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Abstract

Ridesharing platforms match drivers and riders to trips, using dynamic prices to balance
supply and demand. A challenge is to set prices that are appropriately smooth in space and time,
so that drivers will choose to accept their dispatched trips, rather than drive to another area or
wait for higher prices or a better trip. We work in a complete information, discrete time, multi-
period, multi-location model, and introduce the Spatio-Temporal Pricing (STP) mechanism.
The mechanism is incentive-aligned, in that it is a subgame-perfect equilibrium for drivers to
accept their dispatches. The mechanism is also welfare-optimal, envy-free, individually rational,
budget balanced and core-selecting from any history onward. The proof of incentive alignment
makes use of the M \ concavity of min-cost flow objectives. We also give an impossibility
result, that there can be no dominant-strategy mechanism with the same economic properties.
An empirical analysis conducted in simulation suggests that the STP mechanism can achieve
significantly higher social welfare than a myopic pricing mechanism.

1 Introduction

Ridesharing platforms such as Uber and Lyft are rapidly disrupting traditional forms of transit,
completing millions of trips each day. These platforms connect drivers and riders, with both sides
in a customer relationship with the platforms. When a rider opens the app and enters an origin and
destination, these platforms quote a price for the trip and an estimated wait time. If a rider requests
the ride, the platform dispatches a nearby driver to pick up the rider, and if neither side cancels
and the trip is completed, payment is made from the rider to the driver through the platform.1

Comparing with traditional taxi systems, ridesharing platforms significantly increase the frac-
tion of time when drivers have a rider in the back seat, reducing trip costs for riders [20]. The
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1The actual practice is somewhat more complicated, in that platforms may operate multiple products, for example,

high-end cars, sports utility vehicles, trips shared by multiple riders, etc. Moreover, drivers within even a single class
are differentiated (e.g., cleanliness of car, skill of driving), as are riders (e.g., politeness, loud vs. quiet, safety of
neighborhood). We ignore these effects in our model, and assume that, conditioned on the same trip, all drivers are
equivalent from the perspective of riders and all riders equivalent from the perspective of drivers.
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platforms also emphasize the importance of providing reliable transportation. For example, Uber’s
mission is “to connect riders to reliable transportation, everywhere for everyone.”2 This mission
is also stated as “to make transportation as ubiquitous and reliable as running water.”3 Lyft’s
mission is “to provide the best, most reliable service possible by making sure drivers are on the
road when and where you need them most.”4 Whereas taxi systems have reliable pricing but often
unreliable service, these platforms use dynamic “surge” pricing to guarantee rider wait times do
not exceed a few minutes [33]. Moreover, the platforms provide the flexibility for drivers to drive
on their own schedule. Uber advertises itself as “work that put you first— drive when you want,
earn what you need,”5 and Lyft promises drivers “To drive or not to drive? It’s really up to you.”6

Despite their success, there remain a number of problems with the pricing and dispatching
rules governing the ridesharing platforms, leading in turn to various kinds of market failure. A
particular concern, is that trips may be mis-priced relative to each other, incentivizing drivers to
strategize [19, 14].7 For example, many platforms hide trip destinations from drivers before the
pick-up. However, experienced drivers will call riders to ask about trip details, and cancel those
that are not worthwhile [19]. Drivers also strategize in the following scenarios, where there is spatial
imbalance and temporal variation of rider trip flows:

• (spatial mis-pricing) when the price is substantially higher for trips that start in location A than
an adjacent location B, drivers in location B that are close to the boundary will decline trips.
This spatial mis-pricing leads to drivers’ “chasing the surge”— turning off a ridesharing app
while relocating to another location.8

• (temporal mis-pricing) when large events such a sports game will soon end, drivers can anticipate
that prices will increase in order to balance supply and demand. In this case, drivers will decline
trips and even go off-line in order to wait in place.

• (network externalities) the origin-based dynamic “surge pricing” used in standard practice does
not correctly factor market conditions at the destination of a trip. As a result, drivers decline
trips to destinations where the continuation payoffs are low, e.g. quiet suburbs with low prices
and long wait times.9

These kinds of mis-pricing undercut the mission of reliable transport, with even high willingness-
to-pay riders unable to get access to reliable service for certain trips, such as trips leaving the
stadium before a game ends, and trips going to a quiet suburb.10 This can also lead to inequity,
with demonstrated learning effects leading to differences in long-run earnings (e.g. a gender gap in

2https://www.uber.com/legal/community-guidelines/us-en/, visited September 1, 2017.
3http://time.com/time-person-of-the-year-2015-runner-up-travis-kalanick/, visited September 1, 2017.
4https://help.lyft.com/hc/en-us/articles/115012926227, visited September 1, 2017.
5https://www.uber.com/drive/, visited December 12, 2017.
6https://blog.lyft.com/posts/reasons-to-drive-with-lyft, visited December 12, 2017.
7There are also other incentive problems, including inconsistencies across classes of service, competition among

platforms, drivers’ bonuses and off-platform incentives. In the interest of simplicity, we only model a single class of
service and ignore cross-platform competition.

8http://maximumridesharingprofits.com/advice-new-uber-drivers-dont-chase-surge/, visited Jan 8, 2018;
https://www.youtube.com/watch?v=qI094xqMiPA, visited Jan 8, 2018.

9https://therideshareguy.com/uber-drops-destination-filters-back-to-2-trips-per-day/, visited September 1, 2018;
https://www.marketwatch.com/story/new-york-citys-new-uber-rules-could-make-those-5-cancellation-fees-go-away-
2018-08-16, visited September 1, 2018.

10A related consideration is that these opportunities for strategic behavior make it very difficult for plat-
forms to introduce additional mechanisms to accomodate idiosyncratic driver preferences, for example over loca-
tion. Rather, these mechanisms are used as tools for strategic behavior by drivrs. https://www.uber.com/blog/

180-days-of-change-more-flexibility-and-choice/, visited September 1, 2018; https://therideshareguy.com/
uber-drops-destination-filters-back-to-2-trips-per-day/, visited September 1, 2018.
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driver hourly earnings [19]), with potential consequences around driver churn from the platform.
The imposition of cancellation penalties on drivers does not solve these problems, since drivers can
always go offline, or choose not to participate in the platform from certain locations or times.9

We conceptualize many of the problems with current platforms as arising from prices failing
to be appropriately “smooth” in space and time— if prices for trips are higher in one location
then they should be appropriately higher in adjacent locations; if demand would soon increase in a
location then the current prices should already be appropriately higher; and if destinations differ in
continuation payoffs then trip prices to these destinations need to reflect this. With appropriately
smooth prices, drivers who retain the flexibility to choose when to work will choose to accept any trip
to which they are dispatched (recall that drivers, too, are customers of the platform). Dispatching
decisions are also suboptimal on current platforms; sending drivers away from a sports stadium
five minutes before a game ends at low prices is inefficient, for example, and driver behavior may
actually be moving a system back towards efficiency. Correctly designed, ridesharing platforms can
succeed in optimally orchestrate trips in a centralized manner, without having the power to tell
drivers what to do.

1.1 Our results

We propose the Spatio-Temporal Pricing (STP) mechanism for dispatching and pricing in the
context of a ridesharing platform, addressing the problem of incentive alignment for drivers in the
presence of spatial imbalance and temporal variation of rider trip flows. The STP mechanism has
the following properties:

• welfare-optimality: maximizing total rider values minus driver costs

• incentive-alignment: drivers will always choose to accept any dispatched trips

• envy-freeness: drivers at the same location and time do not envy each other’s future payoff; riders
requesting the same trips do not envy each other’s outcomes

• core-selecting: no coalition of riders and drivers can make a better plan among themselves

• robustness: the mechanism updates the plans after deviations from the original dispatches

• temporal-consistency: plans are computed and updated based on the current state but not past
history, without using penalties or time-extended contracts

Welfare optimality and incentive alignment are standard desiderata. For the others, we consider
envy-freeness and core-selecting to be of special importance for sharing economy systems such as
ridesharing platforms. These properties both relate to fairness. An envy-free mechanism is fair,
removing the variation in drivers’ income that depends on lucky dispatches or from learning by
doing. A core outcome is fair, in that no group of riders and drivers could do better by breaking
away and operating their own ridesharing economy. Even given incentive alignment, we consider
robustness to be important in the face of unmodeled effects, erroneous predictions, or mistakes
by participants. By being robust, the mechanism is able to ensure the other properties from
any history onward. Without this, any solution would be necessarily brittle and poorly suited to
practice. Finally, temporal-consistency is important, since using penalties and threatening to fire
drivers or to shut down the system are incompatible with the spirit of the gig economy, and the
the real-time flexibility of being able to choose when to work.

We work in a complete information, discrete time, multi-period and multi-location model. Thus,
the challenge addressed in this paper is one of promoting desirable behavior in the absence of time-
extended contracts, and not one of information asymmetry. At the beginning of each time period,
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based on the history, current positioning of drivers, and current and future demand, the STP
mechanism dispatches each available driver to a rider trip, or to relocate, or to exit the platform for
the planning horizon. The mechanism also determines a payment to be made if the driver follows
the dispatch. Each driver then decides whether to follow the suggested action, or to decline and
stay or relocate to any location, or to exit the platform. After observing the driver actions in a
period, the mechanism collects payments from the riders and makes payments to the drivers.

The main assumptions that we make are:
(i) complete information about supply and demand over a finite planning horizon,
(ii) impatient riders, who need to be picked-up at a particular time and location (and without

preferences over drivers), and
(iii) drivers who are willing to take trips until the end of the planning horizon, and with no

intrinsic preference for locations or passengers, and no heterogeneity in costs.
We allow for heterogeneity in rider values and trip details (origin, destination, and time). For

drivers, they can become available at different times and locations, and can also differ in whether
they are already driving in the platform (for example, finishing a trip), or have not yet joined and
thus need to make an entry decision (for example, the driver will be dropping off a child at school
at a specific location and time, and is willing to drive afterwards). We also allow a driver whom
is asked to exist the platform earlier than their intended exit time to incur a cost, modeling the
forgone opportunity of outside options after driving for some time.

A rider’s value is modeled as her willingness-to-pay, over and above a base payment that covers
a drivers’ extra costs for picking up a rider (extra wear and tear, inconvenience, etc), in comparison
to the cost of driving the same trip as relocation without a rider (fuel, time, and so forth). This
base payment is transferred directly to the driver, so that all drivers completing the same trip with
or without a rider incur the same trip cost. The prices determined by the STP mechanism are the
payments collected on top of the base payments.

We first prove the existence of anonymous, origin-destination, competitive equilibrium (CE)
prices, allowing the unit price of a trip to depend on market conditions at both the origin and des-
tination.11 The STP mechanism users driver-pessimal CE prices, recomputing a driver-pessimal CE
plan in the event of any deviations from the current plan. The mechanism induces an extensive-form
game among the drivers, where the total payoff to each driver is determined by the mechanism’s
dispatch and payment rules. The main result is that the STP mechanism satisfies all the desider-
ata outlined above. Somewhat surprisingly, the use of driver-pessimal CE prices (vs., for example,
driver-optimal CE prices as in Vickrey-Clarke-Groves mechanisms) is essential for achieving our
main result, that accepting the mechanism’s dispatches at all times forms a subgame-perfect equi-
librium among the drivers. The proof of incentive alignment makes use of the M \ concavity of
min-cost flow objectives [27]. The same connection to min-cost flow leads to an efficient algorithm
to compute an optimal dispatch plan and prices, and to operationalize the STP mechanism.

The rest of this paper is organized as follows. After a brief discussion on related work, we intro-
duce the model in Section 2, and illustrate through an example that a myopic pricing mechanism,
which naively clears the market for each location without considering future demand and supply,

11The idea that the unit price for a trip might depend on the destination is already familiar in taxi systems, with
trips to the suburbs billed with a surcharge to reflect that drivers may need to return to the city without a fare.
Origin-destination pricing also seems practical. Indeed, ridesharing platforms are moving in this direction, and this
is facilitated by the movement to quoting a total payment for a trip rather than an origin-based surge multiplier.
https://newsroom.uber.com/upfront-fares-no-math-and-no-surprises/, visited September 1, 2017; https://

blog.lyft.com/posts/now-live-see-your-ride-total, visited September 1, 2017; https://www.bloomberg.com/
news/articles/2017-05-19/uber-s-future-may-rely-on-predicting-how-much-you-re-willing-to-pay, vis-
ited September 1, 2017.
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fails to be welfare-optimal or incentive aligned. In Section 3, we formulate the optimal planning
problem and establish integrality properties of a linear-programming relaxation (Lemma 2). We
prove a welfare theorem, that a plan is welfare-optimal if and only if it is supported by some anony-
mous trip prices in competitive equilibrium (CE) (Lemma 3). Optimal CE plans always exist and
are efficient to compute. We also prove that drivers’ total utilities among all CE plans form a lattice
(Lemma 4), and that the CE outcomes and the core are utility-equivalent (Lemma 5). A class of
static CE mechanisms are discussed, that implement an optimal CE plan in dominant strategy
(Theorem 1), but may fail to be welfare-optimal or envy-free after driver deviations. Section 4
introduces the STP mechanism, and establishes that the STP mechanism is subgame-perfect in-
centive compatible, and is also welfare-optimal, envy-free, core-selecting, individually rational and
budget balanced from any history onward (Theorem 2).12 We also provide an impossibility result,
that no dominant-strategy mechanism has the same economic properties (Theorem 3), followed by
discussions on the effect of relaxing the model assumptions.

An empirical analysis conducted through simulation (Section 5) suggests that the STP mecha-
nism can achieve significantly higher social welfare than a myopic pricing mechanism, and highlights
the failure of incentive alignment due to non-smooth prices in myopic mechanisms. We consider
three stylized scenarios: the end of a sports event, the morning rush hour, and trips to and from
the airport with unbalanced flows. We conclude in Section 6. Omitted proofs, additional examples,
discussions, relations to the literature and simulation results are provided in the Appendix.

1.2 Related Work

To the best of our knowledge, this current paper is unique in that it considers both multiple
locations and multiple time periods, along with rider demand, rider willingness-to-pay, and driver
supply that can vary across both space and time. This leads to the focus of the present paper on
the design of a ridesharing mechanism with prices that are smooth in both space and time.

Earlier, Banerjee et al. [6] adopt a queuing-theoretic approach in analyzing the effect of dy-
namic pricing on the revenue and throughput of ridesharing platforms, assuming a single location
and stationary system state. In this context, the optimal dynamic pricing strategy, where prices
can depend on supply and demand conditions, does not achieve better performance than the op-
timal static pricing strategy when the platform correctly estimates supply and demand. However,
dynamic pricing is more robust to fluctuations and to mis-estimation of system parameters. By
analizing a two-location, stationary state queueing model, Afèche et al. [1] study the impact of
platform control on platform revenue and driver income.

By analyzing the equilibrium outcome under a continuum model (supply and demand), and with
stationary demand and unlimited driver supply (at fixed opportunity costs), Bimpikis et al. [10] in
independent, contemporaneous work study the steady-state and show that a ridesharing platform’s
profit is maximized when the demand pattern across different locations is balanced. In simulation
they show that, in comparison to setting a single price, pricing trips differently depending on
trip origins improves the platform’s profit. The same simulation also shows that there is not a
substantial, additional gain from using origin-destination based pricing in their model. Our model
is quite distinct, in that it is not a continuum model, does not have unlimited driver supply, and is
not stationary. These authors explain that the solution to optimal origin-destination prices in their
model only has dimensionality linear in the number of locations, but do not offer a complete theory
to explain their simulation results. Banerjee et al. [5], also independent and contemporaneous,

12The STP mechanism balances budget. Alternatively, we many think about the ridesharing platform taking a
fixed fraction of the driver surplus. This does not affect the results presented in this paper, and the equilibrium
outcome under STP still resides in some ε-core of the market, depending on the cut taken by the platform.
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model a shared vehicle system as a continuous-time Markov chain, and establish approximation
guarantees for a static, state-independent pricing policy (i.e. fixed prices that do not depend on
the spatial distribution of cars), w.r.t. the optimal, state-dependent policy.

Castillo et al. [12] study the impact of myopically dispatching the closest drivers to rider requests.
In particular, they discuss a “wild goose chase” phenomena. When demand much exceeds supply,
myopic dispatching means that drivers spend too much time driving to pick up riders instead of
carrying riders on trips, which leads to decreased social welfare and revenue to the platform. The
theoretical model assumes a stationary state, where driver supply is driven by hourly earnings,
rider demand depends on trip prices and wait times, and the wait time increases as the number of
idle cars decreases. They do not have an explicit model of location. Empirical evidence is provided
by analyzing Uber data. The wild goose chase is an effect of the ridesharing platform always
dispatching a driver as soon as any rider requests a ride. The authors establish the importance of
dynamic pricing when using this kind of myopic dispatching scheme, in keeping enough cars idle
to avoid the inefficiency of long pick-ups, and show this is superior to other possible solutions, for
example limiting the pick-up radius.

There are various empirical studies of the Uber platform as a two-sided marketplace, analyzing
Uber’s driver partners [23], the labor market equilibrium [22], consumer surplus [18] and the com-
mission vs. medallion lease based compensation models [3]. By analyzing the hourly earnings of
drivers on the Uber platform, Chen et al. [15] show that drivers’ reservation wages vary significantly
over time, and that the real-time flexibility of being able to choose when to work increases both
driver surplus and the supply of drivers; Cook et al. [19] show that driving speed, preferred time
and location to drive, driver experience and their ability to strategically canceling rides together
contribute to a 7% gender gap in hourly earnings. In regard to dynamic pricing, Chen and Shel-
don [16] show, by analyzing the trips provided by a subset of driver partners in several US cities
from 2014-2015, that surge pricing increases the supply of drivers on the Uber platform at times
when the surge pricing is high. A case study [21] into an outage of Uber’s surge pricing during the
2014-2015 New Year’s Eve in New York City found a large increase in riders’ waiting time after
requesting a ride, and a large decrease in the percentage of requests completed.

The dynamic variations on the VCG mechanism [4, 7, 13] truthfully implement efficient decision
policies, where agents receive private information over time. These mechanisms are not suitable for
our problem, however, because some drivers may be paid negative payments for certain periods of
time. The payment to an agent in a single period in the dynamic VCG mechanism is equal to the
flow marginal externality imposed on the other agents by its presence in the current period [13].
The problem in our setting is that the existence of a driver for only one period may exert negative
externality on the rest of the economy by inducing suboptimal positioning of the rest of the drivers
in the subsequent time periods. See Appendix D.1 for examples and discussions.

The literature on trading networks studies economic models where agents in a network can trade
via bilateral contracts [24, 25, 31]. Efficient, competitive equilibrium outcomes exist when agents’
valuation functions satisfy the “full substitution” property, and the utilities of agents on either end
of an acyclic network form lattices. Under proper assumptions, the optimal dispatching problem
in ridesharing can be reduced to a trading network problem, where drivers and riders trade the
right to use a car for the rest of the planning horizon (see Appendix D.2). However, the underlying
network in the ridesharing problem evolves as time progresses, and to our knowledge, the dynamics
and incentives in trading networks with time-varying networks are not studied in the literature.

Principal-agent problems have been studied extensively in contract theory [11, 34], where prob-
lems with information asymmetry before the time of contracting are referred to as adverse selection,
and problems where asymmetric information or hidden action arise after the time of contracting
are referred to as moral hazard. Contracts specify how agents are going to be rewarded or penal-
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ized based on observed performance measures. In the setting where contracts cannot be perfectly
enforced, relational incentive contracts [26] have also been studied, which are self-enforcing by
threatening to terminate an agent following poor performance. In our model, there are neither
hidden actions nor asymmetric information. Instead, the challenge we address is one of incentive
alignment in the absence of contracts. We insist on retaining flexibility for drivers, in the spirit of
the customer relationship with platforms and the Gig economy, with drivers free to decide on their
own actions without incurring penalties or termination threats.

2 Preliminaries

Let T be the length of the planning horizon, starting at time t = 0 and ending at time t = T . We
adopt a discrete time model, and refer to each time point t as “time t”, and call the duration between
time t and time t+1 a time period. Trips start and end at time points.13 Denote [T ] = {0, 1, . . . , T}
and [T − 1] = {0, 1, . . . , T − 1}.

Let L = {A,B, . . . , } be a set of |L| discrete locations, and we adopt a and b to denote generic
locations. For all a, b ∈ L and t ∈ [T ], the triple (a, b, t) denotes a trip with origin a, destination b,
starting at time t. Each trip can represent (i) taking a rider from a to b at time t, (ii) relocating
without a rider from a to b at time t, and (iii) staying in the same location for one period of
time (in which case a = b). Let the distance δ : L × L → N be the time to travel between
locations, so that trip (a, b, t) ends at t + δ(a, b).14 We allow δ(a, b) 6= δ(b, a) for locations a 6= b,
modeling asymmetric traffic flows. We assume δ(a, b) ≥ 1 and δ(a, a) = 1 for all a, b ∈ L. T ,
{(a, b, t) | a ∈ L, b ∈ L, t ∈ {0, 1, . . . , T − δ(a, b)}} denotes the set of all feasible trips within the
planning horizon.

Let D denote the set of drivers, with m , |D|. Each driver i ∈ D is characterized by type
θi = (βi, `i, τ i, τ̄i)— driver i is able to enter the platform at location `i and time τ i, and plans to
exit the platform at time τ̄i (with τ i < τ̄i). βi indicates driver i’s entrance status. A driver with
βi = 0 has not yet entered the platform, and needs to make an entry decision. A driver with βi = 1
has already entered the platform, and will become available to pick up again at (`i, τ i) (she may
be completing an earlier trip, or relocating to another location). Here we make the assumption
(S1) that driver types are known to the mechanism and that all drivers stay until at least the end
of planning horizon, and do not have an intrinsic preference over location, including where they
finish their last trip in the planning horizon.

Any driver who completes a trip (a, b, t) ∈ T without a rider incurs a trip cost ca,b,t ≥ 0, which
models the cost of time, driving, fuel, etc. A driver who has already entered the platform may exit
earlier than her intended exit time, in which case she will not be able to complete any trip in the
remaining periods of the planning horizon. Exiting ∆ periods earlier than time T incurs a cost of
κ∆ ≥ 0 (with κ0 = 0), modeling the the forgone opportunity of outside employment options, after
driving for the platform for some time. A driver with βi = 0 who does not enter the platform at
(`i, τ i) does not incur any cost, and will not enter at a later time. Drivers have quasi-linear utilities,
and seek to maximize the total payments received over the planning horizon minus the total costs.

Denote R as the set of riders, each intending to take a single trip during the planning horizon.
The type of rider j ∈ R is (oj , dj , τj , vj), where oj and dj are the trip origin and destination, τj the
requested start time, and vj ≥ 0 the value for the trip. We assume (S2) that riders are impatient,

13We may think about each time period as ∼ 5 minutes, and with T = 6 the planning horizon would be half an
hour.

14We can also allow the distance between a pair of locations to change over time, modeling the changes in traffic
conditions, i.e. a trip from a to b starting at time t ends at time t+δ(a, b, t). This does not affect the results presented
in this paper, and we keep δ(a, b) for simplicity of notation.
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only value trips starting at τj, are not willing to relocate or walk from a drop-off point to their
actual, intended destination, and do not have preference over drivers. The value vj models the
willingness-to-pay of the rider, over-and-above a base payment for a trip, which covers additional
cost a driver incurs driving a rider from oj to dj at time τj (in comparison to relocating from oj to
dj at time τj).

15 Rider utility is quasi-linear, with utility vj − p to rider j for a completed trip at
(incremental to base) price p.

We assume the platform has complete information about supply and demand over the planning
horizon (travel times, trip costs, driver and rider types, including driver entry during the plan-
ning horizon). We assume drivers have the same information, and that this is common knowledge
amongst drivers.16 Unless otherwise noted, we assume properties (S1), (S2), and complete, sym-
metric information throughout the paper, and discuss the effect of relaxing these assumptions in
Section 4.3.

At each time t, a driver is en route if she started her last trip from a to b at time t′ (with or
without a rider), and t < t′ + δ(a, b). A driver is available if she has entered or is able to enter
the platform, and has not yet exited, and is not en route. A driver who is available at time t and
location a is able to complete a pick-up at this location and time. We allow a driver to drop-off a
rider and pick-up another rider in the same location at the same time point (see Appendix A).

A path is a sequence of tuples (a, b, t), representing driver entrance, exit, and the trips she takes
over the planning horizon. Let Zi denote the set of all feasible paths of driver i, with Zi,k ∈ Zi to
denote the kth feasible path. The path Zi,0 includes no trip: for a driver with βi = 0, Zi,0 models
the option to not enter the platform at all; for a driver s.t. βi = 1, Zi,0 models the option exit
immediately at (`i, τ i). For each k = 1, . . . , |Zi|, Zi,k is a path that starts (`i, τ i), with the starting
time and location of each successive trip equal to the ending time and location of the previous trip.
Denote (a, b, t) ∈ Zi,k if path Zi,k includes (or covers) trip (a, b, t), and let λi,k be the total cost of
the kth path to driver i. We know that λi,0 = 0 if βi = 0, λi,0 = κT−τ i if βi = 1, and for k > 1,
λi,k =

∑
(a,b,t)∈T ca,b,t1{(a, b, t) ∈ Zi,k}+ κ∆, if path Zi,k ends ∆ periods earlier than T .

Driver i that takes the path Zi,k is able to pick up rider j if (oj , dj , τj) ∈ Zi,k, however, a path
specifies only the movement in space and time, and does not specify whether a rider is picked up
for each of the trips on the path.

Let an action path for driver i be a sequence of tuples, each of them can either be of the form
(a, b, t), representing a relocation trip from a to b at time t without a rider, or be of the form
(a, b, t, j), in which case the driver sends rider j from a to b at time t (thus requiring (a, b, t) =
(oj , dj , τj)). Let Z̃i be the set of all feasible action paths of driver i. For an action path z̃i ∈ Z̃i,
denote (a, b, t) ∈ z̃i or (a, b, t, j) ∈ z̃i if the action path includes a relocation or rider trip from a
to b at time t. A driver taking action path z̃i that is consistent with path Zi,k (i.e. results in the
same movement in space and time) incurs a total cost of λi,k.

Example 1. The planning horizon is T = 2 and there are two locations L = {A,B} with distance
δ(A,A) = δ(B,B) = 1 and δ(A,B) = δ(B,A) = 2. See Figure 1. Trip costs are given by
ca,b,t = 2δ(a, b) for all (a, b, t) ∈ T , and the opportunity cost of exiting early is κ∆ = ∆. There is
one driver, who has not yet entered the platform (i.e. β1 = 0), but is able to enter at time τ1 = 0
at location `1 = A, and leaves at time τ̄1 = 2. There are three riders:

15This base payment is made directly from a rider to the driver that picked her up, so that the cost any driver
incurs for any trip (a, b, t) ∈ T is always ca,b,t, regardless of whether a rider is in the back seat. The prices that we
design, as a result, are the amounts that the riders pay on top of the base payments.

16More generally, it is sufficient that it be common knowledge amongst drivers that the platform has the correct
information.
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Figure 1: The economy in Example 1, with two locations A, B, two time periods and three riders.

• Rider 1: o1 = A, d1 = A, τ1 = 0, v1 = 5,

• Rider 2: o2 = A, d2 = A, τ2 = 1, v1 = 6,

• Rider 3: o3 = A, d3 = B, τ3 = 0, v3 = 8.

In addition to not entering the platform at all— path Z1,0 with cost λ1,0 = 0, there are three
more feasible paths for driver 1: Z1,1 = ((A,A, 0), (A,A, 1)), Z1,2 = ((A,B, 0)), and Z1,3 =
((A,A, 0)). In Z1,3, the driver exits one period before the end of planning horizon. The path
costs are λ1,1 = cA,A,0 + cA,A,1 = 2, λ1,2 = cA,B,0 = 4, and λ1,3 = cA,A,0 + κ1 = 3. Path
((A,A, 0), (A,B, 1)) is infeasible, since the last trip ends later than the driver’s leaving time.
Similarly, paths ((A,B, 0), (B,B, 1)) and ((A,A, 0), (B,B, 1)) are infeasible.

In addition to not entering, there are eight feasible actions paths of rider 1. ((A,B, 0)), re-
locating from A to B at time 0, and ((A,B, 0, 3)), sending rider 3 from A to B at time 0, are
both consistent with the path Z1,2, and both have cost 4. Four action paths, ((A,A, 0), (A,A, 1)),
((A,A, 0, 1), (A,A, 1)), ((A,A, 0), (A,A, 1, 2)), ((A,A, 0, 1), (A,A, 1, 2)), are consistent with Z1,1 and
have cost 4. Both ((A,A, 0)) and ((A,A, 0, 1)) are both consistent with Z1,3 and have cost 3.

We now provide an informal timeline of a ridesharing mechanism (see Section 4 for a formal
definition). At each time point t ∈ [T −1], given the history of trips, current driver locations, driver
availability status, and information about future driver supply and rider demand for trips:

1. The ridesharing mechanism determines for each rider with trip start time t, whether a driver
will be dispatched to pick her up, and if so, the price of her trip.

2. The mechanism dispatches available drivers to pick up riders, to relocate, or to exit (for those
already in the platform), or not to enter (for those have not entered, with τ i = t and βi = 0).
The mechanism also determines the payments offered to drivers for accepting the dispatches.

3. Each available driver decides whether to accept the dispatch, or to deviate and either stay in
the same location, or relocate, or exit/not enter. A driver may still decide to enter the platform
even if asked not to do so. The mechanism collects and makes payments based on driver actions.

Any undispatched, available driver makes their own choices of actions. We assume that any
driver already en route will continue their current trip. A driver’s payment in a period in which
the driver declines a dispatch is zero, so that drivers are not charged penalties for deviation.

As a baseline, we define the following myopic pricing mechanism. For each rider j ∈ R, denote
the per-period surplus of her trip as wj , (vj − coj ,dj ,τj )/δ(oj , dj).

Definition 1 (Myopic pricing mechanism). At each time point t ∈ [T ], for each location a ∈ L, the
myopic pricing mechanism dispatches available drivers at (a, t) to riders with (oj , τj) = (a, t) and
wj ≥ 0, in decreasing order of wj . The mechanism sets a market clearing rate ρa,t (i.e. between
highest unallocated wj and lowest allocated wj), and sets prices pa,b,t = ρa,tδ(a, b) + ca,b,t for each
destination b ∈ L, which is offered to all dispatched drivers and collected from all riders.
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Figure 2: A Super Bowl game: time 0 plan under the myopic pricing mechanism.

The market clearing prices may not be unique, and a fully defined myopic mechanism must
provide a rule for picking a particular set of prices. This mechanism has anonymous, origin-based
pricing, and is very simple in ignoring the need for smooth pricing, or future supply and demand.

Example 2 (Super Bowl example). Consider the economy illustrated in Figure 2, modeling the
end of a sports event, with T = 3 time periods and three locations. Time t = 0 is 9:50pm, and 10
minutes before the Super Bowl ends, and each time period is 10 minutes. There are three locations
A, B and C with symmetric distances δ(A,A) = δ(B,B) = δ(C,C) = δ(A,B) = δ(B,A) =
δ(B,C) = δ(C,B) = 1 and δ(A,C) = δ(C,A) = 2. Drivers 1 and 2 enter at location C at time
0, while driver 3 enters at location B at time 0, with exit times τ̄i = T for all i ∈ D. At time 1,
many riders with very high values show up at location C, where the game takes place. Riders’ trips
and their willingness to pay are as shown in the figure. Assume the trips cost drivers 10 per time
period, i.e. ca,b,t = 10δ(a, b) for all (a, b, t) ∈ T , and exiting early costs 5 per period: κ∆ = 5∆.

Under the myopic pricing mechanism, at time 0, drivers 1 and 2 are dispatched to pick up riders
1 and 2 respectively, and driver 3 is dispatched to pick up rider 4. At time 1, driver 1 picks up
rider 5. Even assuming that drivers exit optimally (i.e. driver 2 exits at time 2 at a cost of κ1 = 5,
and drivers 2 and 3 exit at time 1 and each incur a cost of κ2 = 10), the total social welfare would
be no more than v1 + v2 + v4 + v5 − 10× 4− 5− 10− 10 = 25.

The set of market clearing rates for location C at time 0 determined by a myopic pricing
mechanism is ρC,0 ∈ [0, w1] = [0, 10], thus the possible market clearing prices for the trip (C,B, 0)
is pC,B,0 ∈ [10, 20]. The price for the (B,B, 1) trip is pB,B,1 = cB,B,1 = 10, since there is excessive
supply. The highest possible total utility to driver 1 under any myopic pricing mechanism would
in fact be (20− 10) + (10− 10)− 5 = 5. At time 1, since no driver is able to pick up the four riders
at location C, the lowest market clearing rate is ρC,1 = w6 = 90, thus the prices must be at least
pC,B,1 ≥ ρC,1 + cC,B,1 = 100 and pC,A,1 ≥ δ(C,A)ρC,1 + cC,A,1 = 200.

Suppose driver 1 deviates from the dispatches and stays in location C until time 1. The
mechanism would then dispatch driver 1 to pick up rider 6, and driver 1 would be paid the new
market clearing price of δ(C,B)w7 + cC,B,1 = 50. This is a useful deviation, since exiting at time
2, the utility of driver 1 is 50− 10− 10− 5 = 25. Observe that by strategizing, driver 1 improves
the social welfare by making use of information about the future demand and supply. Also observe
that the outcome is not in the core: driver 1 at (C, 1) has an incentive to make a side deal with
rider 7, who is willing to pay more than 50, but is not picked up.
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3 A Static CE Mechanism

In this section, we formulate the optimal planning problem and define competitive equilibrium (CE)
prices. We also introduce the static CE mechanism, which computes an optimal plan at the start
of the planning horizon and does not replan in the future. This makes the static CE mechanism
fragile, for example it is not welfare optimal or envy-free forward from a period in which some
driver has deviated from the suggested plan. The STP mechanism resolves this concern, combining
driver-pessimal CE prices with replanning to provide robustness forward from any history.

3.1 Plans

A plan describes the paths taken by all drivers until the end of the planning horizon, rider pick-ups,
as well as payments for riders and drivers for each trip associated with these paths.

Formally, a plan is the 4-tuple (x, z̃, q, r), where: x is the indicator of rider pick-ups, where for
all j ∈ R, xj = 1 if rider j is picked-up according to the plan, and xj = 0 otherwise; z̃ is a vector
of action paths, where z̃i ∈ Z̃i is the dispatched action path for driver i; qj denotes the payment

made by rider j, ri,t denotes the payment made to driver i at time t, and let ri ,
∑T

t=0 ri,t denote
the total payment to driver i. If z̃i is consistent with Zi,k, the kth feasible path of driver i, then the
driver incurs a total cost of λi,k, and her utility is πi , ri − λi,k.

A plan (x, z̃, q, r) is feasible if for each rider j ∈ R, xj =
∑

i∈D 1{(oj , dj , τj , j) ∈ z̃i} ∈ {0, 1},
where 1{·} is the indicator function. Unless stated otherwise, when we mention a plan in the rest
of the paper, it is assumed to be feasible. For the budget balance (BB) of a plan, we need:∑

j∈R
qj ≥

∑
i∈D

ri, (1)

with strict budget balance if (1) holds with equality. A plan is individually rational for riders if

xjvj ≥ qj , ∀j ∈ R.

A plan is individually rational for drivers if πi ≥ 0 for all i ∈ D s.t. βi = 0, i.e. drivers that are not
yet in the platform do not get negative utility from participating. A plan is envy-free for riders if
no rider strictly prefers the outcome of another rider requesting the same trip, that is

xjvj − qj ≥ xj′vj − qj′ for all j, j′ ∈ R s.t. oj = oj′ , dj = dj′ , and τj = τj′ . (2)

A plan is envy-free for drivers if any pair of drivers with the same type have the same utility:

πi = πi′ for all i, i′ ∈ D s.t. τ i = τ i′ , `i = `i′ , and βi = βi′ . (3)

Definition 2 (Anonymous trip prices). A plan (x, z̃, q, r) uses anonymous trip prices if there exist
p = {pa,b,t}(a,b,t)∈T such that for all (a, b, t) ∈ T , we have:

(i) all riders taking the same (a, b, t) trip are charged the same payment pa,b,t, and there is no
payment by riders who are not picked up, and

(ii) all drivers that are dispatched on a rider trip from a to b at time t are paid the same amount
pa,b,t for the trip at time t, and there is no other payment to or from any driver.

Given dispatches (x, z̃) and anonymous trips prices p, all payments are fully determined: the
total payment to driver i is ri =

∑
j∈R 1{(oj , dj , τj , j) ∈ z̃i}poj ,dj ,τj and the payment made by rider

j is qj = xjpoj ,dj ,τj . For this reason, we will represent plans with anonymous trip prices as (x, z̃, p).
By construction, plans with anonymous trip prices are strictly budget balanced.
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Definition 3 (Competitive equilibrium). A plan with anonymous trip prices (x, z̃, p) forms a
competitive equilibrium (CE) if:

(i) (rider best response) all riders j ∈ R that can afford the ride are picked up, i.e. vj > poj ,dj ,τj ⇒
xj = 1, and all riders that are picked up can afford the price: xj = 1⇒ vj ≥ poj ,dj ,τj ,

(ii) (driver best response) ∀i ∈ D, πi = maxk=0,...,|Zi|

{∑
(a,b,t)∈Zi,k

max{pa,b,t, 0} − λi,k
}

, i.e. each

driver achieves the highest possible utility given prices and the set of feasible paths.

Given any set of anonymous trip prices p, let anonymous trip prices p+ be defined as p+
a,b,t ,

max{pa,b,t, 0} for each (a, b, t) ∈ T .

Lemma 1. Given any CE plan (x, z̃, p), the plan with anonymous prices (x, z̃, p+) also forms a
CE, and has the same driver and rider payments and utilities as those under (x, z̃, p).

The lemma implies that when studying the set of possible rider and driver payments and utilities
among all CE outcomes, it is without loss to consider only anonymous trip prices that are non-
negative. We leave the full proof to Appendix B.1. Prices must be non-negative for any trip that is
requested by any rider, thus changing prices from p to p+ does not affect the payments for any rider
or driver, or the best response on the riders side. The driver best response property also continues
to hold, since max{pa,b,t, 0} = max{p+

a,b,t, 0} for all (a, b, t) ∈ T .
Given any mechanism, complete information about supply and demand, and assuming that all

drivers follow the dispatches of the mechanism at all times, the assignments of all riders, action
paths taken by all drivers, and the corresponding payment schedule through the planning horizon
can be computed at time 0, if all available drivers are dispatched at all times. We call this outcome
the “time 0 plan” under the given mechanism.

3.2 Optimal Plans and CE Prices

The welfare-optimal planning problem can be formulated as an integer linear program (ILP) that
determines optimal rider pick-ups and driver paths, followed by an assignment of riders to drivers
whose paths cover the rider trips. Let xj be the indicator that rider j ∈ R is picked up, and yi,k
be the indicator that driver i takes Zi,k, her kth feasible path in Zi. We have:

max
x,y

∑
j∈R

xjvj −
∑
i∈D

|Zi|∑
k=0

yi,kλi,k (4)

s.t.
∑
j∈R

xj1{(oj , dj , τj) = (a, b, t)} ≤
∑
i∈D

|Zi|∑
k=0

yi,k1{(a, b, t) ∈ Zi,k}, ∀(a, b, t) ∈ T (5)

|Zi|∑
k=0

yi,k = 1, ∀i ∈ D (6)

xj ∈ {0, 1}, ∀j ∈ R (7)

yi,k ∈ {0, 1}, ∀i ∈ D, k = 1, . . . , |Zi| (8)

Constraint (6) requires that each driver takes exactly one path (which includes the path Zi,0
representing not entering/exiting immediately). The feasibility constraint (5) requires that for all
trips (a, b, t) ∈ T , the number of riders who request this trip and are picked up is no more than the
total number of drivers whose paths cover this trip. Once pick-ups x and paths y are computed,
(5) guarantees that each rider with xj = 1 can be assigned to a driver.
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Relaxing the integrality constraints on variables x and y, we obtain the following linear program
(LP) relaxation of the ILP:

max
x,y

∑
j∈R

xjvj −
∑
i∈D

|Zi|∑
k=0

yi,kλi,k (9)

s.t.
∑
j∈R

xj1{(oj , dj , τj) = (a, b, t)} ≤
∑
i∈D

|Zi|∑
k=0

yi,k1{(a, b, t) ∈ Zi,k}, ∀(a, b, t) ∈ T (10)

|Zi|∑
k=0

yi,k = 1, ∀i ∈ D (11)

xj ≤ 1, ∀j ∈ R (12)

xj ≥ 0, ∀j ∈ R (13)

yi,k ≥ 0, ∀i ∈ D, k = 1, . . . , |Zi| (14)

We refer to (9) as the primal LP. The constraint yi,k ≤ 1, that each path is taken by each driver
at most once is guaranteed by imposing (11) and (14), and is omitted.

Lemma 2 (Integrality). There exists an integer optimal solution to the linear program (9).

We leave the proof to Appendix B.2, showing there a correspondence to a min cost flow (MCF)
problem (that has integral optimal solutions), where drivers flow through a network with vertices
corresponding to (location, time) pairs, edges corresponding to trips, and with edge costs equal
to driver’s costs minus riders’ values. The reduction to MCF can also be used to solve the LP
efficiently.

Let pa,b,t, πi and uj denote the dual variables corresponding to the primal constraints (10), (11)
and (12), respectively. The dual LP of (9) is:

min
∑
i∈D

πi +
∑
j∈R

uj (15)

s.t. πi ≥
∑

(a,b,t)∈Zi,k

pa,b,t − λi,k ∀k = 0, 1, . . . , |Zi|, ∀i ∈ D (16)

uj ≥ vj − poj ,dj ,τj , ∀j ∈ R (17)

pa,b,t ≥ 0, ∀(a, b, t) ∈ T (18)

uj ≥ 0, ∀j ∈ R (19)

Lemma 3 (Welfare Theorem). A dispatching (x, z̃) is welfare-optimal if and only if there exists
anonymous trip prices p s.t. the plan (x, z̃, p) forms a competitive equilibrium. Such optimal CE
plans always exist and are efficient to compute. Moreover, these plans are strictly budget balanced,
and are individually rational and envy-free for both riders and drivers.

Given optimal primal and dual solutions, we show that the dual variables π and u can be
interpreted as utilities of drivers and riders, when the anonymous trip prices are given by p. We then
make use of Lemma 1, and the standard observations about complementary slackness conditions
and their connection with competitive equilibria [32, 8]. By integrality, optimal CE plans always
exist, and can be efficiently computed by solving the primal and dual LPs of the MCF problem.
See Appendix B.3 for the proof of the lemma.
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For any two driver utility profiles π = (π1, . . . , πm) and π′ = (π′1, . . . , π
′
m) that correspond to

CE plans, let the join π̄ = π ∨ π′ and the meet π = π ∧ π′ be defined as π̄i , max{πi, π′i} and
πi , min{πi, π′i} for all i ∈ D. The following lemma shows that drivers’ utilities among all CE
outcomes form a lattice, meaning that there exist CE plans where the driver utilities are given
by π̄ or π. The lemma also shows a connection between the top/bottom of the lattice and the
welfare differences from losing/replicating a driver, which plays an important role in establishing
the incentive properties of the STP mechanism.

Denote W (D, R) as the highest welfare achievable by drivers D and riders R (i.e. the optimal
objective of (9)). For each driver i ∈ D, define the social welfare gain from replicating driver i, and
the social welfare loss from losing driver i, as:

ΦDi ,W (D ∪ {i′}, R)−W (D, R), (20)

ΨDi ,W (D, R)−W (D\{i}, R), (21)

where driver i′ with θi′ = θi is a replica of driver i. A driver-optimal plan has a driver utility profile
at the top of the lattice, and a driver-pessimal plan has a utility profile at the bottom of the lattice.

Lemma 4 (Lattice Structure). Drivers’ utility profile π among all CE outcomes form a lattice.
Moreover, for each driver i ∈ D, ΦDi and ΨDi are equal to utility of driver i in the driver-pessimal
and driver-optimal CE plans, respectively.

We leave the proof of Lemma 4 to Appendix B.4. The lattice structure follows from the cor-
respondences between driver utilities, optimal solutions to dual LP (15), and optimal solutions to
the dual of the flow LP, and the fact that optimal dual solutions of MCF form a lattice. Stan-
dard arguments on shortest paths in the residual graph [2], and the connection between optimal
dual solutions and subgradients (w.r.t. flow boundary conditions), then imply the correspondence
between welfare gains/losses and driver pessimal/optimal utilities.

Unlike the classical unit-demand assignment problem, where the prices of items and the utilities
of buyers both form lattices [35], it is drivers’ utilities, and not trip prices or rider utilities that have
a lattice structure. This is because although the driver-pessimal utilities are unique, the price for a
trip under all driver-pessimal plans need not be unique. See Section 4.3 for further a development.

A plan is in the core of a ridesharing problem if no coalition of riders and drivers can break out
of this plan and make an alternative plan among themselves, such that all drivers and riders in the
coalition get at least their utilities from the original plan, and at least one of the drivers or riders
is strictly better off. The following lemma proves that CE and core are utility-equivalent.

Lemma 5 (Core equivalence). All CE plans are in the core. Moreover, for any budget-balanced
core outcome (x, z̃, q, r), there exists prices p such that the plan with anonymous prices (x, z̃, p)
forms a CE, and has the same driver and rider total utilities.

See Appendix B.5 for the full proof of this lemma. Intuitively, every CE plan is in the core since
for any D′ ⊆ D and R′ ⊆ R, the highest achievable coalitional welfare W (D′, R′) is no greater
than the sum of utilities of all driver and riders in this coalition under any CE plan. Given any core
outcome, we can construct anonymous trip prices p that support the outcome in CE, and have the
same driver and rider total payments: qj = xjpoj ,dj ,τj and ri =

∑
j∈R 1{(oj , dj , τj , j) ∈ z̃i}poj ,dj ,τj .

3.3 The Static CE Mechanism

A static mechanism announces a plan (x, z̃, q, r) at time t = 0, and never again updates the plan,
even after deviations by drivers. Rather, each driver can choose to take any feasible path, but can
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Figure 3: The Super Bowl example: the driver pessimal competitive equilibrium plan.

only pick up riders that are dispatched to her (and is only paid for the subset of these rider trips
that are completed). Riders pay according to prices q in the event they are picked up by a driver.

Definition 4 (Static CE mechanism). A static CE mechanism announces an optimal CE plan
(x, z̃, p) at the beginning of the planning horizon. Each driver i ∈ D then decides on the actual
action path z̃′i that she takes, and gets paid r̂i =

∑
j∈R poj ,dj ,τj1{(oj , dj , τj , j) ∈ z̃i, (oj , dj , τj , j) ∈

z̃′i}. Each rider j ∈ R pays qj only if she is picked up.

A static CE mechanism can be defined for any set of CE prices. Driver best response guarantees
that no other path gives her a higher total utility, and it is a dominant strategy for each driver to
follow the dispatched action path z̃i.

Theorem 1. A static CE mechanism implements an optimal CE plan in dominant strategy.

In addition, if all riders and drivers follow the plan, the outcome under a static CE mechanism
is strictly budget balanced and envy-free for both sides. The CE property also ensures that every
rider that is picked up is happy to take the trip at the offered price, and that no rider who is not
picked up has positive utility for the trip.17

The optimal static mechanism enjoys many good properties, but has a decisive design flaw—
it is fragile to driver deviations since it does not react by replanning. Deviations could occur for
many reasons: mistakes, unexpected contingencies, unexpected traffic, or unmodeled idiosyncratic
preferences, etc. We show by revisiting the Super Bowl example that once a driver has deviated,
the resulting outcome in the subsequent periods may no longer be welfare-optimal or envy-free.

Example 2 (Continued). For the Super Bowl game scenario, the static CE mechanism with a
driver-pessimal plan adopts the plan illustrated in Figure 3. In this plan, all drivers stay at location
C or re-position to location C at time 0, picking up riders with high values. Driver 3 exits at time
2 after dropping off rider 6. The total rider value is 300, and the total trip costs incurred is 80, and
the total exit cost is 5, resulting in an optimal welfare of 205.

The anonymous trip prices are shown in italics, below the edges corresponding to the trips. For
each feasible path of each driver, the total prices minus costs is 50, the welfare gain of the economy

17Still, Example 8 in Appendix C.3 shows that truthful reporting of a rider’s value need not be a dominant strategy
(and this can be the case whichever CE prices are selected).

15



A, 0

B, 0

A, 1

B, 1

A, 2

B, 2
v1 =8

v2 =6, v3=5, v4=4

Driver 1

Driver 2

z1

z2

5

5

Figure 4: The economy in Example 3 and the driver pessimal CE plan computed at time 0.

if the driver is replicated. The outcome forms a CE, that there is no other path with a higher total
utility for any driver. All riders are happy with their dispatched trips given the prices, and there
is no driver or rider envy.

Suppose now that driver 3 did not follow the plan at time 0 to pick-up rider 3 going from B to
C, but stayed in location B until time 1. The effect of this deviation and not updating the plan
is that driver 3 is no longer able to pick up rider 6, who strictly prefers to be picked up given the
original price of pC,B,1 = 75. One of the drivers 1 and 2 who was supposed to pick up rider 8 with
value 90 is actually able to pick up rider 6, and this would lead to a higher social welfare. Moreover,
driver 3 is now able to pick up rider 5, however, she wouldn’t be dispatched to do so.

One may think of a naive fix for this robustness issue of the static CE mechanisms, simply re-
peating the computation of the plan at all times. The following example shows that the mechanism
that recomputes a driver pessimal plan at all times fails to be incentive compatible. Similarly, we
show that the mechanism that repeatedly recomputes a driver-optimal plan is not envy-free and
can have incentive issues (see Example 11 in Appendix C).

Example 3. Consider the economy as shown in Figure 4, where there are two locations L = {A,B}
with distances δ(A,A) = δ(A,B) = δ(B,A) = δ(B,B) = 1. Assume for simplicity that all trip costs
and opportunity costs are zero: ca,b,t = 0 for all (a, b, t) ∈ T , and κ∆ = 0 for all ∆ = 0, 1, . . . , T . In
the driver-pessimal plan computed at time 0 as shown in the figure, the anonymous trip prices are
pB,B,1 = pA,A,1 = 5. Assume that both drivers 1 and 2 follow the plan at time 0, and reach (B, 1)
and (A, 1) respectively. If the mechanism re-computes the plan at time 1, the new driver-pessimal
plan would set a new price of 0 for the trip (B,B, 1)— the updated lowest market-clearing price
for the trip. Therefore, if driver 1 follows the mechanism at all times, her total payment and utility
would actually be 0. Now consider the scenario where driver 2 follows the mechanism at time 0,
but driver 1 deviates and relocates to A, so that both drivers are at location A at time 1. At time 1,
when the mechanism recomputes a driver-pessimal plan, both drivers would take the trip (A,A, 1)
and pick up riders 2 and 3 respectively. The updated price for the trip (A,A, 1) would be 4, and
this is a useful deviation for driver 1.

The challenge is to achieve robustness, but at the same time handle the new strategic consid-
erations that can occur as a result of drivers being able to trigger re-planning through deviations.

4 The Spatial-Temporal Pricing Mechanism

The Spatio-Temporal Pricing (STP) mechanism computes a driver-pessimal CE plan at the begin-
ning of the planning horizon, and recomputes a driver-pessimal plan upon any deviation. This leads
to our main result: the STP mechanism achieves subgame-perfect incentive compatibility without
the use of time-extended contracts, and is welfare-optimal, core-selecting, individually rational,
budget balanced, and envy-free from any history onward.
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4.1 A Dynamic Mechanism

We first formally define a dynamic mechanism, that can use the history of actions to update the
plan forward from the current state.

Let st = (s1,t, s2,t, . . . , sm,t) denote the state of the ridesharing platform at time t, where each
si,t describes the state of driver i ∈ D. If driver i has entered the platform and is available at time
t at location a ∈ L, denote si,t = (1, a, t). Otherwise, if driver i is en route, finishing the trip from
a to b that she started at time t′ < t s.t. t′ + δ(a, b) > t, denote si,t = (a, b, t′) if she is relocating
with no rider, or si,t = (a, b, t′, j) if she is taking a rider j from a to b at time t′. For drivers that
had already exited or decided not to enter, denote si,t = φ. For drivers with τ i ≥ t, i.e. who
enters or is able to enter now or in the future, si,t = (βi, `i, τ i). The initial state of the platform is
s0 = ((β1, `1, τ1), . . . , (βm, `m, τm)).

At each time t, each driver i takes an action αi,t. An available driver i with si,t = (1, a, t)
or si,t = (0, a, t) may (enter and then) relocate to any location b within reach by the end of the
planning horizon (i.e. b ∈ L s.t. t + δ(a, b) ≤ T ), which we denote αi,t = (a, b, t). She may pick
up a rider j ∈ R with τj = t and oj = a, in which case we write αi,t = (a, dj , t, j). She may also
decide to exit (if βi = 1) or not enter (if βi = 0), for both cases we denote αa,t = φ. For a driver
i that is en route at time t, (i.e. si,t = (a, b, t′) or si,t = (a, b, t′, j) for some t′ s.t. t′ + δ(a, b) > t),
αi,t = si,t— the only available action is to finish the current trip. For driver i with τ i > t, denote
αi,t = si,t = (βi, τ i, `i). A driver with si,t = φ takes no more actions: αi,t = si,t = φ.

The action αi,t taken by driver i at time t determines her state si,t+1 at time t+ 1:

• (will complete trips at t + 1) if αi,t = (a, b, t′) or αi,t = (a, b, t′, j) s.t. t′ + δ(a, b) = t + 1,
then si,t+1 = (1, b, t + 1), meaning these drivers will become available at time t + 1 at the
destination of their trips,18

• (still en route) if αi,t = (a, b, t′) or αi,t = (a, b, t′, j) s.t. t′ + δ(a, b) > t+ 1, then si,t+1 = αi,t,

• (not yet entered) for i ∈ D s.t. αi,t = (βi, τ i, `i), we have si,t+1 = (βi, τ i, `i),

• (already exited / never entered) if αi,t = φ, then si,t+1 = φ.

Let αt = (α1,t, α2,t, . . . , αm,t) be the action profile of all drivers at time t, and let history
ht , (s0, α0, s1, α1, . . . , st−1, αt−1, st), with h0 = (s0). Finally, let Dt(ht) = {i ∈ D | si,t =
(1, a, t) or si,t = (0, a, t) for some a ∈ L} be the set of drivers available at time t.

Definition 5 (Dynamic ridesharing mechanism). A dynamic ridesharing mechanism is defined by
its dispatch rule α∗, driver payment rule r∗ and rider payment rule q∗. At each time t, given history
ht and rider information R, the mechanism:

• uses its dispatch rule α∗ to determine for each of a subset of available drivers, a dispatch
action α∗i,t(ht) to either pick up a rider, or to relocate, or to exit/not enter.

• uses its driver payment rule r∗ to determine, for each dispatched driver, a payment r∗i,t(ht) in
the event the driver takes the action (r∗i,t(ht) = 0 for available drivers that are not dispatched).

• dispatches each en route driver to keep driving (i.e. α∗i,t(ht) = si,t), and does not make any
payment to driver i in this period: r∗i,t(ht) = 0.

• determines for drivers entering in the future (i ∈ D s.t. τ i > t), and drivers who had already
exited (i ∈ D s.t. si,t = φ), α∗i,t(ht) = si,t and r∗i,t(ht) = 0.

18Here we assume that a driver that declines the mechanism’s dispatch and decide to relocate from a to b also does
so in time δ(a, b). We can also handle drivers who move more slowly when deviating, just as long as the mechanism
knows when and where the driver will become available again.
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• uses its rider payment rule q∗ to determine, for each rider who receives a dispatch at time t,
the payment q∗j (ht) in the event that the rider is picked up.

Each driver then decides on which action αi,t ∈ Ai,t(ht) to take, where Ai,t(ht) is the set
of actions available to agent i at time t given history ht. For an available driver at (a, t) with
dispatched action α∗i,t(ht), Ai,t(ht) = {α∗i,t(ht)}∪{(a, b, t) | b ∈ L s.t. t+ δ(a, b) ≤ T}∪{φ}, i.e. the
driver can either take the dispatched action, or to relocate to any location, or to exit or not enter;
if an available driver at (a, t) is not dispatched, α∗i,t(ht), Ai,t(ht) = {(a, b, t) | b ∈ L s.t. t+ δ(a, b) ≤
T} ∪ {φ}; for an en route driver, or a driver that enters in the future, or a driver that has already
exited, Ai,t(ht) = {si,t}. After observing the action profile αt, the mechanism pays each dispatched
driver r̂i,t(αi,t, ht) = r∗i,t(ht)1{αi,t = α∗i,t}, and charges each rider j ∈ R with τj = t the amount
q̂j(αt) = q∗j (ht)

∑
i∈Dt

1{αi,t = (oj , dj , t, j)}.

A mechanism is feasible if (i) it is possible for each available driver to take the dispatched
trip, i.e. ∀t, ∀ht, ∀i ∈ Dt, if si,t = (1, a, t) or si,t = (0, a, t) for some a ∈ L, α∗i,t(ht) ∈
{(a, b, t) | b ∈ L, t+ δ(a, b) ≤ T} ∪ {(oj , dj , τj , j) | j ∈ R, τj = t, oj = a}, (ii) no rider is picked-
up more than once, i.e. ∀t, ∀ht, ∀j ∈ R s.t. τj = t,

∑
i∈Dt

1{α∗i,t(ht) = (oj , dj , τj , j)} ≤ 1, and
(iii) unavailable drivers are not dispatched. From Definition 5, there is no payment to or from
unavailable or undispatched drivers, or a dispatched driver i who deviated from α∗i,t(ht) at time t,
or riders who are not picked up.

Let Ht be the set of all possible histories up to time t. A strategy σi of driver i defines for
all times t ∈ [T − 1] and all histories ht ∈ Ht, the action she takes αi,t = σi(ht) ∈ Ai,t(ht). For
a mechanism that always dispatches all available drivers, σ∗i denotes the straightforward strategy
of always following the mechanism’s dispatches at all times. Let σ = (σ1, . . . , σm) be the strategy
profile, with σ−i = (σ1, . . . , σi−1, σi+1, . . . , σm). The strategy profile σ, together with the initial
state s0 and the rules of a mechanism, determine all actions and payments of all drivers through
the planning horizon. Let σi|ht , σ|ht and σ−i|ht denote the strategy profile from time t and history
ht onward for driver i, all drivers, and all drivers but i, respectively.

For each rider j ∈ R, let x̂j(σ) ∈ {0, 1} be the indicator that rider j is picked-up given
strategy σ, and let q̂j(σ) = x̂j(σ)q∗j (hτj ) be her actual payment. For each driver i ∈ D, r̂i(σ) ,∑T−1

t=0 r̂i,t(σi(ht), ht) denotes the total actual payments made to driver i, where drivers follow σ
and the history ht is induced by the initial state and strategy σ. Let π̂i,t(σi(ht), ht) be the actual
utility driver i gets at time t given history ht and strategy σi, we know that if σi(ht) = (a, b, t) or
σi(ht) = (a, b, t, j), then π̂i,t(σi(ht), ht) = r̂i,t(σi(ht), ht)− ca,b,t; if σi(ht) = φ and si,t = (1, a, t) for
some a ∈ L, then π̂i,t(σi(ht), ht) = r̂i,t(σi(ht), ht)−κT−t. For every other scenario, π̂i,t(σi(ht), ht) =

r̂i,t(σi(ht), ht). Denote π̂i(σ) ,
∑T−1

t=0 π̂i,t(σi(ht), ht) as driver i’s total utility.
Fixing driver and rider types, a ridesharing mechanism induces an extensive form game. At each

time point t, each driver decides on an action αi,t = σi(ht) ∈ Ai,t(ht) to take based on strategy
σi and the history ht, and receives utility π̂i,t(αi,t, ht). The total utility π̂i(σ) to each driver is
determined by the rules of the mechanism.

We define the following properties.

Definition 6 (Budget balance). A ridesharing mechanism is budget balanced if for any set of riders
and drivers, and any strategy profile σ taken by the drivers, we have∑

j∈R
q̂j(σ) ≥

∑
i∈D

r̂i(σ). (22)

Definition 7 (Subgame-perfect incentive compatibility). A ridesharing mechanism that always
dispatches all available drivers is subgame-perfect incentive compatible (SPIC) for drivers if given
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any set of riders and drivers, following the mechanism’s dispatches at all times forms a subgame-
perfect equilibrium (SPE) among the drivers, meaning for all t ∈ [T − 1], for any history ht ∈ Ht,

T−1∑
t′=t

π̂i,t′(σ
∗
i |ht , σ∗−i|ht) ≥

T−1∑
t′=t

π̂i,t′(σi|ht , σ∗−i|ht), ∀σi, ∀i ∈ D. (23)

A ridesharing mechanism is dominant strategy incentive compatible (DSIC) if for any driver,
following the mechanism’s dispatches at all time points that the driver is dispatched maximizes her
total payment, regardless of the actions taken by the rest of the drivers.

Definition 8 (Individual rationality (IR)). A ridesharing mechanism that always dispatches all
available drivers is individually rational in SPE for drivers if for any set of riders and drivers, (i)
the mechanism is SPIC for drivers, and (ii) assuming σ∗, drivers that have not yet entered do not
get negative utility from participating, i.e.

π̂i(σ
∗) ≥ 0 for i ∈ D s.t. βi = 0.

A ridesharing mechanism is individually rational for riders if for any set of riders and drivers, and
any strategy profile σ taken by the drivers,

x̂j(σ)vj ≥ q̂j(σ), ∀i ∈ R. (24)

Definition 9 (Envy-freeness in SPE). A ridesharing mechanism that always dispatches all available
drivers is envy-free in SPE for drivers if for any set of riders and drivers, (i) the mechanism is SPIC
for drivers, and (ii) for any time t ∈ [T − 1], for all history ht ∈ Ht, all drivers with the same state
at time t are paid the same total amount in the subsequent periods, assuming all drivers follow the
mechanism’s dispatches:

T−1∑
t′=t

π̂i,t′(σ
∗|ht) =

T−1∑
t′=t

π̂i′,t′(σ
∗|ht), ∀i, i′ ∈ D s.t. si,t = si′,t. (25)

A ridesharing mechanism is envy-free in SPE for riders if (i) the mechanism is SPIC for drivers,
and (ii) for all j ∈ R, for all possible hτj ∈ Hτj , and all j′ ∈ R s.t. (oj , dj , τj) = (oj′ , dj′ , τj′)

x̂j(σ
∗)vj − q̂j(σ∗) ≥ x̂j′(σ∗)vj − q̂j′(σ∗). (26)

Definition 10 (Core-selecting). A ridesharing mechanism that always dispatches all available
drivers is core-selecting if for any set of riders and drivers, (i) the mechanism is SPIC, and (ii)
for any time t ∈ [T − 1] and any history ht ∈ Ht onward, the outcome under the straightforward
strategy σ∗ is in the core.

Fix a ridesharing mechanism with dispatch rule α∗ and payment rules q∗, r∗, where all available
drivers are always dispatched. Recall that given complete information and the straightforward
strategy σ∗, the outcome over the entire planning horizon can be computed at time 0, and is called
the time 0 plan of the mechanism. If some driver deviated at time t − 1 for some t > 0, the
downward outcomes given the dispatching and payment rules, assuming all drivers follow σ∗|ht ,
can be thought of as an updated time t plan.

For any time t ∈ [T ], given any state st of the platform, let E(t)(st) represent the time-shifted
economy starting at state st, with planning horizon T (t) = T − t, the same set of locations L and
distances δ, and the remaining riders R(t) = {(oj , dj , τj − t, vj) | j ∈ R, τj ≥ t}. For drivers, we

have D(t)(st) = {θ(t)
i | i ∈ D}, with types θ

(t)
i = (β

(t)
i , τ

(t)
i , τ̄

(t)
i , `

(t)
i ) determined as follows:
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• for available drivers i ∈ D s.t. si,t = (1, a, t) or si,t = (0, a, t) for some a ∈ L, let θ
(t)
i =

(β
(t)
i , τ

(t)
i , τ̄

(t)
i , `

(t)
i ) = (1, a, 0, τ̄i − t) or (1, a, 0, τ̄i − t), respectively,

• for en route drivers i ∈ D s.t. si,t = (a, b, t′) or (a, b, t′, j) where t′ + δ(a, b) > t, let θ
(t)
i =

(β
(t)
i , τ

(t)
i , τ̄

(t)
i , `

(t)
i ) = (1, b, t′ + δ(a, b)− t, τ̄i − t),

• for each driver i ∈ D with τ i > t, let θ
(t)
i = (β

(t)
i , τ

(t)
i , τ̄

(t)
i , `

(t)
i ) = (βi, `i, τ i − t, τ̄i − t), and

• exclude drivers that have already exited or chose not to enter.

Definition 11 (Temporal consistency). A ridesharing mechanism is temporally consistent if after
deviation at time t− 1, the updated plan is identical to that determined for economy E(t)(st).

Upon deviation(s) at time t− 1, a temporally consistent mechanism computes its updated plan
from time t onward as if t is the beginning of the planning horizon, thus the mechanism does not
make use of time-extended contracts, including penalties for previous actions. In fact, a temporally
inconsistent mechanism would be able to trivially align incentives. For example, a mechanism that
replans based on the history could fire any driver who has deviated in the past, while keeping the
plans for the rest of the economy unchanged. A mechanism can also threaten to “shut down” and
not make any further dispatches or payments to the drivers if any of them had deviated.

4.2 The Spatio-Temporal Pricing Mechanism

We define the STP mechanism by providing a method to plan or re-plan, this implicitly defining
the dispatch and payment rules. For each a ∈ L and t ∈ [T ], denote the welfare gain from an
additional driver at (a, t) that is already in the platform as,

Φa,t ,W (D ∪ {(1, a, t, T )})−W (D), (27)

where (1, a, t, T ) represents the type of this driver that stays until the end of the planning horizon.

Definition 12 (Spatio-Temporal pricing mechanism). The spatio-temporal pricing (STP) mech-
anism is a dynamic ridesharing mechanism that always dispatches all available drivers. Given
economy E(0) at the beginning of the planning horizon, or economy E(t)(st) immediately after a
deviation by one or more drivers, the mechanism completes the following planning step:

• Dispatch rule: To determine the dispatches (α∗), compute an optimal solution (x, y) to the
ILP (4), and dispatch each driver i ∈ D to take the path Zi,k for k s.t. yi,k = 1, and pick up
riders j ∈ R s.t. xj = 1,

• Payment rules: To determine driver and rider payments (r∗ and q∗), for each (a, b, t) ∈ T ,
set anonymous trip prices to be pa,b,t = Φa,t − Φb,t+δ(a,b) + ca,b,t:

- for each rider j ∈ R, q∗j = poj ,dj ,τj
∑

i∈D 1{α∗i,τj = (oj , dj , τj , j)},
- for each driver i ∈ D, r∗i,t =

∑
j∈R,τj=t poj ,dj ,t1{α∗i,τj = (oj , dj , t, j)}.

We now state the main result of the paper.

Theorem 2. The spatio-temporal pricing mechanism is temporally consistent and subgame-perfect
incentive compatible. It is also individually rational for riders and strictly budget balanced for any
action profile taken by the drivers, and is welfare optimal, core-selecting, individually rational for
drivers and envy-free in subgame-perfect equilibrium from any history onward.
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Figure 5: The Super Bowl example: replanning under the STP mechanism at time 1 after driver 3
deviated from the original plan and stayed in location B until time 1.

We provide the full proof of Theorem 2 in Appendix B.6. We first prove, via a telescoping sum,
that the total utility of each driver under the STP mechanism is πi = ΦDi , the welfare gain from
replicating driver i. Setting uj = max{vj − poj ,dj ,τj , 0} for all riders j ∈ R, we show that (p, π, u)
forms an optimal solution to the dual LP (15) by observing (i) (Φ, u) forms an optimal solution
to the dual of the corresponding MCF problem (the proof of Lemma 4), and (ii) a correspondence
between the optimal solutions of the dual LP (15) and the optimal solutions of the dual of the
MCF (Lemma 7 in Appendix B.3). This implies that the plan determined by the STP mechanism
starting from any history onward forms a CE, and as a result is IR for riders and drivers, strictly
budget balanced, envy-free, and resides in the core.

For incentive alignment, the single-deviation principle for finite horizon extensive-form
games [30] means that we only need show that a single deviation from the mechanism’s dispatching
is not useful. For any driver in the platform, available at location a and time t, her total utility
from time t onward, if all drivers follow the dispatches, is equal the welfare gain (at the time when
the plan is computed) from adding a driver at location a and time t. We establish that this welfare
gain is weakly higher than the welfare gain for the economy (at time t + 1) from replicating this
driver at any location and time that the driver can deviate and relocate to.

For this, we use the M \ concavity (and more specifically, the local exchange properties) of
optimal objectives of MCF problems [27]. In particular, to maximize welfare, there is stronger
substitution among drivers at the same location than among drivers at different locations. This
shows that declining the mechanism’s dispatch to stay/relocate is not useful. We also show that
none of (i) exiting earlier than dispatched, (ii) not entering/exiting when asked to, and (iii) entering
when dispatched not to, is a useful deviation. From incentive alignment and the CE property, we
have the desired properties as stated.

Example 2 (Continued). Whereas the static CE mechanism fails to be welfare-optimal or envy-
free for riders after driver 3 deviates from the dispatch and stays in location B until time 1, the
plan recomputed under the STP mechanism at time 1 is as illustrated in Figure 5. Driver 3 is
re-dispatched to pick up rider 5 and then exit from (B, 2). Instead of picking up rider 8 whose
value is 90, driver 2 now picks up rider 6 who was initially assigned to driver 3. If there existed
an additional driver at (C, 1), the driver will be dispatched to pick up rider 8, and contribute to a
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welfare gain of v8 − cC,A,1 = 70. An additional driver at (A, 3) has no effect on welfare, thus the
price for the (C,A, 1) trip is updated to pC,A,1 = ΦC,1 − ΦA,3 + cC,A,1 = 70 − 0 + 20 = 90, and
the utility of each driver from (C, 1) onward is equal to ΦC,1 = 70. Similarly, we have pC,B,1 =
ΦC,1−ΦB,2 +cC,B,1 = 70−(−5)+10 = 85 and pB,B,1 = ΦB,1−ΦB,2 +cB,B,1 = −10−(−5)+10 = 5.
The utility of driver 3 from (B, 1) onward is pB,B,1− cB,B,1−κ1 = 5− 10− 5 = −10. The outcome
remains envy-free for riders, and welfare optimal from time 1 onward.

Under the STP mechanism, replanning can be triggered by the deviation of any driver, and for
this reason the total payment of a driver is affected by the actions of others, and the straightforward
behavior is not a dominant strategy. We show that no mechanism can implement the desired
properties in a dominant-strategy equilibrium.

Theorem 3. Following the mechanism’s dispatch at all times does not form a dominant strategy
equilibrium under any dynamic ridesharing mechanism that is, from any history onward, (i) welfare-
optimal, (ii) IR for riders, (iii) budget balanced, and (iv) envy-free for riders and drivers.

Proof. We show that for the economy in Example 3, as shown in Figure 4, under any mechanism
that satisfies conditions (i)-(iv), following the dispatches at all times cannot be a DSE. We start
by analyzing what must be the outcome at time 0 under such a mechanism. At time 0, optimal
welfare is achieved by dispatching one of the two drivers to go to (B, 1) so that at time 1 she can
pick up rider 1, and the other driver to go to (A, 1) to pick up rider 2. Assume w.l.o.g. that at time
0, driver 1 is dispatched to stay in B and driver 2 is dispatched to stay in A.

Now consider the scenario where driver 2 deviated, and took the trip (A,B, 0) at time 0 instead.
If driver 1 followed the mechanism’s dispatch at time 0, both drivers are at (B, 1) at time 1, and
the welfare-optimal outcome is to pick up rider 1. Individual rationality requires that the highest
amount of payment we can collect from rider 1 is 8. Budget balance and envy-freeness of drivers
then imply that drivers 1 and 2 are each paid at most 4 at time 1. If driver 2 is going to deviate
at time 0 and relocate to B, driver 1 may deviate from the mechanism’s dispatch and relocate to
(A, 1) instead. In this case, at time 1 it is welfare optimal for driver 1 to pick up rider 2. Her
payment for the trip (A,A, 1) is at least 5, for otherwise rider 3 envies the outcome of rider 2. This
is better than following the mechanism and get utility at most 4.

A natural variation of the STP mechanism is to consider the driver-optimal analog, which always
computes a driver-optimal CE plan at the beginning of the planning horizon, or upon deviation of
any driver. This mechanism pays each driver the externality she brings to the economy, ΨDi , and
corresponds to the reasoning of the VCG mechanism. The driver-optimal mechanism is, however,
not incentive compatible. See Appendix C.1 for a detailed example and explanation.

4.3 Discussion

Throughout the paper, we assume (S1) that drivers stay until the end of the planning horizon and
have no intrinsic preference over locations, and (S2), that riders are impatient. Examples 6 and 7
in Appendix C.2 show that if either assumption is relaxed, the LP relaxation (9) of the planning
problem may no longer be integral, and thus, there may not exist anonymous, origin-destination CE
prices. This is because the reduction to the minimum cost flow problem fails (see Appendix C.2).

The triangle inequalities in distance and trip costs, i.e. δ(a, a′) ≤ δ(a, b) + δ(b, a′) and ca,a′,t ≤
ca,b,t + cb,a′,t+δ(a,b) for all a, a′, b ∈ L and all t ∈ [T ], is not necessary for our results on drivers’
incentives. On the rider’s side, one concern in practice is that riders may try to break a long trip
into a few shorter trips in order to get a lower total price, especially for platforms where riders
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may set multiple stops for a single trip.19 With the triangle inequalities, we recover an arbitrage-
proofness: the total price under the STP mechanism for the shorter trips is higher than for the
single trip. This is because the shorter trips take a longer total time and incur a higher total
cost, and the rider’s total payment, which equals the difference in the welfare gain from having an
additional driver at the (origin, starting time) and the (destination, ending time) of the trip plus
the total costs, is higher if the ending time is later.

The focus of this paper is to align incentives for drivers in a dynamic environment while main-
taining driver flexibility, instead of that of information asymmetry. On the rider side, we show
via Example 8 in Appendix C.3 that although the STP mechanism chooses a driver-pessimal CE
plan, it may not be a dominant strategy for the riders to truthfully report their values. This is
different from the classical, unit-demand assignment problem [35], where the set of CE prices form
a lattice— the seller-pessimal CE prices correspond to the buyer-side VCG prices, and is incentive
compatible for the buyers. In fact, we show in Theorem 4 that the rider-side VCG payment for a
rider is equal to the minimum price for her trip among all CE outcomes, and such trip prices may
not form a CE. This implies that no mechanism that computes optimal CE plans and balances
budget incentivizes the riders to truthfully report their values. Moreover, we show that no BB,
optimal and SPIC mechanism is incentive compatible on the rider’s side.

On the driver’s side, we may consider a scenario where the mechanism does not know about
drivers’ entrance information, but asks the drivers to report their times and locations to enter
the platform at the beginning of the planning horizon. We show in Appendix C.4 that under the
STP mechanism, for a driver with entrance location and time (`i, τ i), there is no incentive for her
to report feasible location and time ( ˆ̀

i, τ̂ i) where τ̂ i ≥ τ i + δ(`i, ˆ̀
i), and then actually enter the

platform at ( ˆ̀
i, τ̂ i). If drivers are allowed to enter at any arbitrary time and location regardless

of their reports, and if the mechanism simply replans without penalizing the drivers that deviated
from their reports, then truthfully reporting entrance information is no longer a dominant strategy
for drivers. We consider it less important to provide flexibility for drivers to enter the platform in
a way that is different from their reports, since there is less uncertainty in driver’s ability to enter
(e.g. many drivers start driving from home at a certain time).

5 Simulation Results

In this section, we compare, through numerical simulations, the performance of the STP mechanism
against the myopic pricing mechanism, for three stylized scenarios: the end of a sporting event, the
morning rush hour, and trips to and from the airport with unbalanced demand.

In addition to social welfare, we consider the time-efficiency of drivers, which is defined as the
proportion of time where the drivers have a rider in the car, divided by the total time drivers spend
on the platform. We also consider the regret to drivers for following the straightforward strategy in
a non incentive-aligned mechanism: the highest additional amount a driver can gain by strategizing
in comparison to following a mechanism’s dispatch, assuming that the rest of the drivers all follow
the mechanism’s dispatches at all times. The analysis suggests that the STP mechanism achieves
substantially higher social welfare, as well as time-efficiency for drivers, whereas, under the myopic
pricing mechanism, prices are highly unstable, and drivers incur a high regret.

We define the myopic pricing mechanism to use the lowest market clearing prices (which market
clearing prices are chosen is unimportant for the results). In addition, since this mechanism need
not always dispatch all available drivers, we model any available driver who is not dispatched as

19https://www.ridester.com/uber-adds-multiple-stops/, visited January 8, 2018.
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Figure 6: An example to illustrate the end of an event.
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Figure 7: Comparison of welfare, driver time efficiency and average driver regret for the of an event.

randomly choosing a location that is within reach, and relocates there if this trip cost is no greater
than the cost for exiting immediately (in which case she exits).

5.1 Scenario One: The End of a Sporting Event

We first consider the scenario in Figure 6, modeling the end of a sporting event. There are three
locations L = {A,B,C} with unit distances δ(a, b) = 1 for all a, b ∈ L, and two time periods. Trip
costs are 3 per period, and exiting early costs 1 per period: ca,b,t = 3δ(a, b), and κ∆ = ∆. In each
economy, at time 0, there are 15 and 10 drivers that are already in the platform becoming available
at locations C and B.20 20 riders request trip (C,B, 0) and 10 riders request trips (B,C, 0) and
(B,A, 0) respectively. When the event ends, there are NC,B,1 riders hoping to take a ride from
(C, 1) to (B, 2). The values of all riders are independently drawn from the exponential distribution
with mean 10. As we vary the number of riders NC,B,1 requesting the trip (C,B, 1) from 0 to 100,
we randomly generate 1, 000 economies, and compare the average welfare, driver’s time efficiency
and average regret as shown in Figure 7.

Figure 7a shows that the STP mechanism achieves a substantially higher social welfare than
the myopic pricing mechanism, especially when there are a large number of drivers taking the trip
(C,B, 1). Figure 7b shows that the STP mechanism becomes less time-efficient as the number of
(C,B, 1) riders increases, as more of the 15 drivers starting at (C, 0) stay in the same location until
time 1. The high time-efficiency achieved by myopic is because of the fact that undispatched drivers

20We assume that all drivers are already in the platform, so that the results do not reflect the disadvantage of
myopic for not making optimal entrance decisions.
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Figure 8: Comparison of the number of drivers per trip for the end of an event.
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Figure 9: Comparison of trip prices for the end of an event.

decided to exit immediately. The effective use of driver’s time under myopic (total amount of time
driver spend driving riders, divided by the total time a driver is willing to work) is in fact around
60 percent. We also see the extent to which the myopic pricing mechanism is not incentive aligned.
Drivers that are dispatched to the trips (C,B, 1) and (B,A, 1) may regret having not relocated to
C instead and get paid a large amount at time 1. Figure 7c shows that the average regret of the
25 drivers increases significantly as NC,B,1 increases.

The average number of drivers taking each of the four trips of interest under the two mechanisms
are shown in Figure 8. As NC,B,1 increases, the STP mechanism dispatches more drivers to (C, 1)
to pick-up higher-valued riders leaving C, while sending less drivers on trips (C,B, 0) and (B,A, 0).
The myopic pricing mechanism, being oblivious to future demand, sends all drivers starting at
(C, 0) to location B, and an average of only 5 drivers to (C, 1) from (B, 1). The average trip prices
are plotted in Figure 9. First of all, prices are temporally “smooth”— trips leaving C at times 0
and 1 have very similar prices. On average, pC,B,1 is higher than pC,B,0, since drivers taking the
(C, 0)-(B, 1) trip can exit at time 1 and incur a smaller total cost. The price for the trip (B,A, 0)
is the highest, so that a driver dispatched to A does not envy those dispatched to take the trip
(B,C, 0) and then (C,B, 1). In contrast, the price for for the (C,B) trip drastically increases from
time 0 to time 1 under the myopic pricing mechanism, and the drivers taking the trip (B,A, 0)
envy those that take (B,C, 0) and subsequently (C,B, 1). The “surge” for the trip (C,B, 1) is
significantly higher under the myopic pricing mechanism, implying that the platform is providing
even less price reliability for the riders.
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Figure 11: Comparison of social welfare and driver time efficiency for the morning rush hours.

5.2 Scenario Two: The Morning Rush Hour

We now compare the two mechanisms for the economy in Figure 10, modeling the demand pattern
of the morning rush hour. There are T = 20 time periods and three locations L = {A,B,C}
with δ(a, b) = 1 for all a, b ∈ L. Trip costs are 3 per period, and exiting early costs 1 per period:
ca,b,t = 3δ(a, b), and κ∆ = ∆. C is a residential area, where there are a number of riders requesting
rides to B, the downtown area, in every period. Location A models some other area in the city.

In each economy, at time t = 0, there are 10 drivers starting in each of the three locations A, B
and C, who all stay until the end of the planning horizon. There are a total of 100 riders with trip
origins and destinations independently drawn at random from L and trip starting times randomly
drawn from [T − 1]. In addition, in each period there are NC,B commuters traveling from C to B.
We assume that the commuters’ values for the rides are i.i.d. exponentially distributed with mean
20, whereas the random rides have values exponentially distributed with mean 10.

As we vary the NC,B from 0 to 100, the average social welfare achieved by the two mechanisms
for 1, 000 randomly generated economies is as shown in Figure 11a. The STP mechanism achieves
higher social welfare than the myopic pricing mechanism. Figure 11b shows that the STP mecha-
nism achieves much higher driver time efficiency. The time efficiency of STP mechanism actually
decreases as the number of (C,B) riders per period increases above 10, since the mechanism sends
more empty cars to C to pick up the higher value riders there.

For the four origin-destination pairs, (C,B), (B,C), (B,A) and (A,B), Figures 12 and 13 plot
the average number of drivers getting dispatched to take these trips in each time period (including
both trips with a rider, and repositioning without a rider), and the average trip prices. For each
economy, the number of drivers for each origin-destination (OD) pair and the trip prices for this OD
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Figure 12: Comparison of the number of drivers per trip for the morning rush hour.
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Figure 13: Comparison of trip prices for the morning rush hour.

pair are averaged over the entire planning horizon. Results on the other five trips, (A,A), (A,C),
(B,B), (C,A) and (C,C) can be interpreted similarly, therefore are deferred to Appendix E.

Under the STP mechanism, given the large demand for trips from C to B in each time period,
there is a large number of drivers taking the trip (C,B), and also a large number of drivers relocating
from B to C in order to pick up future riders from C (see Figure 12a). A small number of drivers
are dispatched from B to A due to the lack of future demand at A. Because of the abundance of
supply at B that are brought in by the (C,B) trips, very few drivers are sent from A to B. Under
the myopic pricing mechanism, the number of drivers dispatched to take each trip, in contrast,
does not contribute to the repositioning of drivers. See Figure 12b. There are an equal number of
drivers traveling from B to A and C despite the significant difference in the demand conditions at
the two destinations. Moreover, a non-trivial number of drivers are traveling from A to B despite
the fact that there are already too much of supply at location B.

Regarding the average prices under the STP mechanism plotted in Figure 13a, the morning
commute route (C,B) has a higher average price due to the large demand for this trip. The (B,A)
trip is less costly than the (A,B) trip since there is plenty of supply of drivers that are brought to
B by the (C,B) trips, so that the marginal value of supply at B is low. The (A,B) price is high so
that not too many drivers are dispatched from A to B. The (B,C) trips are priced almost always
at zero, despite the fact that the trip cost for the drivers is 3, since it is beneficial for the economy
for drivers move to C to pick up the commuters. Finally, Figure 13b shows that the (C,B) trip
has a much higher average price under the myopic pricing mechanism than the STP mechanism,
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Figure 15: Comparison of social welfare and driver time efficiency for the morning rush hours.

whereas the rest three trips are priced at the trip costs— this is because without optimizing for
the supply of drivers at each location, locations A and B almost always have plenty of supply to
pick up all riders starting from these locations, whereas there is far from enough drivers to satisfy
the large demand at location C.

5.3 Scenario Three: Unbalanced Airport Trips

In this scenario, we consider the imbalance between trips to and from the airport from the downtown
area, as illustrated in Figure 14. There are a total of T = 20 time periods and two locations
L = {A,D}, modeling the airport and the downtown area respectively. δ(A,A) = δ(D,D) = 1,
whereas trips in between downtown and the airport are longer: δ(A,D) = δ(D,A) = 2. Trip costs
are 3 per period, and exiting early costs 1 per period: ca,b,t = 3δ(a, b), and κ∆ = ∆.

In each economy, there are 20 available drivers at each of A and D at time 0. Within the
downtown area, there are 40 riders requesting rides in each period, whereas in between the downtown
area and the airport, there are a total of 40 riders heading toward or leaving the airport, which
may be unevenly distributed on the two directions. The value of each of the downtown riders are
drawn i.i.d from the exponential distribution with mean 10, and the value for each trip to or from
the airport is drawn i.i.d from the exponential distribution with mean 40. Since the airport trips
are twice as long, we are modeling the scenario where the airport travelers are less price sensitive,
and are willing to pay twice as much, in comparison to the downtown riders.

As we vary ND,A from 0 to 40 (thus at the same time varying the number of (A,D) riders from
40 to 0), the average social welfare and driver-time efficiency achieved by the two mechanisms over
1, 000 randomly generated economies are as shown in Figure 15. We first observe that the more
balanced the trip flow to and from the airport is (i.e. when ND,A is closer to 20), the higher the
social welfare and driver time efficiency achieved by STP. This is because when the trip flow is more
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Figure 16: Comparison of driver numbers for the unbalanced trips to and from the airport.
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Figure 17: Comparison of trip prices for the unbalanced trips to and from the airport.

balanced, it is more likely for a driver to pick up riders with high values for the trips both to and from
the airport, whereas when the flow is unbalanced, drivers may relocate with an empty car or pick
up riders with low values for one of the two directions. The myopic pricing mechanism achieves
comparatively good welfare and driver time-efficiency when trip flows are reasonably balanced,
however, the performance downgrades quickly as the flow becomes more unbalanced.

Figure 16a shows that regardless of the flow imbalance, the number of drivers doing downtown
or airport trips stay reasonably stable under the STP mechanism. However, Figure 16b shows that
when ND,A is too small, too many drivers staying in downtown, forgoing the opportunity to pick
up the large number of drivers hoping to return to downtown from the airport. Similarly, when
ND,A is too large, the myopic pricing mechanism sends too many drivers to the airport, since they
have higher per period surplus. As a result, a large number of drivers line up at the airport, and
too few rider traveling within downtown are picked up, resulting in much lower efficiency.

The average prices for trips under the two mechanisms are shown in Figure 17. Comparing
the two mechanisms, we can see that the price for the (D,D) downtown trip is almost constant,
regardless of how unbalanced the airport trip flows are, however, the price for the downtown trip
is seriously affected by the conditions at the airport. For the trips to and from the airport, we can
see that both mechanisms increase the prices for the direction that is over-demanded, and lowers
the price for other direction. The differences are (i) the price surges are much lower under STP
than under myopic, providing riders more price stability, and (ii) the price for the under-demanded
direction is close to zero under STP, reflecting the need to relocate cars even when there is no
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demand, however, myopic insists on setting a prices to at least cover the trip cost.

6 Conclusion

We study the problem of optimal dispatching and pricing in two-sided ridesharing platforms in a
way that drivers would choose to accept the platform’s dispatches instead of driving to another
area or waiting for a higher price. Under a complete information, discrete time, multi-period and
multi-location model, we show that always following the mechanism’s dispatches forms a subgame-
perfect equilibrium among the drivers under the spatio-temporal pricing mechanism, which always
computes a driver-pessimal competitive equilibrium plan at the beginning of the planning horizon
as well as after any deviations. Our empirical study suggests that the STP mechanism achieves
substantially higher social welfare and drivers’ time efficiency in comparison to the myopic pricing
mechanism, where in addition prices are highly unstable and drivers incur a large regret.

Throughout the paper, we assumed complete information and a finite planning horizon. Our on-
going work include generalizing the model to settings where there is uncertainty in demand/supply
prediction, and where the planning horizon rolls forward as the uncertainty gets resolved over time.
One challenge is that of balancing budget— strict balance does not hold for arbitrary driver action
profiles, but may still hold in subgame perfect equilibrium. Another challenge is that the class of
M \ concave functions is not closed under addition, thus the continuation value of a distribution of
drivers at the end of the planning horizon (which is the expectation of its continuation value for
each realized future demand pattern) may no longer be M \ concave, and this affects the integrality
of the optimal planning problem and the existence of CE.

Other interesting directions include: (i) empirical analysis on the ridesharing platforms, espe-
cially on the loss of welfare due to myopia and the strategic behavior of drivers, (ii) the fairness
in regard to effect of welfare-optimal planning on trip prices to and from different neighborhoods
with different demand patterns, (iii) truthful elicitation of information in scenarios where drivers
poses information on local demand/supply in the near future, and where drivers have preferences
with respect to locations or heterogeneity in costs, and (iv) pricing and dispatching with multiple
classes of services, and with the existence of competition between platforms.
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[34] Bernard Salanié. The economics of contracts: a primer. MIT press, 2005.

[35] Lloyd S Shapley and Martin Shubik. The assignment game i: The core. International Journal
of game theory, 1(1):111–130, 1971.

[36] Michael P. Wellman. A market-oriented programming environment and its application to
distributed multicommodity flow problems. Journal of Artificial Intelligence Research, 1:1–23,
1993.

[37] Laurence A Wolsey. Integer and Combinatorial Optimization. John Wiley & Sons, Incorpo-
rated, Somerset, 1999.

32



Appendix
Appendix A provides a continuous-time interpretation of the discrete time model that we adopted.
Appendix B includes proofs that are omitted from the body of the paper. Appendix C provides
examples and discussions on the driver-optimal mechanism, integrality of the LP relaxation and
existence of CE, incentives of riders, entrance as drivers’ private information, and the naive recom-
putation of optimal CE plans. Appendix D discusses the relationship with the literature on trading
networks and the dynamic VCG mechanism, and why they do not solve the ridesharing problem.
Finally, additional simulation results are presented in Appendix E.

A Continuous Time Interpretation

Under the discrete time model introduced in Section 2, trips within the same location takes δ(a, a) =
1 unit of time for all a ∈ L, however, we also assume that a driver can drop-off a rider and pick-up
a new rider in the same location at the same time point.

time

t = 0 t = 1

t = 2

t = 3

Pick-up at A Drop-off at A Pick-up at A Drop-off at B

A-A trip A-B trip

Figure 18: Time-line for a within-location trip A→ A which takes δ(A,A) = 1 period of time, and
a between-location trip A→ B which takes δ(A,B) = 2 periods of time.

Figure 18 illustrates the continuous-time interpretation of this discrete-time model. There are
two trips: an A to A trip at time 0 which takes δ(A,A) = 1 unit of time, and an A to B trip at
time 1, which takes δ(A,B) = 2 units of time and ends at time t = 3. The time after the drop-off
of the first rider at A and the time for the second pick-up at A is the time the driver takes to travel
within location A to pick up the second rider. In the discrete time model, both the drop-off and
the pick-up are both considered to happen at time t = 1.

B Proofs

B.1 Proof of Lemma 1

Lemma 1. Given any CE plan (x, z̃, p), the plan with anonymous prices (x, z̃, p+) also forms a
CE, and has the same driver and rider payments and utilities as those under (x, z̃, p).

Proof. Assume that there exists (a, b, t) ∈ T s.t. ∃j ∈ R s.t. (oj , dj , τj) = (a, b, t) and pa,b,t < 0.
Rider best response implies xj = 1, thus there exists i ∈ D s.t. (oj , dj , τj , j) ∈ z̃i, and this is paid
pa,b,t < 0 at time t. This violates driver best response, since keeping the rest of the action path
unchanged, but choosing not to bet paid for this trip, the driver would get a higher total payment.

This implies that poj ,dj ,τj = p+
oj ,dj ,τj

holds for all j ∈ R, therefore given the dispatching

(x, z̃), rider best response under prices p implies rider best response under prices p+. De-
note the total payment to each driver and the utility of each driver given (x, z̃, p) as r+

i

and π+
i . We know that for each driver i ∈ D, r+

i =
∑

j∈R 1{(oj , dj , τj , j) ∈ z̃i}p+
oj ,dj ,τj

=∑
j∈R 1{(oj , dj , τj , j) ∈ z̃i}poj ,dj ,τj = ri, thus π+

i = πi. This implies driver best response: π+
i = πi =

maxk=0,...,|Zi|{
∑

(a,b,t)∈Zi,k
max{pa,b,t, 0} − λi,k} = maxk=0,...,|Zi|{

∑
(a,b,t)∈Zi,k

max{p+
a,b,t, 0} − λi,k},
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This completes the proof that (x, z̃, p) also forms a CE, and that the driver and rider payments
and utilities under the two plans are identical.

B.2 Proof of Lemma 2

B.2.1 Minimum Cost Flow Problems

We first provide the formulation of the minimum cost flow (MCF) problem, and the reduction of
an optimal dispatching problem to an MCF problem where drivers flow through a network with
nodes corresponding to the initial states of drivers and the (location, time) pairs, and the edge
costs equal to the trip costs for drivers minus the rider values.

Let G = (N , E) be a directed graph with a node set N and an edge set E . Let ζ : E → Z∪{−∞}
be the lower capacity function, ζ̄ : E → Z∪{+∞} be the upper capacity function, and let γ : E → R
be the cost function. For each edge e ∈ E , denote ∂+e ∈ N as the initial (tail) node of e and ∂−e ∈ N
as the terminal (head) node of e. That is, ∂+e = n1 and ∂−e = n2 for the edge e = (n1, n2).

A feasible flow f is a function f : E → R such that ζ(e) ≤ f(e) ≤ ζ̄(e) for each e ∈ E . Its
boundary ∂f : N → R is defined as

∂f(n) =
∑
{f(e) | e ∈ E , ∂+e = n} −

∑
{f(e) | e ∈ E , ∂−e = n}.

A node n for which ∂f(n) > 0 is a source of the flow, and a node n is a sink if ∂f(n) < 0. Let ξ
be a vector in R|N |, the minimum cost for any flow with boundary condition ξ is:

ω(ξ) = inf
f

{∑
e∈E

c(e)f(e)

∣∣∣∣∣ f : feasible flow with ∂f = ξ

}
. (28)

B.2.2 Reducing Optimal Dispatching to MCF

Given an instance of the optimal dispatching problem with planning horizon T , locations L, dis-
tances δ, costs {ca,b,t}(a,b,t)∈T and {κ∆}∆=1,...,T , riders R and drivers D, we construct a correspond-
ing MCF problem. Let G = (N , E) be the graph, where the nodes N consists of (location, time)
pairs, the nodes {Di}i∈D modeling the initial states of drivers, and an additional “sink” node S
representing the end of time:

N = {(a, t) | a ∈ L, t ∈ [T ]} ∪ {Di | i ∈ D} ∪ {S}.

The set of edges E = E1 ∪ E2 ∪ E3 ∪ E4 consists of the following parts:

• E1 = {Rj | j ∈ R} corresponds to rider trips, where the edge Rj = ((oj , τj), (dj , τj +
δ(oj , dj))) corresponds to the trip requested by rider j and has minimum capacity ζ(Rj) = 0,
maximum capacity ζ̄(Rj) = 1 and cost γ(Rj) = −vj + coj ,dj ,τj . Intuitively, if a unit of driver
flows through the edge corresponding to rider j (i.e. rider j is picked up by a driver), we
incur a cost of coj ,dj ,τj , and gain value vj .

• E2 consists of edges that are feasible relocating trips without riders:

E2 = {((a, t), (b, t+ δ(a, b)) | (a, b, t) ∈ T } .

Recall that T = {(a, b, t) | a, b ∈ L, t+ δ(a, b) ≤ T} denotes the set of feasible trips within the
planning horizon. There is no upper bound on capacities of these edges: ∀e ∈ E2, ζ(e) = 0,
ζ̄(e) = +∞. The edge costs are γ(e) = ca,b,t, if e = ((a, t), (b, t+ δ(a, b)).
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• E3 consists of edges that connect all nodes (a, t) to the sink S, representing the exit of a driver
from location a and time t:

E3 = {((a, t), S) | a ∈ L, t ∈ [T ]} .

Similar to E2, there is no upper capacity constraint: ∀e ∈ E3, ζ(e) = 0, ζ̄(e) = +∞. A driver
exiting at time t incurs an early exiting opportunity cost of κT−t, therefore γ(e) = κT−t for
all e = ((a, t), S) ∈ E3.

• E4 consists of two sets of edges. The first set of edges allow each driver to enter the platform
at their entrance location and time (`i, τ i), and the second set of edges allow drivers with
βi = 0 to not enter the platform at all:

E4 = {(Di, (`i, τ i)) | i ∈ D} ∪ {(Di, S) | i ∈ D s.t. βi = 0} .

There is no upper capacity constraint, and no additional cost for these edges: ∀e ∈ E4,
ζ(e) = 0, ζ̄(e) = +∞, and γ(e) = 0.

The boundary condition of the MCF problem is given by:

ξDi = 1, ∀i ∈ D,
ξn = 0, if n = (a, t) for some a ∈ L and t ∈ [T ],

ξS = −m.

Flow LP Given this construction, there are non-zero edge costs and upper flow capacity con-
straints only for edges in E1. The minimum cost flow problem (28) can therefore be simplified and
rewritten in the following form:

min
f

∑
j∈R

(coj ,dj ,τj − vj)f(Rj) +
∑

(a,b,t)∈T

ca,b,tf(((a, t), (b, t+ δ(a, b))))

+
∑

a∈L,t∈[T ]

κT−tf(((a, t), S)) (29)

s.t.
∑

e∈E, ∂+e=(a,t)

f(e)−
∑

e∈E, ∂−e=(a,t)

f(e) = 0, ∀a ∈ L, ∀t ∈ [T ] (30)

∑
e∈E, ∂+e=Di

f(e) = 1, ∀i ∈ D (31)

f(Rj) ≤ 1, ∀j ∈ R (32)

f(e) ≥ 0, ∀e ∈ E (33)

Note that given (30) and (31), the flow balance constraint at the sink,
∑

e∈E, ∂−e=S f(e) =
m, is redundant, and therefore omitted from the above formulation in order to achieve better
interpretability of the dual variables. Observing that minimizing the negation of the total value of
riders that are picked up is equivalent to maximizing the total value of riders that are picked up,
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we can rewrite (29) in the following form:

max
f

∑
j∈R

(vj − coj ,dj ,τj )f(Rj)−
∑

(a,b,t)∈T

ca,b,tf(((a, t), (b, t+ δ(a, b))))

−
∑

a∈L,t∈[T ]

κT−tf(((a, t), S)) (34)

s.t.
∑

e∈E, ∂+e=(a,t)

f(e)−
∑

e∈E, ∂−e=(a,t)

f(e) = 0, ∀a ∈ L, ∀t ∈ [T ] (35)

∑
e∈E, ∂+e=Di

f(e) = 1, ∀i ∈ D (36)

f(Rj) ≤ 1, ∀j ∈ R (37)

f(e) ≥ 0, ∀e ∈ E (38)

We refer to (34) as the flow LP.

B.2.3 Proof of Lemma 2

Lemma 2 (Integrality). There exists an integer optimal solution to the linear program (9).

Proof. It is known that the MCF problems with certain structure have integral optimal solu-
tions [27]. The flow LP (34) is integral since (I) the flow balance constraints (35) and (36) can be
written in matrix form Ff = ξ where F is total unimodular and ξ has only integer entries and (II)
the edge capacity constraints (37) are all integral. See Section III.1.2 in [37] for details on total
unimodularity and the integrality of polyhedron.

To prove the integrality of the original LP (9), we show that

(i) for each feasible solution to the LP (9), there exists a feasible solution to the flow LP (34)
with the same objective, and

(ii) for each integral feasible solution to the flow LP (34), there a corresponding integral feasible
solution to the LP (9) with the same objective.

The integrality of MCF then implies that there exists an integral optimal solution of (9), since
the optimal objective of the LP (9) cannot exceed the optimal objective of the MCF, which is
achieved at some integral feasible solution of the MCF, and therefore also at some integral feasible
solution of (9). We now prove (i) and (ii).

Part (i). Let (x, y) be a feasible solution to the LP (9). A solution f to the flow LP (34) can be
constructed as follows:

• For each j ∈ R, let f(Rj) = xj . We know that 0 ≤ f(Rj) ≤ 1 for all j ∈ R.

• For each e = ((a, t), (b, t+ δ(a, b)) ∈ E2 corresponding to the relocation trip (a, b, t) ∈ T , let

f(e) =
∑

i∈D
∑|Zi|

k=0 yi,k1{(a, b, t) ∈ Zi,k} −
∑

j∈R xj1{(oj , dj , τj) = (a, b, t)}. Constraint (10)
guarantees that f(e) ≥ 0.

• For each driver i ∈ D s.t. βi = 1, let f((Di, (`i, τ i))) =
∑|Zi|

k=0 yi,k. For each i ∈ D s.t. βi = 0,

let f((Di, (`i, τ i))) =
∑|Zi|

k=1 yi,k, and f((Di, S)) = yi,0.
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• For each e = ((a, T ), S) ∈ E3, let f(e) =
∑

e′∈E, ∂−e′=(a,T ) f(e′) to balance the flow in and out
of (a, T ). This is the total number of drivers that existed the platform from (a, t).

The edge capacity constraints (37) and (38) are satisfied by construction. Given constraint (11)
and the fact that each Zi,k is a feasible path, constraints (35) and (36) are satisfied. Moreover, it is
obvious that the objective of the two linear programs coincide, thus f is a feasible solution to the
flow LP (9) with the same objective.

Part (ii). Given a feasible, integral solution f to the flow LP (34), we construct an integral feasible
solution to the original LP. For the riders, let xj = f(Rj) for all j ∈ R. For the drivers, from the
standard flow decomposition arguments [9], the m units of flow in f that all converge in S can
be decomposed into m paths of single units of flow, that correspond to each driver’s feasible path
taken over the entire planning horizon. This gives us a feasible solution to the original LP, and it
is easy to see that the objectives are the same. This completes the proof of the lemma.

The reduction to MCF can also be used to solve the original LP efficiently. In the optimal
dispatching problem, the number of feasible paths for each driver is exponential in |L| and T , thus
there are exponentially many decision variables in the LP (9). The numbers of decision variables
and constraints of the flow LP are, in contrast, polynomial in |R|, |L| and T , and there are efficient
algorithms for solving network flow problems (see [2]).

B.3 Proof of Lemma 3

Before proving the lemma, we first state the complementary slackness (CS) conditions [9]. Given
a feasible solution (x, y) to the primal LP (9), and a feasible solution (p, π, u) to the dual LP (15),
both solutions are optimal if and only if the following conditions hold:

(CS-1) for all j ∈ R, xj > 0⇒ uj = vj − poj ,dj ,τj ,
(CS-2) for all j ∈ R, uj > 0⇒ xj = 1,

(CS-3) for all i ∈ D and all k = 1, . . . , |Zi|, yi,k > 0⇒ πi =
∑

(a,b,t)∈Zi,k
pa,b,t − λi,k,

(CS-4) for all (a, b, t) ∈ T ,

pa,b,t > 0⇒
∑
j∈R

xj1{(oj , dj , τj) = (a, b, t)} =
∑
i∈D

|Zi|∑
k=0

yi,k1{(a, b, t) ∈ Zi,k}.

We also provide this following lemma, showing that given any CE outcome, any trip with
excessive driver supply has a non-positive price.

Lemma 6. Given any plan with anonymous trip prices (x, z̃, p) that forms a CE, for any (a, b, t) ∈
T , if there exists a driver i ∈ D s.t. (a, b, t) ∈ z̃i, then pa,b,t ≤ 0.

The proof is straightforward. If there exists any trip (a, b, t) with a positive price, and a driver
that takes this trip as relocation without a rider, the driver is not getting paid for this trip. This
violates driver best response, since getting paid for this trip improves total payment to the driver.

We are now ready to prove Lemma 3.

Lemma 3 (Welfare Theorem). A dispatching (x, z̃) is welfare-optimal if and only if there exists
anonymous trip prices p s.t. the plan (x, z̃, p) forms a competitive equilibrium. Such optimal CE
plans always exist and are efficient to compute. Moreover, these plans are strictly budget balanced,
and are individually rational and envy-free for both riders and drivers.
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Proof. Given any welfare optimal dispatching (x, z̃), we can construct an integral optimal solution
(x, y) to the LP (9), where for all i ∈ D, yi,k = 1 if the movement of driver i in space and time
according to the action path z̃i is consistent with the path Zi,k. Given any CE plan (x, z̃, p),
Lemma 1 implies that (x, z̃, p+) also forms a CE, where p+ is defined s.t. p+

a,b,t = max{pa,b,t, 0}.
We prove the lemma in two steps:

• Step 1. Given any optimal dispatching (x, z̃), and any optimal solution (p, π, u) to the dual
LP (15), the CS conditions imply that π and u can be interpreted as drivers’ and rider’s
utilities, if the anonymous trip prices is given by p. Optimal dual conditions guarantee driver
and rider best responses, thus the plan (x, z̃, p) forms a CE.

• Step 2. Given a CE plan (x, z̃, p), let (x, y) be the corresponding primal solution, and construct
a dual solution (p+, π, u), where π and u are the corresponding driver and rider utilities. CS
conditions are satisfied between (x, y) and (p+, π, u), thus (x, z̃, p) is welfare optimal.

This proves the correspondence between CE and optimal plans and the existence of CE.
Lemma 7 in Appendix B.4 implies that the CE prices can be efficiently computed from solving
the dual of the flow LP. Regarding the properties: rider IR and envy-freeness is guaranteed by
anonymous trip prices and CE; strict budget balance is guaranteed by the definition of anonymous
trip prices; for driver envy-freeness, given any two drivers with the same initial (starting loca-
tion/time, whether the driver had entered the platform or not), they have the same set of feasible
paths, therefore both get the same highest total utility among those paths.

We now prove the above two steps.

Step 1: Optimal primal and dual solutions ⇒ CE.
Given an optimal dispatch (x, z̃, p), let (x, y) be the corresponding optimal integral solution to

the primal LP (9), and let (p, π, u) be any optimal solution to the dual LP (15). We first show that
if the anonymous trip prices are given by p, then the dual variables π and u correspond to drivers’
and riders’ utilities, respectively:

1. xj > 0 ⇒ uj = vj − poj ,dj ,τj from (CS-1), thus for riders that are picked up, uj represent the
utilities of the rider, which is her value minus the price for her trip.

2. uj > 0 ⇒ xj = 1 from (CS-2), i.e. in order for a rider to have positive utility, the rider must
be picked up. This implies that xj = 0 ⇒ uj = 0, i.e. riders that are not picked up have zero
utilities. Combining 1. and 2., we know that uj correspond to the the rider’s utilities.

3. yi,k > 0 ⇒ πi =
∑

(a,b,t)∈Zi,k
pa,b,t − λi,k from (CS-3), i.e. if driver i takes her kth feasible path,

then πi equals the sum of the prices of each trip covered by this path minus the total cost of
this path.

∑
(a,b,t)∈Zi,k

pa,b,t is equal to the driver’s total payment since (I) for any rider trip,

i.e. (a, b, t) ∈ Zi,k s.t. ∃j ∈ R s.t. (a, b, t, j) ∈ z̃i, the driver is paid pa,b,t, and (II), for (a, b, t)
where the driver relocates without a rider, (CS-4) implies that pa,b,t = 0, therefore pa,b,t is also
the driver’s payment. As a result, πi coincides with the total utility of driver i.

We now show that this outcome forms a CE. For rider best response: constraint uj ≥ 0 guar-
antees IR for riders, thus riders that are picked up can afford the price; vj − poj ,dj ,τj > 0 ⇒ uj >
0 ⇒ xj = 1 implies that all riders that strictly prefer getting pickup up are dispatched to some
driver. For driver best response, the dual constraints (16) and (18) guarantee that for all i ∈ D,

πi ≥ maxk=0,...,|Zi|

{∑
(a,b,t)∈Zi,k

pa,b,t − λi,k
}

= maxk=0,...,|Zi|

{∑
(a,b,t)∈Zi,k

max{pa,b,t, 0} − λi,k
}

.

Step 2: CE ⇒ Optimal primal and dual solutions.
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Let (x, z̃, p) be a CE plan with anonymous trip prices, and let (u, π) be riders’ and drivers’
utilities under this plan. The plan being feasible implies that corresponding (x, y) is a feasible
and integral primal solution. We show that (p+, π, u) is a feasible solution to the dual LP (15):
(18) holds by definition of p+; Lemma 1 and rider best response implies (17) and (19); driver best
response implies (16).

We now prove that (x, y) and (p+, π, u) must both be optimal, by checking the CS conditions:

1. For (CS-1): given any j ∈ R s.t. xj > 0, we know that the rider is picked up, pays poj ,dj ,τj and
gets utility uj = vj − poj ,dj ,τj .

2. For (CS-2): for any rider j ∈ R that gets utility uj > 0, she must be picked up since otherwise
her utility would be zero, therefore xj = 1.

3. For (CS-3), for each driver i ∈ D, yi,k > 0 implies that driver i takes her kth feasible path.
For each trip (a, b, t) on the path, the driver gets paid pa,b,t regardless of whether she picks
up a rider (see Lemma 6), thus her total utility is the sum of the prices minus her cost, thus
πi =

∑
(a,b,t)∈Zi,k

pa,b,t − λi,k.

4. For (CS-4), pa,b,t > 0 ⇒
∑

j∈R xj1{(oj , dj , τj) = (a, b, t)} =
∑

i∈D
∑|Zi|

k=0 yi,k1{(a, b, t) ∈ Zi,k} is
implied by Lemma 6— otherwise, there is excessive supply for trip (a, b, t), implying pa,b,t = 0.

This completes the proof of the lemma.

B.4 Proof of Lemma 4

B.4.1 Dual of the Flow LP

Before proving Lemma 4, we first discuss the dual of the flow LP, and its correspondence to the
dual LP (15). Let ϕa,t, ϕDi , and µj be the dual variables corresponding to constraints (35), (36)
and (37), respectively. The dual LP of (34) can be written as:

min
∑
i∈D

ϕDi +
∑
j∈R

µj (39)

s.t. ϕoj ,τj − ϕdj ,τj+δ(oj ,dj) + µj ≥ vj − coj ,dj ,τj , ∀j ∈ R (40)

ϕa,t − ϕb,t+δ(a,b) ≥ −ca,b,t, ∀(a, b, t) ∈ T (41)

ϕa,t ≥ −κT−t, ∀a ∈ L, ∀t ∈ [T ] (42)

ϕDi ≥ ϕ`i,τ i , ∀i ∈ D (43)

ϕDi ≥ 0, ∀i ∈ D s.t. βi = 0, (44)

µj ≥ 0, ∀j ∈ R (45)

Given a solution (ϕ, µ) of (39), the ϕ variables corresponding to the flow balance constraints
are usually referred to as the potential of the nodes, and we call ϕ an optimal potential of the MCF
problem if there exist µ ∈ R|R| s.t. (ϕ, µ) is an optimal solution of (39). The potential for each
node can be interpreted as how “useful” it is to have an additional unit of flow originating from
this node, and µj for each j can be interpreted as the utility of the rider j.

Complementary Slackness Conditions Given a feasible solution f to the flow primal LP (34)
and a feasible solution (ϕ, µ) to the flow dual LP (39), both solutions are optimal if and only if the
following complementary slackness conditions [8] are satisfied.
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(CSF -1) for all j ∈ R, f(Rj) > 0⇒ ϕoj ,τj − ϕdj ,τj+δ(oj ,dj) + µj = vj − coj ,dj ,τj ,
(CSF -2) for all j ∈ R, µj > 0⇒ f(Rj) = 1,

(CSF -3) for all (a, b, t) ∈ T , f(((a, t), (b, t+ δ(a, b))) > 0⇒ ϕa,t − ϕb,t+δ(a,b) = −ca,b,t,
(CSF -4) for all a ∈ L and t ∈ [T ], f(((a, t), S)) > 0⇒ ϕa,t = −κT−t.
(CSF -5) for all i ∈ D, f((Di, (`i, τ i))) > 0⇒ ϕDi = ϕ`i,τ i .

(CSF -6) for all i ∈ D s.t. βi = 0, f((Di, S)) > 0⇒ ϕDi = 0.

The following lemma establishes a one-to-one correspondence between the πi variables in optimal
solutions to the dual LP (15), and the ϕDi variables in optimal solutions to (39).

Lemma 7. Given any ridesharing problem satisfying assumptions (S1) and (S2), for any optimal
solution (p, π, u) to the dual LP (15), there exists an optimal solution (ϕ, µ) to the dual of the flow
LP (39) such that ϕDi = πi for all i ∈ D, uj = µj for all j ∈ R, and vise versa.

Proof. We prove the following two directions by construction:

(i) Given an optimal solution (p, π, u) to (15), there exists an optimal solution (ϕ, µ) to (39) s.t.
ϕDi = πi for all i ∈ D and that µj = uj for all j ∈ R.

(ii) Given an optimal solution (ϕ, µ) to (39), there exists an optimal solution (p, π, u) to (15) s.t.
πi = ϕDi for all i ∈ D and that uj = µj for all j ∈ R.

Part (i). Given any optimal solution (p, π, u) to (15), we construct a solution (ϕ, µ) to (39) from
the prices p as follows, where ϕa,t represents the highest continuation payoff for any driver from
location a and time t onward, ϕDi represents the highest achievable payoff of driver i, and µj
represents the highest achievable utility of rider j:

• For all a ∈ L, let ϕa,T = −κT−T = 0.

• For all a ∈ L and all t = T − 1, T − 2, . . . , 0, let

ϕa,t = max

{
max

b∈L s.t. t+δ(a,b)≤T

{
ϕb,t+δ(a,b) + pa,b,t − ca,b,t

}
, − κT−t

}
. (46)

• For all i ∈ D, s.t. βi = 1, let ϕDi = ϕ`i,τ i ; for i ∈ D s.t. βi = 0, let ϕDi = max{ϕ`i,τ i , 0}.
• For all j ∈ R, let µj = max{vj − p′oj ,dj ,τj , 0}, where

p′a,b,t , ϕa,t − ϕb,t+δ(a,b) + ca,b,t, ∀(a, b, t) ∈ T . (47)

Note that p′a,b,t ≥ pa,b,t holds for all (a, b, t) ∈ T , since ϕa,t ≥ ϕb,t+δ(a,b) +pa,b,t− ca,b,t from (46).
Moreover, we claim that for any optimal solution (x, y) to the LP (9),

pa,b,t = p′a,b,t for all (a, b, t) ∈ T s.t.
∑
i∈D

|Zi|∑
k=1

yi,k1{(a, b, t) ∈ Zi,k} > 0, (48)

i.e. the prices must coincide for any trips that is taken by at least one driver.
To prove (48), first observe that ∀(a, t) ∈ L × [T ], ϕa,t as in (46) is equal to the highest total

utility among all possible paths starting from (a, t) to the end of time, given the prices p— this
is obvious for t = T (since ϕa,T = 0 for al a) and also for t < T by induction. Now consider any
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trip (a, b, t) taken by some driver, say driver 1. Since the outcome forms a CE (since (x, y) and
(p, π, u) are optimal primal and dual solutions), we know that the total utility to driver 1 from
time t onward must be ϕa,t, the highest total utility among all possible paths starting from (a, t).
Similarly, the total utility to driver 1 from location b and time t+δ(a, b) onward is ϕb,t+δ(a,b). Since
the (a, b, t) trip pays the driver pa,b,t and costs ca,b,t, we know that ϕa,t = pa,b,t + ϕb,t+δ(a,b) − ca,b,t
must hold, which gives us p′a,b,t = ϕa,t − ϕb,t+δ(a,b) = pa,b,t.

We now show that (ϕ, µ) forms an optimal solution to (39). Given the non-negativity of price,
constraints (40) to (45) are satisfied by construction, thus what is left to prove is optimality. Let
(x, y) be some optimal integral solution to (9). We know that (x, y) and (p, π, u) satisfy the CS
conditions (CS-1)-(CS-4), and form a CE. We construct an optimal integral solution f to (34) from
(x, y) in the same way as in the proof of Lemma 2, and it is sufficient for the optimality to prove
that (CSF -1)-(CSF -6) hold between f and (ϕ, µ):

1. To show (CSF -1), first observe that for all j ∈ R, f(ej) > 0 ⇒ xj > 0 implies that rider
j is picked up, thus the trip (oj , dj , τj) is taken by some driver, thus poj ,dj ,τj = p′oj ,dj ,τj by

(48). Moreover, uj = vj − poj ,dj ,τj from (CS-1), implying vj − p′oj ,dj ,τj ≥ 0. This gives us:

f(ej) > 0⇒ µj = vj − p′oj ,dj ,τj ⇒ ϕoj ,τj − ϕdj ,τj+δ(oj ,dj) + µj = vj − coj ,dj ,τj .

2. To show (CSF -2), recall that p′a,b,t ≥ pa,b,t for all (a, b, t) ∈ T . Therefore, given (17) and (CS-2),
we know that for all j ∈ R, µj > 0 ⇒ vj − p′oj ,dj ,τj > 0 ⇒ vj − poj ,dj ,τj > 0 ⇒ uj > 0 ⇒ xj =

1⇒ f(Rj) = 1.

3. (CSF -3) holds since f(e) > 0 only when there is excessive supply in the dispatching (x, y)
for the trip (a, b, t), therefore pa,b,t = 0 given (CS-4). (48) then implies that p′a,b,t = 0, thus
ϕa,t − ϕb,t+δ(a,b) = p′a,b,t − ca,b,t = −ca,b,t.

4. (CSF -4) holds, since f(((a, t), S)) > 0 implies that given dispatch (x, y), there exists at least
one driver that exited the platform from (a, t), therefore gets utility −κT−t from time t onward.
As a result, the highest utility for all paths from (a, t) onward must be ϕa,t = −κT−t without
violating CE.

5. (CSF -5) holds by construction for i s.t. βi = 1. For i s.t. β0 = 0, since when f((Di, (`i, τ i))) > 0,
driver i entered the platform (instead of not entering and getting zero utility), thus her utility
ϕ`i,τ i from (`i, τ i) onward must not be negative. and as a result, ϕDi = max{ϕ`i,τ i , 0} = ϕ`i,τ i .

6. (CSF -6) holds, since when f((Di, S)) > 0, driver i did not enter the platform at all according
to the dispatch (x, y). As a result, CE implies that entering must not give her positive utility,
therefore ϕ`i,τ i ≤ 0, and her utility ϕDi = max{ϕ`i,τ i , 0} = 0.

What is left to show is that ϕDi = πi for all i ∈ D and that µj = uj for all j ∈ D. ϕDi = πi
holds, since ϕDi as constructed is the highest achievable utility for driver i among all feasible
paths, and πi must take this value given CE. For j ∈ R s.t. xj = 0, we know that f(Rj) = 0,
and uj = µj = 0 must hold. For j ∈ R s.t. xj = 1, poj ,dj ,τj = p′oj ,dj ,τj holds given (48), therefore

f(Rj)⇒ µj = vj − p′oj ,dj ,τj = vj − poj ,dj ,τj = uj .

Part (ii). Let (ϕ, µ) be an optimal solution to (39). We now construct a solution (p, π, u) to (15),
where the price pa,b,t is the loss of potential between the origin node (a, t) and the destination node
(b, t+ δ(a, b)) plus the trip cost ca,b,t, and the driver and rider utilities are given by ϕDi and µi:

uj = µj , ∀j ∈ R
πi = ϕDi , ∀i ∈ D

pa,b,t = ϕa,t − ϕb,t+δ(a,b) + ca,b,t, ∀(a, b, t) ∈ T
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We first show that (p, π, u) is a feasible solution to (15).

1. From telescoping sum, for any feasible path Zi,k of driver i, starting at (`i, τ i) and end-
ing at (a′, t) for some a′ ∈ L and some t′ ∈ [T ], the total utility from taking the path
is
∑

(a,b,t)∈Zi,k
(pa,b,t − ca,b,t) − κT−t′ = ϕ`i,τ i − ϕa′,t′ − κT−t′ , which is at most ϕ`i,τ i (since

ϕa′,t′ ≥ −κT−t′ for all a′ ∈ L and t′ ∈ [T ], guaranteed by (42)). This implies that the util-
ity πi = ϕDi ≥ ϕ`i,τ i ≥

∑
(a,b,t)∈Zi,k

(pa,b,t − ca,b,t) − κT−t′ =
∑

(a,b,t)∈Zi,k
pa,b,t − λi,k for any

k ∈ {1, . . . , |Zi|}, therefore (16) holds.

2. (40) implies uj = µj ≥ vj − (ϕoj ,τj − ϕdj ,τj+δ(oj ,dj) + coj ,dj ,τj ) = vj − poj ,dj ,τj thus (17) holds.

3. (41) implies that pa,b,t ≥ 0 thus (18) holds.

4. Lastly, (45) implies uj = µj ≥ 0, which is (19).

Therefore, (p, π, u) is a feasible solution to (15). Regarding the optimality of (p, π, u), we know
by construction that the objective of (15) is equal to that of (39). Recall the correspondence of
optimal solutions that we established in Appendix B.2, that the optimal objective of the flow LP
(34) is equal to that of the original LP (9). This implies that the optimal objective of the dual (15)
is equal to the optimal objective of the LP (9), therefore (p, π, u) is an optimal solution such that
πi = ϕDi for all i ∈ D and that uj = µj for all j ∈ R.

This completes the proof of the lemma.

B.4.2 Proof of Lemma 4

Lemma 4 (Lattice Structure). Drivers’ utility profile π among all CE outcomes form a lattice.
Moreover, for each driver i ∈ D, ΦDi and ΨDi are equal to utility of driver i in the driver-pessimal
and driver-optimal CE plans, respectively.

Proof. Step 2 of the proof of Lemma 3 established that the set of possible driver utilities among
all CE outcomes correspond to the π variables among the set of optimal solutions (p, π, u) to the
dual LP (15). Since Lemma 7 established the correspondence between the π variables and the ϕDi

variables in optimal solutions to (15) and (39), what we need to show is the lattice structure of ϕ
in optimal solutions of (39), and that Φ and Ψ reside on the bottom and the top of the lattice.

Step 1. Proof of the Lattice Structure
We first prove the lattice structure. Let (ϕ, µ) and (ϕ′, µ′) be two optimal solutions of (39).

We prove that the join and the meet of ϕ and ϕ′ are both optimal potentials. Let the join and the
meet be defined as: For all (a, t) ∈ L × [T ], let the join and the meet of the potentials be

ϕ̄a,t , max
{
ϕa,t, ϕ

′
a,t

}
, ∀(a, t) ∈ L × [T ], ϕ̄Di , max{ϕDi , ϕ

′
Di
}, ∀i ∈ D,

ϕ
a,t

, min
{
ϕa,t, ϕ

′
a,t

}
, ∀(a, t) ∈ L × [T ], ϕ

Di
, min{ϕDi , ϕ

′
Di
}, ∀i ∈ D,

For convenience of notation, for all (a, b, t) ∈ T , denote

pa,b,t , ϕa,t − ϕb,t+δ(a,b) + ca,b,t,

p′a,b,t , ϕ′a,t − ϕ′b,t+δ(a,b) + ca,b,t,

and let p̄ and p be the prices constructed from the join and the meet of the potentials:

p̄a,b,t , ϕ̄a,t − ϕ̄b,t+δ(a,b) + ca,b,t,

p
a,b,t

, ϕ
a,t
− ϕ

b,t+δ(a,b)
+ ca,b,t.
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Finally, for all j ∈ R, let

µ̄j , max{vj − p̄oj ,dj ,τj , 0},
µ
j
, max{vj − poj ,dj ,τj , 0}.

We first prove that both (ϕ̄, µ̄) and (ϕ, µ) are feasible solutions to (39). Constraints (40), (42),
(44) and (45) hold by construction. For constraint (41), we first show that for all (a, b, t) ∈ T ,

p̄a,b,t ∈ [min{pa,b,t, p′a,b,t}, max{pa,b,t, p′a,b,t}], (49)

p
a,b,t
∈ [min{pa,b,t, p′a,b,t}, max{pa,b,t, p′a,b,t}]. (50)

We only prove p̄a,b,t ≥ min{pa,b,t, p′a,b,t} here. The proof for the other three inequalities are very
similar. Assume w.l.o.g. that ϕa,t ≥ ϕ′a,t. This implies ϕ̄a,t = ϕa,t. Consider two scenarios:
(I) ϕb,t+δ(a,b) ≥ ϕ′b,t+δ(a,b) and (II) ϕb,t+δ(a,b) < ϕ′b,t+δ(a,b). For (I), ϕ̄b,t+δ(a,b) = ϕb,t+δ(a,b) thus

p̄a,b,t = ϕ̄a,t − ϕ̄b,t+δ(a,b) + ca,b,t = ϕa,t − ϕb,t+δ(a,b) + ca,b,t = pa,b,t ≥ min{pa,b,t, p′a,b,t}. For (II),
we know that ϕ̄b,t+δ(a,b) = max{ϕb,t+δ(a,b), ϕ′b,t+δ(a,b)} = ϕ′b,t+δ(a,b), thus p̄a,b,t = ϕ̄a,t − ϕ̄b,t+δ(a,b) +

ca,b,t = ϕa,t − ϕ′b,t+δ(a,b) + ca,b,t ≥ ϕ′a,t − ϕ′b,t+δ(a,b) + ca,b,t = p′a,b,t ≥ min{pa,b,t, p′a,b,t}.
ϕ and ϕ′ satisfying (41) implies pa,b,t ≥ 0 and p′a,b,t ≥ 0, which means that min{pa,b,t, p′a,b,t} ≥ 0

for all (a, b, t) ∈ T . Therefore p̄a,b,t ≥ 0 and p
a,b,t
≥ 0 both hold. This proves ϕ̄ and ϕ satisfy (41).

Constraint (43) also holds, since for all i ∈ D, ϕ̄Di = max{ϕDi , ϕ
′
Di
} ≥ max{ϕ`i,τ i , ϕ

′
`i,τ i
} = ϕ̄′`i,τ i

,

and ϕ
Di

= min{ϕDi , ϕ
′
Di
} ≥ min{ϕ`i,τ i , ϕ

′
`i,τ i
} = ϕ′

`i,τ i
. Thus (ϕ̄, µ̄) and (ϕ, µ) are both feasible.

Let f be an integral optimal solution to the flow LP (34). We prove that (ϕ̄, µ̄) and (ϕ, µ) are
both optimal solutions to (39) by showing that the CS conditions (CSF -1)-(CSF -6) hold between
f and (ϕ̄, µ̄), and also between f and (ϕ, µ). First note that (CSF -1)-(CSF -6) hold in between f
and (ϕ, µ) and between f and (ϕ′, µ′).

1. To show (CSF -1), note that (CSF -1) between f and (ϕ, µ), (ϕ′, µ′) imply that if f(Rj) > 0,
µj = vj − poj ,dj ,τj ≥ 0 and µ′j = vj − p′oj ,dj ,τj ≥ 0. Applying (49) and (50), we get vj − p̄oj ,dj ,τj ≥
vj − max{poj ,dj ,τj , p′oj ,dj ,τj} = min{vj − poj ,dj ,τj , vj − p′oj ,dj ,τj} ≥ 0 and vj − poj ,dj ,τj ≥ vj −
max{poj ,dj ,τj , p′oj ,dj ,τj} = min{vj − poj ,dj ,τj , vj − p′oj ,dj ,τj} ≥ 0. The definitions of µ̄j and µ

j

then imply µ̄j = vj − p̄oj ,dj ,τj and µ
j

= vj − poj ,dj ,τj hold.

2. To show (CSF -2), observe that for all j ∈ R, µ̄j > 0 ⇒ vj − p̄oj ,dj ,τj > 0 ⇒ vj −
min{poj ,dj ,τj , p′oj ,dj ,τj} > 0 ⇒ max{vj − poj ,dj ,τj , vj − p′oj ,dj ,τj} > 0 ⇒ max{µj , µ′j} > 0 ⇒
f(Rj) = 1. Similarly, µ

j
> 0⇒ f(Rj) = 1.

3. We now consider (CSF -3). For any e = ((a, t), (b, t+δ(a, b))) ∈ E2, f(e) > 0⇒ ϕa,t−ϕb,t+δ(a,b) =
ϕ′a,t−ϕ′b,t+δ(a,b) = −ca,b,t. This implies that pa,b,t = p′a,b,t = 0, and as a result, 0 ≤ p̄a,b,t, pa,b,t ≤
0, therefore ϕ̄a,t − ϕ̄b,t+δ(a,b) = −ca,b,t and ϕ

a,t
− ϕ

b,t+δ(a,b)
= −ca,b,t both hold.

4. (CSF -4) holds since for each e = ((a, t), S) ∈ E for some a ∈ L and t ∈ [T ], f(e) > 0 ⇒ ϕa,T =
−κT−t and ϕ′a,T = −κT−t. Thus, ϕ̄a,T = ϕ

a,T
= −κT−t.

5. For (CSF -5): f((Di, (`i, τ i))) > 0 implies ϕDi = ϕ`i,τ i and ϕ′Di
= ϕ′`i,τ i

, thus ϕ̄Di =

max{ϕDi , ϕ
′
Di
} = max{ϕ`i,τ i , ϕ

′
`i,τ i
} = ϕ̄`i,τ i and ϕ

Di
= min{ϕDi , ϕ

′
Di
} = min{ϕ`i,τ i , ϕ

′
`i,τ i
} =

ϕ
`i,τ i

.

6. For (CSF -6), for i ∈ D s.t. βi = 0 and f((Di, S)) > 0, ϕDi = ϕ′Di
= 0, thus ϕ̄Di = ϕ

Di
= 0.
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This completes the proof of the lattice structure of drivers’ total utilities.

Step 2. Driver Optimal and Pessimal Plans.
We now prove the correspondence between the welfare changes and the top and bottom of

the lattice. Recall that ΦDi and ΨDi are the welfare gain/loss from replicating/losing driver i,
respectively, and Φa,t is the welfare gain from adding another driver (that has entered) to location
a and time t. Here we define the welfare loss from losing one driver from location a at time t as:

Ψa,t ,W (D,R)−W (D\{(1, a, t, T )},R), (51)

where W (D\{(1, a, t, T )}) is the highest achievable social welfare, if one of the drivers in D who
was supposed to exit the platform at time T now needs to exit the platform at location a at time t.
Note that this does not specify which particular driver exits, and can be considered as the objective
of the flow LP where we simply subtract 1 from the boundary condition ξa,t at the node (a, t).

We first show via standard arguments with the residual graph that Φ and Ψ as we defined in
(27) and (51) are optimal potentials for the flow LP. We then show via subgradient arguments that
Φ and Ψ are the bottom and the top of the lattice of the potentials, respectively. Given Lemma 7,
and the fact that driver payments among CE outcomes correspond to the optimal solutions of the
dual LP (15), we know ΦDi and ΨDi correspond to the bottom and the top of the lattice of driver’s
total payments among all CE outcomes, hence Lemma 4.

Step 2.1. Φ and Ψ are Optimal Potentials:
Given the MCF problem (29) with graph G = (N , E) and an optimal integral solution f (which

is guaranteed to exist), we first construct the standard residual graph G̃ = (N , Ẽ) where the set of
nodes remains the same, and the set of edges Ẽ = Ẽ1 ∪ Ẽ2 ∪ Ẽ3 ∪ Ẽ4 consists of:

• Ẽ1 = {Rj | j ∈ R, f(Rj) = 0} ∪
{
R̃j

∣∣∣ j ∈ R, f(Rj) = 1
}

, where Rj = ((oj , τj), (dj , τj +

δ(oj , dj))) is the edge corresponding to rider j with γ(Rj) = −vj + coj ,dj ,τj , ζ(Rj) = 0, and

ζ̄(R̃j) = 1; ẽj = ((dj , τj + δ(oj , dj), (oj , τj))) is the reversed edge corresponding to rider j s.t.
f(Rj) = 1, with γ(R̃j) = vj − coj ,dj ,τj , ζ(R̃j) = 0 and ζ̄(R̃j) = 1.

• Ẽ2 = E2∪{ ẽ | e ∈ E2, f(e) > 0}, where for each e = ((a, t), (b, t+δ(a, b))) ∈ E2 with f(e) > 0,
ẽ = ((b, t+ δ(a, b)), (a, t)), and has γ(ẽ) = −ca,b,t, ζ(ẽ) = 0 and ζ̄(ẽ) = f(e).

• Ẽ3 = E3 ∪ { ẽ | e ∈ E3, f(e) > 0} where for each e = ((a, t), S) ∈ E3, ẽ = (S, (a, t)) with
γ(ẽ) = −κT−t, ζ(ẽ) = 0 and ζ̄(ẽ) = f(e).

• Ẽ4 = {(Di, (`i, τ i)) | i ∈ D, f((Di, (`i, τ i))) = 0}∪{((`i, τ i), Di) | i ∈ D, f((Di, (`i, τ i))) = 1}
∪ {(Di, S) | i ∈ D, βi = 0, f((Di, S)) = 0} ∪ {(S,Di) | i ∈ D, βi = 0, f((Di, S)) = 1}. For
the forward edges, i.e. e ∈ Ẽ4 s.t. e = (Di, (`i, τ i)) or e = (Di, S), we have γ(e) = 0,
ζ(ẽ) = 0. and ζ̄(ẽ) = +∞. For each e = ((`i, τ i), Di) ∈ Ẽ4, we have γ(e) = 0, ζ(ẽ) = 0,

and ζ̄(ẽ) = f((Di, (`i, τ i))), and for each e = (S,Di) ∈ Ẽ4, we have γ(e) = 0, ζ(ẽ) = 0, and
ζ̄(ẽ) = f((Di, S)).

From the standard argument on the residual graphs [2], we know that the cost of a feasible
flow in the residual graph is equal to the incremental cost of the same flow in the original graph.
For any node n = N , the “shortest distance” from this node to the sink S refers to the smallest
total cost among all paths from n to S in the residual graph. Since the edge costs are equal to
driver costs minus rider values, the shortest distance corresponds to the negation of the maximum
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incremental welfare created by an additional unit of driver flow starting from n, i.e. −Φa,t at node
(a, t), or −ΦDi at node Di. Given −Φ as the (negation of the) shortest distances, define:

pa,b,t , Φa,t − Φb,t+δ(a,b) + ca,b,t, ∀(a, b, t) ∈ T ,
µj , max{vj − poj ,dj ,τj , 0}, ∀j ∈ R,

we show that (Φ, µ) forms an optimal solution to (39). The argument is very similar to that of the
reduced cost optimality, however, we include the proof here for completeness. We first show the
feasibility of (Φ, µ):

1. Constraint (40) holds by definition of µ.

2. For (41), observe that for all (a, b, t) ∈ T , there exists an edge ((a, t), (b, t + δ(a, b))) ∈ Ẽ with
cost ca,b,t, thus the shortest distance from (a, t) to S is at most ca,b,t plus the shortest distance
from (b, t+ δ(a, b)) to S, implying −Φa,t ≤ −Φb,t+δ(a,b) + ca,b,t ⇒ Φa,t − Φb,t+δ(a,b) ≥ −ca,b,t.

3. For (42), note that ∀a ∈ L and ∀t ∈ [T ], there exists ((a, t), S) ∈ Ẽ with cost γ(e) = κT−t.
Therefore, the shortest distance −Φa,T between (a, t) and S is at most κT−t, i.e. −Φa,T ≤
κT−t ⇒ Φa,T ≥ −κT−t.

4. For (43), we know that for each i ∈ D, there exists an edge (Di, (`i, τ i)) ∈ Ẽ with unlimited
capacity and zero cost, therefore the shortest path from Di to the sink S satisfies −ΦDi ≤
−Φ`i,τ i

⇒ ΦDi ≥ Φ`i,τ i
.

5. For (44), since for each i ∈ D s.t. βi = 0, there exists e = (D,S) ∈ Ẽ with unlimited capacity
and zero cost, thus −ΦDi ≤ 0⇒= ΦDi ≥ 0.

6. (45) holds by definition of µ.

We now show the optimality by examining that the CS conditions (CSF -1)-(CSF -6) hold be-
tween the optimal integral flow f and (Φ, µ):

1. To show (CSF -1), given how µj is defined, we only need to show that when f(Rj) > 0,
vj − (Φoj ,τj − Φdj ,τj+δ(oj ,dj) + coj ,dj ,τj ) ≥ 0. This holds, since in G̃, there exists edge R̃j from
(dj , τj + δ(oj , dj)) to (oj , τj) with cost vj − coj ,dj ,τj , thus the shortest distances must satisfy:
−Φdj ,τj+δ(oj ,dj) ≤ vj − coj ,dj+τj − Φoj ,τj ⇒ vj − (Φoj ,τj − Φdj ,τj+δ(oj ,dj) + coj ,dj ,τj ) ≥ 0.

2. Now consider (CSF -2). Observe that when µj > 0, we must have vj − (Φoj ,τj − Φdj ,τj+δ(oj ,dj) +
coj ,dj ,τj ) > 0, implying −Φoj ,τj > −Φdj ,τj+δ(oj ,dj) − vj + coj ,dj ,τj , i.e. in the residual graph, the
shortest distance from (oj , τj) to the sink is longer than −vj + coj ,dj ,τj plus the shortest distance
from (dj , τj + δ(oj , dj)) to the sink. This means that the edge Rj = ((oj , τj), (dj , τj + δ(oj , dj)))
with capacity 1 and cost −vj + coj ,dj ,τj cannot be present in the residual graph, which is the
case only if f(Rj) = 1.

3. For (CSF -3): we proved Φa,t−Φb,t+δ(a,b) ≥ −ca,b,t above for feasibility, thus we only need to show
the other direction of the inequality. Observing that with f((a, t), (b, t + δ(a, b))) > 0, there
exists an edge from (b, t + δ(a, b)) to (a, t) in the residual graph with cost −ca,b,t and non-zero
capacity, thus the shortest distance from (b, t + δ(a, b)) to the sink is at most −Φa,t − ca,b,t,
implying Φa,t − Φb,t+δ(a,b) ≤ −ca,b,t,

4. Assume (CSF -4) does not hold and given feasibility, we know that there exists a ∈ L and t ∈ [T ]
s.t. f(((a, t), S)) > 0 and −Φa,T < κT−t. This implies that the minimum cost for an extra
unit of flow from (a, t) to the sink is lower than κT−t, and the objective of the flow LP can
be improved by routing one unit of flow that goes form (a, t) directly to the S through this
alternative shortest path. This contradicts the optimality of f .
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5. For (CSF -5): given i ∈ D s.t. f((Di, (`i, τ i))) > 0, there exists an edge from (`i, τ i) to Di with
zero cost, thus −Φ`i,τ i

≤ −ΦDi + 0⇒ ΦDi ≤ Φ`i,τ i
. Together with (43), we know ϕDi = Φ`i,τ i

.

6. For (CSF -6), given f((Di, S)) > 0, we know that there’s a unit of flow from Di to S generating a
total cost of zero. If −ΦDi < 0, there exists a path from Di to S for which routing a unit of driver
flow improves the objective (in comparison to going directly from Di to S). This contradicts
the optimality, thus −ΦDi ≥ 0⇒ ΦDi ≤ 0. Given feasibility, we know ΦDi = 0.

This completes the argument that (Φ, µ) form an optimal solution to (34), thus the unit replica
welfare gain {ΦDi}i∈D is indeed a CE driver utility profile. Similarly, we can show that −Ψa,t and
−ΨDi corresponds to the shortest distance from the sink S to the node (a, t) and the node Di,
respectively, and that there exists µ′ ∈ R|R| (can be constructed in similar ways as the above µ)
s.t. (Ψ, µ′) forms an optimal solution to (34).

Step 2.2. Φ and Ψ are the Bottom and Top of the Potential Lattice:
What is left to show is that Φ and Ψ must be the bottom and top of the lattice formed by all

optimal potentials of (34). For convenience of notation, we now work with the dual of the original
flow LP (29) where the objective is to minimize the negation of the total social welfare: let ψa,t,
ψDi and ηj be the dual variables corresponding to the constraints (30)-(32), respectively, the dual
of (29) can be written in the following form:

max
∑
i∈D

ψDi +
∑
j∈R

ηj (52)

s.t. ψoj ,τj − ψdj ,τj+δ(oj ,dj) + ηj ≤ −vj + coj ,dj ,τj , ∀j ∈ R
ψa,t − ψb,t+δ(a,b) ≤ ca,b,t, ∀(a, b, t) ∈ T
ψa,t ≤ κT,t, ∀a ∈ L, t ∈ [T ]

ψDi ≤ ψ`i,τ i , ∀i ∈ D
ψDi ≤ 0, ∀i ∈ D s.t. βi = 0

ηj ≤ 0, ∀j ∈ R

For any optimal solution (ϕ, µ) to (39), (ψ, η) where ψ = −ϕ and η = −µ is an optimal solution
to (52), and vice versa. Thus we know the ψ variables among optimal solutions of (52) also form
a lattice, and what is left to show is that −Φ and −Ψ must be the top and bottom of the lattice
formed by all optimal potentials of (52).

Recall that for a MCF problem, ξ denotes the boundary condition, so that for each node n ∈ N ,
ξn is the number of the units of flow that enters (or exits, if negative) the network from node n.
For our problem, ξ is a |D| + |L|(T + 1) dimensional vector, where ξDi = 1 and ξ(a,t) = 0 (recall
that the condition ξS = −|D| is redundant given the flow balance constraints, therefore is omitted).
Keeping everything else the same, the optimal objective of (29) can be thought of as a function
of the boundary condition ξ, which we denote as ω(ξ). It is known that any potential from the
set of all optimal solutions of (52) must be a subgradient of the function ω(ξ) (see the proof of
Theorem 5.2 in [9]), but we still include the proof here for completeness. First, ω is a convex
function of ξ (Theorem 5.1 in [9] can easily be generalized to incorporate inequality constraints).
Recall that a vector ψ is a subgradient of a convex function ω at ξ if for all ξ′,

ω(ξ) + ψ · (ξ′ − ξ) ≤ ω(ξ′).

Let (ψ, η) be an optimal solution to (52). The strong duality implies ψ·ξ+η·~1 = ω(ξ). Now consider
any arbitrary ξ′. For any feasible flow f given the boundary condition ξ′, weak duality implies
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ψ ·ξ′+η ·~1 ≤ f ·γ where γ is the vector of all edge costs. Taking the minimum over all feasible flow f ,
we obtain ψ·ξ′+η·~1 ≤ ω(ξ′). Hence ψ·ξ′+η·~1−(ψ·ξ+η·~1) ≤ ω(ξ′)−ω(ξ)⇔ ω(ξ)+ψ(ξ′−ξ) ≤ ω(ξ′),
i.e. ψ is a subgradient of ω at ξ.

Now we show that for any subgradient ψ of ω at ξ, the entries ψDi is bounded by −ΨDi ≤
ψDi ≤ −ΦDi .

21 Let χDi be |D|+ |L|(T + 1) by 1 vector which takes value 0 except for the Di entry,
and χDi = 1. We know that for any subgradient ψ, ω(ξ) + ψ · χDi ≤ ω(ξ + χDi) ⇒ ω(ξ) + ψDi ≤
ω(ξ + χDi) ⇒ ψDi ≤ ω(ξ + χDi) − ω(ξ) = −ΦDi . The last equality holds since the objective ω
is the negation of the optimal total welfare achievable by the vector ξ of driver inflow. Similarly,
ω(ξ) + ψ · (−χDi) ≤ ω(ξ − χDi)⇒ ω(ξ)− ψDi ≤ ω(ξ − χDi)⇒ ψDi ≥ ω(ξ)− ω(ξ − χDi) = −ΨDi .
We can similarly prove −Ψa,t ≤ ψa,t ≤ −Φa,t. This implies that −Φ and −Ψ are the top and the
bottom of the lattice formed by the optimal potentials of (29), respectively, and therefore completes
the proof of the lemma.

B.5 Proof of Lemma 5

Lemma 5 (Core equivalence). All CE plans are in the core. Moreover, for any budget-balanced
core outcome (x, z̃, q, r), there exists prices p such that the plan with anonymous prices (x, z̃, p)
forms a CE, and has the same driver and rider total utilities.

Proof. We first prove that every CE plan is in the core. Let (x, z̃, p) be a CE plan with anonymous
trip price p, where the rider and driver utilities are given by u and π. Fix any coalition (D′, R′) of
riders and drivers for some D′ ⊆ D and R′ ⊆ R. We prove that∑

i∈D′
πi +

∑
j∈R′

uj ≥W (D′, R′), (53)

meaning the total utilities for all drivers and riders in the coalition, under the CE plan, is weakly
higher than the highest achievable welfare among themselves. This implies that there is no way for
the coalition to make an alternative plan, so that everyone has weakly higher utilities, and at least
one driver or rider is strictly better off.

We now prove (53). Let (x′, z̃′) be an optimal dispatch that achieves the highest coalitional
welfare W (D′, R′). For all j ∈ R′ s.t. x′j = 1, let her payment be q′j = poj ,dj ,τj , the anonymous
trip price for the trip according to the original CE plan (x, z̃, p). Accordingly, let the payment to
each driver i ∈ D′ be r′i =

∑
j∈R′ 1{(oj , dj , τj , j) ∈ z̃′i}poj ,dj ,τj . Under this new plan (x′, z̃′, q′, r′),

the utility of each rider j ∈ R′ is therefore u′j = x′j(vj − q′j), and the utility of driver i ∈ D′ is

π′i = r′i − λi,k, if the dispatched action path z̃′i is consistent with the kth feasible path of driver i
and has total cost of λi,k.

Note that the plan (x′, z̃′, q′, r′) is strictly budget balanced, therefore the utility of drivers and
riders under this plan add up to the welfare:

∑
i∈D′ π

′
i +
∑

j∈R′ u
′
j = W (D′, R′). What is left to

show is that u′j ≤ uj for all j ∈ R′ and π′i ≤ πi for all i ∈ D′ both hold. This is a consequence
of the original plan forming a CE. For the riders, if x′j = 0, then u′j = 0 ≤ uj ; if x′j = 1, then

u′j = vj − poj ,dj ,τj ≤ uj . For each i ∈ D′ with z̃′i consistent with the kth feasible path of driver i,

πi ≥
∑

(a,b,t)∈Zi,k

max{pa,b,t, 0} − λi,k ≥
∑
j∈R′

1{(oj , dj , τj , j) ∈ z̃′i}poj ,dj ,τj − λi,k = π′i.

This completes the proof of (53), thus all CE plans are in the core.

21This is a result of the convexity of ω and the relationship between directional derivatives and subgradients (see
Theorem 3.1.14 in [29]). We include a simple proof here for completeness.
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We now prove the second part of this lemma, that every core outcome that balances budget can
be “priced” in CE. Let (x, z̃, q, r) be a budget balanced core outcome. The following are immediate
implications of a core outcome:

1. The outcome (x, z̃, q, r) must be strictly budget balanced, i.e.
∑

j∈R qj =
∑

i∈D ri, since other-
wise, the entire economy (D,R) will be a blocking coalition.

2. The outcome (x, z̃, q, r) must be welfare-optimal and achieve W (D,R), otherwise the entire
economy (D,R) is blocking since an improvement of total utilities is possible.

3. The plan is individually rational for riders, i.e. xj = 0⇒ qj ≤ 0 and xj = 1⇒ qj ≤ vj for each
j ∈ R, otherwise dropping out improves their utilities.

We now claim that ∀i ∈ D,
∑

j∈R qj1{(oj , dj , τj , j) ∈ z̃i} = ri, i.e. we must have strict budget
balance among driver i and the riders that she picked up. First,

∑
j∈R qj1{(oj , dj , τj , j) ∈ z̃i} ≤ ri

holds since otherwise this set of driver and riders will be blocking. Since this inequality holds for
all i ∈ D, the plan is budget balanced, and qj ≤ 0 for j s.t. xj = 0, we have∑

i∈D
ri =

∑
j∈R

qj =
∑
i∈D

∑
j∈R

qj1{(oj , dj , τj , j) ∈ z̃i}+
∑

j∈R,xj=0

qj

≤
∑
i∈D

∑
j∈R

qj1{(oj , dj , τj , j) ∈ z̃i} ≤
∑
i∈D

ri,

which requires that all inequalities hold with equality. This implies that
∑

j∈R qj1{(oj , dj , τj , j) ∈
z̃i} = ri for all i ∈ D, and moreover, qj = 0 for all j ∈ R s.t. xj = 0.

We now show that prices must be anonymous for the riders, i.e. for any two riders j 6= j′ s.t.
(oj , dj , τj) = (oj′ , dj′ , τj′) and xj = xj′ = 1, we must have qj = qj′ . Otherwise, assume w.l.o.g. that
qj < qj′ , and that riders j and j′ are picked up by drivers i and i′ respectively, we know that rider
j′, driver i, and all of the riders picked up by driver i except for rider j, would form a blocking
coalition. We now construct a set of anonymous trip prices p. For any trip (a, b, t) ∈ T ,

(i) if no rider requests this trip, i.e. (oj , dj , τj) 6= (a, b, t) for all j ∈ R, then let pa,b,t = 0.

(ii) if some rider requests this trip, but no rider is picked up, then let the price be the highest
value for this trip: pa,b,t = maxj∈R, (oj ,dj ,τj)=(a,b,t) vj .

(iii) if some rider is picked up, i.e. if ∃j ∈ R s.t. (oj , dj , τj) = (a, b, t) and xj = 1, let pa,b,t = qj .

Given the anonymity that we proved above, for any rider that is picked up, she pays poj ,dj ,τj .
We claim that pa,b,t ≥ 0 for all (a, b, t) ∈ T . This is obvious for cases (i) and (ii) above. For case
(iii), we only need to show that payments made by riders that are picked up must be non-negative,
i.e. qj ≥ 0. This holds, since otherwise the driver who picks up this rider, together with the rest of
the riders that this driver picks up, will form a blocking coalition.

We also claim that pa,b,t = 0 for trips with excessive supply, i.e. if (a, b, t) ∈ z̃i for some i ∈ D.
Consider some trip with pa,b,t > 0. We know that either case (ii) holds, where there is some rider j
willing to pay up to pa,b,t but is not picked up, or case (iii) holds, where some rider j is paying pa,b,t
to be picked up. In both cases, rider j, driver i (who takes the trip (a, b, t) without a rider), and
the rest of the riders picked up by driver i will form a blocking coalition— the rest of the riders
can pay the same amounts, driver i can get a higher payment, whereas rider j either gets picked
up (case (ii)) or pays less (case (iii)).

We now prove that under plan with anonymous trip prices (x, z̃, p), the rider and driver total
payments (and therefore utilities) coincide with the original plan. This is obvious for the riders.
For each driver, the total payment under plan (x, z̃, p) is equal to

∑
(a,b,t)∈Zi,k

max{pa,b,t, 0}, if z̃

48



is consistent with the kth path of driver i. Given the non-negativity of p, and the fact that trips
with excessive supply has zero prices, we know that driver i is paid

∑
(a,b,t)∈Zi,k

max{pa,b,t, 0} =∑
(a,b,t)∈Zi,k

pa,b,t =
∑

j∈R poj ,dj ,τj1{(oj , dj , τj , j) ∈ z̃i} =
∑

j∈R qj1{(oj , dj , τj , j) ∈ z̃i} = ri.

We complete the proof of this lemma by showing that (x, z̃, p) forms a CE. Rider best-response is
implied by IR for riders requesting trips where no rider is picked up (case (ii)), and for riders that are
already picked up (case (iii)). For rider j s.t. xj = 0 but there exists j′ s.t. (oj , dj , τj) = (oj′ , dj′ , τj′)
and xj′ = 1, we claim vj ≤ poj ,dj ,τj . Otherwise, assume that rider j′ is picked up by driver i, we
know rider j, driver i and the rest of the riders picked up by driver i will form a blocking coalition.

What is left to show is driver best response. Assume that driver best response doesn’t hold for
driver i, we know that if z̃i is consistent with Zi,k, there exists an alternative path Zi,k′ 6= Zi,k s.t.∑

(a,b,t)∈Zi,k′
max{pa,b,t, 0} − λi,k′ >

∑
(a,b,t)∈Zi,k

max{pa,b,t, 0} − λi,k. For each (a, b, t) ∈ Zi,k′ s.t.

pa,b,t > 0, there exists a rider that is either paying pa,b,t to be picked up, or is not picked up but
willing to pay pa,b,t. Driver i, together with all of these riders, will form a blocking coalition. This
proves that (x, z̃, p) forms a CE, and therefore completes the proof of this theorem.

Note that a core outcome does not necessarily use anonymous trip prices. The following example
shows that the CE plan with anonymous trip prices (x, z̃, p) constructed from a core outcome
(x, z̃, q, r) may not pay ri,t to driver i at time t, and we can only guarantee utility equivalence, i.e.
the total payment to each driver is equal to ri.

Example 4. Consider an economy with a single location A, two time periods, one driver and four
riders with oj = A, dj = A, and vj = 4 for all j ∈ R. Moreover, τ1 = τ2 = 0 and τ3 = τ4 = 1.
Assume all costs are zero. Consider the plan (x, z̃, q, r), where riders 1 and 3 are picked up and each
pays 4: x1 = x3 = 1 and q1 = q3 = 4. The driver takes action path z̃1 = ((A,A, 0, 1), (A,A, 1, 3)),
however r1,0 = 2 and r1,1 = 6, i.e. the driver is paid 2 at time 0 and 6 at time 1. It is easy
to see that the outcome is in the core, however, given any CE plan with anonymous trip prices,
pA,A,0 = pA,A,1 = 4, so the driver needs to be paid 4 at each of time 0 and time 1.

B.6 Proof of Theorem 2

Theorem 2. The spatio-temporal pricing mechanism is temporally consistent and subgame-perfect
incentive compatible. It is also individually rational for riders and strictly budget balanced for any
action profile taken by the drivers, and is welfare optimal, core-selecting, individually rational for
drivers and envy-free in subgame-perfect equilibrium from any history onward.

Proof. As is outlined in the body of the paper, what is left to show is incentive alignment. We
first show a correspondence of drivers’ continuation utilities and the unit replica welfare gains
(which implies that the plan determined by the STP mechanism at any time forms a competitive
competitive equilibrium), then we show that there is no useful single deviation, implying that
always accepting the mechanism’s dispatches forms an SPE.

Step 1. Let (x, z̃) be the optimal dispatch determined by the STP mechanism, and let f be a
corresponding optimal solution to the flow LP (34), constructed in the same way as in the proof
of Lemma 2. Setting uj = max{vj − poj ,dj ,τj , 0}, we know from the proof of Lemma 4 that (Φ, u)
forms an optimal solution to the dual of the flow LP (39), and satisfies the CS conditions with f .

Consider any driver i ∈ D, who is in the platform, and is available at some location a and time
t. Assume that the dispatched action path z̃i is consistent with Zi,k, the kth feasible path of driver
i, and assume that path Zi,k ends at location a′ and time t′ (i.e. the driver is dispatched to exit the
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platform at (a′, t′)). Assuming that all drivers follow the dispatches of the platform at all times,
the total payment to driver i from time t onward is:∑

j∈R, τj≥t
1{(oj , dj , τj , j) ∈ z̃i}poj ,dj ,τj =

∑
t′′≥t

1{(a′′, b′′, t′′) ∈ Zi,k}pa′′,b′′,t′′ ,

since when the driver takes a relocation trip (a′′, b′′, t′′) without a rider, f(((a′′, t′′), (b′′, t +
δ(a′′, b′′)))) > 0, and the complementary slackness condition (CSF -3) implies that the trip price
pa′′,b′′,t′′ = 0. Moreover, when there exists a driver exiting from (a′, t′), f((a′, t′), S) > 0, (CSF -4)
implies Φa′,t′ = −κT−t′ . As a result, the utility of driver i from time t onward is∑

j∈R, τj≥t
1{(oj , dj , τj , j) ∈ z̃i}poj ,dj ,τj −

∑
t′′≥t

1{(a′′, b′′, t′′) ∈ Zi,k}ca′′,b′′,t′′ − κT−t′

=
∑
t′′≥t

1{(a′′, b′′, t′′) ∈ Zi,k}(pa′′,b′′,t′′ − ca′′,b′′,t′′)− κT−t′

=
∑
t′′≥t

1{(a′′, b′′, t′′) ∈ Zi,k}
(
Φa′′,t′′ − Φb′′,t′′+δ(a′′,b′′) + ca′′,b′′,t′′ − ca′′,b′′,t′′

)
− κT−t′

=Φa,t − Φa′,t′ − κT−t′
=Φa,t.

A first implication is that for a driver with βi = 1, her total utility over the planning horizon
is πi = Φ`i,τ i

. This is equal to ΦDi give (CSF -5), since f((Di, (`i, τ i))) = 1 → ΦDi = Φ`i,τ i
. For a

driver with βi = 0 but was dispatched to enter the platform, πi = ΦDi = Φ`i,τ i
holds for the same

reason. Drivers with βi = 0 and was not dispatched to enter the platform get πi = 0, which is also
equal to ΦDi , since f((Di, S)) > 0 ⇒ ΦDi = 0. Therefore, πi = ΦDi holds for all i ∈ D. Lemma 3
and Lemma 7 then imply that the plan determined by the STP mechanism forms a CE.

Step 2. We now prove that a single deviation from the mechanism’s dispatches by any driver at any
time is not useful. For drivers who are (at time t given state st) en route, or have already exited,
or has not yet entered, there is effectively only one actions that is available to them, so there is no
useful deviation. Therefore we only need to consider a driver that is at time t available.

Given any time t′ and state st′ , let Φ
(t′)
a,t (st′) be the welfare gain from adding an additional driver

(who is already in the platform) at time t ≥ t′ in location a, to the economy starting at time t′ and
state st′ :

Φ
(t′)
a,t (st′) ,W (D(t′)(st′) ∪ {(1, a, t− t′, T − t′)})−W (D(t′)(st′)). (54)

Here, (1, a, t− t′, T − t′) is the type of the additional driver that starts at a at time t in the original
economy, and therefore at time t − t′ in the time-shifted economy E(t′)(st′) (where the length of
the planning horizon is T − t′).

Assume that the current plan (x(t′)(st′), z
(t′)(st′), q

(t′)(st′), π
(t′)(st′)) is computed at time t′ given

state st′ , and that no driver had deviated from the plan since time t′. Fix any time t ≥ t′ and let
st be the state of the platform at time t, if all drivers followed the plan up to time t. Consider a
driver, say driver i, that is available at time t at location a, i.e. si,t = (1, a, t) or si,t = (0, a, t). We
first argue that deviating from the dispatch to exit (when dispatched to stay) or not enter (when
dispatched to enter) is not a useful deviation. This is because exiting or not entering is equivalent
to the driver’s choosing a path different than the one determined by the plan, and the plan forming
a CE implies that no alternative path is more profitable.
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What is left to consider is the case where a driver deviated from the dispatches (regardless of
which action she is dispatched to take), and did not exit the platform. The only possible deviation
action that the driver can take in this case is to relocate to some location b ∈ L that is within
reach (i.e. b ∈ L s.t. t + δ(a, b) ≤ T ). From Step 1, we know that if all drivers follow the plan

until the end of the planning horizon, then a driver with si,t = (1, a, t) gets utility Φ
(t′)
a,t (st′) in the

remaining time periods, and a driver with si,t = (0, a, t) gets utility max{Φ(t′)
a,t (st′), 0}. The rest

of the proof of this theorem shows that by deviating to to drive to b, the utility of the driver from

time t onward is upper bounded by Φ
(t′)
a,t (st′), thus this is not a useful deviation.

If all drivers followed the plan at time t, denote the state of the platform at time t+ 1 as st+1.
Now, at state st, consider the scenario where the rest of the drivers all follow the plan at time t,
but driver i deviates and relocates to some location b ∈ L. Denote the state of the platform at
time t+ 1 as s̃t+1 , (s−i,t+1, (1, b, t+ δ(a, b)))— the states of the rest of the drivers are the same as
the case if all drivers follow the plan, and driver i will be available at location b at time t+ δ(a, b).
Driver i is not paid at time t, but incurs cost ca,b,t from driving toward b. The mechanism replans

at time t+1, and from time t+1 onward, driver i’s total utility under σ∗ would be Φ
(t+1)
b,t+δ(a,b)(s̃t+1),

the welfare gain from replicating the driver at (b, t + δ(a, b)), computed at time t + 1 given state

s̃t+1. We prove Φ
(t′)
a,t (st′) ≥ Φ

(t+1)
b,t+δ(a,b)(s̃t+1)− ca,b,t by showing:

(i) Φ
(t′)
a,t (st′) ≥ Φ

(t)
a,t(st),

(ii) Φ
(t)
a,t(st) ≥ Φ

(t+1)
b,t+δ(a,b)(st+1)− ca,b,t for all b ∈ L s.t. t+ δ(a, b) ≤ T , and

(iii) Φ
(t+1)
b,t+δ(a,b)(st+1) ≥ Φ

(t+1)
b,t+δ(a,b)(s̃t+1).

Part (i): Φ
(t′)
a,t (st′) ≥ Φ

(t)
a,t(st). The inequality trivially holds if t = t′. Consider t > t′. The highest

achievable welfare at state st′ with an additional driver at (a, t) is weakly higher than the welfare
of the scenario where all drivers follow the original plan until time t, and then optimize at time t
with all the existing drivers (whose states are now st) and the additional driver at (a, t):

W (D(t′)(st′) ∪ {(1, a, t− t′, T − t′)}) ≥
[
W (D(t′)(st′))−W (D(t)(st))

]
+W (D(t)(st) ∪ {(1, a, 0, T − t)}).

Here, (1, a, 0, T − t) = (1, a, t− t, T − t) is the type of the additional driver entering at (a, t), in the
time-shifted economy starting from st. The unit-replica welfare gain is therefore

Φ
(t′)
a,t (st′) =W (D(t′)(st′) ∪ {(1, a, t− t′, T − t′)})−W (D(t′)(st′))

≥W (D(t)(st) ∪ {(1, a, 0, T − t)})−W (D(t)(st))

=Φ
(t)
a,t(st).

Part (ii): Φ
(t)
a,t(st) ≥ Φ

(t+1)
b,t+δ(a,b)(st+1) − ca,b,t for all b ∈ L s.t. t + δ(a, b) ≤ T . This is similar to

part (i), observing that at state st, the additional driver at (a, t) can relocate to b at a cost of ca,b,t
while the rest of the drivers follow the original plan at time t, and then optimize at time t+ 1:

W (D(t)(st) ∪ {(1, a, 0, T − t)})

≥
[
W (D(t)(st))−W (D(t+1)(st+1))

]
− ca,b,t +W (D(t+1)(st+1) ∪ {(1, b, δ(a, b)− 1, T − (t+ 1))}).
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Here, (1, b, δ(a, b)−1, T − (t+1)) = (1, b, t+δ(a, b)− (t+1), T − (t+1)) is the type of the additional
driver at (b, t+ δ(a, b)), time shifted by t+ 1. This gives us:

Φ
(t)
a,t(st) =W (D(t)(st) ∪ {(1, a, 0, T − t)})−W (D(t)(st))

≥W (D(t+1)(st+1) ∪ {(1, b, δ(a, b)− 1, T − (t+ 1))})−W (D(t+1)(st+1))− ca,b,t
=Φ

(t+1)
b,t+δ(a,b)(st+1)− ca,b,t.

Part (iii): Φ
(t+1)
b,t+δ(a,b)(st+1) ≥ Φ

(t+1)
b,t+δ(a,b)(s̃t+1). First, observe that the only possible difference

between st+1 and s̃t+1 is the state of driver i. Fixing the state of the rest of the riders as s−i,t+1,

Φ
(t+1)
b,t+δ(a,b)(st+1) is the welfare gain from adding an additional driver at (b, t+ δ(a, b)) where driver

i is at si,t+1 (the state of driver i if she followed the dispatch at time t), whereas Φ
(t+1)
b,t+δ(a,b)(s̃t+1) is

the welfare gain from adding an additional driver at (b, t+δ(a, b)) where driver i is at (b, t+δ(a, b))
(the state of driver i that had deviated while the replan happens at time t+ 1).

When si,t+1 = (b, t+δ(a, b)) (i.e. the driver’s deviation resulted in the same future state at time
t+1 as in the scenario that she didn’t deviate, e.g. instead of picking up rider j who travels to dj , the
driver relocates with an empty car to dj instead), the inequality trivially holds. When si,t+1 = φ,

i.e. when the driver is asked to exit (or not enter) at time t, then Φ
(t+1)
b,t+δ(a,b)(st+1) ≥ Φ

(t+1)
b,t+δ(a,b)(s̃t+1)

is implied by the fact that drivers are substitutes, i.e. the more drivers there are, the smaller the
marginal welfare contribution of each driver. When si,t+1 6= (b, t + δ(a, b)) and when si,t+1 6= φ,
intuitively, the marginal value of an available driver when there is another available driver at the
same location is smaller than the marginal value of an available driver when the existing available
driver at some other location, i.e. there is stronger substitution among drivers at the same locations,
in comparison to that among drivers at different locations.

More formally, let ξ∗ ∈ Z|D|+|L|(T+1) be the vector of sources of driver flow given state s−i,t+1,
s.t. for all a′ ∈ L, for all t′ ∈ [T ], let

ξ∗a′,t′ =
∑
i′ 6=i

1{si′,t+1 = (1, a′, t′)}+
∑
i′ 6=i

1{si′,t+1 = (a′′, a′, t′′), t′′ + δ(a′′, a′) = t′}

+
∑
i′ 6=i

1{si′,t+1 = (oj , dj , τj , j), dj = a′, τj + δ(oj , dj) = t′},

and for or each driver i′ 6= i, let ξ∗Di′
= 1{τ i ≥ t+ 1}. Intuitively, ξ∗a′,t′ is the number of drivers in

D\{i} who are in the platform and available at (a′, t′), plus the number of drivers who are en-route
relocating to (a′, t′), plus the number of drivers who are driving a rider to (a′, t′).

Let ω(ξ) be the objective of the flow LP (34) where the flow boundary condition is given by ξ,
and χn be the vector of all zeros but a single 1 for the entry corresponding to node n. If driver
i is dispatched to exit (or not enter) the platform at time t, i.e. si,t+1 = φ, the desired property

Φ
(t+1)
b,t+δ(a,b)(st+1) ≥ Φ

(t+1)
b,t+δ(a,b)(s̃t+1) is equivalent to

ω(ξ∗ + χ(b,t+δ(a,b)))− ω(ξ∗) ≥ ω(ξ∗ + 2χ(b,t+δ(a,b)))− ω(ξ∗ + χb,t+δ(a,b)).

This identity corresponds to the first local exchange property of M \ concave functions (equation
(4.5) of Theorem 4.1 in [28]), and that the objective function of MCF problems is M \ concave (see
Example 5 in Section 4.6 of [28]).22 The objective of the flow problem there is defined as a function

22See [28] for a general introduction of M \ concavity, and also Chapter 9 of [27] for the related properties of the
objectives of network flow problems.
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of the “sink” nodes in the flow graph, however, the roles of sinks and sources are symmetric: our
MCF problem can also be formulated as having a source node at the end of time, where edges go
back in time, and the node corresponding to the entering location/time of each driver sinks at most
one unit of flow.

Finally, for the case where driver i is not dispatched to exit the platform at time t, let (a′, t′)
be the location and time where driver i will become available again if she followed the dispatch.

The identity that we need to prove Φ
(t+1)
b,t+δ(a,b)(st+1) ≥ Φ

(t+1)
b,t+δ(a,b)(s̃t+1) can now be written as

ω(ξ∗ + χ(a′,t′) + χ(b,t+δ(a,b)))− ω(ξ∗ + χ(a′,t′)) ≥ ω(ξ∗ + 2χ(b,t+δ(a,b)))− ω(ξ∗ + χ(b,t+δ(a,b))).

This corresponds to the third local exchange property of M \ concave functions (equation (4.7) of
Theorem 4.1 in [28]), which intuitively means that there is stronger substitution among drivers at
the same location and time, in comparison to drivers that are at different locations and time. This
completes the proof of the theorem.

C Additional Discussions and Examples

We provide in this section additional examples and discussions omitted from the body of the paper.

C.1 The Driver-Optimal Mechanism

A natural variation on the STP mechanism is to consider the driver-optimal analog, which always
computes a driver-optimal competitive equilibrium plan at the beginning of the planning horizon,
or upon deviation of any driver. This mechanism pays each driver the externality she brings to
the economy, and corresponds to the reasoning of the VCG mechanism. The following example
shows, however, that the driver-optimal mechanism is not incentive compatible. This is because as
time progresses, the set of paths that are available to the drivers shrinks, thus the welfare loss from
losing some driver may increase. Because of this, it may sometimes be profitable for such drivers
to deviate, trigger the replanning and get higher total payments in subsequent time periods.

Example 5 (Driver optimal mechanism is not IC). Consider the economy illustrated in Figure 19
with three locations, three time periods and symmetric distances δ(A,A) = δ(B,B) = δ(C,C) =
δ(B,C) = 1 and δ(A,B) = δ(A,C) = 2. Assume all trip costs and early exit costs are zero. Two
drivers enter the platform at time 0 at location B, and three riders have types:

• Rider 1: o1 = C, d1 = C, τ1 = 1, v1 = 1,

• Rider 2: o2 = C, d2 = C, τ2 = 2, v2 = 5,

• Rider 3: o3 = A, d3 = A, τ3 = 1, v3 = 1.

In a welfare-optimal dispatching as shown in Figure 19, driver 1 is dispatched to take the
path z1 = ((B,C, 0), (C,C, 1), (C,C, 2)) and to pick up riders 1 and 2. Driver 2 takes the path
z2 = ((B,A, 0), (A,A, 2)) and picks up rider 3. One driver-optimal CE plan sets anonymous trip
prices pC,C,1 = 0 and pC,C,2 = pA,A,2 = 1, so that the total utility of each driver equal to the
welfare-loss of 1, if she was eliminated from the economy.

Assume that driver 2 follows the mechanism and starts to drive toward A at time 0, we show
a useful deviation of driver 1 by rejecting the dispatched relocation to C and staying in location B
to trigger a replanning at time 1. At time 1, driver 2 is already en route to A thus is only able to
pick up rider 3 at time 2. Driver 1 would be asked to relocate to C and pick up rider 2. The price
pC,C,2 in the updated driver-optimal CE plan is 5, the welfare loss if the economy at time 1 loses
driver 1. This is higher than driver 1’s payment from following the dispatches at all times.
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Figure 19: Illustration of the toy economy II in Example 5 with three locations A, B, C, three time
periods, two drivers starting at (B, 0) and three riders with values 1, 5 and 1, respectively. Under
a welfare optimal plan, driver 1 picks up riders 1 and 2 and driver 2 picks up rider 3.

A variation on the driver-optimal mechanism where drivers’ payments are shifted in time is
equivalent to the dynamic VCG mechanism [7, 13]. The dynamic VCG mechanism is not incentive
compatible because the existence of a driver at some certain time may exert negative externality on
the economy, in which case the payment to the driver would be negative for that time period. The
driver would have incentives to decline the dispatch and avoid such payment. See the discussions
and examples in Appendix D.1.

C.2 LP Integrality and Existence of CE

We show via the following two examples that when either of the assumptions (S1) and (S2) is
violated, the LP relaxation (9) of the ILP (4) may no longer be integral, and that welfare-optimal
competitive equilibrium outcomes as defined in Definition 3 may not exist. We first examine the
case where drivers may have different times of exiting the platform.

Example 6 (Different driver exit times). Consider the economy as shown in Figure 20 with three
locations L = {A,B,C} and three time periods. The distances are symmetric and given by
δ(A,A) = δ(B,B) = δ(C,C) = δ(A,B) = δ(B,C) = 1, and δ(A,C) = 2, and assume all trip
costs and exit costs are zero. There are three drivers, entering and exiting at:

• `1 = A, τ1 = 0, τ̄1 = 3,

• `2 = B, τ2 = 0, τ̄2 = 2,

• `3 = B, τ3 = 1, τ̄3 = 3,

and there are six riders with types:

• o1 = A, d1 = C, τ1 = 0, v1 = 5,

• o2 = A, d2 = B, τ2 = 1, v2 = 7,

• o3 = A, d3 = B, τ3 = 1, v3 = 1,

• o4 = B, d4 = A, τ4 = 1, v4 = 2,

• o5 = B, d5 = A, τ5 = 1, v5 = 5,

• o6 = B, d6 = A, τ6 = 2, v6 = 4.

In the unique optimal integral solution, Driver 1 takes the path z∗1 = ((A,A, 0), (A,B, 1), (B,A, 2))
and picks up riders 2 and 6. Driver 2 takes the path z∗2 = ((B,B, 0), (B,A, 1)) and picks up rider
4. Driver 3 takes the path z∗3 = ((B,A, 1), (A,A, 2)) and picks up rider 5. The total social welfare
is v2 + v6 + v4 + v5 = 18. The optimal solution of the LP, however, is not integral. Each driver i
takes each of their two paths zi and z′i with probably 0.5:

• z1 = ((A,C, 0), (C,C, 2)), z′1 = ((A,A, 0), (A,B, 1), (B,A, 2)),

• z2 = ((B,B, 0), (B,A, 1)), z′2 = ((B,A, 0), (A,B, 1)),
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Figure 20: The economy in Example 6 with three locations A, B, C, three time periods, 6 riders,
three drivers starting at (A, 0), (B, 0) and (B, 1), where driver 2 exits the platform at time 2.

• z3 = ((B,A, 1), (A,A, 2)), z′3 = ((B,B, 1), (B,A, 2)).

The riders 2, 5 and 6 are picked up with probability 1, whereas rider 1 is picked up with probability
0.5. The total social welfare is 0.5v1 + v2 + v5 + v6 = 18.5 > 18. There is a unique solution to the
dual LP (15), which implies anonymous trip prices of pA,C,0 = 5 and pA,B,1 = pB,A,1 = pB,A,2 = 2.5.
These prices do not support the optimal integral solution, since rider 4 is willing to pay only v2 = 2
but is picked up and charged 2.5.

Moreover, we show that no anonymous origin-destination prices support the optimal integral
dispatch in competitive equilibrium.23 First, rider 1 with value 5 is not picked up, therefore the
price for the (A,C, 0) trip needs to be at least pA,C,0 ≥ 5. In order for driver 1 to not regret not
taking this trip, the prices for her trips need to be at least pA,B,1 + pB,A,2 ≥ 5.

Since rider 4 with value 2 is picked up, the price for trip (B,A, 1) can be at most 2. As a
consequence, the price for the trip (A,B, 1) cannot exceed 2 either, since otherwise, driver 2 would
have incentive to take the path ((B,A, 0), (A,B, 1)) instead. This implies that the price for the trip
(B,A, 2) needs to be at least 3. Note that driver 3 now prefers taking the path ((B,B, 1), (B,A, 2))
and get paid at least 3, in comparison to the dispatched trip ((B,A, 1), (A,A, 2)) and gets paid
at most 2. This is a contradiction, and shows that no anonymous OD price supports the welfare-
optimal outcome in competitive equilibrium.

The reason integrality fails is that the ridesharing problem can no longer be reduced to an
MCF problem in the way that we discuss in Appendix B.2.2 without loss of generality. In the
standard MCF problem, there is a single type of flow flowing through the network, and the op-
timal flow is guaranteed to be integral. When drivers have different exiting times, if all units of
flow are still treated as homogeneous, the resulting decomposed flow may not send the correct
drivers to leave at the correct times. As an example, the optimal homogeneous flow with the same
boundary condition in this example can be decomposed into the following three paths: ((A,C, 0)),
((B,A, 0), (A,B, 1), (B,A, 2)), ((B,A, 1), (A,A, 2)) with a total social welfare of 21. However, it
cannot be implemented since it is driver 2 who enters at (B, 0) and needs to exit at time 2, but in
this decomposition, the flow that corresponds to driver 1 exits at time 2.

When drivers have different exiting times, the MCF problem has heterogeneous flows. Similarly,
we can construct examples showing that the optimal solutions to the ILP and LP do not coincide if
drivers have preference over which location to they end up with at the end of the planning horizon,
unless all drivers start at the same time and location.

23In general, the non-existence of CE does not imply that there do not exist dynamic ridesharing mechanisms that
are SPIC, since a mechanism determining a CE plan is not necessary for the mechanism to be incentive compatible.
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Figure 21: The economy in Example 7 with three locations A, B, C, three time periods, 2 riders,
and one driver entering the platform at (B, 0).

The following example examines the case where riders are patient and may be willing to wait.

Example 7 (Patient riders). Consider the economy as illustrated in Figure 21 with three locations
L = {A,B,C} and three time periods. The pairwise distances are symmetric and given by δ(A,A) =
δ(B,B) = δ(C,C) = δ(B,C) = 1 whereas δ(A,B) = δ(A,C) = 2. Assume all trip costs and early
exit costs are zero. There is a single driver entering at location B at time 0 who would stay until
the end of the planning horizon. There are two riders. Rider 1 is impatient, requesting a trip at
time 0 from B to A, and is willing to pay v1 = 9. Rider 2 is willing to pay v2 = 5 for a trip from
B to C at time 0, but is willing to wait for at most two time periods.

In the optimal integral solution, driver 1 takes the path ((B,A, 0), (A,A, 2)), picks up rider 1,
and achieves total social welfare of v1 = 9. In the optimal solution to the LP (9), however, the driver
takes the paths ((B,A, 0), (A,A, 2)) and ((B,C, 0), (C,B, 1), (B,C, 2)), each with probability 0.5.
The path ((B,C, 0), (C,B, 1), (B,C, 2)) seemingly have a total value of 10, therefore the objective
of the LP would be 10 × 0.5 + 9 × 0.5 = 9.5 > 9. The optimal integral solution is not supported
by anonymous OD prices in CE either— since rider 2 is not picked up, the prices for the (BC)
trips starting at times 0, 1 and 2 need to be at least 5. Thus the total payment for the path
((B,C, 0), (C,B, 1), (B,C, 2)) is at least 10, however, the driver’s dispatched trip (B,A, 0) pays
at most v2 = 9.

Similar to the case when drivers have different exit times, integrality fails with patient riders
also because there is no direct way of reducing the problem to an integral MCF problem without
loss. In the MCF problem, each rider corresponds to a single edge in the flow graph with edge cost
equal to the trip cost minus the rider’s value. If the rider is patient, there may be multiple edges
that correspond to the same rider, and there is no easy way expressing the constraint that a rider
cannot be picked up more than once without breaking the integrality of the MCF problem.

C.3 Rider Incentives

The following example illustrates (i) the trip-prices and rider-utilities under all CE outcomes may
not have lattice structure and (ii) the rider-side VCG prices do not coincide with the prices in the
driver-pessimal CE plan, and (iii) no welfare-optimal CE mechanism, including the STP mechanism,
incentivizes riders to truthfully report their values.

Example 8. Consider the economy in Figure 22, where all trip costs and early exit costs are
assumed to be zero. Driver 1 enters at location A and time 0, and stays until the end of the planning
horizon. Under the welfare-optimal dispatching, the driver takes the path ((A,A, 0), (A,A, 1)) and
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Figure 22: The economy in Example 8, with two locations A, B, two time periods and three riders.

picks up riders 1 and 2, achieving social welfare v1 + v2 = 11. In the driver pessimal CE plan, the
prices for the trips are be pA,B,0 = 8, and pA,A,0 + pA,A,1 = 8, therefore pA,A,0 = 5, pA,A,1 = 3 and
pA,A,0 = 2 and pA,A,1 = 6 would both support the driver-pessimal CE outcome.

Lattice Structure: It is easy to check that the lowest prices for the trips (A,A, 0) and (A,A, 1)
under all CE outcomes are be 2 and 3 respectively. However, setting pA,A,0 = 2 and pA,A,1 = 3
would not form a CE, since rider 3 is willing to pay 8, thus pA,B,0 ≥ 8 and this violates driver
best-response. This implies that trip prices under all CE outcomes do not form a lattice. As a
consequence, riders’ utilities under all CE outcomes do not form a lattice either.

Rider-side VCG Prices: Moreover, we can check that pA,A,0 = 2 is what rider 1 should be charged
under the rider-side VCG payment rule: if rider 1 is not present, rider 3 gets picked up, thus the
total welfare for the rest of the economy increases from v2 = 6 to v3 = 8. Similarly, rider 2’s VCG
payment would be pA,A,1 = 3. This shows that the VCG payment on the rider side may not support
a welfare-optimal outcome in CE.

Rider-side IC: This example also implies that the STP mechanism is not incentive compatible on
the rider’s side. Under any driver-pessimal outcome, we know that one of the riders 1 and 2 would
be charged a payment that is higher than their VCG price. A simple analysis would show that if
the rider who is charged higher than the VCG price reports the VCG price as her value, then her
payment under the STP mechanism would be exactly her VCG price. This is a useful deviation.
More generally, this shows that no welfare-optimal CE outcome would be incentive compatible on
the rider’s side, since pA,A,0 + pA,A,1 ≥ 8 under any CE outcome.

It is not a coincidence that the lowest possible prices for each rider under all CE outcomes is
equal to their rider-side VCG prices. The following theorem shows that the minimum CE prices
and the rider-side VCG prices always coincide.

Theorem 4 (Minimum CE = rider-side VCG). For any rider that is picked up in some welfare-
optimal dispatching, her rider-side VCG price is equal to the minimum price for her trip among all
CE outcomes.

Proof. For simplicity of notation, assume that driver j ∈ R requests the trip (a, b, t), has value vj ,
and is picked up under some welfare-optimal dispatching. We are going to prove:

(i) the price pa,b,t under any CE outcome is at least the rider-side VCG payment for rider j, and

(ii) there exists an CE outcome where rider j’s trip price is at most her rider-side VCG payment.

Combining (i) and (ii), we know that the rider-side VCG payment has to be the lowest CE price
for the trip among all CE outcomes.
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Let W̃ (D,R) be the optimal welfare achieved by the set of drivers D and the set of riders R, i.e.
the optimal objective of (4). Moreover, we denote W̃ (D ∪ {(a, b, t)},R) as the optimal objective
of (4) if the trip capacity constraint (5) for this specific trip is relaxed by 1, i.e. where there is an
additional driver that is only able to complete an (a, b, t) trip.

Similarly, denote W (D,R) as the optimal objective of (9) and W (D ∪ {(a, b, t)},R) as the
optimal objective of (9) with an extra (a, b, t) trip capacity. From the integrality of the LP (9) under
(S1) and (S2), we know that W̃ (D,R) = W (D,R), however, we only know W̃ (D∪ {(a, b, t)},R) ≤
W (D ∪ {(a, b, t)},R) since with the additional capacity of 1 for the (a, b, t) trip, it is not obvious
whether the LP relaxation would still integral.

Part (i): To prove (i), first observe that with the same argument on subgradients as in the proof
of Lemma 4, we can show that under any CE outcome, the price pa,b,t as the subgradient w.r.t. the
RHS of capacity constraint (10) in the LP (9), is lower bounded by the welfare gain from relaxing
the capacity constraint by 1, i.e. pa,b,t ≥ W (D ∪ {(a, b, t)},R) − W (D,R). This implies that
pa,b,t ≥ W̃ (D∪{(a, b, t)},R)−W̃ (D,R), i.e. any CE price must be at least the welfare contribution
of an additional (a, b, t) trip to the original economy at no cost.

What is left to prove is that W̃ (D ∪ {(a, b, t)},R) − W̃ (D,R) ≥ pvcga,b,t, where pvcga,b,t =

W̃ (D,R\{j})− (W̃ (D,R)− vj), i.e. the optimal welfare in the economy without rider j minus the
welfare of the rest of the riders in the economy with rider j. This holds since:

W̃ (D ∪ {(a, b, t)},R)− W̃ (D,R)− pvcga,b,t
=W̃ (D ∪ {(a, b, t)},R)− W̃ (D,R)− (W̃ (D,R\{j})− (W̃ (D,R)− vj))
=W̃ (D ∪ {(a, b, t)},R)− (W̃ (D,R\{j}) + vj)

≥0.

The last inequality holds because W̃ (D ∪ {(a, b, t)},R), the optimal welfare from adding both a
trip (a, b, t) (at no cost) and a rider j to the economy (D,R\{j}), is weakly higher than assigning
the trip (a, b, t) to rider j and keeping the plan for the rest of the economy unchanged.

This completes the proof of part (i), that any CE price is weakly higher than the VCG payment.

Part (ii): Given D and R, we construct an alternative economy E′ = (D,R′) where R′ and R
coincide, except for the value of rider j: instead of having value vj , we change her value to her
VCG payment in the original economy, i.e.

v′j = pvcga,b,t = W̃ (D,R\{j})− (W̃ (D,R)− vj).

Now consider the optimal dispatching in the economy E′. If rider j′ is not picked up, the optimal
welfare is equal to W̃ (D,R\{j}), the highest welfare achievable for the rest of the economy. If rider
j′ is picked up, the highest achievable welfare for the rest of the economy is equal to (W̃ (D,R)−vj),
therefore the total welfare is v′j + (W̃ (D,R)−vj) = W̃ (D,R\{j}). This implies that in at least one
of the optimal plans in economy E′, rider j′ is picked up. Let (x′, y′) be an optimal dispatching in
economy E′ where rider j′ is picked up, and let p′ be any CE prices. First, p′a,b,t ≤ v′j = pvcga,b,t holds,
since the outcome forms a CE and rider j′ is picked up and must have non-negative utility.

We also claim that the plan with anonymous prices (x′, y′, p′) also forms a CE in the original
economy. Since (x′, y′, p′) is a CE in economy E′, we know that for drivers, the dispatched paths
under y′ gives them the highest total payment given prices p′. We also know that trips with
excessive supply have zero prices. For any rider other than j, her values in E′ and E are the same
thus rider best-response holds. For rider j, her value in E is vj ≥ pvcga,b,t = v′j ≥ p′a,b,t thus she
weakly prefers getting picked up x′j = 1 and is also best-responding. This shows that there exists a
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Figure 23: The economy in Example 9, with two locations A, B, two time periods and four riders.

CE outcome in E where the price for the (a, b, t) trip is at most v′j , rider j’s VCG payment. This
completes the proof of part (ii), and also the theorem.

Finally, we show via the following example that a mechanism that always computes an welfare-
optimal dispatching together with rider-side VCG prices (at the beginning of the planning horizon,
and also after any driver deviation), is not SPIC for the drivers. This is not implied by Theorem 4
since a mechanism’s plan forming a CE is not necessary for a mechanism being SPIC for drivers.

Example 9. Consider the economy in Figure 23, with T = 2 and two locations L = {A,B} with
unit distances: δ(a, b) = 1, ∀a, b ∈ L. Assume all trip costs and exit costs are zero. There is one
driver entering at time τ1 = 0 at location `1 = A and leaves at time τ̄1 = 2. There are four riders:

• Rider 1: o1 = A, d1 = A, τ1 = 0, v1 = 5,

• Rider 2: o2 = A, d2 = A, τ2 = 1, v2 = 6,

• Rider 3: o3 = B, d3 = B, τ3 = 1, v3 = 8,

• Rider 4: o4 = B, d4 = B, τ4 = 1, v4 = 8.

The optimal plan computed at time 0 has driver 1 taking the path ((A,A, 0), (A,A, 1)) and
picking up riders 1 and 2. The rider-side VCG prices for riders 1 and 2 would be 2 and 3 respectively,
thus the driver’s total payment, if she follows the dispatches at all times, would be 5. Now consider
the scenario where the driver relocates to location B at time 0 instead. When time 1 comes, the
updated plan would dispatch driver 1 to pick up one of riders 3 or 4, and the updated VCG payment
for this trip would be 8. This is a useful deviation, thus the mechanism is not SPIC.

C.4 Truthful Reporting of Driver Entrance

Throughout the paper, we assumed a complete information model, where the mechanism knows
about the entering location and time for all the drivers. In this section, we discuss the scenario
where the location and time where a driver first becomes available to pick up are drivers’ private
information, and the mechanism needs to ask the drivers to report their entrance information.
Here, we still assume that all drivers stay until at least the end of the planning horizon.

Theorem 5. Under the STP mechanism, for driver i who is available to pick up at location `i
starting at time τ i, it is not useful for her to report some entrance location and time (τ̂ i,

ˆ̀
i) ∈ L×[T ]

where τ̂ i ≥ τ i + δ(`i, ˆ̀
i), and then enter the platform at ( ˆ̀

i, τ̂ i).

Proof. First, observe that for driver i whose true entering location and time is (`i, τ i), the driver
is only able to enter at (`i, τ i), or at some ( ˆ̀

i, τ̂ i) ∈ L × [T ] where τ̂ i ≥ τ i + δ(`i, ˆ̀
i). Assume that

drivers all follow the SPE once they entered the platform, and always accepts the dispatches of the
mechanisms. If driver i reports truthfully, her total payment would be ΦDi = max{Φ`i,τ i

, 0}, the
welfare gain of the economy from replicating this driver.

Following the same notation as in the proof of Theorem 2, we use ξ∗ to denote the boundary
condition (given the initial state) for the flow problem of the economy except for driver i, i.e.
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ξ∗Di′
= 1 for all i′ 6= i, and ξ∗n = 0 for all other node n ∈ N . Let ω(·) be the optimal objective of

the corresponding flow problem, Φ`i,τ i
can be written as:

Φ`i,τ i
= ω(ξ∗ + 2χ(`i,τ i)

)−W (ξ∗ + χ(`i,τ i)
).

Here, χ(`i,τ i)
is a |L|(T + 1) + |D| by 1 vector with all zero entries, except a single 1 at the (`i, τ i)

entry. If the driver reports ( ˆ̀
i, τ̂ i) as her entering location and time, and actually enters at ( ˆ̀

i, τ̂ i),
her equilibrium payoff for the rest of the planning horizon can be written as

ω(ξ∗ + 2χ( ˆ̀
i,τ̂ i)

)−W (ξ∗ + χ( ˆ̀
i,τ̂ i)

).

Let g be the lowest cost that that the driver has to incur, while moving from (`i, τ i) to ( ˆ̀
i, τ̂ i).

By reporting and entering at ( ˆ̀
i, τ̂ i), the agent’s total utility is at most ω(ξ∗ + 2χ( ˆ̀

i,τ̂ i)
)−W (ξ∗ +

χ( ˆ̀
i,τ̂ i)

)− g. We show that this is not a useful deviation, since

W (ξ + 2χ`i,τ i)−W (ξ + χ`i,τ i)− (W (ξ + 2χ ˆ̀
i,τ̂ i

)−W (ξ∗ + χ( ˆ̀
i,τ̂ i)

)− g)

≥W (ξ + 2χ`i,τ i)−W (ξ + χ`i,τ i)− (W (ξ + χ`i,τ i + χ ˆ̀
i,τ̂ i

)−W (ξ + χ`i,τ i)− g)

=W (ξ + 2χ`i,τ i)−W (ξ + χ`i,τ i + χ ˆ̀
i,τ̂ i

)− g

≥0.

The first inequality holds due to the local exchange property of the M \ concave functions (Equa-
tion (4.7) in [28]), and the last inequality holds since the highest achievable welfare achievable from
two additional drivers at (`i, τ i) is (weakly) higher than the scenario where one of these drivers has
to move to ( ˆ̀

i, τ̂ i) (at the lowest possible cost g).

This result on the truthfulness of driver entrance reports, however, considers only the scenario
that the driver actually enters at the location and time as she reported. We may also consider
a mechanism that takes the drivers’ reports of entering location and time, plans accordingly at
the beginning of the planning horizon, but replans if any driver’s entrance action turns out to be
different from expected/reported, without penalizing any driver that had deviated. The following
example shows that when allowing arbitrary driver entrance regardless of their report, the STP
mechanism does not incentivize the drivers to truthfully report their entering location and time.

Example 10. Consider the economy as shown in Figure 24. The planning horizon is T = 3 and
there are two locations L = {A,B} with unit distances δ(a, b) = 1 for all a, b ∈ L. Assume that all
trip costs and early exiting costs are zero. There is one driver entering at time τ1 = 0 at location
`1 = A and leaves at time τ̄1 = 3. There is another driver, whose true entering time and location
is τ2 = 2 and `2 = B. There are four riders with type:

• Rider 1: o1 = B, d1 = B, τ1 = 1, v1 = 10,

• Rider 2: o2 = A, d2 = A, τ2 = 1, v2 = 8,

• Rider 3: o3 = B, d3 = B, τ3 = 2, v3 = 5,

• Rider 4: o4 = B, d4 = B, τ4 = 2, v4 = 4.

Under the STP mechanism, if both drivers report their entrance location and time truthfully,
the welfare-optimal plan dispatches driver 1 to take the path ((A,B, 0), (B,B, 1), (B,B, 2)) and
pick up riders 1 and 3. Driver 2 is dispatched to pick up rider 4, and her payment would be 0, the
welfare gain from an additional driver entering at (B, 2).

However, if driver 2 reports (B, 1) as her entering time and location, then under the STP
mechanism, driver 1 would be dispatched to go to (A, 1) to pick up rider 2 at time 1. When time 1
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A, 3
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v1 = 10

v2 = 8

v3 = 5, v4 = 4

Driver 1

Driver 2

Figure 24: The economy in Example 10, with two locations, three time periods and four riders.

comes, driver 2 fails to enter at (B, 1), and regardless of any future entrance of driver 2, the optimal
plan at time 1 is for driver 1 to pick up rider 2. When time 2 comes, driver 2 can then decide to
actually enter at location B. The mechanism would replan again, dispatching driver 2 to pick up
rider 3. The welfare gain from an additional driver at (B, 2) would now be 4, thus the driver’s new
payment would be 4, and this is a useful deviation.

C.5 Naive Update of Static Plans

The last example in this section shows that a mechanism that always re-computes a driver-optimal
plan at all times is not envy-free for the drivers, and may not be incentive compatible for drivers,
depending on how the mechanism breaks ties among different driver-optimal plans.
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A, 0 A, 1

B, 1

A, 2

B, 2

A, 3

B, 3
v1 = 10

v2 = 1

Driver 1
Driver 2

z1
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(a) A driver-optimal CE outcome computed at time 0.
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B, 2

A, 3

B, 3
v1 = 10

v2 = 1

Driver 1

Driver 2

z1
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(b) Driver-optimal outcome computed at t = 2.

A, 1

B, 1

A, 2

B, 2

A, 3

B, 3
v1 = 10

v2 = 1

Driver 1
Driver 2

1

1

(c) Driver-optimal outcome computed at time t = 1
after driver 2’s deviation to stay in location B.

Figure 25: The economy in Example 11, and driver-optimal CE plans computed at different states.

Example 11 (Repeated driver-optimal static CE mechanism). Consider the economy as illustrated
in Figure 25 where all costs are zero, and a mechanism that repeatedly computes a driver-optimal
CE outcome at all times, regardless of whether any deviation happened. Under the CE outcome
computed at time 0 as in Figure 25a, both riders 1 and 2 are picked up, and the prices for the trips
are both pB,B,2 = pA,A,2 = 1.

Assume that both drivers follow the mechanism until time 2, the new driver-optimal outcome
computed at time 2 is as illustrated in Figure 25b, where the price for trip (B,B, 2) becomes
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10, the highest market-clearing price at this state. This shows that the “time 0” plan under the
mechanism, i.e. the actual outcome where all drivers follow the mechanism’s dispatch at all times,
is not envy-free for drivers, since the total payment to driver 1 is 10, higher than that of driver 2.

Now consider the scenario where driver 2 stayed in location B at time 0 instead of following the
dispatch and relocate to A. Under the optimal CE outcome from time 1 onward as in Figure 25c,
the two drivers take the paths ((B,B, 1), (B,B, 2)) and ((B,A, 1), (A,A, 2)) respectively, and pick
up both riders. The IC property of the mechanism now depends on how the mechanism breaks
ties among driver-optimal CE plans, but as long as the mechanism dispatches driver 2 to take the
path ((B,B, 1), (B,B, 2)) with non-zero probability (which would be the case if ties are broken
uniformly at random), this would be a useful deviation for driver 2. Once driver 2 followed the
plan and reach (B, 2) as driver 1 arrived at (A, 2), the newly updated price for the trip (B,B, 2)
would again become 10, higher than driver 2’s original payment.

D Relation to the Literature

D.1 Dynamic VCG

The dynamic VCG mechanisms [7, 13] truthfully implement efficient decision policies, where agent
receive private information over time. Under the dynamic VCG mechanisms, the payment to agent
i in each period is equal to the flow marginal externality imposed on the other agents by its presence
in this period only [13].

The dynamic VCG mechanism can be adapted for the ridesharing problem, where there is no
uncertainty in the transition of states (the actions taken by all drivers at time t fully determines the
state of the platform at time t+ 1) and no private information from the drivers’ side (the location
of the driver is known to the mechanism and we assume homogeneous driver costs and no location
preferences). We actually show that a variation of the driver-optimal dynamic mechanism that we
discussed in Section 4, where driver payments are “shifted” over time, is equivalent to the dynamic
VCG mechanism.

The dynamic VCG mechanism for ridesharing, however, fails to be incentive compatible, since
some drivers may be paid a negative payment for certain periods of time, and the drivers would
have incentive to decline the dispatch at such times to avoid making the payments. This is because
the existence of some driver for only one period of time may exert negative externality on the rest
of the economy by inducing seemingly efficient actions that result in suboptimal positioning of the
rest of the drivers in the subsequent time periods.

We illustrate this via analyzing the economy introduced in Example 5, as shown in Figure 19.

Example 6 (Continued). Without driver 1, driver 2 would be dispatched to pick up riders 1 and
2 and achieve a total welfare of 6. With driver 1, one welfare-optimal dispatching plan sends
driver 1 to take the path ((B,C, 0), (C,C, 1) , (C,C, 2)) and sends driver 2 to take the path
((B,A, 0), (A,A, 2)).

At time 0, driver 1 takes trip (B,C, 0) and driver 2 takes trip (B,A, 0). Driver 1 contributes 0
to welfare at time 0 since she did not pick up any driver. When time 1 comes, if driver 1 appears
for only one period of time, the optimal welfare achieved by the rest of the economy would only be
1— driver 1 disappears and driver 2 picked up rider 3. Therefore, the payment to driver 1 at time
0 would be −5, since exerted a negative externality of 5 on the rest of the economy by appearing
only at time 0. Similarly, we can compute that the payment to driver 1 at times 1 and 2 would be
1 and 5 respectively, giving her a total payment of −5 + 1 + 5 = 1.
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Now consider the scenario where driver 1 declines the dispatch, refuses to make the payment
and stays in location B, and assume that driver 2 still followed the mechanism and drove to location
A. When time 1 comes, driver 1 would again be dispatched to drive to C at time 1 and pick up
rider 2 at time 2. We can check that the payment to driver 1 at time 1 would be 0, and the payment
to driver 1 at time 2 would be 5— the amount the rest of the economy gains from the existence of
driver 2 at that time. This is a useful deviation, thus the dynamic VCG mechanism where drivers
are allowed to freely decline trips is not IC.

D.2 Trading Networks

The literature on trading networks studies economic models where agents in a network can trade
via bilateral contracts [24, 25, 31]. Efficient, competitive equilibrium outcomes exist when agents’
valuation functions satisfy the “full substitution” property, and the utilities of agents on either end
of the trading network form lattices.

Assume that all trip costs and early exit costs are zero, the optimal dispatching problem of
ridesharing platforms can be formulated as a trading network problem in the following way:

• For each driver or rider, there is a node in the network.

• For each driver i ∈ D and each rider j ∈ R, there is an edge from i to j if τj ≥ τ i + δ(`i, oj),
i.e. driver i is able to pick up rider j if she drivers directly to oj after entering.

• For any two riders j and j′ in D, there is an edge from j to j′ if (i) τj+δ(oj , dj)+δ(dj , oj′) ≤ τj′
assuming dj 6= oj′ or (ii) τj + δ(oj , dj) ≤ τj′ if dj = oj′ . Intuitively, riders j can trade to rider
j′ if a driver is still able to pick up rider j′ after dropping off rider j.

What is being traded in the network is the right to use the car over the rest of the planning
horizon. Each driver is able to trade with at most one rider. A driver’s utilities is zero if she does
not trade, and her utility is equal to the her payment if she did trade. Each rider values buying the
right to use at most one car, and values it at vj . If she did buy the right to use one car, her utility
is vj minus the price she paid to buy the right to use the car, plus the payment she collected from
the rider who bought the right to use the car from her. Riders that did not buy a car cannot sell
(values such contracts at −∞).

With existing results in the trading network literature, we show the existence of welfare-optimal,
competitive equilibrium outcomes, and the lattice structure of drivers’ total payments under all CE
outcomes. This does not solve our problem, since there isn’t language in the trading network
literature that describes the temporal evolvement of the network structure and the corresponding
incentive issues— as time progresses, the set of reachable riders for each driver decreases, thus the
network becomes sparser.

E Additional Simulation Results

We present in this section the additional simulation results that are omitted from the body of the
paper.

E.1 Morning Rush Hour

Figures 26 and 27 show the average number of drivers and average prices for each of the five trips
that are not analyzed in Section 5.2 for the morning rush hour scenario.
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Figure 26: Additional comparison of the number of drivers per trip for the morning rush hour.

The STP mechanism dispatches a reasonably high number of drivers to the (A,C) trip since
there is a high demand for drivers at C (see Figure 26). In contrast, though the myopic pricing
mechanism is not sending too many drivers from C to C or A, many drivers linger around B due
to the excessive supply, and the mechanism did not relocate more driver from A to C than from
A to A, despite the imbalance in demand in these locations. Prices as shown in Figure 27 are also
intuitive and easy to interpret.

0 20 40 60 80 100

# (C,B) Riders

0

10

20

30

40

50

S
T

P
 T

ri
p

 P
ri
c
e

s

(A,C)

(A,A)

(B,B)

(C,C)

(C,A)

(a) The STP mechanism.

0 20 40 60 80 100

# (C,B) Riders

0

10

20

30

40

50

M
y
o

p
ic

 T
ri
p

 P
ri
c
e

s

(A,C)

(A,A)

(B,B)

(C,C)

(C,A)

(b) The myopic pricing mechanism.

Figure 27: Additional comparison trip prices for the morning rush hour.
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