10/26/18 34 / 18

Dynamic model: Savings taxes

Proposition

1. If wages are rigid ($\phi = 1$), savings taxes decay at rate $1 - \delta$

$$\tau_{B^*t} = -\bar{K}_0(\delta)(\delta\mu - \bar{K}_1 k_{ex}^{-1} k_{ux})(1-\delta)^t \{(1+\mu\bar{B})rr_0 - rr_0^{dm}(0)\}$$
(22)

where $\bar{K}_0 > 0$, $\bar{K}_1 > 0$ are constants, k_{ux} captures the reaction of private marginal utility to the output gap $(k_{ux} > 0 \text{ implies agents overvalue tradable goods in booms})$. When $\delta = 0$, $\bar{K}_0(\delta) = 0$. 2. If bonds are short ($\delta = 1$), then saving taxes from $t \ge 1$ are given by

$$\tau_{B^{*}t} = k_{ux}R_{\pi}^{t-1}\pi_{1}$$

where R_{π} is the optimal decay rate of inflation after t = 1. At t = 0,

$$\tau_{B^*0} = k_0 \mu \{ (1 + \beta^{-1} (1 - \beta) k_{ec}) rr_0 - rr_0^{dm}(0) \} + k_{ux} \Delta x_1$$

where $\bar{k} > 0$. If $k_{ex} > 0$, then $\Delta x_1 > 0$ and $\pi_1 > 0$.

▶ back

Quantitative analysis: calibration

Parameter	Description	Value	Parameter	Description	Value
		A. Struct	tural parameters		
β	Discount factor	0.99	Φw	Probability of not adjusting prices	0.75
γ	Home risk aversion	2	η	Elasticity of substitution (varieties)	6
γ^*	Foreign risk aversion	2	δ	Bond depreciation	0.042
α 1	Tradable share	0.55	m	Measure of foreigners	0.18
ν^{-1}	Frisch elasticity Elasticity of substitution (T/NT)	0.5 0.74	φπ Ρi	Reaction to CPI inflation Smoothing coefficient	1.5 0.84
		В	. Shocks		
σz	Productivity s.d.	0.47%	ρψ	Liquidity service persistence	0.79
σ_{p*}	Terms-of-trade s.d.	0.2%	$corr(\epsilon_t^z, \epsilon_t^{p*})$	Correlation: z and p^*	0.26
σ _{r*}	World interest-rate s.d.	0.23%	$corr(\epsilon_{t}^{z}, \epsilon_{t}^{r*})$	Correlation: z and r^*	-0.13
σ_{V*}	Foreigners' output s.d.	0.53%	$corr(\epsilon_t^z, \epsilon_t^{y*})$	Correlation: z and y^*	0.41
σ_{ψ}	Liquidity service s.d.	0.92%	$corr(\epsilon_t^{p*}, \epsilon_t^{r*})$	Correlation : p^* and r^*	-0.5
ρ _z	Productivity persistence	0.81	$corr(e_t^{p*}, e_t^{y*})$	Correlation: p^* and y^*	0.36
ρ p *	Terms-of-trade persistence	0.74	$corr(\epsilon_t^{r*}, \epsilon_t^{y*})$	Correlation: r^* and y^*	-0.1
ρ _{r*} ρ _{v*}	World interest-rate persistence World output persistence	0.87 0.88	$corr(\epsilon_t^{\psi}, \epsilon_t^{\chi})$	Correlation: ψ and others	0

▶ back

< □ > < □ > < □ > < □ > < □ >

Quantitative analysis: results

	Taylor rule	Demand Management	Optimal	Optimal: fixed B	Optimal: Cooperatior
	Α.	Domestic-currency bond p	oositions and excess re	eturns	
Ē	-15.0%	-16.0%	-22.7%	-15.0%	-57.9%
ω			7.72%	3.57%	22.0%
$\sigma(rr)$:total	6.12%	3.79%	3.72%	3.82%	3.42%
$\sigma(rr): r^*$	2.76%	1.58%	1.99%	1.91%	2.25%
$\sigma(\mathbf{rr}): \psi$	5.72%	3.44%	3.14%	3.32%	2.57%
$\sigma(rr): y^*$	0%	0%	0.35%	0.35%	0.69%
		B. Policy in	struments		
τ _B /riskp.		-80.5%	-103%		0%
$\sigma(\tau^*)$		0%	0.03%	0.02%	0.06%
$\sigma(e)$: total	3.59%	1.48%	1.60%	1.58%	1.70%
$\sigma(e) : r^*$	1.86%	1.48%	1.60%	1.59%	1.64%
$\sigma(e): \psi$	3.35%	0.06%	0.19%	0.11%	0.48%
$\sigma(e): y^*$	0%	0%	0.15%	0.10%	0.29%
		C. Welfare gains ((% of first-best)		
Gains		11.9%	16.9%	15.0%	41.3%

back

▲ ■ ▶ ■ の Q (~ 10/26/18 37 / 18

< □ > < □ > < □ > < □ > < □ >

No Portfolio Tax: Intuition

- Two observations
 - In No reason to tax under complete markets
 - Ocst of creating an excess return on the portfolio is the same across states to first-order
- 1 + 2 imply

inefficient wedges (i.e., output gap) \propto social marginal utility

• Disagreement between private agent and planner depends on wedge,

$$U_{C_T}(s) + \bar{k} \times wedge(s) \approx V_{C_T}(s)$$

• Putting both together,

private marginal utility \propto social marginal utility

Sebastian Fanelli