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1. Introduction

A key feature of the recent Great Recession in the United States and other advanced economies

was a very large, sharp and persistent fall in output with nearly 10 percent as deviation from its

pre-crisis trend. Inflation, on the other hand, remained remarkably stable despite the large output

contraction. Di§erent measures of core inflation, like the core PCE index or the GDP deflator,

which are the relevant benchmarks for macromodels without commodities, fell only gradually by a

modest 1 percent during the same time window (see e.g. Christiano, Eichenbaum and Trabandt,

2015).

The fact that inflation fell very little during the recent recession has attracted considerable

interest. Hall (2011) sparked the literature by arguing that inflation fell so little in face of the large

contraction in demand that one might view inflation as being essentially exogenous to the economy.

Specifically, Hall (2011) argues that popular DSGE models based on the simple New Keynesian

Phillips curve, according to which prices are set on the basis of a markup over expected future

marginal costs, “cannot explain the stabilization of inflation at positive rates in the presence of

long-lasting slack”. Similarly, Ball and Mazumder (2011) argue that Phillips curves estimated for

the post-war pre-crisis period in the United States cannot explain the behavior of inflation during

the years of the financial crisis from 2008 through 2010. They argue that the fit of the standard

Phillips curve deteriorates sharply during the crisis. One of the reasons for this is that the labor

share, a proxy for firms’ marginal costs and the key driver of inflation in the New Keynesian model,

declined dramatically during the crisis, but inflation nevertheless did fall only very little. A further

challenge to the New Keynesian Phillips curve is raised by King and Watson (2012), who find

a large discrepancy between actual inflation and inflation predicted by the workhorse Smets and

Wouters (2007) model.

Our proposed resolution of the tension between the evolution of output and inflation during

these crises is twofold. First, we argue that it is key to introduce real ridigities in price- and wage-

setting. To do this, we follow Dotsey and King (2005) and Smets and Wouters (2007) and use the

Kimball (1995) instead of the standard Dixit-Stiglitz (1977) aggregator. The Kimball aggregator

introduces additional strategic complementarities in the price- and wage-setting, which lowers the

sensitivity to prices and wages to the relevant wedges for a given degree of price- and wage-stickiness.

As such, the Kimball aggregator is commonly used in New Keynesian models, see e.g. Smets and

Wouters (2007), as it allows to simultaneously account for the macroeconomic evidence of a low
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Phillips curve slope and the microeconomic evidence of frequent price changes.

Second, we argue that the standard procedure of linearizing all equilibrium equations around the

steady state, except for the ZLB constraint on nominal policy rates, introduces large approximation

errors when large shocks hit the economy like in the Great Recession. Hence, our analysis suggests

that one ought to use the solution of the nonlinear model rather than the solution of the linearzed

model. Implicit in the linearization procedure is the assumption that the linearized solution is

accurate even far away from the steady state. However, recent work by Boneva, Braun, and Waki

(2016) and Linde and Trabandt (2018) suggests that linearization may produce severely misleading

results when large shocks hit the economy, implying that it is invalid to extrapolate decision rules

far away from the steady state. Key here is the nonlinearity introduced by the Kimball aggregator,

which implies that the demand elasticity for intermediate goods is state-dependent, i.e. the firms’

demand elasticity is an increasing function of its relative price. In short, the demand curve is

quasi-kinked. While the fully nonlinear model takes this state-dependency explicitly into account,

a linear approximation replaces nonlinearity by a linear function.

At the end of the day, one of our main contributions is to show that the introduction of the

zero lower bound (ZLB) and real ridigities reduces the elasticity between inflation and output in a

large recession in a nonlinear framework and thus helps the model to account for the large output

contraction and modest decline in inflation that we witnessed during the global financial crisis and

the euro area sovereign debt crisis. Critical in this is to rely on the nonlinear solution: a linearized

Phillips curve is associated with a notably larger decline in inflation for a comparable decline in

output in a deep recession that triggers the ZLB to bind for a long time. Importantly, this finding

is only partly driven by nonlinearities introduced by the ZLB. Even more important is to use the

nonlinear solution of the model with the Kimball aggregators.

We establish this result in a variant of the Erceg, Henderson and Levin (2000) benchmark

model amended with real ridigities. As the EHL model does not allow for endogenous capital

and other real rigidities like habit formation in consumer preferences and investment adjustment

costs, we provide support of our finding in this model by estimating a fully-fledged New Keynesian

model with endogenous capital formation using Bayesian maximum likelihood techniques. By

performing stochastic simulations of a nonlinear variant of this model, we can also establish two

further important insights.

First, recent work — see for instance IMF (2016, 2017) — has been aimed towards understanding

the absence of upward pressure of price and wage inflation during the recovery from the global
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financial crisis and the euro area sovereign debt crisis. The nonlinear formulation of our model

o§ers an explanation for this phenonema. In a nutshell, our model implies a nonlinear relationship

between price and wage inflation and the output gap. The slope of the price and wage Phillips

curves is notably lower (higher) when the economy is in a recession (boom) when the economy is

driven by demand or risk-premium shocks. Put di§erently, the price and wage Phllips curves in

our nonlinear model with the Kimball aggregator are not linear for large fluctuations in demand

but rather have a banana-type shape as in the seminal paper by Phillips (1958). Thus, while

the resumption of growth following the crisis triggered the output gap to narrow eventually, our

nonlinear model implies that wage and price inflation would remain subdued until until the level

of economic activity relative to its potential had recovered su¢ciently. This mechanism in our

model o§ers one possible explanation of the subdued wage and price inflationary pressures in many

advanced economies during the recovery from the crisis.

Second, our nonlinear model can be used to understand the positive skewness in post-war U.S.

price inflation, i.e. that price inflation scares are much more common than deflationary episodes.

We establish this result by comparing higher-order moments for inflation in the data and our model.

Our nonlinear model delivers a strong positive skew in inflation along with a negative skew in the

output gap. In addition, partly due to the introdution of the ZLB, and partly to the strong positive

skew in price inflation, our estimated model also implies a positive skew for the federal funds rate

that is in line with the data.

Recent research has examined possible resolutions to the missing deflation puzzle. Fratto and

Uhlig (2017) and Lindé, Smets and Wouters (2016) find that the benchmark Smets and Wouters

model relies on large o§setting positive price markup shocks to cope with the small fall in inflation in

the face of a persistent fall in output observed during the Great Recession. Recent research has also

emphasized that financial frictions may be responsible for the small elasticity between output and

inflation witnessed during the crisis. Christiano, Eichenbaum and Trabandt (2015) use a model

to show that the observed fall in total factor productivity and the rise in firms’ cost to borrow

funds for working capital played critical roles in accounting for the small drop in inflation that

occurred during the Great Recession. Del Negro, Giannoni and Schorfheide (2015) show that the

introduction of a financial accelerator together with a flattening of the Phillips curve can account

for the small drop in inflation in the Great Recession. Gilchrist, Schoenle, Sim and Zakrajsek

(2016) develop a model in which firms face financial frictions when setting prices in an environment

with customer markets. Financial distortions create an incentive for financially constrained firms to
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raise prices in response to adverse financial or demand shocks in order to preserve internal liquidity

and avoid accessing external finance. While financially unconstrained firms cut prices in response

to these adverse shocks, the share of financially constrained firms is su¢ciently large in their model

to attenuate the fall in inflation in response to fluctuations in GDP. Gilchrist, Schoenle, Sim and

Zakrajsek (2016) examine a micro data set which supports the implications of their model.

Our work is related to Arouba et al. (2017). Using asymmetric price and wage adjustment

costs, the authors show that their model can produce skewness in inflation and output growth as

observed in the data. However, their model cannot account for the skewness of the federal funds

rate data while ours does. In contrast to these authors, our model does not rely on asymmetric

adjustment costs but generates the skewness observed in macro data due to the Kimball (1995)

aggregator. Most importantly, Arouba et al. (2017) do not study the implications of the zero

lower bound while our paper focuses on the interplay of large shocks and the zero lower bound to

characterize nonlinearities in price and wage Phillips curves.

More generally, the mechanism we identify in our paper o§ers an alternative, perhaps comple-

mentary and not mutually exclusive, channel to understand the same phenomena. Our resolution

of the puzzle stresses the nonlinear influence of strategic complementarities and real rigidities in

price-setting of firms. We find it attractive due to its simplicity and that it solves an important

tension between micro- and macroevidence on price-setting behavior.

The paper is organized as follows. Section 2 presents the stylized New Keynesian model with

stickiness and real rigidities in price- and wage-setting while Section 3 demonstrates the results

based on the stylized model. Section 4 examines the robustness of our results in stochastic simula-

tions of a nonlinear variant of an estimated benchmark New Keynesian model. Finally, we provide

concluding remarks in Section 5.

2. A Stylized New Keynesian Model

The simple model we use is very similar to the Erceg, Henderson and Levin (2000) (EHL henceforth)

model with gradual price and wage adjustment. We deviate from EHL in two ways. First, by

allowing for Kimball (1995) aggregators in price and wage setting (with the standard Dixit and

Stiglitz (1977) specification as a special case). Second, by including a discount factor, or more

generally savings, shock. The complete specification of the nonlinear and linearized formulation of

the model is provided in Appendix A.
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2.1. Model

2.1.1. Firms and Price Setting

Final Goods Production The single final output good Yt is produced using a continuum of di§eren-

tiated intermediate goods Yt(f). Following Kimball (1995), the technology for transforming these

intermediate goods into the final output good is
Z 1

0
G

"
Yt (f)

Yt

#
df = 1. (1)

Following Dotsey and King (2005) and Levin, Lopez-Salido and Yun (2007), we assume that GY (·)

is given by the following strictly concave and increasing function:

GY

"
Yt (f)

Yt

#
=

!p
1 +  p

h%
1 +  p

& Yt(f)
Yt

−  p
i 1
!p −

(
!p

1 +  p
− 1
)
, (2)

where !p =
φp(1+ p)

1+φp p
. Here φp > 1 denotes the gross markup of the intermediate goods firms. The

parameter  p ≤ 0 governs the degree of curvature of the intermediate firm’s demand curve.1 In

Figure 1 we show how relative demand is a§ected by the relative price under alternative assumptions

about  P , given a value for the gross markup of φp = 1.1. When  p = 0, the demand curve

exhibits constant elasticity as under the standard Dixit-Stiglitz aggregator, implying a log-linear

relationship between relative demand and relative prices. When  p < 0 — as in e.g. Smets and

Wouters (2007) — a firm instead faces a quasi-kinked demand curve, implying that a drop in its

relative price only stimulates a small increase in demand. On the other hand, a rise in its relative

price generates a larger fall in demand compared to the  p = 0 case. Relative to the standard

Dixit-Stiglitz aggregator, this introduces more strategic complementarity in price setting which

causes intermediate firms to adjust prices by less to a given change in marginal cost. Finally, we

notice that GY (1) = 1, implying constant returns to scale when all intermediate firms produce the

same amount.

Firms that produce the final output good are perfectly competitive in both product and factor

markets. Thus, final goods producers minimize the cost of producing a given quantity of the output

index Yt, taking as given the price Pt (f) of each intermediate good Yt(f). Moreover, final goods

producers sell units of the final output good at a price Pt, and hence solve the following problem:

max
Yt,Yt(f)

PtYt −
Z 1

0
Pt (f)Yt (f) df (3)

1 The parameter used in Smets and Wouters (2007) to characterize the curvature of the Kimball aggregator can
be mapped to our model using the following formula: ϵp = −

φp
φp−1

 p.
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subject to the constraint (1). The first order conditions can be written as

Yt(f)
Yt

= 1
1+ p

 +
Pt(f)
Pt

1
#pt

, φp
1−φp

(1+ p)
+  p

!
, (4)

Pt#
p
t =

"Z
Pt (f)

1+ pφp
1−φp df

# 1−φp
1+ pφp

,

#pt = 1 +  p −  p

Z
Pt(f)
Pt
df,

where #pt denotes the Lagrange multiplier on the aggregator constraint (2). Note that for  p = 0,

this problem leads to the usual Dixit and Stiglitz (1977) expressions

Yt (f)

Yt
=

(
Pt (f)

Pt

)− φp
φp−1

, Pt =

(Z
Pt (f)

1
1−φp df

)1−φp

Intermediate Goods Production A continuum of intermediate goods Yt(f) for f 2 [0, 1] is produced

by monopolistically competitive firms, each of which produces a single di§erentiated good. Each

intermediate goods producer faces a demand schedule from the final goods firms through the so-

lution to the problem in (3) that varies inversely with its output price Pt (f) and directly with

aggregate demand Yt.

Aggregate capital (K) is assumed to be fixed, so that aggregate production of the intermediate

good firm is given by

Yt (f) = K (f)
αNt (f)

1−α . (5)

Despite the fixed aggregate stock K ≡
R
K (f) df , shares of it can be freely allocated across the f

firms, implying that real marginal cost, MCt(f)/Pt is identical across firms and equal to

MCt
Pt

≡
Wt/Pt
MPLt

=
Wt/Pt

(1− α)KαNt−α
, (6)

where the determination of the aggregate labor-index Nt is discussed in Section 2.1.2.

The prices of the intermediate goods are determined by Calvo-Yun (1996) style staggered nom-

inal contracts. In each period, each firm f faces a constant probability, 1 − ξp, of being able to

reoptimize its price Pt(f). The probability that any firm receives a signal to reset its price is as-

sumed to be independent of the time that it last reset its price. If a firm is not allowed to optimize

its price in a given period, it adjusts its price according to P̃t = ΠPt−1,where Π is the steady-state

(gross, i.e. Π = 1 + π) inflation rate and P̃t is the updated price.

Given Calvo-style pricing frictions, firm f that is allowed to reoptimize its price (P optt (f)) solves
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the following problem

max
P optt (f)

Et
1X

j=0

%
βξp
&j
&t+jΛt,t+j

h
ΠjP optt (f)−MCt+j

i
Yt+j (f)

where Λt,t+j is the stochastic discount factor (the conditional value of future profits in utility units,

recalling that the household is the owner of the firms), and demand Yt+j (f) from the final goods

firms is given by the equations in (4).

2.1.2. Households and Wage Setting

Labor Contractors Competitive labor contractors aggregate specialized labor inputs Nt,j supplied

by households into homogenous labor nt which is hired by intermediate good producers. Labor

contractors maximize profits

max
Nt,j ,Nt

WtNt −
Z
Wt,jNt,jdj

where Wt,j is the wage paid by the labor contractor to households for supplying type j labor.

Wt denotes the wage paid to the labor contractor for homogenous labor.

Maximization of profits is subject to
Z
GN

"
Nt,j
Nt

#
dj = 1,

where

GN

"
Nt,j
Nt

#
=

!w
1 +  w

(
(1 +  w)

Nt,j
Nt

−  w

) 1
!w

−
!w

1 +  w
+ 1

is the Kimball aggregator specification as used in Dotsey and King (1995) or Levin, Lopez-Salido

and Yun (2007) adapted for the labor market. Note that !w =
(1+ w)φw
1+φw w

where θw ≥ 0 denotes the

net wage markup, φw ≥ 1 denotes the gross wage markup and  w ≤ 0 is the Kimball parameter

that controls the degree of complementarities in wage setting.

If we let #wt denote the multiplier on the labor contractor’s constraint, optimization results in

the following conditions:

Nt,j
Nt

=
1

1 +  w

0

@
(
Wt,j

Wt

)−φw(1+ w)
φw−1

[#wt ]
φw(1+ w)
φw−1 +  w

1

A (7)

Wt#
w
t =

(Z
W
− 1+ w+(φw−1) w

φw−1
t,j dj

)− φw−1
1+ w+(φw−1) w

(8)

#wt = 1 +  w −  w

Z
Wt,j

Wt
dj (9)
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Where equation (7) denotes the demand for labor, equation (8) is the aggregate wage index and

equation (9) is the zero profit condition for labor contractors.

Note that for  w = 0 we get the standard Dixit-Stiglitz expressions

Nt,j
Nt

=

(
Wt,j

Wt

)− φw
φw−1

,Wt =

(Z
W

1
1−φw
t,j dj

)1−φw
,#wt = 1

Households There is a continuum of households j 2 [0, 1] in the economy. Each household

supplies a specialized type of labor j to the labor market. The jth household is the monopoly

supplier of the jth type of labor service. The jth household maximizes

E0

1X

t=0

βt&t

(
lnCj,t − !

N1+χ
j,t

1 + χ

)
(10)

s.t.

PtCj,t +Bj,t =Wj,tNj,t +R
k
tK + (1 + it−1)Bj,t−1 + Γt − Tt +Aj,t

where the choice variables of the jth household are consumption Cj,t and risk-free government

debt Bt. The jth household also chooses the wage Wj subject to Calvo sticky prices as in Erceg,

Henderson and Levin (2000, EHL). The household understands that when choosingWj that it must

supply the amount of labor Nj demanded by a labor contractor according to equation (7).

In principle, the presence of wage setting frictions implies that households have idiosyncratic

levels of wealth and, hence, consumption. However, we follow EHL in supposing that each household

has access to perfect consumption insurance. Because of the additive separability of the family

utility function, perfect consumption insurance at the level of households implies equal consumption

across households. Given this, we have simplified our notation and not include a subscript, j, on

the jth family’s consumption (and bond holdings). Note that even though consumption is equal

across households, consumption in response to shocks is not constant over time across households.

The variable &t is an exogenous shock to the discount factor. We assume that δt =
&t
&t−1

is

exogenous with δ = 1 in steady state. Pt denotes the aggregate price level. Rt denotes the gross

nominal interest rate on bonds purchased in period t− 1 which pay o§ in period t. Rkt is the rental

rate of capital that the households rents to goods producing firms. Note that the households capital

stock K is fixed, i.e. we abstract from endogenous capital accummulation. Tt are lump-sum taxes

net of transfers and Γt denotes the share of profits that the household receives. Aj,t denotes the

payments and receipts associated with the insurance associated with wage stickiness. ! > 0 and

χ ≥ 0 and 0 < β < 1 are parameters.
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Utility maximization for consumption and government bond holdings yields the standard con-

sumption Euler equation (in a symmetric equilibrium):

1 = βEt

"
δt+1

1 + it
1 + πt+1

Ct
Ct+1

#
, (11)

where 1 + πt+1 = Pt+1/Pt.

Wage Setting The household faces a standard standard monopoly (labor union) problem of

selecting Wj,t to maximize the welfare, (10) subject to the demand for labor (7). Following EHL,

we assume that the household experiences Calvo-style frictions in its choice of Wj,t. In particular,

with probability 1 − ξw the j
th family has the opportunity to reoptimize its wage rate. With the

complementary probability, the family must set its wage rate according to Wj,t = ΠwWj,t−1where

Πw denotes the steady state gross rate of wage inflation. The households optimal choice for W̃j,t is

to maximize

max
W̃j,t

Et

1X

i=0

(βξw)
i &t+i

(
−!

N1+χ
j,t+i

1 + χ
+ Λt+iW̃j,tΠ

i
wNj,t+i

)

subject to labor demand:

Nt+i,j =
1

1 +  w

0

B@

"
W̃j,tΠ̃

i
w

Wt+i#
w
t+i

#−φw(1+ w)
φw−1

+  w

1

CANt+i.

2.1.3. Monetary Policy

We assume that the central bank sets the nominal interest rate following a Taylor-type policy rule

that is subject to the zero lower bound:

1 + it = max

 
1, (1 + i)

(
1 + πt
1 + π

)γπ
"
Yt

Y pott

#γx!
(12)

where Y pott denotes the level of output that would prevail if prices and wages were flexible.

In terms of fiscal policy, we assume that the government balances its budget using lump-sum

taxes.

2.1.4. Aggregate Resource Constraint

It is straightfoward to show that the aggregate resource constraint is given by

Ct = Yt = (p
∗
t )
−1 (w∗t )

−(1−α)Kαl1−αt (13)
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where

p∗t ≡ 1
1+ p

Z 1

0

 +
Pt(f)
Pt#

p
t

, φp
φp−1

(1+ p)
+  p

!
df

w∗t =
1

1 +  w

Z 1

0

0

@
"
Wt,j

Wt#
w
t

# φw
φw−1

(1+ w)

+  w

1

A dj

where aggregate hours per capita supplied by the household lt is given by lt =
R
Nt,jdj. The

variables p∗t ≥ 1 and w∗t ≥ 1 denote the Yun (1996) aggregate price and wage dispersion terms.

Both price- and wage dispersion, ceteris paribus, will lower output in the economy. In the technical

appendix, we show how to develop recursive formulations of the sticky price and wage distortion

terms p∗t and w
∗
t . Note, however, that p

∗
t and w

∗
t vanish when the model is linearized.

2.2. Parameterization

Our benchmark calibration is fairly standard at a quarterly frequency. We set the discount factor

β = 0.9975, and the steady state net inflation rate π = .005; this implies a steady state interest

rate of i = .0075 (i.e., three percent at an annualized rate). We set the capital share parameter

α = 0.3 and the disutility of labor parameter χ = 0.2 As a compromise between the low estimate

of φp in Altig et al. (2011) and the higher estimated value by Smets and Wouters (2007), we set

φp = 1.1. We set ξp = 0.66. To pin down the Kimball parameter  p consider the log-linearized New

Keynesian Phillips Curve in our model:

π̂t = βEtπ̂t+1 + κp dmct, (14)

where dmct denotes the log-deviation of marginal cost from its steady state. π̂t denotes the log-

deviation of gross inflation from its steady state. The parameter κ denotes the slope of the Phillips

curve and is given by:

κp ≡
(1−ξp)(1−βξp)

ξp

1
1−φp p

. (15)

The macroeconomic evidence suggest that the sensitivity of aggregate inflation to variations in

marginal cost is very low, see e.g. Altig et al. (2011). To capture this, we set the Kimball

parameter  p = −12.2 so that the slope of the Phillips curve is κp = 0.012 given the values for β,

ξp and φp discussed above.
3 This calibration allows us to match micro- and macroevidence about

2We will consider χ > 0 in a future revision of this paper.
3 The median estimates of the Phillips Curve slope in recent empirical studies by e.g. Adolfson et al. (2005), Altig

et al. (2011), Galí and Gertler (1999), Galí, Gertler and López-Salido (2001), Lindé (2005), and Smets and Wouters
(2003, 2007) are in the range of 0.009− .014.
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firms’ price setting behavior and is aimed to capture the resilience of core inflation, and measures

of expected inflation, to a deep downturn such as the Great Recession.

For the parameters pertaining to the nominal wage setting frictions we assume that φw = 1.1,

ξw = 0.75, and  w = −6. These parameter values correspond to those set and estimated in the

medium-sized New Keynesian model discussed below. We use the standard Taylor (1993) rule

parameters γπ = 1.5 and γx = .125.

In order to facilitate comparison between the nonlinear and linear model, we specify processes

for the exogenous shocks such that there is no loss in precision due to an approximation. In

particular, discount factor evolves according to the following AR(1) process:

δt − δ = ρδ (δt−1 − δ) + σδ"δ,t (16)

where δ = 1. Our baseline parameterization adopts a persistence coe¢cient ρδ = 0.95 in (16).

2.3. Solving the Model

We compute the linearized and nonlinear solutions using the Fair and Taylor (1983) method. This

method imposes certainty equivalence on the nonlinear model, just as the linearized solution does

by definition. In other words, the Fair and Taylor solution algorithm traces out the implications

of not linearizing the equilibrium equations for the resulting multiplier without shock uncertainty.

Hence, future shock uncertainty does not matter for neither the nonlinear nor the linearized model

solution. All relevant information is captured by the current state of the economy, including the

various contemporaneous shocks we allow for in the model.

An alternative approach would have been to compute solutions where uncertainty about future

shock realizations matters for the dynamics of the economy following for instance Adam and Billi

(2006, 2007) within a linearized framework and Fernández-Villaverde et al. (2015) and Gust, Herbst,

López-Salido and Smith (2016) within a nonlinear framework. These authors have shown that

allowing for future shock uncertainty can potentially have important implications for equilibrium

dynamics. Importantly, none of the authors have considered a model with Kimball aggregation.

Linde and Trabandt (2018) solve a standard NK model with sticky prices and Kimball aggregation

under shock uncertainty using global methods. There, shock uncertainty implies that agents expect

the ZLB to bind in 10 out of 100 quarters. Linde and Trabandt (2018) show that the e§ects of

shock uncertainty on the global solution of the nonlinear model are quantitatively negligible. With

the introduction of wage stickiness and Kimball aggregation in the labor market in the present
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paper (in addition to price stickiness and Kimball aggregation in the goods market as in Linde

and Trabandt, 2018) should moderate the e§ect of shock uncertainty in the nonlinear model even

further.4

As a practical matter, we feed the relevant equations in the nonlinear and log-linearized versions

of the model to Dynare. Dynare is a pre-processor and a collection of MATLAB routines which can

solve nonlinear models with forward looking variables, and the details about the implementation

of the algorithm used can be found in Juillard (1996). We use the perfect foresight simulation

algorithm implemented in Dynare using the ‘simul’ command.5 The algorithm can easily handle the

ZLB constraint: one just writes the Taylor rule including the max operator in the model equations,

and the solution algorithm reliably calculates the model solution in fractions of a second. Thus,

apart from gaining intuition about the mechanisms embedded into the models, there is no need

anymore to linearize models in order to solve and simulate them.

3. Inflation Dynamics in the Stylized Model

In this section, we report our main results for the linearized and nonlinear solution of the model

outlined in the Section above. As mentioned earlier, our aim is to study the joint output-inflation

dynamics for large adverse demand shocks.

3.1. A Recession Scenario

We first study the e§ects of a large adverse demand shock. Following the literature on fiscal

multipliers (e.g. Christiano, Eichenbaum and Rebelo, 2011), the particular shock we consider is a

large positive shock to the discount factor δt. Specifically, we assume that "δ,1 = 0.01 in (16) so

that δt increases from 1 to 1.01 in the first period and then gradually reverts back to steady state.

Figure 2 reports the linear and nonlinear solutions for a selected set of variables, assuming that

the economy is in the deterministic steady state in period 0, and then the shock hits the economy

in period 1. In A.5, we report e§ects for an extended set of variables. The left column of Figure

2 shows results when the ZLB is, hypothetically, not assumed to be binding, whereas the right

column shows the e§ects when the ZLB binds. As is evident from the left column, the same-sized

shock has a rather di§erent impact on the economy depending on whether the model is linearized

or solved in its original nonlinear form. For instance, we see that while output falls more in the
4 In a future version of this paper we plan to solve the nonlinear and linearized model subject to shock uncertainty.
5 The solution algorithm implemented in Dynare’s simul command is the method developed in Fair and Taylor

(1983).
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nonlinear model, wage and price inflation falls notably less than in the linearized solution. So the

linearized model features a larger elasticity between output and inflation compared to the nonlinear

model.

In the right column in Figure 2, we report the e§ects of the same shock, but now assume

that the central bank is constrained by the ZLB on the policy rate. Important insights about the

di§erences between the linearized and nonlinear solutions can be gained. First, although the drop

in the potential real rate is about the same in both models, the linearized model generates a much

longer liquidity trap because inflation and expected inflation fall much more, which in turn causes

the actual real interest rate to rise much more initially. The larger initial rise in the actual real

interest rate – and thus in the gap between the actual and potential real rates – triggers a larger

fall in the output gap (real GDP also falls more in the linearized model because the discount factor

shock does not impact potential GDP). Even so, and perhaps most important, we see that price

inflation falls substantially less in the nonlinear model. This suggests that the di§erence between

the linearized and nonlinear solutions too a large extent is driven by the linearization of the pricing

and wage block of the model.

It is also instructive to compare the solutions with and without imposing the ZLB. Comparing

the linearized solutions, we find that imposing the ZLB results in a notably larger fall output

(from -3.5 to almost -7 percent) and deflation in prices and wages (not shown). For the nonlinear

solution, we find that imposing the ZLB (albeit admittedly so with a shorter duration compared

to the linearized solution) does not a§ect the price and wage inflation paths much - they are

essentially una§ected. The main impact of imposing the ZLB in the nonlinear model is – apart

from the interest rate path – a somewhat deeper output contraction. According to United States

congressional budget o¢ce (CBO), the output gap fell roughly by 6 percent during the great

recession but PCE price inflation (4-quarter change) never fell below 1 percent. Our nonlinear

solution is consistent with this fact, whereas the linearized model is associated with a notably lower

inflation path which is counterfactual relative to the data.6 In addition, we never experienced any

persistent nominal wage deflation (at least not wage inflation measured with nominal compensation

per hour).

The Kimball aggreggator is key for shrinking the sensitivity of inflation to the large adverse

shock in economic activity in the nonlinear model. To show this, we solved our model under

6 Figure A.3 in Appendix A.5 shows the paths in the linearized and nonlinear solutions when the size of the
discount factor shock is set to give an identical fall in the output gap the first period. In this case, the fall in inflation
is about twice as large in the linearized solution after one year.
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the assumption that final good and labor services are aggregated with the standard Dixit-Stiglitz

constant elasticity demand schedule ( p =  w = 0). Because this adjustment changes the slope

coe¢cients in the linearized price and wage schedules (see e.g. eqs. 14 and 15 for prices), we adjusted

ξp and ξw so that the linear model solutions are identical under both benchmark calibration with

the Kimball aggregator and with our alternative Dixit-Stiglitz specification.7 With this alternative

aggregator in both wage and price aggregation, Figure A.4 in Appendix A.5 shows that price

inflation would fall at least as much in the nonlinear model as in the linearized solution. So the

kinked demand curve introduced by the Kimball aggregator is essential.

3.2. Phillips Curves

To understand the unconditional di§erences in dynamics implied by the linearized and nonlinear

solutions, we now undertake stochastic simulations of the model for shocks to the stochastic discount

factor δt. We solve and simulate the linearized and nonlinear solutions for a long sample of 10,000

periods contingent on exactly the same sequence of shocks {"δ,t}10,000t=1 in (16). However, we use

somewhat di§erent standard deviations for the linearized model (σδ = 0.00125) and the nonlinear

model (σδ = 0.0015), to ensure that the probability of hitting the ZLB is 10 percent in both

model solutions. The left column in Figure 3 shows the paths with simulated data in the nonlinear

model, whereas the right column shows the simulated data in the linearized model for the same

set of variables as depicted in Figure 2. In Appendix A.5, we report results for an extended set of

variables.

From the figure, we see noticeable di§erences in the behavior of nominal wage and price inflation

between the linearized and nonlinear model. The simulated data from the linearized model is

characterized by several episodes with substantial deflation, whereas the nonlinear model does not

feature any larger (if any) periods with deflation in wages and prices. There are several episodes

when price and wage inflation is persistently low, but no stretch with deflationary outcomes because

the Kimball aggregator implies that firms (unions) become reluctant to change prices (wages) much

when relative demand is low (i.e. when they are located in the upper left quadrant in Figure 1). On

the other hand, in periods when relative demand is percieved to be high by agents, they are more

willing to change their prices (i.e. they are located in the lower right quadrant in Figure 1). As

a result, the nonlinear model produces episodes with more elevated wage and price inflation than

the linearized solution in which household and firms are equally sensitive to the wage and price

7 Notice that this requires increasing ξp and ξw to about 0.9, respectively.
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markups.

While the results in Figure 3 are instructive to understand many features of the nonlinear

model, it is not straightforward to connect the behavior of price and wage inflation to state of

the business cycle. The relationship between actual price/wage inflation and some measure of

resource utilization is traditionally referred to as a “Phillips curve”. Phillips (1958) drew this

original relationship between the rate of wage inflation and the unemployment rate. More recently,

researchers have extended his approach to the relationship between price inflation and the output

gap. Thus, we use the simulated data in Figure 3 to produce bivariate scatterplots between price

(and wage) inflation on the y-axis and the negative of the output gap on the x-axis. By using the

negative of the output gap, we derive a traditional downward-sloping relationship as in Phillips

(1958).

Figure 4 show the results. The left column shows the results for our benchmark calibration

with the Kimball aggregator. As expected, we see that the relationship between the wages and

prices and (minus) the output gap is characterized by a constant negative slope coe¢cient around

the steady state of 2 percent (we do not allow for permanent productivity gains that would raise

nominal wage inflation above price inflation in the steady state) in the linearized model (blue

circles). However, when the economy hits the ZLB, which tends to happen when the output gap is

around −2.5 percent for this shock, then the slope flattens somewhat, i.e. the output gap are more

strongly a§ected by discount factor shocks than wage and price inflation when the economy is at

the ZLB.

The nonlinear model with the Kimball aggregator in the left column (red crosses), on the

other hand, features stronger responses of wage and prices when the output gap is elevated –

lending support for inflation scares in booms (see e.g. Goodfriend, 1993) – but a much weaker

relationship between the rate of change in prices and wages in recessions. E§ectively, the price and

wage schedules become much flatter (steeper) when the output gap is su¢ciently negative (positive).

This finding is very interesting as it – in addition to explain why inflation fell so little during the

recession – o§ers a possible explanation why inflation rose so little when advanced economies

recovered from the recession. Our simple modification of the basic New Keynesian model predicts

that inflation pressures will remain low even if growth returns until the output gap is closed. This

di§ers from the prediction of the simple linearized model which implies that inflation will start

to rise notably when growth resumes. Another di§erence between the linearized and nonlinear

solutions is that the output gap is more volatile in the linearized solution, mainly due to strong
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propagation of the ZLB constraint.

In the right column, we show the corresponding results with the Dixit-Stiglitz aggregator.

Because we reparameterise ξp and ξw as discussed in Section 3.1 to the slopes of the wage and

pricing schedules are unchanged, the linearized price and wage Phillips curves are unaltered. We

will add and discuss the nonlinear Phillips curves with the Dixit-Stiglitz specification of the model

in the next revision of the paper.

Finally, it is imperative to understand that the relationships in Figure 4 are contingent on the

assumption that the discount factor shock is the single driver of business cycles. No other shocks

are assumed to a§ect the economy. This is why we can derive such a clean relationship between

prices and resource utilization. As we will see in the estimated model that we study next, this

tight negative relationship ceases to exist in both the linearized and nonlinear model when di§erent

shocks a§ect the economy simultaneously.

4. An Estimated Medium-Sized New Keynesian Model

The benchmark EHL model studied so far is useful for highlighting many of the key factors a§ecting

how real ridigities in price- and wage-setting may a§ect inflation dynamcis in a deep recession when

solving the model nonlinearly. Specifically, we used it to demonstrate some of the benefits of taking

nonlinearities into account as opposed to the traditional approach which entails log-linearizing the

key model equations apart from the monetary policy rule.

However, this analysis was done in a stylized model with one shock and without allowing for

endogenous capital accumulation. In this section we move on to a substantive analysis with the aim

of examining the importance real ridigities in a nonlinear setting in a more quantitatively realistic

model environment. Specifically, we specify and estimate a workhorse New Keynesian model with

endogenous investment that closely follows the seminal model of Christiano, Eichenbaum and Evans

(2005) but allows for variety of shocks as in Smets and Wouters (2003, 2007). The model is

estimated in linearized form on U.S. data until 2007Q4.

Next, we use the estimated model to examine the properties of the nonlinear and linearized

solutions along several dimensions. First, the paths of the linearized and nonlinear models are

compared with the actual outcomes during the Great Recession following Christiano, Eichenbaum

and Trabandt (2015). Second, we redo the Phillips curve analysis done in the benchmark model

in Section 3.2. Third and finally, we examine the ability of the estimated model to capture the

unconditional properties of price and wage inflation in terms of skewness and kurtosis.
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4.1. Model

Following Christiano, Eichenbaum and Evans (2005) and Smets and Wouters (2003, 2007), the

model includes both sticky nominal wages and prices, where the Kimball (1995) aggregator is

used to aggregate intermediate goods and labor to final output goods and e§ective labor input.

It also features internal habit persistence in consumption, and embeds a Q−theory investment

specification modified so that changing the level of investment (rather than the capital stock) is

costly. We use the same shocks in the model as Smets and Wouters (2007) do when estimating

the model.8 The complete specification of the nonlinear and linearized formulation of the model is

provided in Appendix B.

4.2. Estimation

We now proceed to discuss how the model is estimated on US data 1965Q1-2008Q2. We estimate

a (log-)linearized variant of the model with Bayesian maximum likelihood techniques. To solve the

system of linearized equations, we use the code package Dynare which provides an e¢cient and

reliable implementation of the method proposed by Blanchard and Kahn (1980). We estimate a

similar set of parameters as Smets and Wouters (2007) do.

4.2.1. Data

We use seven key macro-economic quarterly US time series as observable variables: the log di§erence

of real GDP, real consumption, real investment and the log-di§erence of compensation per hour,

log hours worked, the log di§erence of the GDP deflator, and the federal funds rate. Further

details about the data are provided in Appendix B. The measurement equations are available in

the technical appendix.

4.2.2. Estimation Methodology

Following Smets and Wouters (2003, 2007), we use Bayesian techniques U.S. data from 1965Q1

to 2008Q2. Bayesian inference starts out from a prior distribution that describes the available

information prior to observing the data used in the estimation. The observed data is subsequently

8 A di§erence with respect to the benchmark Smets and Wouters (2003, 2007) and CEE models is that we do
not allow for indexation to past price- and wage-inflation of non-optimizing firms and wage-setters. This implies
that prices (and wages) are kept unchanged when they are not re-optimized. By implication, there is no intrinsic
persistence in the linearized price and wage Phillips curves (i.e. they are completely forward-looking). We adopt the
no-indexation assumption as it is supported by microevidence on price and wage setting behavior.
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used to update the prior, via Bayes’ theorem, to the posterior distribution of the model’s parameters

which can be summarized in the usual measures of location (e.g. mode or mean) and spread (e.g.

standard deviation and probability intervals).9

Some of the parameters in the model are kept fixed throughout the estimation procedure (i.e.,

are subject to infinitely strict priors). We choose to calibrate the parameters we think are weakly

identified by the data that we use in the estimation. The parameters that are calibrated are set

to values that are standard in the literature. We estimate 27 model parameters. Table 1 contains

information about the priors and posterior distributions.

4.3. Role of Nonlinearities During the Great Recession

We solve the nonlinear and linearized model when subjecting both model versions to a positive risk

premium shock. We compare the the resulting paths with the outcomes in the data following the

methodology of Christiano, Eichenbaum and Trabandt (2015), CET henceforth. The risk premium

shock enters the model in the optimality condition for bondholdings:

λt = βEtλt+1
ϵRP,tRt
Πt+1

(17)

where λt denotes the lagrange multiplier on the household budget constraint, Rt is the gross nominal

interest rate, Πt is expected gross inflation and ϵRP,t denotes the risk premium shock used by Smets

and Wouters (2003, 2007) which follows an AR(1) process that we have estimated when estimating

the model.

The risk premium ϵRP,t in eq. (17) is assumed to rise in a uniform fashion for 16 quarters

before gradually receding. The size of the risk-premium shock is set so that both the linearized and

nonlinear models’ output path roughly matches the “actual outcome” (discussed in detail below)

during the crisis. Both CET and Lindé, Smets and Wouters (2016) argue that this was a key shock

driving the Great Recession. Figure 5 depicts the results in the nonlinear and linearized model

together with actual outcomes in the data. The gray area and black solid lines are computed using

the methodology in CET, and implies that a pre-crisis trend is deducted from the actual data

2008Q3-2015Q2. The idea behind this procedure is an assessment how the economy would have

evolved absent the large shocks associated with the Great Recession. For each variable, we fit a

linear trend from date x to 2008Q2, where x ={1985Q1, 2003Q1}. To characterize what the data
9 We refer the reader to Smets and Wouters (2003, 2007) for a more detailed description of the estimation

procedure.
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would have looked like absent the shocks that caused the financial crisis and Great Recession, we

follow CET and extrapolate a trend line for each variable for the period 2008Q3-2015Q2. According

to our model, all the nonstationary variables in the analysis are di§erence stationary. The CET

linear extrapolation procedure implicitly assumes that the shocks in the estimation period were

small relative to the drift terms in the time series. If we knew the correct value of x, the “target

gaps” we compute (actual outcome in logs minus the fitted pre-crisis trend) would represent our

estimates of the economic e§ects of the shocks that hit the economy in 2008Q3 and later. Now,

since neither CET nor we know the correct value of x, we follow them and construct a min-max

range for the target gaps using all the values of x = {1985Q1, 2003Q1}: The min-max ranges of

the target gaps for all the variables correspond to the gray intervals displayed in Figure 5 and the

black solid line is the mean of the obtained target gaps. The purpose behind the analysis is to

assess whether, given plausible shocks, which model version that implies values of the endogenous

variables in the post 2008Q2-period within the target gap ranges.

As can be seen from Figure 5, the elevated risk-premium shock excerts a significant adverse

impact on the economy, in which economic activity dampens and inflation falls. As a result, the

policy rate is driven towards a prolonged zero lower bound episode. The model matches well the

decline in consumption, but the fall of investment is somewhat underestimated, probably because it

lacks financial friction amplification mechanisms. Importantly, for the same-sized output response,

inflation in the nonlinear model falls about 1 percent less than in the linearized solution, confirming

the results in the stylized model.

4.4. Phillips Curves in the Estimated Model

To provide intution for the muted inflation response in the nonlinear solution following a positive

risk-premium shock, Figure 6 shows a scatter plot of price inflation and the (negative of the) output

gap in both the linearized and the nonlinear variant of the estimated medium-sized New Keynesian

model. Following the procedure in Section 3.2 to simulate data from the model, the upper left

scatter plot is generated by sampling only risk premium innovations from a normal distribution

using the posterior mode and then simulating a long sample of 10,000 periods. Notice that the

simulations are initiated at the steady state, and that the negative of the output gap is plotted on

the x-axis, which means that a large positive number is associated with a deep recession.

As can be seen from the upper left plot in the figure, the linearized model is associated with

a linear relationship between inflation and output gap when only risk-premium shocks are active,
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wheares the nonlinar model suggests a concave relationship. The relationship is all together linear

because the risk-premium shocks are not large enough alone in the estimated model to drive the

economy into a liquidity trap. Even so, the risk-premium shock is a key driver of business cycle

dynamics in the estimated model, this di§erence between the linearized and nonlinear solution will

have important implications for output and inflation dynamics.

Figure 6 also contains the implied price Phillips curves for the other six shock of the model: we

run stochastic simulations for each of the other six shocks — one at a time — in both the linearized

and nonlinear models and then use the simulated data to construct scatter plots for inflation (on

the y-axis) and (the negative) output gap (on the x-axis). We use the estimated shock processes

and the parameters reported in Table 1 in the simulations.10 Hence, large movements in inflation

and the output gap in a given subplot reflects that the simulated shock is an important driver of

inflation and output gap dynamics according to our estimated model. In the last subplot (bottom

right panel), we plot the results when all shocks are active simultaneously.

As can been seen from the figure, risk-premium and wage-markup shocks are key to understand

inflation and output dynamics in the estimated model. For these two shocks, we obtain the most

sizeable fluctuations in inflation and the output gap. Because these two shocks move the equilibrium

far away from the steady state, the nonlinearities are also most evident for these two shocks. Given

the estimated parameters, the wage markup shocks are the only source of fluctuations which have

the potential to generate close to zero inflation or very mild deflationary episodes. It is striking

how the dynamics of the price and wage markup shocks di§er between the linearized and nonlinear

solution. Other shocks which only cause moderate fluctuations in the output gap and inflation result

in small di§erences between the linearized and nonlinear solutions because they do not generate

any greater devations from the steady state.

Moreover, it is evident that there are no or small trade-o§s in stabilizing output and inflation

to fluctuations in the risk-premium, government spending, and the neutral technology shocks. By

contrast, the investment-specific and markup shocks — especially the wage markup — create a noti-

cable trade-o§ between inflation and output gap stabilization. Furthermore, when using all shocks

in the simulation, the importance of the wage markup shock renders the Phillips curve completely

flat or even upward-sloping, consistent with the empirical observation of no clear unconditional

10 Because the way the markup shocks enter into linear and nonlinear equations di§ers for large shocks, we shrink
the size of wage and price markup shocks in the nonlinear model so that the unconditional volatility of price and
wage inflation is the same in both the linearized and nonlinear stochastic simulations. Since equally-sized markup
shocks have notably larger e§ects on inflation in the nonlinear solution, we thus find the nonlinear solution moderates
the models’ dependency on large markup shocks, and hence mitigates the important critique against New Keynesian
models by Chari, Kehoe and McGrattan (2010).
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Phillips curve pattern in postwar US data.

It is important to understand that while many shocks do not generate any noticeable di§erences

between the linearized and nonlinear solution when simulated one at a time, this does not imply

that these shocks can propagate di§erently in a recession (or boom) in the nonlinear model relative

to the linearized solution. To show this, Figure 7 shows the results corresponding to those in Figure

6 but conditional on an expected 8-quarter liquidity trap. To construct this figure, we first simulate

a baseline scenario (negative demand/positive risk premium shock) which generates an anticipated

8-quarter liquidity trap from the first period the ZLB actually binds. Next, the first period policy

rate reaches its lower bound, we create a counterfactual scenario by adding stochastically one of the

shocks and compute the deviation from the baseline simulation. By repeating this procedure for

each of the shocks separately and when all shocks are sampled simultaneously, we obtain a bivariate

distribution for inflation and the output gap in both model variants conditional on a liquidity trap.

The specific observation for which we plot the scenario minus baseline scenario di§erence in Figure

7 is one year after we have added the shock.11

As can be seen by comparing Figures 6 and 7, we see now notable di§erences between the

linearized and nonlinear solutions for many of the shocks for which there were previously no di§er-

ences (like monetary policy, government spending, neutral technology and and investment specific

shocks). For instance, monetary policy is much less potent to a§ect inflation in a pro-longed liquid-

ity trap than in normal times. The e§ects of monetary policy shocks on output are also somewhat

moderated in the nonlinear model compared to the linearized solution. Negative investment-specific

shocks, on the other hand, have notably more negative e§ects on the output gap in a liquidity trap.

In constrast to wage markup shocks, price markup shocks have essentially no e§ect in a liquidity

trap in the nonlinear model, capturing that firms are unwilling to respond to markup variations

with the Kimball aggregator.

It is important to point out that the results in Figure 7 generally imply notably flatter Phillips

curves for many shocks in a liquidity trap. Hence, the nonlinear model o§ers a possible explanation

to the empirical observation that the sensitivity of inflation to economic activity has flattened in

linearized models since the onset of the crisis (see e.g. Lindé, Smets and Wouters, 2016). In the

nonlinear model, however, the reduced sensitivity is only temporary (contingent on a persistently

negative output gap) and will rise once the economy recovers.

11 We plot the observations after one year since habit formation and investment adjustment costs imply that for
most shocks, output and inflation attain their peak e§ects with some delay.
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4.5. Accounting for the Statistical Properties of Inflation

We have documented that the nonlinear model allows to account for the inflation dynamics during

the Great Recession as well as the perceived reduction in the slope of the Phillips curve in the

aftermath of the recession. We now turn to stochastic simulations to examine if the nonlinear

solution helps to account for unconditional moments of inflation. It is well-known that inflation

has a positive skew during the postwar period; i.e. there are episodes with inflation bursts and

then there are episodes with very low and moderate rates of inflation but no long-lived deflationary

episodes. This positive skew is a robust finding for di§erent measures of inflation. The gray area

in Figure 8 shows the kernel smoothed distribution for inflation measured by the PCE deflator for

the sample 1965Q1-2017Q4.

The blue and red lines show the corresponding kernel smoothed distributions based on the

stochastic simulations when all are shocks active, i.e. the observations plotted in the right bottom

panel in Figure 6. As can be seen from Figure 8, the nonlinear model fits the unconditional statistical

properties inflation markedly better than the linearized model. The linearized model features

a completely symmetric normal distribution for inflation, with significant mass in deflationary

territory. By contrast, the nonlinear solution features very little density in negative territory for

inflation, in line with actual outcomes. It is striking how much better the nonlinear model captures

unconditional U.S. inflation dynamics during the post-war period compared to the linearized model.

5. Conclusions

We have formulated a macroeconomic model which goes a long way towards accounting for the

missing deflation puzzle, i.e. the empirical regularity that inflation fell so little in the United States

against the backdrop of the large and persistent fall in output. Our resolution of the puzzle stresses

the nonlinear influence of strategic complementarities and real rigidities in price-setting of firms.

Additional advantages of our proposed framework are that it (i) mitigates the tension between

the macroeconomic evidence of a low Phillips curve slope and the microeconomic evidence of fre-

quent price changes; (ii) allows us to explain the empirical positive skew in inflation without relying

on a similar positive skew output (which is counterfactual); and (iii), helps us to explain the low

rates of price and wage inflation in the last few years when the U.S. economy has recovered from

the recession. In future work, it would be interesting to complement our macro approach with a

study on firm-level data on prices and quantities as well as wages and labor market quantities.
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Figure �: Density of Inflation in Data vs. Stochastic Model Simulations
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 prior mean  post. mean   95% HPD interval  prior  pstdev

psie_est  6.000  12.5540  7.5826  17.7178  norm  4.0000
psiew_est  6.000  8.3103  1.9693  14.8010  norm  4.0000
Spp  4.000  4.8930  3.5291  6.2880  norm  1.0000
b  0.700  0.6677  0.6011  0.7319  beta  0.1500
sigmaa  1.000  0.7566  0.2244  1.4568  norm  0.7500
alfa  0.300  0.1956  0.1784  0.2129  norm  0.0750
idiff  3.000  2.7146  2.4296  2.9961  norm  0.2500
ydiff  1.750  1.5388  1.4465  1.6314  norm  0.2500
rhoR  0.800  0.7345  0.6789  0.7897  beta  0.1000
rpi  1.500  1.4428  1.2214  1.6744  norm  0.2500
ry  0.125  0.0666  0.0283  0.1072  norm  0.0500
rdy  0.250  0.3102  0.2181  0.4048  norm  0.1000
sigreps  0.200  0.2333  0.2080  0.2594  invg  Inf
sigtau  0.200  0.1679  0.1265  0.2106  invg  Inf
rhotau  0.700  0.7858  0.6825  0.8857  beta  0.1500
rhoMAtau  0.500  0.5071  0.2781  0.7221  beta  0.1500
sigzeth  0.200  0.4812  0.4026  0.5598  invg  Inf
rhozeth  0.700  0.9403  0.9052  0.9700  beta  0.1500
rhoMAzeth  0.500  0.8932  0.8331  0.9467  beta  0.1500
sigeps  1.000  0.5947  0.5320  0.6599  invg  Inf
rhoeps  0.700  0.9169  0.8827  0.9495  beta  0.1500
sigups  0.200  0.3614  0.2468  0.4849  invg  Inf
rhoups  0.700  0.4041  0.2616  0.5456  beta  0.1500
sigrp  0.200  0.6806  0.2937  1.1445  invg  Inf
rhorp  0.700  0.7818  0.6647  0.8931  beta  0.1500
sigg  1.000  1.7270  1.5437  1.9146  invg  Inf
rhog  0.700  0.9450  0.9083  0.9805  beta  0.1500 

5BCMF����&TUJNBUFE�1BSBNFUFST�PG�UIF�.FEJVN�4J[FE�.PEFM



Appendix A.

Below we state the nonlinear and linearized equilibrium conditions of the stylized model in 2.A.1

A.1. Nonlinear Equilibrium Equations

The nonlinear equilibrium equations can be written as:

Marginal utility (n1) : c−1t = λt

Euler equation (n2) : λt = βEtδt+1
Rt
Πt+1

λt+1

Resource Constraint(n3) : ct = yt

Production (n4) : yt = (p
∗
t )
−1 (w∗t )

−(1−α) kαl1−αt

Non.lin. pricing 1 (n5) : st =

%
1 +  p

&
(1 + θp)

1 +  p + θp p
λtyt#

1+θp
θp
(1+ p)

t mct

+βξpEtδt+1 (Π/Πt+1)
− 1+θp

θp
(1+ p) st+1

Non.lin. pricing 2 (n6) : ft = λtyt#

1+θp
θp
(1+ p)

t + βξpEtδt+1 (Π/Πt+1)
− (

1+ p+ pθp)
θp ft+1

Non.lin. pricing 3 (n7) : at =
 pθp

1 +  p + θp p
ytλt + βξpEtδt+1 (Π/Πt+1) at+1

Non.lin.pricing 4 (n8) : st = ftp̃t − atp̃
1+

1+θp
θp
(1+ p)

t

Zero profit condition prices (n9) : #t = 1 +  −  ∆t,2

Aggregate price index (n10) : #t = ∆t,3

Overall price dispersion (n11) : p∗t =
#

1+θp
θp

(1+ )

t

1 +  p
∆
− 1+θp

θp
(1+ p)

t,1 +
 p

1 +  p

Price dispersion 1 (n12) : ∆
− (

1+θp)(1+ p)
θp

t,1 =
%
1− ξp

&
p̃
− (

1+θp)(1+ p)
θp

t + ξp [(Π/Πt)∆t−1,1]
− (

1+θp)(1+ p)
θp

Price dispersion 2 (n13) : ∆t,2 =
%
1− ξp

&
p̃t + ξp (Π/Πt)∆t−1,2

Price dispersion 3 (n14) : ∆
−
1+ p+ pθp

θp

t,3 = (1− ξp)p̃
−
1+ p+ pθp

θp

t + ξp ((Π/Πt)∆t−1,3)
−
1+ p+ pθp

θp

Marginal cost (n15) : (1− α)mct = wtk−α
h
(w∗t )

−1 lt

iα

Taylor rule (n16) : Rt = max

 
1, R [Πt/Π]

γπ

"
yt
y
/
ypott
ypot

#γx!

A.1 All derivations and the closed form steady state are provided in the technical appendix which is available at
https://sites.google.com/site/mathiastrabandt
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Wage inflation (n17) : Πwt = Πt
wt
wt−1

Non.lin. wage setting 1 (n18) : swt = f
w
t w̃t − a

w
t w̃

1+
(1+θw)(1+ w)

θw
t

Non.lin. wage setting 2 (n19) : fwt = (w
∗
t )
−1 ltλtwt#

(1+θw)(1+ w)
θw

w,t + βξwδt+1Et

(
Πw
Πw,t+1

)− 1+ w+θw w
θw

fwt+1

Non.lin. wage setting 3 (n20) : awt =
θw w

 w + θw w + 1
(w∗t )

−1 ltλtwt + βξwδt+1Et
Πw
Πw,t+1

awt+1

Non.lin. wage setting 4 (n21) : swt =
(1 +  w) (1 + θw)

1 +  w + θw w
(w∗t )

−1 ltλtmrst#
(1+θw)(1+ w)

θw
w,t

+βξwδt+1Et

(
Πw
Πw,t+1

)− (1+θw)(1+ w)
θw

swt+1

Zero profit condition wages (n22) : #wt = 1 +  w −  w∆
w
t,2

Agg. wage index (n23) : #wt = ∆
w
t,3

Overall wage disperision (n24) : w∗t =
[#wt ]

(1+θw)(1+ w)
θw

1 +  w

;
∆wt,1

<− (1+θw)(1+ w)
θw +

 w
1 +  w

Wage dispersion 1 (n25) :
;
∆wt,1

<− (1+θw)(1+ w)
θw = (1− ξw) [w̃t]

− (1+θw)(1+ w)
θw

+ξw

(
Πw

Πwt
∆wt−1,1

)− (1+θw)(1+ w)
θw

Wage dispersion 2 (n26) : ∆wt,2 = (1− ξw) w̃t + ξw (Π
w/Πwt )∆

w
t−1,2

Wage dispersion 3 (n27) :
;
∆wt,3

<− 1+ w+ wθw
θw = (1− ξw)w̃

− 1+ w+ wθw
θw

t

+ξw
%
(Πw/Πwt )∆

w
t−1,3

&− 1+ w+ wθw
θw

Marg. rate of subst. (n28): mrst = 1/λt

Flex-price and flex-wage (potential) economy is the version of the model when prices and wages

are flexible, i.e. ξp = ξw = 0.

Euler equation, pot. econ (n29) :
+
cpott

,−1
= βEtδtrr

pot
t

+
cpott+1

,−1

Leisure/labor, pot. econ (n30) : 1 =
+
cpott

,−1 1

1 + θw
wpott

Wage, pot. econ (n31) :
1− α
1 + θp

%
kpot

&α
= wpott

+
lpott

,α

Res. constraint, pot. econ (n32) : cpott = ypott

Production, pot. econ (n33) : ypott =
%
kpot

&α +
lpott

,1−α
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Note that we do not remove the monopoly power distortion in the product and labor market, so

the steady state level of output is below its e¢cient level in both the actual and potential economy.

Hence, we have 33 equations in the following 33 unknows:

ct λt wt Rt Πt yt p
∗
t w

∗
t lt st #t mct ft at p̃t ∆t,1 ∆t,2 ∆t,3

Πwt s
w
t f

w
t w̃t a

w
t #wt ∆

w
t,1 ∆

w
t,2 ∆

w
t,3 mrst

cpott rrpott lpott wpott ypott

The variable δt is exogenous. We specify a process for δt in eq. (16). In the above equations

we have set ! = ζ
1/κw
h,t = 1.

A.2. Steady State

R = Π/β

p̃ = 1

∆1 = 1

∆2 = 1

∆3 = 1

p∗ = 1

w∗ = 1

# = 1

δ = 1

l = n

mc =
1

1 + θp

Notice that we have not made use of the first order condition for capital inputs by firms in the

set of equilibrium equations. That first order condition simply pins down the rental rate on capital:

rk = mcα

"
l

k

#1−α

Now, returns of bonds and capital must be the same, i.e.:

R/Π− 1 = 1/β − 1 = rk = mcα
"
l

k

#1−α

k

l
=

"
1− β
mcαβ

# 1
α−1
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w = (1− α)mc
"
k

l

#α

y/l =

"
k

l

#α

c/y = 1

c/l = c/y × y/l

l =
1

c/l

1

1 + θw
w

y = y/l ∗ l

c = c/l ∗ l

λ = 1/c

s =
1

1− βξp

%
1 +  p

&
(1 + θp)

1 +  p + θp p
λymc

f =
1

1− βξp
λy

a =
1

1− βξp

 pθp

1 +  p + θp p
yλ

w̃ = 1

∆w1 = 1

∆w2 = 1

∆w3 = 1

#w = 1

Πw = Π

fw =
1

1− βξw
nλw

aw =
1

1− βξw

θw w
 w + θw w + 1

nλw

sw =
1

1− βξw

(1 +  w) (1 + θw)

1 +  w + θw w
nλmrs

sw = fw − aw
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Using the last equation it follows that:

mrs =
1

1 + θw
w

rrpot =
1

β

mcpot =
1

1 + θp

kpot

lpot
=

"
1− β
mcpotαβ

# 1
α−1

wpot =
1− α
1 + θp

"
kpot

lpot

#α

ypot/lpot =

"
kpot

lpot

#α

cpot/ypot = 1

cpot/lpot = cpot/ypot × ypot/lpot

npot =
1

cpot/lpot
1

1 + θw
wpot

cpot = cpot/lpot ∗ lpot

ypot = ypot/lpot ∗ lpot

A.3. Linearized Equilibrium Equations

Equations (n9) — (n14) can be expressed in log-linearized form as follows:

#̂t = 0, p̂
∗
t = 0, ∆̂t,1 = 0, ∆̂t,2 = 0, ∆̂t,3 = 0, b̃pt =

ξp
1− ξp

Π̂t

After some tedious math, eqs. (n5) — (n8) can be written in log-linear form as:

log.lin. pricing 1 (n5) : ŝt =
%
1− βξp

& h
ŷt + λ̂t + cmct

i
+ βξpEt

(
δ̂t+1 +

1 + θp
θp

%
1 +  p

&
Π̂t+1 + ŝt+1

)

log.lin. pricing 2 (n6) : f̂t =
%
1− βξp

& +
ŷt + λ̂t

,
+ βξpEt

"
δ̂t+1 +

%
1 +  p +  pθp

&

θp
Π̂t+1 + f̂t+1

#

log.lin. pricing 3 (n7) : ât =
%
1− βξp

& +
ŷt + λ̂t

,
+ βξpEt

h
δ̂t+1 − Π̂t+1 + ât+1

i

log.lin. pricing 4 (n8) : ŝt =
1 +  p + θp p

1 +  p
f̂t −

 pθp

1 +  p
ât +

ξp
%
1−  p −  pθp

&

1− ξp
Π̂t
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Premultiply eqs. (n6) and (n7) by
1+ p+θp p

1+ p
and

 pθp
1+ p

. Add eq. (n7) and substract eq. (n6)

from (n5):

ŝt −
1 +  p + θp p

1 +  p
f̂t +

 pθp

1 +  p
ât =

%
1− βξp

&
cmct

+βξpEt

"
ŝt+1 −

1 +  p + θp p
1 +  p

f̂t+1 +
 pθp

1 +  p
ât+1 +

%
1−  p −  pθp

&
Πt+1

#

Use equation (n8) to get

ξp
%
1−  p −  pθp

&

1− ξp
Π̂t =

%
1− βξp

&
cmct

+βξpEt

 
ξp
%
1−  p −  pθp

&

1− ξp
+
%
1−  p −  pθp

&
!
Π̂t+1

Or

Π̂t = βEtΠ̂t+1 +

%
1− ξp

& %
1− βξp

&

ξp

1

1− (1 + θp) p
cmct

The coe¢cient 1
1−(1+θp) p

is identical to the one in Levin, Lopez-Salido and Yun (2007).

The nonlinear wage setting equations can be log-linearized to obtain:

f̂wt = (1− βξw)
+
n̂t + λ̂t + ŵt

,
+ βξwEt

"
δ̂t+1 +

1 +  w + θw w
θw

Π̂w,t+1 + f̂
w
t+1

#

âwt = (1− βξw)
+
n̂t + λ̂t + ŵt

,
+ βξwEt

+
δ̂t+1 − Π̂w,t+1 + âwt+1

,

ŝwt = (1− βξw)
+
n̂t + λ̂t + dmrst

,
+ βξwEt

"
δ̂t+1 +

(1 + θw) (1 +  w)

θw
Π̂w,t+1 + ŝ

w
t+1

#

ŝwt =
1 +  w + θw w

1 +  w
fwt −

θw w
1 +  w

âwt + (1−  w − θw w) b̃wt

Also:

b̃wt =
ξw

1− ξw
Π̂w,t
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So that

1 +  w + θw w
1 +  w

f̂wt =
1 +  w + θw w

1 +  w
(1− βξw)

+
n̂t + λ̂t + ŵt

,

+
1 +  w + θw w

1 +  w
βξwEt

"
δ̂t+1 +

1 +  w + θw w
θw

Π̂w,t+1 + f̂
w
t+1

#

θw w
1 +  w

âwt =
θw w
1 +  w

(1− βξw)
+
n̂t + λ̂t + ŵt

,
+

θw w
1 +  w

βξwEt

+
δ̂t+1 − Π̂w,t+1 + âwt+1

,

ŝwt = (1− βξw)
+
n̂t + λ̂t + dmrst

,
+ βξwEt

"
δ̂t+1 +

(1 + θw) (1 +  w)

θw
Π̂w,t+1 + ŝ

w
t+1

#

ŝwt =
1 +  w + θw w

1 +  w
fwt −

θw w
1 +  w

âwt + (1−  w − θw w)
ξw

1− ξw
Π̂w,t

Substract first and add second equation to third equation and substitute last equation to get:

(1−  w − θw w)
ξw

1− ξw
Π̂w,t = (1− βξw) (dmrst − ŵt)

+βξwEt

"
(1 + θw) (1 +  w)

θw
Π̂w,t+1 + ŝ

w
t+1

#

+
θw w
1 +  w

βξwEt

+
−Π̂w,t+1 + âwt+1

,

−
1 +  w + θw w

1 +  w
βξwEt

"
1 +  w + θw w

θw
Π̂w,t+1 + f̂

w
t+1

#

Or :

(1−  w − θw w)
ξw

1− ξw
Π̂w,t = (1− βξw) (dmrst − ŵt)

+βξw (1−  w − θw w)
"
1 +

ξw
1− ξw

#
EtΠ̂w,t+1

Or:

Π̂w,t = βEtΠ̂w,t+1 +
(1− ξw) (1− βξw)

ξw

1

1− (1 + θw) w
(dmrst − ŵt)

where

dmrst = −λ̂t

= ĉt

So, the set of log-linearized equilibrium equations (with the exception of the nonlinear Taylor

rule) can be written as:
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Euler equation (l1) : 0 = Et

h
δ̂t+1 + R̂t − Π̂t+1 − ĉt+1 + ĉt

i

Resource constraint (l2) : ĉt = ŷt

Production (l3) : ŷt = (1− α) l̂t

Marginal cost (l4) : cmct = ŵt + αl̂t

Marg. rate of subst.(l5) : dmrst = ĉt

Taylor rule (l6) : R̂t = max
+
(1−R)/R, γπΠ̂t + γx

h
ŷt − ŷ

pot
t

i,

Wage inflation (l7) : Π̂wt = Π̂t + ŵt − ŵt−1

Price Phillips Curve (l8) : Π̂t = βEtΠ̂t+1 +

%
1− ξp

& %
1− βξp

&

ξp

1

1− (1 + θp) p
cmct

Wage Phillips Curve (l9) : Π̂wt = βEtΠ̂
w
t+1 +

(1− ξw) (1− βξw)
ξw

1

1− (1 + θw) w
(dmrst − ŵt)

Euler Equation, pot. econ (l10) : 0 = Et

h
δ̂t+1 + brrpott − ĉpott+1 + ĉ

pot
t

i

Leisure/Labor,pot. econ (l11) : ĉpott = ŵpott

Wage, pot. econ (l12) : ŵpott = −αl̂pott

Res. constraint, pot. econ (l13) : ĉpott = ŷpott

Production, pot. econ (l14) : ŷpott = (1− α) l̂pott

where hat variables denote percent deviations from steady state. Breve variables are absolute

deviations from steady state.

Thus, we have 14 equations in the following 14 unknows:

R̂t Π̂t ĉt ŷt l̂t ŵt cmct dmrst Π̂wt

ĉpott brrpott l̂pott ŵpott ŷpott

The variable δ̂t is exogenous, and derived from the δt−process in eq. (16).
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A.4. Canonical Representation of Log-linearized Model

Assuming linear production in labor e§ort (i.e. α = 0), the log-linearized equations can be expressed

as follows:

Euler equation (l1) : ŷt = Etŷt+1 −
+
R̂t − EtΠ̂t+1 − brrpott

,

Marginal cost (l4) : cmct = ŵt

Marg. rate of subst.(l5) : dmrst = ŷt

Taylor rule (l6) : R̂t = max
+
(1−R)/R, γπΠ̂t + γx

h
ŷt − ŷ

pot
t

i,

Wage inflation (l7) : Π̂wt = Π̂t + ŵt − ŵt−1

Price Phillips Curve (l8) : Π̂t = βEtΠ̂t+1 +

%
1− ξp

& %
1− βξp

&

ξp

1

1− (1 + θp) p
cmct

Wage Phillips Curve (l9) : Π̂wt = βEtΠ̂
w
t+1 +

(1− ξw) (1− βξw)
ξw

1

1− (1 + θw) w
(dmrst − ŵt)

Potential Real Rate (l10) : brrpott = −Etδ̂t+1

Potential Output (l11) : ŷpott = 0

Or, more compactly:

Euler equation (l1c) : ŷt = Etŷt+1 −
+
R̂t − EtΠ̂t+1 − brrpott

,

Price Phillips Curve (l2c) : Π̂t = βEtΠ̂t+1 + κpŵt

Wage Phillips Curve (l3c) : Π̂wt = βEtΠ̂
w
t+1 + κw [ŷt − ŵt]

Taylor rule (l4c) : R̂t = max
n
− logR, γπΠ̂t + γxŷt

o

Wage inflation (l5c) : Π̂wt = Π̂t + ŵt − ŵt−1

where

brrpott = −Etδ̂t+1,

and

κp =

%
1− ξp

& %
1− βξp

&

ξp

1

1− (1 + θp) p
,

κw =
(1− ξw) (1− βξw)

ξw

1

1− (1 + θw) w
.
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A.5. Additional results in the Stylized model

In this section, we report some additional results in the stylized model.

First, Figures A.1 and A.2 show the results of an extended set of variables for the results

depicted in Figure 1. Next, Figure A.3 reports results when we scale the discount factor shock

in the linearized and nonlinear models to produce the same-sized output contraction in the first

period. Figure A.4 reports the results when the Dixit-Stiglitz aggregator is used instead of the

Kimball Aggregator. Finally, Figures A.5 and A.6 report results for the stochastic simulations for

an extended set of variables.
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Appendix B. The Workhorse New Keynesian DSGE Model

In this appendix, we present the nonlinear and linearized equations in the workhorse model. The

formulation of the model is identical to baseline specification with Calvo wage stickiness in Chris-

tiano, Eichenbaum and Trabandt (2016), but is adapted for the case of Kimball aggregation in

goods and labor markets and multiple shocks.

B.1. Nonlinear Equilibrium Equations

The scaled nonlinear equilibrium equilibrium equations can be written as follows:

Cons. FOC (n1) : λt = ζc,t(ct − bct−1/µt)
−1 − ιcβbEtζc,t+1

%
ct+1µt+1 − bct

&−1

Bond. FOC (n2) : λt = ϵRP,tβEtλt+1Rt/
%
πt+1µt+1

&

Invest. FOC (n3) : 1 = pk0,tΥ
η
t

;
1− St − S0tµtµi,tit/it−1

<

+ιiβEtλt+1/λtpk0,t+1Υ
η
t+1S

0
t+1 (it+1/it)

2 µi,t+1µt+1

Capital FOC (n4) : λt = βEtλt+1R
k
t+1/(πt+1µt+1)

Capital return (n5) : Rkt = πt/(µi,tpk0,t−1)
%
uta

0 (ut)− a(ut) + (1− δ)pk0,t
&

LOM capital (n6) : kt = (1− δ) /(µtµi,t)kt−1 +Υ
η
t (1− St) it

Cost. minim. (n7) : 0 = a0 (ut)utkt−1/(µi,tµt)− α/(1− α)wt [νRt + 1− ν] (w
∗
t )
−1 lt

Marginal cost (n8) : mct = τ
1/κ
t

%
µi,tµt

&α
wt [νRt + 1− ν]

+
utkt−1/

+
(w∗t )

−1 lt

,,−α
/(ϵt (1− α))

Production (n9) : yt = (p
∗
t )
−1
(
ϵt
%
utkt−1/(µtµi,t)

&α +
(w∗t )

−1 lt

,1−α
− φ

)

Resources (n10) : yt = gt + ct + it + a (ut) kt−1/(µi,tµt)

Real GDP (n11) : Yt = gt + ct + it

Taylor rule (n12) : ln
%
Rnott

&
= ρR ln

%
Rnott−1

&
+ ln ϵr,t

+(1− ρR)

2

64
ln(R) + rπ ln

+%
π4t
&0.25

/πTt

,

+ry ln
+
Yt/Y

f
t

,
+ r∆y ln

"
Yt/Yft

Yt−4/Y
f
t−4

#

3

75

Ann. Infl. (n13) : π4t = πtπt−1πt−2πt−3

ZLB (n14) : Rt = max(1, R
not
t )

Cap. util. cost. (n15) : a(ut) = 0.5σbσa (ut)
2 + σb (1− σa)ut + σb ((σa/2)− 1)
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Cap. util. deriv. (n16) : a0(ut) = σbσaut + σb (1− σa)

Invest. adj. cost (n17) : St = 0.5 exp
hp
S00
%
µtµi,tit/it−1 − µ · µi

&i

+0.5 exp
h
−
p
S00
%
µtµi,tit/it−1 − µ · µi

&i
− 1

Inv. adj. deriv. (n18) : S0t = 0.5
p
S00 exp

hp
S00
%
µtµi,tit/it−1 − µ · µΨ

&i

−0.5
p
S00 exp

h
−
p
S00
%
µtµi,tit/it−1 − µ · µi

&i

Non.lin. pricing 1 (n19) : st =

%
1 +  p

&
(1 + θp)

1 +  p + θp p
λtyt#

1+θp
θp
(1+ p)

t mct

+βξpEt (π/πt+1)
− 1+θp

θp
(1+ p) st+1

Non.lin. pricing 2 (n20) : ft = λtyt#

1+θp
θp
(1+ p)

t + βξpEt (π/πt+1)
− (

1+ p+ pθp)
θp ft+1

Non.lin. pricing 3 (n21) : at =
 pθp

1 +  p + θp p
ytλt + βξpEt (π/πt+1) at+1

Non.lin.pricing 4 (n22) : st = ftp̃t − atp̃
1+

1+θp
θp
(1+ p)

t

Zero profit condition prices (n23) : #t = 1 +  p −  p∆t,2

Aggregate price index (n24) : #t = ∆t,3

Overall price dispersion (n25) : p∗t =
#

1+θp
θp
(1+ p)

t

1 +  p
∆
− 1+θp

θp
(1+ p)

t,1 +
 p

1 +  p

Price dispersion 1 (n26) : ∆
− (

1+θp)(1+ p)
θp

t,1 =
%
1− ξp

&
p̃
− (

1+θp)(1+ p)
θp

t + ξp [(π/πt)∆t−1,1]
− (

1+θp)(1+ p)
θp

Price dispersion 2 (n27) : ∆t,2 =
%
1− ξp

&
p̃t + ξp (π/πt)∆t−1,2

Price dispersion 3 (n28) : ∆
−
1+ p+ pθp

θp

t,3 = (1− ξp)p̃
−
1+ p+ pθp

θp

t + ξp ((π/πt)∆t−1,3)
−
1+ p+ pθp

θp

Non.lin. wage setting 1 (n29) : swt = f
w
t w̃t − a

w
t w̃

1+
(1+θw)(1+ w)

θw
t

Non.lin. wage setting 2 (n30) : fwt = (w
∗
t )
−1 ltλtwt#

(1+θw)(1+ w)
θw

w,t + βξwEt

(
Πw
Πw,t+1

)− 1+ w+θw w
θw

fwt+1

Non.lin. wage setting 3 (n31) : awt =
θw w

 w + θw w + 1
(w∗t )

−1 ltλtwt + βξwEt
Πw
Πw,t+1

awt+1

Non.lin. wage setting 4 (n32) : swt =
(1 +  w) (1 + θw)

1 +  w + θw w
(w∗t )

−1 ltλtmrst#
(1+θw)(1+ w)

θw
w,t

+βξwδtEt

(
Πw
Πw,t+1

)− (1+θw)(1+ w)
θw

swt+1
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Zero profit condition wages (n33) : #wt = 1 +  w −  w∆
w
t,2

Agg. wage index (n34) : #wt = ∆
w
t,3

Overall wage disperision (n35) : w∗t =
[#wt ]

(1+θw)(1+ w)
θw

1 +  w

;
∆wt,1

<− (1+θw)(1+ w)
θw +

 w
1 +  w

Wage dispersion 1 (n36) :
;
∆wt,1

<− (1+θw)(1+ w)
θw = (1− ξw) [w̃t]

− (1+θw)(1+ w)
θw

+ξw

(
Πw

Πwt
∆wt−1,1

)− (1+θw)(1+ w)
θw

Wage dispersion 2 (n37) : ∆wt,2 = (1− ξw) w̃t + ξw (Π
w/Πwt )∆

w
t−1,2

Wage dispersion 3 (n38) :
;
∆wt,3

<− 1+ w+ wθw
θw = (1− ξw)w̃

− 1+ w+ wθw
θw

t

+ξw
%
(Πw/Πwt )∆

w
t−1,3

&− 1+ w+ wθw
θw

Wage inflation (n39) : πw,t = wtµtπt/wt−1

Marg. rate of subst (n40) : mrst=!ζ
1/κw
h /λt

The parameters ιc and ιi allow to parameterize the model such that either internal or external

habit in consumption as well as investment adjustment costs can be considered. The parameter ν

parameterizes working capital.

The equations for the flexible price - flexibe wage economy are:

Cons. FOC (n1f) : λft = ζc,t(c
f
t − bc

f
t−1/µt)

−1 − ιcβbEtζc,t+1
+
cft+1µt+1 − bc

f
t

,−1

Bond. FOC (n2f) : λft = ϵRPβEtλ
f
t+1R

f
t /
+
πft+1µt+1

,

Invest. FOC (n3f) : 1 = pfk0,tΥ
η
t

h
1− Sft − S

0f
t µtµi,ti

f
t /i

f
t−1

i

+ιiβEtλ
f
t+1/λ

f
t p
f
k0,t+1Υ

η
t+1S

0f
t+1

+
ift+1/i

f
t

,2
µi,t+1µt+1

Capital FOC (n4f) : λft = βEtλ
f
t+1R

k,f
t+1/(π

f
t+1µt+1)

Capital return (n5f) : Rk,ft = πft /(µi,tp
f
k0,t−1)

+
uft a

0
+
uft

,
− a(uft ) + (1− δ)p

f
k0,t

,

LOM capital (n6f) : kft = (1− δ) /(µtµi,t)k
f
t−1 +Υ

η
t

+
1− Sft

,
ift

Cost. minim. (n7f) : 0 = a0
+
uft

,
uft k

f
t−1/(µi,tµt)− α/(1− α)w

f
t

h
νRft + 1− ν

i
lft

Marginal cost (n8f) : mcft = τ1/κ
%
µi,tµt

&α
wft

h
νRft + 1− ν

i +
uft k

f
t−1/l

f
t

,−α
/(ϵt (1− α))

Production (n9f) : yft = ϵt

+
uft k

f
t−1/(µtµi,t)

,α
l1−α,ft − φ

Resources (n10f) : yft = gt + c
f
t + i

f
t + a

+
uft

,
kft−1/(µi,tµt)
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Real GDP (n11f) : Yft = gt + c
f
t + i

f
t

Taylor rule (n12f) : ln
+
Rnot,ft

,
= ρR ln

+
Rnot,ft−1

,

+(1− ρR)
(
lnR+ rπ ln

"+
π4,ft

,0.25
/πTt

#)
+ ln ϵr,t

Ann. Infl. (n13f) : π4,ft = πft π
f
t−1π

f
t−2π

f
t−3

ZLB (n14f): Rft = max(1, R
not,f
t )

Cap. util. cost. (n15f) : a(uft ) = 0.5σbσa

+
uft

,2
+ σb (1− σa)u

f
t + σb ((σa/2)− 1)

Cap. util. deriv. (n16f) : a0(uft ) = σbσau
f
t + σb (1− σa)

Invest. adj. cost (n17f) : Sft = 0.5 exp
hp
S00
+
µtµi,ti

f
t /i

f
t−1 − µ · µi

,i

+0.5 exp
h
−
p
S00
+
µtµi,ti

f
t /i

f
t−1 − µ · µi

,i
− 1

Inv. adj. deriv. (n18f) : S0ft = 0.5
p
S00 exp

hp
S00
+
µtµi,ti

f
t /i

f
t−1 − µ · µΨ

,i

−0.5
p
S00 exp

h
−
p
S00
+
µtµi,ti

f
t /i

f
t−1 − µ · µi

,i

Marginal cost (n19f) : mcft = 1/(1 + θp)

Marg. rate of subst (n20f) : mrsft=!ζ
1/κw
h /λft = w

f
t / (1 + θw)

Wage inflation (n21f) : πfw,t = w
f
t µtπ

f
t /w

f
t−1

As Smets and Wouters (2007), we assume that the price markup shock and the wage markup

shock do not a§ect the potential (flex. price, flex. wage) economy. We also assume that the risk

premium shock does not a§ect the potential economy.

In total, we have 68 equations determining the following 68 unkown variables:

λt, ct, Rt,πt, pk0,t, St, S
0
t, it, R

k
t , ut, a

0 (ut) , a(ut), kt, wt, w
∗
t , lt,mct, yt, p

∗
t ,Yt, (20)

Rnott , st,#t, ft, at, p̃t,∆t,2,∆t,3,∆t,1, s
w
t , f

w
t , w̃t, a

w
t ,∆

w
t,2,∆

w
t,3,∆

w
t,1,πw,t,#

w
t ,mrst,π

4
t , (20)

λft , c
f
t , R

f
t ,π

f
t , p

f
k0,t, S

f
t , S

0f
t , i

f
t , R

k,f
t , uft , k

f
t , w

f
t , l

f
t ,mc

f
t , y

f
t ,Y

f
t , R

not,f
t , a(uft ), a

0(uft ),π
f
w,t,π

4,f
t , (21)

τ t, ϵt,Υt, ζh,t, ϵrp,t, ϵr,t, gt. (7)

Note that the shocks to the price markup and the wage markup are scaled by the inverse slopes

of the price and wage Phillips curves

κp =

%
1− ξp

& %
1− βξp

&

ξp

1

1− (1 + θp) p
,

κw =
(1− ξw) (1− βξw)

ξw

1

1− (1 + θw) w
.
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This way, after log-linearization, both shocks enter additively separable with a unit coe¢cient

in the respective Phillips curves. The same scaling is done in Smets and Wouters (2007) and in

many other empirical papers. Note that both shocks equals unity in steady state so that the scaling

does not a§ect the steady state. The scaling gets rid of the high negative correlation between the

estimated standard deviations of the markup shocks and the estimated slope parameters. The

process for the eight shocks are provided below.

In addition, we scale the investment specific technology shock by the factor

η =
1
i
k

=
1

1− 1−δ
µµi

such that the investment specific technology shock enters the law of motion for capital with a unit

coe¢cient. The same scaling was used in Adolfson, Laséen, Lindé and Villani (2007).

B.2. Exogenous Processes

We assume the following seven stochastic shocks drive the dynamics in the economy:

Price Markup (nS1) : ln τ t = (1− ρτ ) ln τ + ρτ ln τ t−1 + στ"τ ,t/100− ρ
MA
τ στ"τ ,t−1/100

Stat. Neutr. Tech. (nS2) : ln ϵt = (1− ρϵ) ln ϵ+ ρϵ ln ϵt−1 + σϵ"ϵ,t/100

Stat. Invest. Tech. (nS3) : lnΥt = (1− ρΥ) lnΥ+ ρΥ lnΥt−1 + σΥ"Υ,t/100

Lab. Pref. (nS4) : ln ζh,t = (1− ρζh) ln ζh + ρζh ln ζh,t−1 + σζh"ζh,t/100− ρ
MA
ζh

σζh"ζh,t−1/100

Risk Premium (nS5) : ln ϵrp,t = (1− ρϵrp) ln ϵrp + ρϵrp ln ϵrp,t−1 + σϵrp"ϵrp,t/100

Monetary Policy (nS6) : ln ϵr,t = (1− ρϵr) ln ϵr + ρϵr ln ϵr,t−1 + σϵr"ϵr,t/100

Gov. Cons. (nS7) : ln gt = (1− ρg) ln g + ρg ln gt−1 + σg"g,t/100

The equations above (nonlinear form) and below (log linearized form) also contain the shocks

µi,t, µz,t, ζc,t,π
T
t and µt = µz,tµ

α/(1−α)
i,t but the variance of these four shocks are set to nil.
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B.3. Measurement Equations

The have the following measurement equations of the estimated model:

πobst = 400 lnπt

πobsw,t = 400 lnπw,t

Robst = 400 (Rt − 1)

∆GDP obst = 400 (lnµt + lnYt − lnYt−1)

∆cobst = 400 (lnµt + ln ct − ln ct−1)

∆iobst = 400
%
lnµt + lnµi,t + ln it − ln it−1

&

lobst = 100 (ln lt − ln l)

B.4. Log-linearized Equilibrium Equations

The log-linearized equations of the sticky price - sticky wage economy read as follows:

Cons. FOC (l1) : λ̂t =
µ

µ− ιcbβ

(
ζ̂c,t −

ιcβb

µ
Etζ̂c,t+1

)

−
bµ

(µ− bβιc) (µ− b)

(
µ̂t − ιcβEtµ̂t+1 +

µ2 + ιcb
2β

bµ
ĉt − ιcβEtĉt+1 − ĉt−1

)

Bond. FOC (l2) : λ̂t = ϵ̂RP,t + Etλ̂t+1 + R̂t − Etπ̂t+1 − Etµ̂t+1

Invest. FOC (l3) : 0 = p̂k0,t + ηΥ̂t − S00 (µµi)
2

" +
bit −bit−1

,
− ιiβ

+
bit+1 −bit

,

+
%
µ̂t + µ̂i,t

&
− ιiβ

%
µ̂t+1 + µ̂i,t+1

&

#

Capital FOC (l4) : λ̂t = Etλ̂t+1 + R̂
k
t+1 − Etπ̂t+1 − Etµ̂t+1

Capital return (l5) : R̂kt = π̂t − µ̂i,t − p̂k0,t−1 +
β

µµi

%
σbσaût + (1− δ)p̂k0,t

&
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LOM capital (l6) : k̂t =
1− δ
µµi

+
k̂t−1 − µ̂t − µ̂i,t

,
+ 1/ηbit + Υ̂t, η =

1
i
k

=
1

1− 1−δ
µµi

Cost. minim. (l7) : (1 + σa) ût =
νR

νR+ 1− ν
R̂t + ŵt + l̂t − k̂t−1 + µ̂i,t + µ̂t

Marginal cost (l8) : dmct =
1

κ
τ̂ t + ŵt +

νR

νR+ 1− ν
R̂t − α

+
ût + k̂t−1 − µ̂i,t − µ̂t − l̂t

,
− ϵ̂t

Production (l9) : ŷt = (1 + θp) (1− profy)
h
ϵ̂t + α

+
ût + k̂t−1 − µ̂t − µ̂i,t

,
+ (1− α) l̂t

i

Resources (l10) : yŷt = gĝt + cĉt + ibit + k/(µiµ)σbût

Real GDP (l11) : Y bYt = gĝt + cĉt + ibit

Taylor rule (l12) : R̂nott = ρRR̂
not
t−1 + (1− ρR)

2

4
rπ
%
π̂4t /4− π̂

T
t

&
+ ry

+
bYt − bYft

,

+r∆y

++
bYt − bYft

,
−
+
bYt−4 − bYft−4

,,

3

5+ ϵ̂r,t

Ann. Infl. (l13) : π̂4t = π̂t + π̂t−1 + π̂t−2 + π̂t−3

ZLB (l14) : R̂t = max(− lnR, R̂nott )

Price Phillips Curve (l15) : π̂t = βEtπ̂t+1 +

%
1− ξp

& %
1− βξp

&

ξp

1

1− (1 + θp) p
cmct

Wage Phillips Curve (l16) : π̂wt = βEtπ̂
w
t+1 +

(1− ξw) (1− βξw)
ξw

1

1− (1 + θw) w
(dmrst − ŵt)

Wage inflation (l17) : π̂wt = π̂t + ŵt − ŵt−1 + µ̂t

Marg. Rate of Subst. (l18) : dmrst=
1

κw
ζ̂h,t − λ̂t
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The equations of the flexible price - flexible wage economy are:

Cons. FOC (l1f) : λ̂
f

t =
µ

µ− ιcbβ

(
ζ̂c,t −

ιcβb

µ
Etζ̂c,t+1

)
−

bµ

(µ− bβιc) (µ− b)
;
µ̂t − ιcβEtµ̂t+1

<

−
bµ

(µ− ιcbβ) (µ− b)

(
µ2 + ιcb

2β

bµ
ĉft − ιcβEtĉ

f
t+1 − ĉ

f
t−1

)

Bond. FOC (l2f) : λ̂
f

t = 0 ∗ ϵ̂RP,t + Etλ̂
f

t+1 + R̂
f
t − Etπ̂

f
t+1 − Etµ̂t+1

Invest. FOC (l3f) : 0 = p̂fk0,t + ηΥ̂t − S
00 (µµi)

2

" +
bift −bi

f
t−1

,
− ιiβ

+
bift+1 −bi

f
t

,

+
%
µ̂t + µ̂i,t

&
− ιiβ

%
µ̂t+1 + µ̂i,t+1

&

#

Capital FOC (l4f) : λ̂
f

t = Etλ̂
f

t+1 + R̂
k,f
t+1 − Etπ̂

f
t+1 − Etµ̂t+1

Capital return (l5f) : R̂k,ft = π̂ft − µ̂i,t − p̂
f
k0,t−1 +

β

µµi

+
σbσaû

f
t + (1− δ)p̂

f
k0,t

,

LOM capital (l6f) : k̂ft =
1− δ
µµi

+
k̂ft−1 − µ̂t − µ̂i,t

,
+ 1/ηbift + Υ̂t

Cost. minim. (l7f) : (1 + σa) û
f
t =

νR

νR+ 1− ν
R̂ft + ŵ

f
t + l̂

f
t − k̂

f
t−1 + µ̂i,t + µ̂t

Marginal cost (l8f) : 0 = 0 ∗
1

κ
τ̂ t + ŵ

f
t +

νR

νR+ 1− ν
R̂ft − α

+
ûft + k̂

f
t−1 − µ̂i,t − µ̂t − l̂

f
t

,
− ϵ̂t

Production (l9f) : ŷft = (1 + θp) (1− profy)
h
ϵ̂t + α

+
ûft + k̂

f
t−1 − µ̂t − µ̂i,t

,
+ (1− α) l̂ft

i

Resources (l10f) : yŷft = gĝt + cĉ
f
t + ibi

f
t + k/(µiµ)σbû

f
t

Real GDP (l11f) : Y bYft = gĝ
f
t + cĉ

f
t + ibi

f
t

Taylor rule (l12f) : R̂not,ft = ρRR̂
not,f
t−1 + (1− ρR) rπ

+
π̂4,ft − π̂Tt

,
+ ϵ̂r,t

Ann. Infl. (l13f) : π̂4,ft = 0.25
+
π̂ft + π̂

f
t−1 + π̂

f
t−2 + π̂

f
t−3

,

ZLB (l14f) : R̂ft = max(− lnR, R̂
not,f
t )

Wage inflation (l15f) : π̂w,ft = π̂ft + ŵ
f
t − ŵ

f
t−1 + µ̂t

Marg. Rate of Subst. (l16f) : wft =0 ∗
1

κw
ζ̂h,t − λ̂

f

t

where profy denotes the steady state profits to output ratio.

In total, we have 34 equations determining 34 endogenous variables

λ̂t, ĉt, R̂t, π̂t, p̂k0,t,bit, R̂kt , ût, k̂t, ŵt, l̂t,dmct, ŷt, bYt, R̂nott ,dmrst, π̂wt , π̂4t , (18)

λ̂
f

t , ĉ
f
t , R̂

f
t , π̂

f
t , p̂

f
k0,t,
bift , R̂

k,f
t , ûft , k̂

f
t , ŵ

f
t , l̂

f
t , ŷ

f
t ,
bYft , R̂

not,f
t , π̂w,ft , π̂4,ft . (16)

In addition, we have the 7 exogenous shocks that are described above in eqs. (nS1) — (nS7).
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B.5. Steady State

The steady state is computed as follows.

Impose u = 1, solve for σb later

a(1) = 0

µ = µ/ (µi)
α/(1−α)

S = 0

S0 = 0

Impose π, “drop” Taylor rule, i.e. R = R

R = πµ/β

pk0 = 1

w∗ = 1

p∗ = 1

Rk = πµ/β

mc = 1/(1 + θp)

πw = πµ

σb = Rkµipk0/π − (1− δ)pk0

r̄k = σb

a0(1) = σb

a(u) = 0.5σbσa + σb (1− σa) + σb ((σa/2)− 1)
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kl =
h+
α (µiµ)

1−αmc/σb

,i1/(1−α)

w =
(1− α)mc

(µiµ)
α (νR+ 1− ν)

(kl)α

Assume some l and solve for ! later

k = k ∗ l

Steady state profits are

Prof = Py −MC(y + φ) solve for φ

φ =

"
1−mc
mc

#
y −

Prof/P

mc

substitute in production function and rewrite

y =
mc

1− profy
(kl/(µµi))

α l for given profy =
Prof

Py

φ = (kl/(µµΨ))
α l − y

i = [1− (1− δ) /(µµi)] k

Assume g equals share ηg of y

c = (1− ηg)y − i

g = ηgy

λ = (c− bc/µ)−1 − ιcβb (cµ− bc)−1

Y = g + c+ i

p̃ = 1

∆1 = 1

∆2 = 1

∆3 = 1

# = 1

s =
1

1− βξp

%
1 +  p

&
(1 + θp)

1 +  p + θp p
λymc

f =
1

1− βξp
λy

a =
1

1− βξp

 pθp

1 +  p + θp p
yλ

w̃ = 1
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∆w1 = 1

∆w2 = 1

∆w3 = 1

#w = 1

fw =
1

1− βξw
lλw

aw =
1

1− βξw

θw w
 w + θw w + 1

nλw

sw =
1

1− βξw

(1 +  w) (1 + θw)

1 +  w + θw w
nλmrs

sw = fw − aw

Using the last equation it follows that:

mrs =
1

1 + θw
w

Finally,

! = mrsλ

B.6. Data

The model is estimated using seven key macro-economic time series: real GDP, consumption, in-

vestment, hours worked, price and wage inflation and a short-term interest rate. The Bayesian

estimation methodology is extensively discussed by Smets and Wouters (2003). GDP, consumption

and investment were taken from the U.S. Department of Commerce — Bureau of Economic Analysis

data-bank. Real gross domestic product is expressed in billions of chained 2009 dollars.Nominal

personal consumption expenditures and fixed private domestic investment are deflated with their

respective deflators. Inflation is the first di§erence of the log of the personal consumption expendi-

tures price deflator. Hours (non-farm business sector for all persons) are from the Bureau of Labor

Statistics. Wage inflation is the first di§erence of the log index of hourly compensation (nonfarm

business sector, all persons). The aggregate real variables are expressed per capita by dividing

with the population size aged 16 or older. All series are seasonally adjusted. The interest rate is

the Federal Funds Rate. Consumption, investment, GDP, wages, and hours are expressed in 100

times log. As noted in the measurement equations, the quantities that are observed in growth rates

(output, consumption and investment) , interest rate and inflation rate are all expressed on an

annualized (400 times first log di§erence) basis in the estimation.
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The solid blue line in Figure B.1 shows the data for the full sample, which spans 1965Q1—

2008Q2. The figure also includes a red-dotted line, which is the one-step ahead predicted estimates

from the Kalman filter for the Posterior median. As we can tell from the figure, the model fits the

data quite well.
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