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Abstract

This paper proposes a novel Bayesian approach to model realized data and survey fore-
cast of the same variable jointly in a vector autoregression (VAR). In particular, our
method imposes a prior distribution on the consistency between the forecast implied
by the VAR and the survey forecast for the same variable. When the prior is placed on
unconditional forecasts from the VAR, the prior shapes the posterior of the reduced-
form VAR coefficients. When the prior is placed on conditional forecasts (i.e. impulse
responses), the prior shapes the posterior of the structural VAR coefficients. To imple-
ment our prior, we combine importance sampling with a maximum entropy prior for
forecast consistency to obtain posterior draws of VAR parameters at low computational
cost. We use two empirical examples to illustrate some potential applications of our
methodology: (i) the evolution of tail risks for inflation in a time-varying parameter
VAR model and (ii) the identification of credible forward guidance shocks using sign
and forecast-consistency restrictions in a monetary VAR model.
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1 Introduction

Changing expectations about the future economic outlook are important for understanding
macroeconomic dynamics based on people’s intertemporal decisions. Consumption and in-
vestment as well as price-setting all depend on agents’ beliefs of the future. Many empirical
studies use forecasts based on a vector autoregression (VAR) as proxies for expectations (e.g.
Campbell and Shiller (1988) and Keating (1990)). However, using multi-step ahead VAR
forecasts as proxies for long-term expectations crucially depends on the assumption that the
current and past values included in the VAR correctly represent all information available to
agents, which may not hold when the VAR includes only a small number of aggregate macro
variables. Leduc and Sill (2013) argue that this problem can be alleviated by adding survey
forecasts to the conventional VAR framework because they can provide a sufficient measure
of expectations beyond that implied by the past behavior of macroeconomic aggregates.

However, simply adding survey data to the VAR without imposing consistency between
the VAR forecast and the survey forecast can generate an internal inconsistency. As noted
by Cogley (2005), if one variable in the VAR (e.g. long-term interest rate) is closely linked
to future expected values of another variable (e.g. short-term interest rate) in the VAR, then
within one model there exist two different forecasts for essentially the same variable. Pre-
vious work has sought to resolve this tension by imposing restrictions on the reduced-form
model’s coefficients. For example, Kozicki and Tinsley (2012) impose the internal consis-
tency between expected inflation based on an autoregressive (AR) model of inflation with
time-varying intercepts and survey-based measures of expected inflation. They express the
parameters determining the evolution of survey forecasts for inflation as explicit functions of
parameters governing the evolution of actual inflation. While strictly imposing internal con-
sistency is theoretically appealing, the practice may overly restrict the process representing
the evolution of survey forecasts because there are no independent parameters to govern it.
In addition, there are often conceptual differences between the variable and the survey fore-
cast available. For example, the Livingston Survey/the Survey of Professional Forecasters
provides forecasts of GNP growth prior to 1992 and an alternative concept of GDP thereafter
than is implied by the current vintage of GDP data available form the Bureau of Economic
Analysis (BEA). Moreover, imposing strict consistency in practice can be computationally
burdensome, especially beyond bivariate VAR models with no more than a couple of lags.

In this paper, we propose a Bayesian approach to address the internal consistency issue
posed by including realized data and survey forecasts of the same variable in a VAR. In
particular, we argue for constructing a non-degenerate prior for VAR coefficients that places
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greater mass on areas of the parameter space where the restrictions implied by forecast con-
sistency are closer to being satisfied. We call this the forecast-consistent prior. Relative to
this previous literature, we draw an important distinction between the unconditional and
conditional forecasts from the VAR. When the forecast-consistent prior is placed uncondi-
tional forecasts, forecasts implied using observed data up to time t to forecast the VAR at
t+ h, then our prior shrinks the reduced-form VAR coefficients in the direction of satisfying
cross-equation restrictions. However, when the forecast-consistent prior is placed on con-
ditional forecasts, impulse response functions, then our prior informs the set of structural
VAR models to be considered. From an implementation standpoint, our method is much less
computationally burdensome compared to strictly imposing the coefficient restrictions as in
Cogley (2005). In particular, we simply re-weight posterior draws obtained without using
the forecast-consistent prior by importance sampling weights based on the forecast-consistent
prior. These weights are informed by a hyperparameter which specifies the precision of our
prior. In the limit, as the prior precision grows arbitrarily high, we can nest the strict
imposition of cross-equation restrictions used in the previous literature as a special case.

We illustrate the implications of imposing unconditional forecast consistency for assess-
ing inflation trail-risk in a time-varying parameter (TVP) VAR model. The model includes
survey forecasts for inflation with realized inflation, a real activity measures and a monetary
policy instrument as in Clark and Davig (2011). We then use the posterior estimates to com-
pute time-varying tail risks to inflation, a topic that has received much attention since the
recession of 2007-09 (Anene and D’Amico, 2017; Fleckenstein, Longstaff and Lustig, 2017;
Hattori, Schrimpf and Sushko, 2016). Tail risks in in our model are quite comparable to
estimates based on financial market data such as inflation swaps and options from Fleck-
enstein, Longstaff and Lustig (2017) although we do not use market data at all. Imposing
forecast consistency restrictions reduces tail risks of inflation on average during the period
of 2009:Q4-2015:Q4, reflecting the stability of inflation expectations in survey data in recent
decades. The estimated deflation probabilities came down more rapidly after spiking up in
2008:Q3 when forecast consistency restrictions are imposed. Short-run inflation expectations
from surveys bottom-out in 2009:Q1 and have not declined much since then. When fore-
cast consistency restrictions are not imposed, deflation probabilities are less sensitive to this
change in the survey forecast. Hence, imposing forecast consistency restrictions amplifies
the influence of survey forecasts on the VAR-based forecast of future inflation and makes
tail risks more sensitive to changes in survey forecasts.

We then use the conditional forecast consistent prior to identify credible forward guidance
shocks. We augment to the Uhlig (2005) VAR model survey forecasts of short-term interest
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rates (3-month T-bill rate) one year ahead. Applying similar sign restrictions that Uhlig
(2005) proposes to this augmented model, we find that – similar to Uhlig’s finding for the
effects of conventional monetary policy shocks – the effects of expansionary forward guidance
shocks on output are ambiguous. In some instances, output actually contracts following what
is typically thought of as an expansionary forward guidance shock. However, we also show
that these sign-restrictions admit a wide-range of time paths for the actual federal funds
rate. Many of these time paths deviate significantly from the path of rates predicted by
forecasters following the forward guidance shock. We then impose the forecast consistent
prior in addition to the basic sign restrictions on the impulse responses to elicit forward
guidance shocks in which the path of actual rates is tilted toward the path forecasters expect.
We call such shocks credible forward guidance shocks. We find that these shocks lead to a
modest, but persistent expansion in output.

The rest of our paper is organized as follows. Section 2 illustrates the basic idea behind
forecast consistent priors using a simple example of a bi-variate VAR(1) with one-period
ahead survey forecasts. Section 3 provides details of our approach in a more general case
with multi-horizon and multiple survey forecasts. Section 4 illustrates how to apply the
methodology to impulse response functions from structural VAR models. Section 5 provides
an empirical application of our unconditional forecast-consistent prior methodology to a
TVP-VAR model to assess time-varying tail risk. Section 6 provides an empirical application
of our conditional forecast-consistent prior methodology to identify credible forward guidance
shocks in a structural VAR. Section 7 relates our work to the previous literature in detail
and Section 8 concludes.

2 A simple example: VAR(1) with one-period ahead
survey forecasts

Let’s consider the following bivariate VAR(1) model for yt = [xt , Es
t (xt+1)]. xt is a variable

of interest such as inflation or output growth and Es
t (xt+1) is the one-period ahead forecast

from the available survey on xt.

yt =
 a11 a12

a21 a22

 yt−1 + ut = Ayt−1 + ut , ut ∼ i.i.d.N (0,Σu). (1)
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We assume the following Normal and Inverse-Wishart conjugate priors for (α = vec(A) , Σu).

Σu ∼ IW (Ψ, d),

α|Σu ∼ N (α,Σu ⊗ Ω),
(2)

where Ψ, d, α and Ω are hyperparameters. Let’s stack [y1, · · · , yT ]′ by Y and [y0, · · · , yT−1]
by X. The ordinary least squares (OLS) estimator for A is (X ′X)−1(X ′Y ) and the posterior
mean of A is

Â = (X ′X + Ω−1)−1(X ′Y + Ω−1A), (3)

where vec(A) = α and α̂ = vec(Â). The posterior draws of Σu and α follow the Normal
and Inverse-Wishart distributions.

Σu|yT0 ∼ IW (Ψ + û′û+ (Â− A)′(Ω)−1(Â− A), T − 1 + d),

α|Σu, y
T
0 ∼ N (α̂,Σu ⊗ (X ′X + Ω−1)−1),

(4)

where û = Y −XÂ.

Now we turn to imposing cross-equation restrictions implied by the internal consistency
of forecasts. From the first equation of the VAR, we can generate the VAR-based forecast
for xt+1 at time t.

EVAR
t (xt+1) = a11xt + a12E

s
t (xt+1). (5)

Imposing the consistency restriction that EVAR
t (xt+1) = Es

t (xt+1) for all the values of xt
implies the following restrictions on VAR coefficients.

g(A) = e′1A− e′2 = [0, 0] ⇔ [a11, a12 − 1] = [0, 0]. (6)
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In this case, a21 and a22 remain free parameters. 1 By adopting the Bayesian approach,
we can vary the tightness of these cross-equation restrictions to allow a possibility that survey
forecasts may be an imperfect proxy for the VAR-based forecast. Depending on the degree
of tightness, we can consider the three cases as follows:

1. Strong Consistency: g(A) = [0, 0]. Therefore, a11 = 0 and a12 = 1.

2. Weak Consistency: g(A) ∼ N (0, (λW )−1) . In other words, the average one-period
ahead survey forecast is consistent with the average VAR-based one-period ahead fore-
cast. But they may deviate from each other from time to time. This notion of weak
consistency can be modeled by a non-degenerate prior distribution for g(A). The nor-
mal distribution is the maximum entropy prior for g(A) under constraints on first and
second moments. So the prior under weak consistency is the distribution maximizing
entropy under the constraint that the first moment of g(A) is zero and the second
moment of g(A) is (λW )−1. Our choice of the maximum entropy prior is motivated
by the fact that it minimizes the amount of prior information on the moments of g(A)
other than the chosen moments translated to the prior distribution, in the information-
theoretic sense.2

3. No Consistency: g(A) is not restricted and we can assume a diffuse prior for it.

Strong consistency and no consistency can be regarded as limiting cases when λ approaches
∞ and 0, respectively. In terms of A, the prior density function of g(A) can be treated like
the likelihood function for A using observations satisfying these restrictions.3 We use this
property to calculate the posterior density of α that satisfies cross-equation restrictions as
follows. First, we denote a prior density kernel for α that satisfies forecast consistency by
h(α) = p(g(A(α))). Second, we obtain the new posterior density of α that satisfies forecast
consistency as follows:

p(α|Σu, y0, Y, g(A)) = h(α)p(α|yT0 ,Σu)∫
h(α)p(α|yT0 ,Σu, )dα

. (7)

1Under this restriction, u1,t is a martingale difference series of unanticipated shocks to xt while u2,t

represents a news shock for xt+1 at time t.
2See Robert (2007); Cover and Thomas (2012).
3The maximum entropy prior for g(A) is similar to the limited information likelihood for A in Kim (2002)

if first and second moment restrictions for g(A) are interpreted as nonlinear moment restrictions for A.
We replace sample moment conditions for artificial observations satisfying weak consistency by population
moment conditions as in Del Negro and Schorfheide (2004).

6



Using the above definition, we can simulate posterior draws of α from this new density
simply by re-weighting existing posterior draws with no consistency. Define the following
importance weight for αi that is drawn from p(α|Σu, y0, Y ),

w(αi) = h(αi)∑M
j=1 h(αj)

, αj ∼ p(α|Σu, y0, Y ). (8)

Now, we resample these draws according to new weights [w(α1), · · · , w(αM)].

3 A general case involving multi-horizon and multiple
survey forecasts

Our methodology can be easily extended to a more general case involving multi-horizon and
multiple survey forecasts. In this general case, consistency restrictions become nonlinear
functions of VAR coefficients.

3.1 Multi-horizon survey forecasts

Survey forecasts typically involve multi-horizon forecasts as well as one-period ahead fore-
casts. We can derive implications of the consistency of longer-horizon forecasts for VAR
coefficients similarly as we did above. Since the multi-step forecast in the VAR involves the
repeated iteration of one-step ahead forecasts, the resulting cross-equation restriction shows
up as a nonlinear function of all the VAR coefficients. For example, consider the following
VAR(1) model with two-step ahead forecasts where yt = [xt, Es

t (xt+2)]′. The VAR implied
two-step ahead forecast is

EVAR
t (xt+2) = (a2

11 + a12a21)xt + a12(a11 + a22)Es
t (xt+2). (9)

The strong consistency implies that the following two nonlinear restrictions should hold for
VAR coefficients.

g1(A) = a2
11 + a12a21 = 0,

g2(A) = a12(a11 + a22)− 1 = 0.
(10)

We can put together the two restrictions into a vector of nonlinear equations g(A) as in the
previous section. Unlike the one-step ahead forecast case, solving for a11 and a12 as functions
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of a21 and a22 to impose the strong consistency is complicated because there might be cases
of multiple solutions or no solution. This raises a particular challenge when we want to
impose strong consistency restrictions as in Cogley (2005). However, this is not a serious
issue for weak consistency because cross-equation restrictions hold only probabilistically and
we do not need to solve nonlinear equations.

3.2 Multiple survey forecasts

In a more general case, the VAR may include multiple survey forecasts of different horizons.
For instance, yt may contain a long-horizon survey forecast as well as a short-horizon one as
follows:

yt = Ayt−1 + ut , yt = [xt, Es
t (xt+1), Es

t (xt+2)]′. (11)

In general, the number of cross-equation restrictions implied by consistency requirements is
equal to the number of parameters describing the evolution of survey forecasts. So in the
above three-variable VAR(1) with two survey forecasts, consistency requirements generate
2×3 = 6 cross-equations on 9 parameters in A. To generalize this, we look at the dimension
of cross-equation restrictions from the following a VAR(P) with non-zero constants and ns

survey forecasts.

yt = A0 + A1[y′t−1, · · · , y′t−p] + ut , yt = [x1,t, · · · , xnx,t, Es
t (x1,t+1), · · · , Es

t (xnx,t+h)]′. (12)

The number of equation (ny) is equal to the sum of the number of xt variables (nx) and
the number of survey forecasts (ns <= nx × h). Consistency requirements will impose
ns × (ns + nx) × (p + 1) cross-equation restrictions on the (nx + ns)2 × nx(p + 1) matrix
A = [A0, A1].

4 Imposing forecast consistency in impulse responses

While the methodology to this point has emphasized consistency between the unconditional
VAR forecasts, the approach can also be applied to functions of conditional forecasts following
an economic shock. Impulse responses to identified structural shocks represent one such
conditional forecast that is of interest to macroeconomists. For illustration, consider the
structural VAR using the notation used in Section 3.2 above:

Byt = BA0 +BA1[y′t−1, · · · , y′t−p] + εt, (13)
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where εt are orthogonal structural shocks, each with a standard deviation of one. These
structural shocks are related to the reduced form residuals ut by way of the mapping εt =
B−1ut where ut ∼ N (0,Σu). It will be convenient to define the cross-equation restrictions
associated with expectational consistency in terms of the companion form of the VAR:

Yt = A0 +A1Yt−1 + B−1Ut, (14)

where Yt = [y′t, · · · , y′t−p−1]′, Ut = [ut; 0ny(p−1)×1], A0 = [A0; 0ny(p−1)×1], A1 = [A1; Iny ⊗
I(p−1), 0ny(p−1)×1] , and B−1 = [B−1; 0ny(p−1)×ny ].

Suppose that we are interested in the response to the structural innovation ε1
t occurring

at time t. Then, the k-step ahead forecast of all the variables is given by :

EV AR
t|ε1
t

(Yt+k) = [Inyp +A1 + · · ·+Ak1]A0 +Ak+1
1 Yt−1 +Ak1B−1[1, 0, · · · , 0]. (15)

Define the k-step ahead impulse response of all the variables as the difference between this
conditional forecast and the unconditional forecast made at time t:

IRF (k) = EV AR
t|ε1
t

(Yt+k)− EV AR
t (Yt+k)

= [Inyp +A1 + · · ·+Ak1]A0 +Ak+1
1 Yt−1 +Ak1B−1[1, 0, · · · , 0]

− [Inyp +A1 + · · ·+Ak1]A0 +Ak+1
1 Yt−1

= Ak1B−1[1, 0, · · · , 0]. (16)

Let ei be a nyp × 1 vector whose i′th element is one and all other elements are zero. If the
variable ordered in position Nx is the same variable being foretasted one-period ahead in
survey data in position Ns, then the internal consistency of forecasts would require that:

e′NxIRF (k + 1) = e′NsIRF (k). (17)

Therefore, forecast consistency would require that:

e′NxA
k+1
1 B−1[1, 0, · · · , 0] = e′NsA

k
1B−1[1, 0, · · · , 0]. (18)

Notice that two features of this condition contrasts with the unconditional forecast consis-
tency restrictions presented in Section 3. First, even if consistency is imposed in response
to every structural shock, forecast consistency in the impulse responses imposes no restric-
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tions on the VAR intercept term. This is because the intercept has no direct bearing on the
impulse responses form the VAR. Of course, the unconditional forecasts depend crucially on
A0. Second, the forecast consistency criteria depends on the matrix B−1 which provides the
identification of the structural shocks, or the mapping between reduced form VAR residuals
and structural shocks. This suggests that the identification of structural shocks and forecast
consistency are not independent.

Just as above, we will consider a weak-consistency prior denoted now by g(A,B, h) ∼
N (0, (λW )−1) that relaxes the strict requirement for Equation (18) to hold at every impulse
response horizon h. To highlight the role that this prior can play in sharpening structural
identification, it is useful to consider a fixed A (i.e. fix the reduced form parameters at the
OLS estimates) and a prior only over alternative structural models g(B, h|A) ∼ N (0, λW−1).
In either case, the horizon h is a hyperparameter that calibrates the horizon over which the
prior applies to the impulse responses. In our application below, h aligns with the horizon
over which impulse responses are plotted and displayed.

5 Time-varying inflation tail risks implied by TVP-
VAR with survey forecasts of inflation

Kozicki and Tinsley (2012) estimate a time-varying parameter (TVP) AR(p) model for infla-
tion together with survey forecasts. To efficiently use survey information on the estimation of
time-varying coefficients, they impose consistency requirements that survey forecasts corre-
spond to noisy observations of forecasts implied by the TVP-AR(p) model. After introducing
a noise term to survey forecasts, they essentially impose weak consistency requirements in
our classification. The prior co-variance matrix for cross-equation restrictions in our frame-
work is comparable to the variance matrix of the noise term in their formulation. In Kozicki
and Tinsley (2012), only constant terms (“inflation end-point”) are allowed to drift over time
while other coefficients in the AR(p) model remain time-invariant. Keeping AR coefficients
time-invariant has some limitations in modeling possible time-variations in the relationship
between inflation expectations and other variables. Changes in monetary policy regimes
such as the adoption of explicit inflation target, if credible, will make inflation expectations
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less responsive to temporary shocks.4 For this reason, we consider a more general TVP-VAR
model in which not only constant terms but also other VAR coefficients drift over time. Our
data include survey forecasts for short-term and long-term inflation and we impose weak
consistency requirements for the model-based forecasts.

5.1 Data

As in Clark and Davig (2011), we use both 1-year and 10-year ahead forecasts for Consumer
Price Index (CPI) inflation from the Survey of Professional Forecasters (SPF) as well as
realized CPI inflation. Our measure of long-term inflation is the average expected inflation
between the five quarters from now and the fourth quarter of ten years from the current year.5

We include a measure of real economic activity (Chicago Fed National Activity Index, xt)
and a monetary policy indicator (the effective federal funds rate spliced together with Wu
and Xia (2016) shadow rate (rt) measure during the period when the short-term interest rate
is constrained at the effective lower bound) on top of the three variables related to inflation.
Figure 1 shows all the variables used in estimation. While the real economic activity measure
does not show any trending behavior, all the other nominal variables exhibit downward
trends since the early 1980s. The TVP-VAR model can accommodate time-varying trends
in variables with the random-walk drifts of VAR coefficients.

4Bundick and Smith (2018) show that the announcement of a numerical inflation target by the Federal
Open Market Committee (FOMC) in 2012 reduced the sensitivity of the long-horizon forward inflation to
temporary surprises in the realized inflation. Although their finding is based on the high-frequency financial
market data, Doh and Oksol (2018) find that the predictability of inflation including long-horizon inflation
expectations from survey data also declined after the announcement of the explicit inflation target.

5The 10-year forecast for CPI inflation from the SPF moves the forecast window only at the first quarter
of each year. For example, the 10-year forecast for CPI inflation from the SPF at each quarter of 1990 is the
expected inflation averaged over 1990:Q1-1999:Q4. In contrast, the 1-year forecast from the SPF moves the
forecast window each quarter. Therefore, simply taking the difference between the 10-year forecast and the
1-year forecast will leave some overlapping with realized inflation data depending on the quarter of the year.
We make additional adjustments using realized CPI inflation data and nowcasts observations to ensure the
long-term forward inflation component does not overlap with other inflation-related variables in the VAR.
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5.2 TVP-VAR Model

We consider the following TVP-VAR(4) model with stochastic volatility for the five variables
yt = [πS,Lt , πS,St , πt, xt, rt]:

yt = A0,t +
4∑
j=1

Aj,tyt−j +B−1ut , ut ∼ N (0,Σu,t),

Σu,t =



σ2
1,t 0 · · · 0
0 σ2

2,t
. . . ...

... . . . . . . 0
0 · · · 0 σ2

5,t


ỹt = Ã0,t + Ã1,tỹt−1 + ũt,

ỹt =


yt

yt−1

yt−2

yt−3

 , Ã0,t =
 A0,t

0(15×5)

 , Ã1,t =


A1,t A2,t A3,t A4,t

I5 0(5×5) 0(5×5) 0(5×5)

0(5×5) I5 0(5×5) 0(5×5)

0(5×5) 0(5×5) I5 0(5×5)

 , ũt =
 B−1ut

0(15×5)

 ,

At = [A0,t, A1,t, A2,t, A3,t, A4,t]′,

vec(At) = vec(At−1) + εt , εt ∼ N (0, Q),

ln(σ2
i,t) = ln(σ2

i,t−1) + ei,t , ei,t ∼ N (0, σ2
e,i).

(19)

πS,Lt and πS,St are weighted averages of quarterly forward inflation at different horizons as
defined below while πt is realized CPI quarterly inflation.6

πS,Lt =
∑l(t)
j=5 E

s
t (πt+j)

l(t)− 4 ,

πS,St =
∑4
j=1 E

s
t (πt+j)

4 .

(20)

6Since the forecast horizon of the 10-year forecast from the SPF changes only at the first quarter of each
year, the number of quarterly forward inflation contained in the 10-year forecast varies depending on the
quarter of year. In principle, we could treat four quarterly observations of the 10-year forecast of any given
year as one quarterly observation for four different measures of long-term forecasts to keep the same forecast
horizon for each measure of long-term forecasts. However, doing so will require us to run a mixed-frequency
TVP-VAR that will substantially increase the dimension of parameters and latent variables. We leave this
for the future research agenda.
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Consistency requirements for πS,Lt and πS,St lead to 42 cross-equation restrictions g(A):

πS,Lt −
∑l(t)
j=5 E

VAR
t (πt+j)

l(t)− 4 = e′1ỹt − e′3
[∑l(t)

h=5
∑h−1
j=0 Ã

j
1,tÃ0,t +∑l(t)

h=5 Ã
h
1,tỹt]

l(t)− 4 ,

g(A)L = [−e′3
[∑l(t)

h=5
∑h−1
j=0 Ã

j
1,tÃ0,t])

l(t)− 4 , e′1 − e′3
[∑l(t)

h=5 Ã
h
1,t]

l(t)− 4 ]′

πS,St −
∑4
j=1 E

VAR
t (πt+j)
4 = e′2ỹt − e′3

[∑4
h=1

∑h−1
j=0 Ã

j
1,tÃ0,t +∑4

h=1 Ã
h
1,tỹt]

4 ,

g(A)S = [−e′3
[∑4

h=1
∑h−1
j=0 Ã

j
1,tÃ0,t]

4 , e′2 − e′3
[∑4

h=1 Ã
h
1,t]

4 ]′,

g(A) = [g(A)L, g(A)S]′,

(21)

where ei is a 20× 1 vector whose ith element is 1 while all the other elements are zeros. To
calculate VAR-implied forecasts in the above equation, we assume that agents do not take
into account future drifts in parameters when they form expectations. In other words,

EVAR
t (

h∏
k=1

At+k) = Aht . (22)

This “anticipated utility ”approximation works well for mean forecasts. Since we impose
consistency requirements only on point forecasts from surveys, using the approximation
should be even less problematic.

5.3 Priors

To determine priors for initial states (A0,0, A1,0, A2,0, A3,0, A4,0,Σu,0) and parameters (Q,B, σ2
e),

we use a training sample from 1970:Q2 to 1981:Q2. Initial values of time-varying coefficients
(A0) and the covariance matrix of innovations to time-varying coefficients (Q) are calibrated
from the Ordinary Least Squares (OLS) estimates of a time-invariant VAR(4) using the
training sample data. The prior mean of A0 are the OLS estimates of coefficients from the
VAR(4) for the training sample data. The prior mean of Q is set to be proportional to the
covariance matrix of the OLS estimates. More specifically, we rescale the covariance matrix
of the OLS estimates to make the implied variation of the long-run mean of yt plausible
given the magnitude of the uncertainty about the the mean of yt. More specifically, we
generate At+1 by adding one standard deviation shocks to all the components in At using
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the Cholesky decomposition of Q and calculate the implied variation of the long-run mean
as follows:

∆ȳt+1 = [11×5, 01×15]((I20 − Ã1,t+1)−1Ã0,t+1 − (I20 − Ã1,t)−1Ã0,t). (23)

We calibrate the prior mean of Q to match the implied ∆ȳt+1 with the standard deviation
of the constant mean of yt under the assumption innovations to yt are independently and
identically distributed for the training-sample data. Similarly, priors for the initial values
of stochastic volatilities (Σu,0) are calibrated from the estimated covariance matrix of the
residuals in the time-invariant VAR(4). The prior for B is elicited by scaling up an identity
matrix and the prior mean for σ2

e is set to 0.01, which implies small variations in the innova-
tion to log volatility. As is common in the TVP-VAR literature, we assume that the initial
values of latent states and other parameters are a-priori independent.

p(A0,Σu,0, B,Q, σ
2
e) = p(A0)p(Σu,0)p(B)p(Q)p(σ2

e). (24)

To impose forecast consistency requirements, we need to calibrate hyperparameters such as
λ and W that determine the maximum entropy prior for g(A). Since the prior for g(A)
follows a normal distribution, W needs to match the inverse of the covariance matrix of
g(A). We simulate multiple draws of A from the prior distribution and compute g(A) for
each draw. From these multiple realizations of g(A), we compute the covariance matrix and
set W equal to it. For λ, there is no a-priori guideline to calibrate the value. As common
in a hierarchical model, we estimate the TVP-VAR(4) model with different values of λ and
pick the value that gives the best fit for the sample according to the marginal likelihood.

5.4 Posterior simulation

We obtain the posterior output of latent states and parameters using Gibbs sampling. While
the joint posterior distribution of (AT ,ΣT

u , Q,B, σ
2
e) is difficult to characterize analytically,

the distribution of one component conditional on all the other components is either ana-
lytically tractable or easy to simulate.7 Given hyperparameters (λ,W ), the joint posterior

7We use superscript to denote an array of observations up to the point at the superscript. For example,
AT represents an array of [A0, · · · , AT ].
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distribution of latent states and parameters can be obtained as the product of conditional
posterior distributions as follows:

pλ,W (AT ,ΣT
u , B,Q, σ

2
e |yT ) ∝ p(Q|AT ,ΣT

u , B, σ
2
e , y

T )p(Q)

× p(σ2
e |AT ,ΣT

u , B,Q, y
T )p(σ2

e)

× p(ΣT
u |AT , B,Q, σ2

e , y
T )p(Σu,0)

× p(B|AT ,ΣT
u , Q, σ

2
e , y

T )p(B)

× pλ,W (AT |ΣT
u , B,Q, σ

2
e , y

T )p(A0).

(25)

In the last step, we first simulate M draws of AT from p(AT |ΣT
u , B,Q, σ

2
e , y

T )p(A0) and then
resample them using importance-sampling weights given by

w(AT (j)) = exp−0.5g(AT (j))′(λW )g(AT (j))∑M
k=1 exp−0.5g(AT (k))′(λW )g(AT (k)) . (26)

To choose the hyperparamter λ that controls the tightness of forecast consistency prior
restrictions, we calculate the following marginal data density for different values of λ.8

p(y
T |λ) =

∫
p(yT |AT ,ΣT

u , B)p(AT ,ΣT
u , B)d(AT ,ΣT

u , B). (27)

5.5 Inflation Tail Risks

Since the Great recession of 2007-2009, deflation risk has received a lot of attention from
financial markets and policymakers. Investors have used inflation-related derivatives to hedge
against deflation risks and policymakers often justified the use of unconventional monetary
policies such as large-scale asset purchases and forward guidance on the future path of
the short-term interest rate to address impending deflation risks. Financial derivatives on
inflation such as inflation swaps and options as well as survey forecasts provide information on
future deflation risk. Fleckenstein, Longstaff and Lustig (2017) compute tail risks for inflation
implied by estimating a no-arbitrage model for inflation swaps and options. Alternatively, we
can use survey data on inflation to back out deflation probabilities. Survey data information
can be combined with forecasts based on a time-series model of inflation as we do here using
a TVP-VAR model.

8We calculate the inverse of the marginal likelihood using the harmonic mean of the likelihood implied
by posterior draws. The details are explained in the appendix.
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Table 1 compares estimated deflation probabilities from Fleckenstein, Longstaff and
Lustig (2017) with those from the TVP-VAR model and the University of Michigan con-
sumer survey. For the TVP-VAR model, we simulate future realization of inflation condi-
tional on each draw of parameters assuming that they do not change in the future, which
is consistent with our anticipated utility approximation.9 For the University of Michigan
survey, we calculate the percentage of respondents who anticipated prices would go down
among all the respondents who provided answers on expected prices. To match the sam-
ple period in Fleckenstein, Longstaff and Lustig (2017), we calculate summary statistics
for deflation probabilities for 2009:Q4-2015:Q4. Although the underlying source data are
not overlapping, mean and median numbers are quite comparable given the magnitude of
standard deviation in each measure. In terms of volatility and dispersion, estimates based
on financial market data in Fleckenstein, Longstaff and Lustig (2017) rank first followed by
the TVP-VAR estimates without forecast consistency restrictions. Overall, the TVP-VAR
model with consistency restrictions shifts down the deflation probability with three quantile
estimates (minimum, median, maximum) all smaller than the other estimates. This is also
true for the estimated probability of high inflation (inflation greater than 4 percent aver-
aged over the forecast horizon) in Table 2. Hence, imposing forecast consistency restrictions
strengthens the influence of survey forecasts that have been stable over the recent decades
in determining tail risks.

6 Identifying credible forward guidance shocks

The conventional textbook view in macroeconomics is that what matters for consumption
and investment decisions is the entire path of expected future interest rates, not just interest
rates today (Woodford, 2003). This notion drives the theoretical result that a central bank
retains powerful ammunition to combat economic downturns in the face of constraints on the
current policy rate through its ability to communicate a path of future short-term interest
rates. So-called forward guidance relies on the central bank to deviate from the path of rates
it would otherwise pursue in the future had the economy not experienced a downturn in the
present. In short, as Krugman (1998) succinctly put it, the central bank has to credibly
promise to be irresponsible in the future.

9We resample posterior draws using different values of λ, reflecting the varying degree of tightness in
forecast consistency prior. Among the four values of λ (0, 0.1 , 1, 1.5) in which at least more than 100
posterior draws have non-negligible weights, λ = 1.5 has the highest marginal likelihood. Therefore, we use
posterior draws resampled with λ equal to 1.5 in the later discussion.
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In terms of econometric identification, the added condition that forward announcements
be credible adds to the already formidable challenge of identifying monetary policy shocks.
As is the case for even conventional monetary policy shocks, successful identification of
forward guidance shocks requires disentangling the endogenous policy reaction from the
exogenous policy surprise. But, what constitutes credible guidance on the part of the central
bank? In this paper, we take the view that credible announcements should be believed by
market participants and reflected in their revisions to the path of future short term interest
rates. Moreover, if the central bank hopes to retain future credibility, then their announced
path of policy rates should be realized on average. For instance, if the initial announcement
leads to revised forecast for the future path of rates but then when the future arrives the
central bank reneges on its previous commitment, then the public will likely be skeptical
of any future forward guidance announcements. For this reason, credible forward guidance
announcements – or, similarly, forward guidance announcements from a credible central
bank – should result in a minimal deviation between the path of interest rates forecasters
anticipate and the path of interest rates that is ultimately realized.

Following Uhlig (2005), our central question surrounds the response of output following
a forward guidance shock while we impose restrictions on the response of survey interest
rates and prices. The conditional forecast-consistent prior is ideal to aid in the identification
of credible forward guidance shocks. This prior imposes weak consistency between the fore-
casted path of interest rates and the actual path of interest rates for finite values of the prior
precision parameter λ. In this instance the tuning parameter λ has a somewhat structural
interpretation. Specifically, higher values of λ will further increase the weight on structural
shocks that are associated with greater credibility. Therefore, we expect λ to be monotoni-
cally related to the degree of credibility that underlies the identified forward guidance shock.
In what follows, we apply the conditional forecast-consistent prior to a sign-restricted VAR
along the lines of the one used by Uhlig (2005).

We find that forward guidance shocks identified purely with sign restrictions have an
ambiguous effect on output. And, in several instances, the median of the set of identified
shocks which satisfy the sign restriction implies a contraction in output following what is
thought to be an expansionary forward guidance shock. On the other hand, when we add to
the sign restrictions the conditional forecast-consistent prior, we find expansionary effects on
output for large values of λ. In other words, we find empirical evidence consistent with the
notion that a credible forward guidance announcement of a lower forecasted path of interest
rates leads to expansionary effects.
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6.1 Data and VAR Model

To estimate the effects of forward guidance shocks on output, we closely follow the model
specified in Uhlig (2005). In particular, we use monthly GDP as produced by Macroeconomic
Advisers, the consumer price index, an index of commodity prices, the effective federal
funds rate, non-borrowed reserves, total reserves, and 12-month ahead Blue Chip consensus
economic forecasts for the 3-month Treasury bill rate. We take 100 times the natural log
of all variables except for the federal funds rate and Blue Chip forecast for the 3-month
Treasury bill rate. Unlike Uhlig (2005), we use the CPI directly as opposed to using the CPI
and PPI to interpolate the quarterly GDP deflater to a monthly frequency. Also notable
is the addition of survey forecasts of short-term interest rates. The inclusion of forecasted
interest rates is central to our analysis of forward guidance shocks.

We model these time series as a VAR(3) where the number of lags is selected based
on standard information criteria over the sample January 1994 to December 2007.10 We
begin our estimation in 1994 due to the chronology of communication from the Federal
Open Market Committee (FOMC). Our interest lies in understanding the output effects of
forward guidance, which has often been provided through press statements at the conclusion
of FOMC meetings. Prior to 1994, the FOMC did not issue press statements, limiting the
starting point of the sample range we consider. We end our sample in 2007 due to the
dynamics of non borrowed reserves. In particular, beginning in January of 2008, this series
begins to take on negative values. In addition to being peculiar from an economic standpoint,
practically speaking this precludes using the natural log of this series after 2007. However,
in a robustness check, we “correct” the non-borrowed reserves series to offset the fact some of
the borrowing through the Fed’s liquidity facilities appear to have been counted in borrowed
reserves but not total reserves.11

6.2 Sign and shape restrictions on forward guidance shocks

A combination of sign and shape restrictions is employed to identify credible forward guid-
ance shocks. Sign restrictions of the sort used by Uhlig (2005) restrict the responses of
commodity prices, the price level, and forecasts of future interest rates for the first 6 months
of the impulse response function. The notion that forward guidance shocks cause nominal
interest rates and prices to move in opposite directions is shared by standard sticky-price

10We use pre-sample data beginning in October of 1993 to account for the three lags included in the VAR.
11Arithmetically, this is the only way that non-borrowed reserves could become negative (i.e. borrowed

reserves must exceed total reserves).
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models (Eggertsson and Woodford, 2003), models which attribute a large role to a “Fed
information effect” (Nakamura and Steinsson, 2017), and models which dampen the output
effects of forward guidance through a discounted Euler equation (McKay, Nakamura and
Steinsson, 2016). Therefore, we consider structural rotations that result in inflation and
future interest rates persistently moving in opposing directions to distinguish the monetary
policy innovation from other macroeconomic shocks. Implicitly, this suggests that these
other macroeconomic shocks would lead the Federal Reserve to track the nominal interest
rate with inflation. But, depending on the reaction of the central bank, supply shocks could
also cause inflation and nominal interest rates to move in opposite directions. However, ac-
cording to the estimates in Barsky, Basu and Lee (2015) using U.S. data, both TFP shocks
and TFP news shocks have historically caused inflation and nominal interest rates to co-
move. In addition, Kilian and Lewis (2011) show that the response of short-term interest
rates to oil price shocks has been nil in the post-1987 period that includes our sample.12

This suggests that we are on fairly solid ground by assuming that a monetary policy shock
is the innovation that results in inflation and nominal interest rates persistently moving in
opposite directions.

We make no explicit orthogonalization to distinguish conventional monetary policy shocks
from forward guidance shocks. However, we note that by restricting our focus to policy
shocks which result in persistent movements of expected future interest rates as implied by
forecasters, we rule out short-lived monetary policy shocks that cause short-term rates to
temporarily deviate from their implied rule. Specifically, since we impose our sign restrictions
on the response of forecasts for one-year ahead rates for the first 6 months of the impulse
response, deviations in the funds rate that die out in less than 18 months are explicitly
disregarded. Along these lines, benchmark estimates of conventional monetary policy shocks
result in movements in the funds rate tend to be pretty short-lived (Bernanke and Gertler,
1995). Therefore, our focus on one year ahead interest rate expectations offers some sug-
gestive evidence that our sign restrictions are directing our focus towards forward guidance
shocks as opposed to conventional monetary policy shocks.

In addition to qualitative sign restrictions, we also impose our conditional forecast-
consistent prior over the shape of the impulse response functions. In particular, the VAR
contains both the effective federal funds rate and the forecasted value of the 3-month Trea-
sury Bill rate one year ahead. Historically, the federal funds rate has closely tracked the
3-month Treasury bill rate. Although the two instruments are highly correlated in both lev-

12The concern that the restrictions in place are consistent with both supply shocks and a monetary policy
shocks applies to our application as well as the application in Uhlig (2005).
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els and differences, they are not identical. Therefore, instead of imposing strong consistency,
it is more appealing to impose weak consistency between the survey data on the 3-month
Treasury bill rate and the VAR forecast of the funds rate. Specifically, we form a prior as
follows:

g(B, h|A) = ∂

∂εfgt
EBCt+hRT−bill

t+12+h −
1
3

3∑
j=1

[
∂

∂εfgt
fft+9+h

]
. (28)

In the above equation, ∂yt+h
∂εfgt

denotes the period h impulse response of y to a forward guidance
shock that occurred in period t. EBCt+hRT−bill

t+12+h denotes the Blue Chip consensus economics
forecast for the 3-month Treasury bill 4-quarters (12 months) from now. In the monthly Blue
Chip survey, forecasters report what they expect the 3-month T-bill to average over in the
three months ending 4 quarters ahead. So, in December, forecasters report what they expect
the yield on the 3-month Treasury bill to average in the three months ending December of
the following year. To the extent that the yield on the 3-month Treasury bill rate closely
tracks the federal funds rate, as has been the case historically, then this forecast should be
linked with what the average federal funds rate over the three months ending in December.
The average federal funds rate over the three months ending one year from now, conditional
on a forward guidance shock, is given by 1

3
∑3
j=1

[
∂

∂εfgt
fft+9+h

]
.

As presented above, we assume that g(B, h|A) ∼ N (0, λ−1) where λ tunes the precision
over the conditional forecast-consistent prior. In this context, λ takes on more of a structural
rather than statistical interpretation. In the context of credible forward guidance discussed
above, higher values of λ imply greater credibility since it will tend to drive the posterior
distribution of the VAR and survey forecasts of interest rates together. Unlike the use of
unconditional forecast consistent priors, alternative values of λ result in structural models
that fit the data equally well. To be clear, this issue arises in all structural VAR models
that are not over-identified. For example, in the case of recursive short-run restrictions,
there is no statistical criterion on which to select one candidate Cholesky ordering over
another. Analogously in this application, there is no obvious statistical reason to prefer
small versus large values of λ. Instead, we highlight how alternative values of λ affect the
structural response of output. We then argue that given the different inference one could
draw from alternative λ calibrations, the degree of credibility is a potentially salient factor
shaping the estimated effects of forward guidance shocks. To our knowledge, this point has
not been stressed in the empirical literature that estimates the effects of forward guidance.
However, some theoretical models stress the importance of central credibility when assessing
the effectiveness of forward guidance.
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6.3 Implementation of sign and shape restrictions

We implement our sign restrictions as in Uhlig (2005). In particular, for given values of A
and Σ, the reduced from VAR parameters, we draw a random orthonormal rotation matrix
S such that SS ′ = I. Then we consider orthogonalized shocks defined by the factor matrix
F = CS where C is the lower triangular Cholesky factor of Σ. We then check whether the
impulse response functions implied by A and F satisfy the sign restrictions. If so, then the
impulse response function is retained, otherwise it is discarded and we proceed to another
draw.

After accumulating M impulse responses which satisfy the sign restrictions, then we
calculate the weight of each draw j according to

w(B(j)) = exp−0.5g(B(j),1:H)′λg(B(j),1:H)∑M
k=1 exp−0.5g(B(k),1:H)′λg(B(k),1:H) . (29)

These weights form the importance sampling weights we use to simulate the posterior set of
impulse responses. In practice, we set M = 5000 and find that even for very large values of
λ, the effective sample size – defined as M̂ = (∑M

k=1 w(B(k))2)−1 – is always above 300 and,
in most instances, around 1000 suggesting the posterior weight is distributed across many
draws. Finally, we scale the size each draws to have the same initial effect on forecasted
interest rates before calculating the importance sampling weights. This prevents bigger
shocks from being penalized simply due to the size of the forward guidance shock.

6.4 Impulse response functions

For our baseline analysis, we restrict attention to the case where A and Σ, the reduced from
VAR parameters, are fixed at their OLS estimates. Therefore, in all graphs unless otherwise
noted, the uncertainty bands reflect model uncertainty over the set of alternative structural
VARs. While, in general, it is useful to account for both model and parameter uncertainty,
it is worthwhile to initially focus on model uncertainty to illustrate how λ influences the
identification of structural shocks.

Figure 3 shows the median and 68 percent posterior intervals of impulse response func-
tions across the draws that satisfy the sign restrictions. That is to say that in this figure we
set λ = 0. Per the imposed restrictions, forecasted interested rates decline and commodity
prices along with the overall price level rise. In the months that follow the restricted peri-
ods, forecasted interested rates remain low and commodity prices remain elevated. The price
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level continues to gradually climb throughout the impulse response horizon. Recall that our
sign restrictions leave the path of the actual federal funds rate unconstrained. However,
along with forecasted interest rates, the federal funds rate declines one year after the for-
ward guidance shock. Consistent with the decline in interest rates, non-borrowed and total
reserves both rise 12 months after the shock. After this initial decline, the federal funds
rate begins rising back to its pre-shock level and thereafter continues to rise, resulting in a
persistent interest rate overshoot. In response to this path of realized interest rates, output
initially declines a bit then remains near its pre-shock path. It is perhaps not too surprising
that output fails to increase in response to this forward guidance shock. After all, forward
guidance is premised on the idea that it is the entire path of interest rates that determines
consumption and investment today. And the path of rates realized in this shock is not, on
net, all that expansionary given the offsetting effects of the initial decline in expected rates
and the subsequent reversal and interest rate overshoot.

How does this impulse response for the federal funds rate compare to the one year ahead
forecast of short-term interest rates? The red-dashed line shows the VAR-implied forecast for
the one year ahead short-term interest rate based on the impulse response of the federal funds
rate. One year after the forward guidance shock, actual short-term interest rates are lowered
by an amount similar to what forecasters anticipated. In other words, the initial shock
leads to similar declines in both expected and realized short-term interest rates. However, in
subsequent months, the path of actual short-term interest rates exceeds the path anticipated
by forecasters and remains above forecasted interest rates for several years.

The identified response of output using only sign restrictions suggests that forward guid-
ance may not be effective. However, there are reasons to question whether the resulting path
of interest rates in the above shock scenario is consistent with credible, well-communicated
forward guidance. Perhaps due to the lack of commitment on the part of the central bank, or
a misinterpretation of the central bank’s communication, realized short-term interest rates
deviate persistently from the path of rates anticipated by forecasters. Therefore, the results
in Figure 3 leave open the question of whether credible forward guidance is effective.

To understand the effects that credible forward guidance has on output, we now impose
the conditional forecast-consistent prior in conjunction with the previously used sign restric-
tions. That is to say that we now consider λ > 0 whereas in Figure 3 we set λ = 0. Of
course, this requires choosing a value for λ. Rather than picking just one value, we prefer
to show how the response of output is influenced by the choice of λ. To first gain some
intuition for how alternative values of λ will influence the posterior distribution of the im-
pulse responses, it is instructive to examine two particular candidate models. Among the
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5000 draws that satisfy the sign restriction, we isolate (i) the draw that comes the closest to
satisfying the conditional forecast-consistent condition in Equation (28) and the draw that
is the furthest from satisfying the conditional forecast-consistent condition in Equation (28).
In other words, these are the two draws that register the highest and lowest probability on
our prior, respectively. We refer to these as the “best” and “worst” draws from a forecast
consistency standpoint.

Figure 4 plots the best and worst draws. The green dashed-dotted line represents the
best draw and in the red dashed line represents the worst draw. To visually understand what
is behind these rankings, Figure 4 shows the cumulative forecast deviation in the bottom-left
pane. By construction, the period 60 cumulative deviation is closer to zero for the best draw
than for the worst draw. In other words, the best draw results in a path of the federal funds
rate which closely mirrors the expected path of rates from forecasters. For the worst draw, the
realized path of the funds rate meaningfully diverges from the path expected by forecasters
in a direction that suggests policy ends up being more restrictive than survey expectations
suggested. Although the response of output played no role in our selection, the best draw
implies a persistent expansion in output, while the worst draw suggests that output declines
following a reduction in the forecasted path of short-term interest rates. Given the path
of interest rates that underly these alternative shocks, the resulting differences in their real
effects may not be surprising. None the less, this Figure 4 offers some suggestive evidence
that credible forward guidance has the potential to be more effective.

The impulse responses in Figure 4 make clear how the choice of λ will influence the
posterior impulse responses. Higher values of λ will place greater weight on draws like the
“best” one and lower weight on draws like the “worst” one. Notice that we continue to place
no restriction on the response of output. Instead, as in Uhlig (2005), we continue to remain
agnostic about the real effects of monetary policy. Figure 5 shows the the median response
of output two years following the forward guidance shock for alternative values of λ. As
the value of λ increases, so too does the peak of the median response of output. To the
extent that larger values of λ isolate forward guidance shocks that are more credible and
better communicated than smaller values of λ, then this provides some (suggestive) empirical
evidence that clear communication and credibility are key determinants of the effectiveness
of forward guidance.

Figure 6 shows the median and 68 percent posterior intervals of impulse response func-
tions across the draws that satisfy the sign restrictions with λ = 15000. Though the precise
value of λ is ordinal, larger values express a high-degree of prior precision over conditional
forecast consistency. The resulting impulse response functions show that for this setting of λ,
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output persistently expands following an expansionary forward guidance shock. This shocks
tends to generate paths of the federal funds rate which deviate from the expected path of
professional forecasters by only a few basis points. Importantly, unlike the responses shown
in Figure 3, after initially declining in line with expectations of forecasters the federal funds
rate does not persistently overshoot for the life of the impulse response. Therefore, more
of the anticipated accommodation remains in place which appears to support the persistent
expansion of output.

6.5 Impulse response functions for alternative specifications

The finding that greater credibility, as calibrated through larger values of λ, leads to more
expansionary output effects from forward guidance is a common finding across several alter-
native specifications. In most instances, the range of impulse responses suggests that output
expands. And, in all instances the median response of output with a large value of λ exceeds
the median responses when λ = 0.

• Figure 7 shows the 68 percent range of impulse responses when we don’t scale the size
each draw to have the same initial effect on forecasted interest rates in calculating
the importance sampling weights. In particular, this penalizes bigger shocks simply
due to the size of the forward guidance shock. This is visible in comparing the size
of the initial movement in forecasted interest rates in Figures 7 and 6. Despite the
initial movement in forecasted rates being smaller in this specification, this alternative
weighting still suggests that more credible forward guidance shocks have a larger effect
on output.

• On the one hand, the widespread use of forward guidance over the recent zero lower
bound period provides motivation for including it in the sample. On the other hand,
given the fact that one-year ahead expected rates from both interest-rate futures to
professional surveys became truncated around 2010 according to Swanson and Williams
(2014) is one motivation for limiting our attention to the pre-ZLB period. Therefore,
we leave this full sample estimation as a robustness check. Figure 8 shows the 68
percent range of impulse responses when we extend the sample to include the zero
lower bound period for an estimation sample of January 1994 through December 2015.
For comparison, the median of the draws with λ = 0 is also shown. Over this extended
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sample the ranking of the median responses remains with larger values of λ implying
more expansionary effects.13

• Figure 9 shows the 68 percent range of impulse responses when we also account for
uncertainty in the reduced-form VAR parameters. Compared to the results previously
shown, the range of responses is understandably wider as now both model and param-
eter uncertainty is taken into account. However, the ranking of the median responses
remains with larger values of λ implying more expansionary effects.

7 Related literature

Our work is related to several strands of literature. From a methodological standpoint, our
unconditional forecast-consistent prior is related to the literature on using informative priors
to improve out-of-sample forecasting and the accuracy in the estimation of impulse response
functions in VARs(Del Negro and Schorfheide, 2004; Giannone, Lenza and Primiceri, 2015,
2018). These papers shrink VAR coefficients toward a more parsimonious specification. In
Del Negro and Schorfheide (2004), the parsimonious specification is a dynamic stochastic
general equilibrium (DSGE) model while it is the long-run dynamics of macroeocnomic
variables from a structural model in Giannone, Lenza and Primiceri (2018) or a combination
of naive benchmark models in Giannone, Lenza and Primiceri (2015). Our model-consistent
priors will also shrink VAR coefficients in the direction of a more parsimonious specification
in which coefficients in equations for survey expectations are determined by coefficients in
other equations via nonlinear restrictions. Our approach is more closely related to Del Negro
and Schorfheide (2004) and Giannone, Lenza and Primiceri (2018) than Giannone, Lenza
and Primiceri (2018) in that priors are derived from nonlinear restrictions based on economic
theory. However, unlike Del Negro and Schorfheide (2004), we do not take a stance on an
underyling equilibrium model that might have generated data used in the estimation of the
VAR model. We only seek the internal consistency of forecasts inside the VAR model implied
by the theory of rational expectations. Likewise, we do not take a stance on the long-run
equilibrium relationship between different macroeconomic variables such as real output and
real consumption in Giannone, Lenza and Primiceri (2018). Our nonlinear restrictions are
derived from imposing the consistency of forecasts for the same variable. In this sense,
our model-consistent priors for survey expectations are more flexible than the method used
in the existing literature on imposing theory-based priors for VARs. The flexibility in our

13Due to the decrease in interest rate volatility over this sample, a much larger value of λ is needed over
this sample for the forecast consistent prior to influence the posterior impulse responses.
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approach is comparable to Frey and Mokinski (2016) who also impose the consistency of
forecasts based on a time-series model with survey forecasts in a probabilistic way. However,
their time-series model for inflation does not allow that survey forecasts can predict inflation
above and beyond lagged inflation data. In their specification, survey nowcasts help inflation
forecasting by reducing the estimation uncertainty of parameters in the time-series model
only because survey nowcasts and actual inflation depend on lagged inflation data in a
similar way. In contrast, our specification allows the possibility that survey forecasts contain
forward-looking information on future inflation.

Our conditional forecast-consistent prior is related to the literature that restricts the
sign or shape of impulse response functions to identify structural shocks. Uhlig (2005)
seminal work on this topic argued that sign restrictions could be interpreted as making formal
and transparent the a-priori theorizing that many macroeconomist do when assessing the
success of a particular structural VAR. In this sense, sign restrictions are explicitly modeled
priors overs the sign of the impulse responses that distinguish alternative structural shocks.
Similarly, our approach uses a-priori reasoning over the shapes of the impulse responses for
actual data and survey forecast of that data to identify structural shocks. In this regard,
our implementation by way of importance sampling seems to be similar to the one used by
Antoĺın-Dı́az and Rubio-Ramı́rez (2018), who resample posterior draws of structural VARs
to impose narrative sign restrictions. One main difference is that their importance sampling
weights are determined by the probability distribution of exogenous shocks because narrative
sign restrictions are imposed on the likelihood rather than prior distributions of parameters.

Our applications of these priors presented in the previous sections also relate to multi-
ple branches of research. Several papers have recently focused on assessing the tail-risks to
inflation with many using financial market data such as inflation swaps and options. Fleck-
enstein, Longstaff and Lustig (2017) estimate a dynamic asset pricing model in which trend
and volatility of expected inflation are priced in inflation swaps and options. The model
provides time-varying deflation risks that are identified from the dynamics of state variables
determining the future evolution of inflation. Similarly, (Anene and D’Amico, 2017) and
(Hattori, Schrimpf and Sushko, 2016) use derivative market data on inflation to back out
the implied deflation probability. While Fleckenstein, Longstaff and Lustig (2017) focuses
on the close correlation of deflation risk with other financial and macroeconomic variables
such stock return and unemployment, (Anene and D’Amico, 2017) and (Hattori, Schrimpf
and Sushko, 2016) study the impact of unconventional monetary policies on inflation tail
risks. They find that monetary policy news related to unconventional monetary policies of
the Federal Reserve significantly reduced inflation tail risks during the ZLB period. Our
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paper is complementary to these studies and highlights information from survey forecasts in
calculating inflation tail risks. The relative stability of inflation expectations in the survey
data compared to the volatile financial market data was often cited by policymakers as a
mitigating factor for deflation risk during the ZLB period. Indeed, our estimates of deflation
risks based on the TVP-VAR model with survey forecasts tend to lower than other estimates
based on financial market data on average, consistent with these beliefs. Our results show
that imposing forecast consistency restrictions between survey forecasts and VAR-based fore-
casts reduces deflation risks further by making inflation risks more sensitive to changes in
survey forecasts. When survey forecasts for inflation started to bottom out in 2009:Q1, de-
flation risk from the TVP-VAR model with forecast consistency prior quickly came down
and stayed at a low level thereafter. In contrast, deflation risks from the TVP-VAR model
without forecast consistency prior came down more slowly. The marginal likelihood crite-
rion favors the TVP-VAR model with forecast consistency prior, implying that data support
deflation risks more tightly connected with variations in survey data.

Our VAR analysis on the effects of forward guidance on output relates to a growing lit-
erature that attempts to empirically assess the effects of unconventional monetary policy.
Perhaps most related to our forward guidance application is the work of D’Amico and King
(2017). They also use sign restrictions to elicit the effects of forward guidance from a VAR
that includes actual and survey forecasts of the same data series. We view our analysis as
largely complimentary to theirs, but there are two primary differences between our work and
theirs. First, their work advances a literature that focuses on distinguishing between the
Delphic and Odyssean channels of forward guidance announcements (see for example Camp-
bell et al. (2012)). Meanwhile, we make no identifying restrictions regarding whether the
forward guidance shocks we identify also contain a “Fed information” component. Instead,
any output effects we identify should be interpreted through their lens as a joint or net effect
of these two channels. A second distinction is our focus on central bank credibility in driving
the macroeconomic responses we find, an issue largely outside the scope of their paper.

Our forward guidance application is also related to a more general literature asking
whether monetary policy exacts any real effects under agnostic identification schemes. In
particular, the work of Uhlig (2005) argued that the real effects of monetary policy are
much more ambiguous when on only making sign restrictions. Follow-up work by Arias,
Caldara and Rubio-Ramirez (2018) and Antoĺın-Dı́az and Rubio-Ramı́rez (2018) argues that
adding restrictions on the policy rule of the structural shocks themselves can overturn then
Uhlig (2005) result. Our paper further informs both sides of this debate. First, we find
that for forward guidance shocks, like conventional policy shocks in the application of Uhlig
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(2005), result in ambiguous effects on real output when only identified via minimal sign
restrictions. However, along the lines of the work of Arias, Caldara and Rubio-Ramirez
(2018) and Antoĺın-Dı́az and Rubio-Ramı́rez (2018), we find that adding further restrictions,
in this case to the shape of the impulse response functions, sharpens the identification and
leads to estimated forward guidance shocks which have the “conventional” effect on output.
Finally, our work relates to the recent critique of Ramey (2016) who argues that when
conventional policy shock identification schemes are applied to data from recent decades,
the effects of monetary policy on the real economy are ambiguous. Since our sample focuses
exclusively on the post 1994 period, our results suggest that some forms of monetary policy
have retained their efficacy in recent decades.

8 Conclusion

Survey-based inflation forecasts for macroeconomic variables have been incorporated in VARs
to accommodate forward-looking information that may not be included in the current and
past values of inflation. However, adding survey-based forecasts into VARs without con-
sidering cross-equation restrictions on coefficients generates the internal inconsistency of
forecasts. In this paper, we propose a novel Bayesian approach to put a prior distribution
on cross-equation restrictions. This prior information also can be interpreted as a limited
information likelihood for VAR parameters when we consider artificial observations that sat-
isfy moment conditions for cross-equation restrictions. By combining importance sampling
with a maximum entropy prior for cross-equation restrictions, we implement our approach
without much computational burden. When applied to a TVP-VAR model for macroeco-
nomic variables to calculate tail risks for inflation, imposing forecast consistency restrictions
makes model-based forecasts of inflation more sensitive to movements in survey-based in-
flation expectations, with deflation probability jumping during the period of the financial
crisis and recession in 2008-09 but subsiding more quickly since then. We also show that
imposing weak-consistency across VAR-based and survey-based forecasts of interest rates
leads to greater real effects from forward guidance, perhaps through a credibility channel.
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Appendix

A.1. The derivation of the maximum entropy prior

Let π0 be the Lebesgue measure on R. Under the weak consistency, the prior π(g) must
satisfy the following two moment restrictions.

∫
gπ(g)dg = 0 ,

∫
g2π(g)dg = λW−1. (30)

Maximizing the entropy of π(g) under moment restrictions with respect to the reference
measures π0 is equivalent to minimizing the Kullbeck-Leibler distance between π and π0 as
follows:

π?(g) = argminπ(g)

∫
π(g) ln( π(g)

π0(g))dg − µ1(
∫
gπ(g)dg)− µ2(

∫
g2π(g)− λW−1dg). (31)

The first-order condition for this is π?(g) = π0(g)e1+µ1g+µ2g2 . Hence, π? ∝ eµ1g+µ2g2 and
π? is the normal distribution whose mean and variance are equal to − µ1

2µ2
and − 1

2µ2
. Since

π? must satisfy the above two moment restrictions, µ1 = 0 and µ2 = −W
2λ .

π?(g) ∝ e−
Wg2

2λ → g ∼ N (0, λW−1). (32)

A.2. The calculation of the marginal likelihood

Since draws of VAR parameters from prior distributions are likely to have very low likeli-
hood, calculating the marginal likelihood from prior draws is quite inefficient and practically
infeasible. We calculate the marginal likelihood by using importance sampling for posterior
draws. Let’s notice that the posterior density of VAR parameters can be expressed as the
ratio of the posterior density kernel to the marginal likelihood.

p(AT ,ΣT
u , B|yT , λ) = p(yT |AT ,ΣT

u , B)p(AT ,ΣT
u , B|λ)∫

p(yT |AT ,ΣT
u , B)p(AT ,ΣT

u , B|λ)d(AT ,ΣT
u , B) = p(yT |AT ,ΣT

u , B)p(AT ,ΣT
u , B|λ)

pλ(yT ) .

(33)
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Now, let’s take the harmonic mean of the likelihood for posterior draws of VAR parameters.

∫ 1
p(yT |AT ,ΣT

u , B)p(A
T ,ΣT

u , B|λ, yT )d(AT ,ΣT
u , B) =

∫
p(AT ,ΣT

u , B|λ)d(AT ,ΣT
u , B)

pλ(yT ) . (34)

Since the tail of the inverse of the likelihood can be thick, we truncate the region of posterior
draws that we calculate the harmonic mean of the likelihood to between the 16% quantile
and the 84% quantile of VAR parameters in terms of the likelihood. Let’s denote this region
by χ. Then, we can compute the marginal likelihood as follows.

pλ(yT ) =
∫
χ
p(AT ,ΣT

u , B|λ)d(AT ,ΣT
u , B)[

∫
χ

1
p(yT |AT ,ΣT

u , B)p(A
T ,ΣT

u , B|λ, yT )d(AT ,ΣT
u , B)]−1.

(35)

When we have M draws of (AT (j),ΣT
u (j), B) from p(AT ,ΣT

u , B|λ, yT ), the above calcula-
tion is straightforward because p(AT ,ΣT

u , B|λ) and p(Y T |AT ,ΣT
u , B) are analytically known

functions.
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Figure 3: Forward Guidance Shock: Sign Restrictions Only
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Notes: This figure shows the impulse responses to an identified forward guidance shock using
only sign restrictions. The solid blue line is the median response and the shaded region is the
68% interval among structural VAR models. The red line shows the VAR-implied response
of future short-term interest rates.
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Figure 4: Forward Guidance Shocks: “Best” and “Worst” Fit

Output

12 24 36 48 60

P
er

ce
nt

-0.4

-0.2

0

0.2

0.4
Price Level

12 24 36 48 60

P
er

ce
nt

0

0.05

0.1

0.15

0.2

Fed Funds

12 24 36 48 60

A
P

R

-0.1

-0.05

0

0.05

0.1
4-Qtr Ahead Rate

12 24 36 48 60

A
P

R

-0.1

-0.05

0

0.05

0.1

Cumulative Forecast Deviation

12 24 36 48 60

A
P

R

-0.5

0

0.5

1

1.5

2

"Best" Fit
"Worst" Fit

Notes: This figure shows the impulse responses to an identified forward guidance shock for
the “best” and “worst” fitting models. The “best” fitting model is the draw that comes
the closest to satisfying the conditional forecast-consistent condition and the “worst” fitting
model is the draw that is the furthest from satisfying this condition.
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Figure 5: Output Effects of Forward Guidance: The Role of Credibility

Output Response at 2 Years
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Notes: This figure shows the peak median output response across all impulse response hori-
zons and the median output response after 2 years for alternative values of λ. Larger values
of λ tilt the distribution of models towards those implying the actual path of rates matches
the expected path of rates from survey forecasters.
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Figure 6: Forward Guidance Shock: Sign and Shape Restrictions
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Notes: This figure shows the impulse responses to an identified forward guidance shock
using sign restrictions as well as our conditional forecast-consistent prior which places some
restrictions on the shape of likely impulse responses. The solid blue line is the median
response and the shaded region is the 68% interval among structural VAR models. The red
line shows the VAR-implied response of future short-term interest rates. For this figure,
λ = 15000.
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Figure 7: Forward Guidance Shock:Importance Sampling Weights Based Un-
scaled Shock Size
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Notes: This figure shows the impulse responses to an identified forward guidance shock
using sign restrictions as well as our conditional forecast-consistent prior which places some
restrictions on the shape of likely impulse responses. In this figure, the importance sampling
weights are calculated without normalizing the size of the initial response of forecasted rates.
The solid blue line is the median response and the shaded region is the 68% interval among
structural VAR models. The red line shows the VAR-implied response of future short-term
interest rates. For this figure, λ = 15000.
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Figure 8: Forward Guidance Shock: Including ZLB Sample
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Notes: This figure shows the impulse responses to an identified forward guidance shock
using sign restrictions as well as our conditional forecast-consistent prior which places some
restrictions on the shape of likely impulse responses. The solid blue line is the median
response and the shaded region is the 68% interval among structural VAR models. The red
line shows the VAR-implied response of future short-term interest rates. The green dashed-
dotted line shows the median impulse responses for λ = 0. For this figure, λ = 90000.
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Figure 9: Forward Guidance Shock: Model And Parameter Uncertainty
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Notes: This figure shows the impulse responses to an identified forward guidance shock
using sign restrictions as well as our conditional forecast-consistent prior which places some
restrictions on the shape of likely impulse responses. The solid blue line is the median
response and the shaded region is the 68% probability interval across both structural VAR
model uncertainty and parameter uncertainty. The red line shows the VAR-implied response
of future short-term interest rates. The green dashed-dotted line shows the median impulse
responses for λ = 0. For this figure, λ = 15000.
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