Persuasion Meets Delegation

Anton Kolotilin (UNSW) and Andy Zapechelnyuk (St Andrews)

September, 2018

Principal – Agent Problem

- A principal wants to influence the decision of a biased agent
- Two instruments of influence
 - Delegation
 - Persuasion
- How are they related?

Preview of Main Result

• Two problems are equivalent under general assumptions

- Explicit equivalence mapping between the two problems
- Decisions and states are swapped in the two problems

Who Cares?

- Results in one problem to solve the other problem
- Reinterpretations of insights in the two problems
- Stepping stone for relations in other problems and extensions

Outline

- Persuasion and delegation problems
- Equivalence result
- Sketch of proof
- Application to monopoly regulation

A Problem

- Principal (she) and Agent (he)
- Agent makes a decision $x \in [0, 1]$
- ullet State $\theta \in [0,1]$ is uniformly distributed

Payoffs

- ullet Agent's and Principal's payoffs are $U(\theta,x)$ and $V(\theta,x)$
- ullet $\frac{\partial}{\partial x}U(\theta,x)$ and $\frac{\partial}{\partial x}V(\theta,x)$ are continuous in θ and x
- $\frac{\partial}{\partial x}U(\theta,x)$ is strictly increasing in θ and strictly decreasing in x
- ullet A pair (U,V) is called a *primitive*
- ullet $\mathcal P$ is the set of primitives that satisfy the above assumptions

Monotone Persuasion Problem

- \bullet Principal chooses a monotone partition Π of [0,1]
- Π contains singletons $\{\theta\}$ and intervals (θ', θ'')
 - W.I.o.g., intervals are open
 - $-\Pi$ is fully identified by a set of singletons
- \bullet Π is a closed subset of [0,1] that contains 0 and 1
- ullet Denote by Π the set of all such Π

Why Monotone Persuasion?

- Monotone partitions are widespread:
 - Credit ratings of financial institutions
 - Consumer ratings of services on Amazon, Yelp,...
 - Grade conversion schemes from 100-point to ABC scale
- Conditions for optimality of monotone partitions:
 Dworczak-Martini (2018), Kolotilin (2018)
- Characterization of optimal monotone partitions:
 Kolotilin and Li (2018)

Monotone Persuasion Problem

- Denote by $\mu_{\Pi}(\theta)$ the partition element that contains θ
 - Interpret $\mu_{\Pi}(\theta)$ as a message sent at state θ
- After observing $\mu_{\Pi}(\theta)$, Agent chooses

$$x_P^*(\theta, \Pi) \in \arg\max_{x \in [0,1]} \mathbb{E}[U_P(s, x) \mid s \in \mu_{\Pi}(\theta)]$$

• Principal's problem:

$$\max_{\Pi \in \Pi} \mathbb{E}[V_P(\theta, x_P^*(\theta, \Pi))]$$

Balanced Delegation Problem

- Principal chooses a closed subset $\Pi \subset [0,1]$ of decisions such that Π contains extreme decisions $\{0,1\}$
- ullet Denote by Π the set of all such delegation sets
- After privately observing θ , Agent chooses

$$x_D^*(\theta, \Pi) \in \arg\max_{x \in \Pi} U_D(\theta, x)$$

• Principal's problem

$$\max_{\Pi \in \Pi} \mathbb{E}[V_D(\theta, x_D^*(\theta, \Pi))]$$

Why Balanced Delegation?

- A balanced delegation problem is a delegation problem with extra boundary conditions, which includes:
 - Standard delegation problems under general assumptions
 - Novel delegation problems with participation constraints

Including Standard Delegation

- $x \in \mathbb{R}$ and $\theta \in [0, 1]$
- $U_D(\theta,x) \to -\infty$ and $V_D(\theta,x) \to -\infty$ as $x \to \pm \infty$
- Lemma: There exist $\underline{x} \in \mathbb{R}$ and $\overline{x} \in \mathbb{R}$ such that the delegation problem is the same if the principal chooses
 - 1. $\Pi \subset \mathbb{R}$,
 - 2. $\Pi \subset [\underline{x}, \overline{x}]$,
 - 3. $\Pi \subset [\underline{x}, \overline{x}]$ subject to $\{\underline{x}, \overline{x}\} \in \Pi$.

Persuasion versus Delegation

What is the difference between these problems?

Main Result

The monotone persuasion problem and the balanced delegation problem are "equivalent".

Definition

Primitives (U_P, V_P) and (U_D, V_D) are equivalent if $\exists C$ such that $\mathbb{E}\big[V_P(\theta, x_P^*(\theta, \Pi))\big] = \mathbb{E}\big[V_D(\theta, x_D^*(\theta; \Pi))\big] + C \quad \text{for all } \Pi \in \Pi.$

Theorem

Consider primitives $(U_D, V_D) \in \mathcal{P}$ and $(U_P, V_P) \in \mathcal{P}$.

If, for all $(\theta_D, \theta_P) \in [0, 1]^2$,

$$\left. \frac{\partial U_D(\theta_D, x)}{\partial x} \right|_{x=\theta_D} + \left. \frac{\partial U_P(\theta_P, x)}{\partial x} \right|_{x=\theta_D} = 0$$

and

$$\left. \frac{\partial V_D(\theta_D, x)}{\partial x} \right|_{x=\theta_P} + \left. \frac{\partial V_P(\theta_P, x)}{\partial x} \right|_{x=\theta_D} = 0,$$

then (U_D, V_D) and (U_P, V_P) are equivalent.

Corollary

Let $(U_D, V_D) \in \mathcal{P}$ be a balanced delegation primitive.

An equivalent monotone persuasion primitive $(U_P, V_P) \in \mathcal{P}$ is

$$U_P(\theta, x) = -\int_0^x \frac{\partial U_D(s, t)}{\partial t} \bigg|_{t=\theta} ds,$$

$$V_P(\theta, x) = -\int_0^x \frac{\partial V_D(s, t)}{\partial t} \bigg|_{t=\theta} ds.$$

Tractable Persuasion and Delegation Problems

• Linear Persuasion, as in Kamenica and Gentzkow (2011):

$$\frac{\partial}{\partial x}U_P(\theta,x) = \psi(\theta) + \eta(x)$$
 and $\frac{\partial}{\partial x}V_P(\theta,x) = \Lambda\psi(\theta) + \nu(x)$,

where ψ is strictly increasing and η is strictly decreasing

• Linear Delegation, as in Amador and Bagwell (2013):

$$\frac{\partial}{\partial x}U_D(\theta,x) = b(x) + c(\theta)$$
 and $\frac{\partial}{\partial x}V_D(\theta,x) = Ab(x) + d(\theta)$,

where b is strictly decreasing and c is strictly increasing

• Linear Persuasion and Separable Delegation are equivalent

Auxiliary Problem

- Agent chooses between actions a = 1 and a = 0
- Agent has a private type $t \in [0, 1]$
- There is an unobservable state $s \in [0, 1]$
- ullet s and t are independently and uniformly distributed

Payoffs

ullet Agent's and Principal's payoffs are au(s,t) and av(s,t)

ullet u(s,t) and v(s,t) are continuous in s and t

ullet u(s,t) is strictly increasing in s and strictly decreasing in t

Discriminatory Disclosure Problem

ullet Principal chooses a closed subset $\Pi\subset [0,1]$ of cutoff tests such that Π contains 0 and 1

• Agent observes his type t and selects a cutoff test $y \in \Pi$ that reveals whether $s \geq y$ or s < y

• W.I.o.g, given selected y, Agent chooses a = 1 iff $s \ge y$

Discriminatory Disclosure Problem

 \bullet After privately observing t, Agent chooses a cutoff test

$$s^*(t,\Pi) \in \operatorname*{arg\,max} \mathbb{E}_s ig[u(s,t) \cdot \mathbf{1}_{\{s \geq y\}} ig]$$

Principal's problem

$$\max_{\Pi \in \Pi} \mathbb{E}_t \Big[\mathbb{E}_s \big[v(s,t) \cdot \mathbf{1}_{\{s \geq s^*(t,\Pi)\}} \big] \Big]$$

Equivalence to Balanced Delegation

- Fix a type t and a cutoff $y \in \Pi$
- ullet Agent's and Principal's payoffs (before learning s)

$$\mathbb{E}_s \left[u(s,t) \cdot \mathbf{1}_{\{s \ge y\}} \right] = \int_y^1 u(s,t) ds := U_D(t,y)$$

$$\mathbb{E}_s \left[v(s,t) \cdot \mathbf{1}_{\{s \ge y\}} \right] = \int_y^1 v(s,t) ds := V_D(t,y)$$

ullet (U_D,V_D) is an equivalent primitive of balanced delegation

Menu of Cutoff Tests and a Monotone Partition

- ullet Menu $\Pi \in \Pi$ defines a monotone partition Π of [0,1]
- *Key observation:* Agent of type t is indifferent between:
 - observing a preferred cutoff test $s^*(t,\Pi)$
 - observing a monotone partition Π

Equivalence to Monotone Persuasion

- ullet Agent's normal-form strategy maps $\mu_\Pi(s)$ and t to a
- W.I.o.g, Agent chooses a threshold type z, so a = 1 iff $t \le z$
- Agent's and Principal's payoffs (before learning t):

$$\mathbb{E}_{t}[u(s,t) \cdot \mathbf{1}_{\{t \leq z\}}] = \int_{0}^{z} u(s,t) dt := U_{P}(s,z)$$

$$\mathbb{E}_{t}[v(s,t) \cdot \mathbf{1}_{\{t \leq z\}}] = \int_{0}^{z} v(s,t) dt := V_{P}(s,z)$$

 \bullet (U_P,V_P) is an equivalent primitive of monotone persuasion

Application: Monopoly Regulation

- x and q denote price and quantity
- Linear demand function: q = 1 x
- Linear cost function cq, where $c \in [0,1]$ is a private cost
- ullet Marginal cost c has a positive **unimodal** density f
- Profit and welfare are given by

$$U(c,x) = (x-c)(1-x)$$
 and $V(c,x) = U(c,x) + \frac{1}{2}(1-x)^2$

ullet Regulator chooses a set $\Pi\subset [0,1]$ of prices available for Monopolist, and Monopolist maximizes profit

Application: Monopoly Regulation

- Two versions:
 - Regulation without Monopolist's participation constraint (studied by Alonso and Matouschek 2008)
 - Regulation with Monopolist's participation constraint (new)

Participation Constraint

• Monopolist can always choose to produce zero quantity, equivalently set price x = 1, so $1 \in \Pi$

• Selling at zero price is less profitable than not producing, so, w.l.o.g., $0 \in \Pi$

• Defining $\theta = F(c)$ yields a balanced delegation problem

Equivalent Persuasion Problem

Principal's payoff from a message $\mu_{\Pi}(\theta)$ is

$$\bar{V}(m) = \int_0^{2m-1} (m-c) dF(c),$$

where $m = \mathbb{E}[s|s \in \mu_{\Pi}(\theta)]$ and $\theta \sim U[0,1]$.

Solution

- Under unimodal f, $\Pi = [0, x^*] \cup \{1\}$ is optimal
- Upper censorship in the persuasion problem
- Price cap in the regulation problem

Regulation without Participation Constraint

- ullet Extend profit U_D and welfare V_D to the domain [0,2] of prices
- Lemma: If $\Pi \subset [0,2]$ is optimal, then $\Pi \cup \{0,2\}$ is optimal.

Equivalent Persuasion Problem

Principal's payoff from a message $\mu_{\Pi}(\theta)$ is

$$\bar{V}(m) = \int_0^{2m-1} (m-c) dF(c),$$

where $m = \mathbb{E}[s|s \in \mu_{\Pi}(\theta)]$ and $\theta \sim U[0,2]$.

Discussion

- Monopoly regulation with and without participation constraint is solved using a single result from the persuasion literature
- Price cap is optimal in both versions of the problem
- Price cap is higher with the participation constrained

Conclusion

- The monotone persuasion problem and the balanced delegation problem are equivalent
- Both are equivalent to a discriminatory disclosure problem with an informed Agent who chooses between two actions
- Insights and results in one problem can be used to understand and solve the other problem
- Novel delegation problems with participation constraints and new results for standard delegation problems