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Abstract 
 
Job reallocation has declined in all U.S. sectors since 2000.  In standard models with adjustment 
costs, aggregate reallocation depends on (a) the dispersion of business-level productivity shocks 
and (b) the responsiveness of businesses to those shocks.  Using novel business microdata, we 
infer that the pervasive post-2000 decline in reallocation reflects weaker responsiveness and not 
lower shock dispersion.  Within-industry dispersion of TFP and output per worker has risen, while 
the marginal responsiveness of employment growth to business-level productivity has weakened 
substantially especially for young firms in the high-tech sector.  The declining responsiveness 
yields a significant drag on aggregate productivity.   
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I. Introduction and motivation 

Business dynamics—the process of business birth, growth, decline and exit—is a critical 

driver of the productivity-enhancing reallocative process that characterizes market economies.  

But the pace of job reallocation in the U.S. has fallen in recent decades, and since 2000 this 

downward trend has accelerated and become pervasive across all sectors.1  We argue that the 

post-2000 decline in job reallocation reflects declining responsiveness of U.S. businesses to 

idiosyncratic productivity shocks, implying a drag on aggregate productivity. 

We present several novel facts from business-level data, and we study the changing 

pattern of reallocation by drawing inference from models of firm dynamics.  In standard models 

with adjustment costs, job reallocation arises from the growth and survival responses of 

businesses to their idiosyncratic productivity draws, so declining reallocation arises from either 

of two forces:  First, a decline in the cross-sectional dispersion of business-level productivity 

“shocks” reduces reallocation by reducing idiosyncratic incentives for businesses to create or 

destroy jobs.  Second, declining dynamic “responsiveness” to business-level productivity shocks 

reduces reallocation when there is an increase in adjustment frictions.  This “shocks” versus 

“responsiveness” framework guides our analysis. 

We find support for the “responsiveness” hypothesis for the pervasive post-2000 

reallocation decline by studying four key empirical moments implied by standard adjustment 

cost models.2  First, within-industry dispersion of establishment TFP (which can be measured in 

manufacturing) has risen.  Second, within-industry dispersion of firm labor productivity (which 

can be measured in all industries) has risen.  Third, business growth and survival has become less 

responsive to idiosyncratic productivity (both TFP and labor productivity) with an especially 

large decline in responsiveness for young firms in the high-tech sector.   Fourth, counterfactuals 

reflecting the reduced responsiveness imply a drag on industry-level productivity.  

                                                           
1 See Davis et al. (2007), Hyatt and Spletzer (2013), Davis and Haltiwanger (2014) and Decker et al. (2014). Job 
reallocation is defined as the sum of gross jobs created by expanding and entering establishments and gross jobs 
destroyed by downsizing and exiting establishments, expressed as a rate by dividing by average two-year 
employment as in Davis, Haltiwanger, and Schuh (1996). 
2 See Berger and Vavra (2017) for an application of the “shocks vs. responsiveness” approach in a different context; 
that paper and others cited therein likewise find an important role for the responsiveness factor in explaining 
aggregate outcomes. 
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We use a standard adjustment cost model, in the tradition of Hopenhayn and Rogerson 

(1993), to derive hypotheses for each of the multiple moments that we study empirically.3  In this 

widely used model framework, rising labor adjustment costs can generate each of the moments 

we document; we therefore think rising adjustment costs is the most natural interpretation of our 

empirical findings.  Other mechanisms may explain some of our empirical patterns but it is a 

challenge to explain all of them; for example, an increase in market power among firms can 

explain declining responsiveness and reallocation but does not itself generate rising dispersion of 

labor productivity.   That said, we also discuss and explore other potential mechanisms that 

might be driving some of our results. 

Consistent with our approach of focusing on multiple moments, we combine several data 

sources to shed light, from many angles, on the question of declining reallocation.  We first study 

the manufacturing sector, with a particular focus on high-tech manufacturing given the role of 

high-tech in recent productivity dynamics.  In a large sample of plant-level manufacturing data 

spanning 1980-2010, we can closely pair theory and empirics due to our ability to measure TFP 

(which we construct using multiple methods).  We then extend our analysis to the entire private, 

non-farm sector using recently developed data on output per worker for all U.S. firms starting in 

the late 1990s.  Our economy-wide exercises confirm that our manufacturing findings are not 

artifacts of sampling errors and that our substantive results are generalizable across industries. 

At first glance, recent fluctuations in U.S. productivity growth do not match up with 

patterns of reallocation: productivity surged in the 1990s through the early 2000s before slowing 

after 2003, while aggregate job reallocation (and startup activity) fell throughout the 1980-2013 

period.  A careful review of the evidence resolves the inconsistency: prior to 2000, the decline in 

reallocation was dominated by the productivity-boosting consolidation of retail trade.4  Job 

reallocation (and business formation) in high-tech actually rose during the 1980s and 1990s 

before declining after 2000 along with high-growth firm activity more generally (Haltiwanger, 

                                                           
3 While not their explicit purpose, Hopenhayn and Rogerson (1993) indeed note that, in their model, rising 
adjustment costs result in not only lower reallocation and productivity but also higher labor productivity dispersion.  
The reduction in productivity in their model is in levels which implies reduced productivity growth if adjustment 
frictions increase over time and/or if the transition dynamics from an increase in adjustment frictions takes time.  
4 Foster et al. (2006), Jarmin, Klimek, and Miranda (2009), and others document the shift away from single unit 
establishment firms (“mom and pop shops”) to national chains.  Foster et al. (2006) and Foster et al. (2015) show 
that establishments of national chains are more productive and more stable. We discuss this evidence further below. 
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Hathaway, and Miranda (2014)), roughly coinciding with the ICT-driven surge in productivity 

from the late 1980s to early 2000s and subsequent decline after 2003 (Fernald (2014)). 

Our approach of using multiple moments to draw inference is strengthened by this cross-

sector variation in patterns of reallocation.  In high-tech manufacturing, a hump-shaped pattern 

of reallocation is matched by a hump-shaped pattern of productivity responsiveness, consistent 

with theory linking responsiveness and reallocation.  Importantly, however, TFP dispersion in 

high-tech manufacturing rose gradually or was flat throughout recent decades.  These patterns 

are consistent with the strong role of “responsiveness” instead of “shocks” in accounting for the 

patterns of reallocation.  We also find that changing responsiveness—not changing shocks—

accounts for the patterns of reallocation in non-tech manufacturing.      

Our results have implications for aggregate productivity:  Counterfactual exercises 

suggest that the increased responsiveness of the 1980s and 1990s yielded as much as half a log 

point annual boost in industry-level TFP in high-tech manufacturing by the second half of the 

1990s, then the declining responsiveness of the 2000s yielded as much as a two-log-point drag 

on annual industry-level TFP by 2010.  Moreover, evidence based on labor productivity suggests 

that the finding of declining responsiveness since 2000 generalizes beyond high-tech 

manufacturing to other high-tech businesses as well as other areas of the economy.  The pre-

2000 rise and post-2000 fall of productivity responsiveness in the high-tech sector coincides with 

the ICT-driven rise and fall of aggregate productivity growth in the U.S.  Our findings suggest 

the declining responsiveness in the post-2000 period has yielded about a 5 percentage point 

reduction in productivity within the private sector in 2013 relative to what it would have been in 

the absence of the decline in responsiveness.   

An alternative potential cause of changes in reallocation and the responsiveness of firms 

is the recent decline in startup rates (Decker et al. (2014)).  If young firms are more responsive to 

productivity shocks, changes in the average age of U.S. firms would mechanically reduce overall 

responsiveness, and the question of declining responsiveness and reallocation would boil down 

to the question of why startup activity has declined.  Consistent with earlier findings (Davis et al. 

(2007), Decker et al. (2014)), we show that the changing firm age structure induced by declining 

startup rates accounts for just one quarter of the overall decline in the job reallocation rate.  We 

focus on changes in reallocation and responsiveness within firm age groups to mitigate the 
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identification challenge posed by declining startup rates (while recognizing that the decline in 

startup rates is itself an important research area).5 

We briefly explore other elements of changing responsiveness and productivity.  The 

responsiveness decline in high-tech manufacturing is also evident when we measure 

responsiveness in terms of equipment investment instead of employment growth.  We find mixed 

evidence linking falling responsiveness with import competition.  Our finding of rising within-

industry labor productivity dispersion is not consistent with slowing innovation in a Gort and 

Klepper (1982) framework. 

Given the importance of the post-2000 period, an obvious question whether the Great 

Recession drives our findings.  First, we find evidence of declines in the pace of dynamism in all 

sectors prior to the Great Recession.  Second, in our econometric analysis quantifying the decline 

in responsiveness after 2000 we include rich controls for the business cycle, including year 

effects and state-level cyclical variables fully interacted with micro-level productivity measures.  

The latter capture changing responsiveness over the cycle and are interesting in their own right 

(see Foster, Haltiwanger and Grim (2016)).  However, our focus is on lower-frequency trends, so 

inclusion of these variables is to abstract from this variation.  With the inclusion of these 

controls, we view our results on the post-2000 period as not being driven by the Great Recession. 

Section II describes key facts about the declining pace of business dynamism.  Section III 

describes the datasets we employ.  In section IV, we use establishment-level data for 

manufacturing, with a particular focus on high-tech, to study whether the evidence implies 

“changing shocks” or “changing responsiveness,” and we analyze the implications of our 

findings for aggregate productivity growth.  Section V looks beyond manufacturing and 

investigates the same questions using firm-level labor productivity and employment data for all 

U.S. sectors.  Concluding remarks are in section VI. 

 

II. Business Dynamics: Basic facts 

A. Sectoral Patterns of Reallocation and Young Firm Activity 

Starting with Davis et al. (2007), many studies have documented a decline in the pace of 

aggregate job reallocation and other indicators of business dynamism in the last few decades.  

Decker et al. (2016) report wide cross-sector variation in patterns of reallocation: retail trade 

                                                           
5 For example, see Alon et al. (2017), who quantify the productivity implications of declining entry. 
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exhibits the strongest decline during the 1980s and 1990s, while information and high-tech saw 

rising reallocation over that period before falling sharply after 2000.  These patterns are depicted 

on Figure 1 (using HP trends) for selected NAICS sectors as well as high-tech (as defined by 

Hecker (2005)).6  Figure 2 illustrates similar patterns in the share of employment accounted for 

by young firms: retail trade saw declining startup activity throughout the 1980s-2010s, while 

information and high-tech saw rising startup activity prior to 2000.7  Figures 1 and 2 also single 

out the high-tech component of manufacturing.  Reallocation and startup activity behave 

similarly in high-tech manufacturing to the high-tech sector more generally.  Information, which 

includes a heavy contingent of tech industries, behaves similarly to high-tech broadly. 

The changing prevalence of young firms—which have high reallocation rates—accounts 

for some of the reallocation patterns in Figure 1.8  Figure 3 reports annualized changes in 

reallocation rates for select sectors (and economy wide) for three periods: the late 1980s to late 

1990s (1987-1989 to 1997-1999), the late 1990s to mid-2000s (1997-1999 to 2004-2006), and 

the mid-2000s to early 2010s (2004-2006 to 2011-2013).  We use three-year averages at business 

cycle peaks to abstract from cyclical concerns.9  Solid bars indicate the actual annualized change 

in reallocation rates over the period.  Patterned (non-solid) bars indicate annualized changes 

resulting from a shift-share exercise freezing the age composition of businesses at its initial state; 

that is, the non-solid bars describe within-age group changes in reallocation rates.  We use seven 

age groups (firm age 0, 1, 2, 3, 4, 5, and 6+). 

During the 1990s (i.e., 1987-1989 to 1997-1999), the sharp decline in reallocation in the 

retail trade sector and the increase in the information sector are evident.  The patterned bars show 

that falling young firm activity accounts for about a third of the reallocation decline in retail 

trade (i.e., two thirds of the decline occurred within age groups), and rising young firm activity 

accounts for about a tenth of the reallocation increase in information.  Services saw a modest 

                                                           
6 As noted above, high-tech is a particular focus of this paper due to its role in aggregate productivity dynamics 
(Fernald (2014)).  Hecker (2005) defines industries as high-tech based on the 14 four-digit NAICS industries with 
the largest share of STEM workers. The high-tech sector thus defined includes industries in manufacturing (NAICS 
3254, 3341, 3342, 3344, 3345, and 3364), information (5112, 5161, 5179, 5181, and 5182), and services (5413, 
5415, and 5417). Notably, certain industries in the information sector are not high tech (e.g., book publishing). 
7 Guzman and Stern (2016) focus on extreme high-potential startups and also find 2000 to be an important turning 
point, with fewer high-growth outcomes for startups identified as having high potential. 
8 Young firms may be more volatile for a variety of reasons, such as the learning dynamics of Jovanovic (1982). 
9 2011-13 is not a cyclical peak but our sample ends in 2013. 
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reallocation decline during the 1990s which is entirely accounted for by falling young firm 

activity. 

The pace of decline in several sectors accelerated after the late 1990s.  This can be seen 

in services, which had a more modest decline during the early 1990s.  More notably, though, 

reallocation rates in information fell markedly during the early 2000s after rising during the 

1990s, with about a fifth of the early-2000s decline accounted for by falling young firm activity. 

Each sector continued declining during the late-2000s, and in each case the change in 

reallocation can be partially but not completely explained by falling young firm activity.  This is 

the main inference we draw from Figure 3: while changing startup rates can account for a 

nontrivial portion of the overall change in job reallocation rates since the 1980s, most of the 

variation occurred within firm age groups.  This finding encourages us to focus on changing 

patterns of responsiveness within firm age classes; focusing on patterns within firm age classes 

also permits us to abstract from factors that may underlie both the changing pace of startups and 

the change in the age structure of firms. 

B. Possible Sources of Changes in Young Firm Activity 

Though it is not our focus, it is worth noting that a number of competing hypotheses may 

account for the variation in startup rates and young firm activity seen in recent decades.  Changes 

in startup rates may endogenously reflect changes in the pace of innovation in an industry for 

reasons hypothesized by Gort and Klepper (1982): a period of rapid innovation leads to a surge 

in entry, reallocation and subsequent productivity growth.10  Moreover, Gordon (2016) has 

argued that most of the 1980s-1990s high-tech innovations had already been implemented by the 

early 2000s, and the productivity slowdown since that time is due to slowed innovation and 

implementation.  Taken together, these hypotheses suggest that the changing pace of both startup 

activity and reallocation in the high-tech sector in recent decades could have been caused by an 

exogenously changing pace of innovation.11 

In retail trade, the share of sales and employment accounted for by single unit 

establishment firms fell from half to a third from 1977 to 2007 (see Foster et al. (2006), Jarmin et 

al. (2009), and Foster et al. (2015)).  This dramatic transition is almost entirely accounted for by 

                                                           
10 Foster et al. (2017) provide supportive empirical evidence for these dynamics for the 1990s U.S. high-tech sector. 
11 In the Gort and Klepper (1982) framework, declining innovation should be accompanied by declining dispersion 
of productivity within industries.  While certainly not dispositive for the hypothesis of slowing innovation, we find 
the opposite below. 
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the rise of large, national “big box” retailers, which are more productive (by about 30 log points) 

and have lower entry and exit rates (by a factor of 15) than single-unit operations.  Retail 

consolidations were likely facilitated by globalization and advances in information technology 

that permitted the development of large and efficient supply chains and distribution networks. 

Retail trade is an example of a sector in which declining reallocation and entrepreneurship has 

been productivity enhancing, a change that is reflected in the age structure of firms (from which 

we abstract in our analyses). 

Yet another factor contributing to variation in the pace of startups is demographics-driven 

changes in labor force growth.  Karahan, Pugsley, and Sahin (2015) show that variation in labor 

force growth driven by exogenous changes in population growth is positively associated with 

startup activity, an insight consistent with Hopenhayn (1992)-type models in which labor force 

growth is accommodated by adjustment in the number of firms. 

Each of these factors underlying the changing share of young firm activity likely has 

some merit, and we seek to abstract from them to focus on the shocks vs. responsiveness 

hypotheses.  We therefore study changes in the pace of reallocation within firm age groups.  By 

abstracting from the changing age distribution, we may be understating the contribution of 

declining responsiveness to the post-2000 decline in productivity growth since the hypothesis 

that is the main focus of this paper—rising frictions inducing lower responsiveness of 

businesses—may be contributing to the pervasive, all-sector decline in startup rates since 2000.  

An increase in adjustment frictions raises the cost of business activity and reduces the expected 

discounted value of profits for entrants, a key quantity governing entry in standard models.   

 

III. Data and Measurement 

The backbone dataset for our analysis is the Longitudinal Business Database (LBD), to 

which we attach other data as detailed below.  The LBD includes annual location, employment, 

and industry for the universe of private non-farm establishments, with firm identifiers based on 

operational control (not an arbitrary tax identifier).12  We use the LBD for 1979-2013 (during 

which consistent establishment NAICS codes are available from Fort and Klimek (2016)).  As in 

previous literature, we construct firm age as the age of the firm’s oldest establishment when the 

firm identifier first appears in the data, after which the firm ages naturally. 

                                                           
12 See Jarmin and Miranda (2002) for a full description of the LBD. 
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A. Manufacturing and TFP 

We construct TFP measures for 2 million plant-year observations (1981-2010) using data 

from Foster, Grim, and Haltiwanger (2016) (hereafter FGH) combining the Annual Survey of 

Manufacturers (ASM) with the quinquennial Census of Manufacturers (CM).  The ASM-CM is 

representative of the manufacturing sector in any given year, but it is based on a rotating sample 

and thus lacks the complete longitudinal coverage of the LBD.  To compensate, we integrate the 

ASM/CM TFP data into the LBD to obtain establishment-level employment growth.13   

We construct two alternative empirical measures of TFP for our analysis.  The first, 

which has been commonly used in the literature (see, e.g., Baily, Hulten and Campbell (2001), 

Foster, Haltiwanger and Krizan (2001), Syverson (2011), Ilut, Kehrig and Schneider 

forthcoming), is a cost share-based index given by:  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒 =  𝑙𝑙𝑛𝑛𝑄𝑄𝑒𝑒𝑒𝑒𝑅𝑅 −  𝛼𝛼𝐾𝐾𝑙𝑙𝑙𝑙𝐾𝐾𝑒𝑒𝑒𝑒 −  𝛼𝛼𝐿𝐿𝑙𝑙𝑙𝑙𝐿𝐿𝑒𝑒𝑒𝑒 −  𝛼𝛼𝑀𝑀𝑙𝑙𝑙𝑙𝑀𝑀𝑒𝑒𝑒𝑒 − 𝛼𝛼𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒 (1) 

where QR is real output, K is real capital, L is labor, M is materials, E is energy, α denotes factor 

elasticities, e denotes individual establishments, and t denotes time.  Output is total value of 

shipments plus total change in the value of inventories, deflated by industry deflators from the 

NBER-CES Manufacturing Industry Database.  Capital is measured separately for structures and 

equipment using a perpetual inventory method.  Labor is total hours of production and non-

production workers.  Materials are measured separately for physical materials and energy (each 

is deflated by an industry-level deflator).  Outputs and inputs are measured in constant 1997 

dollars.  Factor elasticities are estimated using industry cost shares (of total factor costs) with a 

Divisia index that allows cost shares to vary over time.14  More details are in FGH.   

This measure of TFP is a revenue-based measure and is increasingly referred to as TFPR.  

TFPR is defined by Foster, Haltiwanger, and Syverson (2008) as P*TFPQ, where P is the plant-

level price and TFPQ is the typical measure of plant-level technical efficiency in economic 

models such as the model we consider below.  If plants are price takers, within-industry variation 

                                                           
13 We use propensity score weights (based on a logit model on industry, firm size, and firm age) to adjust the 
ASM/CM/LBD sample to represent the LBD (in the cross section) in each year (see FGH for details).  These 
weights are cross-sectionally representative in any given year but are not ideal for using samples of ASM/CM that 
are present in both t and t+1.  We discuss this further below. 
14 Cost shares yield factor elasticities under the assumptions of cost minimization and full adjustment of factors.  We 
are not assuming full adjustment for each plant at each unit of time but rather that this holds approximately when 
pooling across all plants in the same industry over time.   
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in TFPR only reflects TFPQ and any exogenous (to the plant) variation in prices.15  If plant-level 

prices are endogenous, TFPR still will be highly correlated with TFPQ in the adjustment cost 

framework we specify below.  Moreover, as we show below, TFPR-based inferences about 

changing responsiveness are still valid in such a framework.  However, with endogenous prices, 

variation in dispersion of TFPR will reflect not only shocks to fundamentals such as TFPQ but 

also adjustment costs.   

Given possibly endogenous plant-level prices, we also consider an alternative measure of 

TFP that has been increasingly used in recent literature (e.g., Gopinath et al. (2017) and Foster et 

al. (2017)).  Consider a plant-level isoelastic demand function 𝑃𝑃𝑒𝑒𝑒𝑒 = 𝐷𝐷𝑒𝑒𝑒𝑒𝑄𝑄𝑒𝑒𝑒𝑒
𝜑𝜑−1 (where 𝐷𝐷𝑒𝑒𝑒𝑒 is an 

idiosyncratic demand shock and  𝜑𝜑 − 1 is the inverse demand elasticity), a plant production 

function that is Cobb-Douglas with factor elasticity for factor i equal to 𝛼𝛼𝑖𝑖, and TFPQ equal to 

𝐴𝐴𝑒𝑒𝑒𝑒.  Then plant revenue is given by (lower case variables are in logs): 

𝑝𝑝𝑒𝑒𝑒𝑒 + 𝑞𝑞𝑒𝑒𝑒𝑒 = 𝛽𝛽𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒 + 𝛽𝛽𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒 + 𝛽𝛽𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒 + 𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝜑𝜑𝑎𝑎𝑒𝑒𝑒𝑒 + 𝑑𝑑𝑒𝑒𝑒𝑒 (2) 

where 𝛽𝛽𝑖𝑖 = 𝜑𝜑𝛼𝛼𝑖𝑖 for factor i.  That is, the 𝛽𝛽𝑖𝑖 coefficients are the revenue elasticities that reflect 

both demand parameters and the production function factor elasticities.  Given revenue elasticity 

estimates, the “revenue productivity residual” (RPR) is given by: 

𝑅𝑅𝑃𝑃𝑅𝑅𝑒𝑒𝑒𝑒 = 𝜑𝜑𝑎𝑎𝑒𝑒𝑒𝑒 + 𝑑𝑑𝑒𝑒𝑒𝑒, (3) 

that is, RPR is solely a function of idiosyncratic TFPQ and demand shocks.  This implies that (as 

discussed in detail in Foster et al. (2017)) RPR exhibits positive dispersion regardless of frictions 

and distortions.  We estimate RPR by estimating the revenue function in (2) using the GMM 

approach in Wooldrige (2009) (see Appendix C for more details).16 

 For each of these measures of productivity (which we denote as TFP for convenience), 

we take the log of TFP and deviate it from its detailed industry-by-year mean.  These alternative 

measures are therefore within-industry measures that abstract from aggregate and industry-

specific shocks and are unaffected by mismeasurement of industry-level prices (Byrne and 

Corrado (2015, 2016)).  We model TFP as an AR(1) process.  The current-period realization of 

                                                           
15 Assuming price taking behavior is not equivalent to assuming homogenous goods and a single price in an 
industry.  If plants in an industry have different product segments but are price takers within product segments then 
TFPR still only reflects fundamentals reflecting the quality differentials accounted for by price heterogeneity within 
an industry.  TFPR is a referable measure to TFPQ in this case since it captures quality differentials.   
16 Gandhi et al. (2016) argue that if some factors are completely variable then the Wooldridge (2009) method may 
not be identified.  As noted in Appendix C, our results are robust to an alternative estimation method that addresses 
this identification concern. 
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the idiosyncratic component of TFP is the shock, and we also consider innovations to these 

shocks by estimating the AR(1) process below.    

 In practice, we find that TFPR and RPR are highly correlated (about 0.8), consistent with 

the findings in Foster et al. (2017).  Moreover, Foster, Haltiwanger, and Syverson (2008, 2016) 

find that TFPR and TFPQ are highly correlated (about 0.75) for the selected set of products 

where P and Q data are available to construct direct measures of TFPQ.  Unsurprisingly, then, 

the main results of our empirical analysis on changing responsiveness and changing shocks are 

robust to using TFPR or RPR.  For the sake of brevity, we focus on the TFPR results in the main 

text, but we discuss the results for RPR throughout.  In addition, the details of the results for 

RPR are provided in Appendix C. 

B. Economywide Labor Productivity  

In Section IV we extend our analysis to nearly the entire economy by constructing 

measures of firm-level labor productivity.  Combining LBD employment (collapsed from the 

establishment to the firm level) with revenue measures in the Census Bureau’s Business Register 

(BR) (aggregated across EIN reporting units to the firm level) yields an enhanced LBD that we 

refer to below as the RE-LBD.  Revenue data are available from 1996 to 2013; see Haltiwanger 

et al. (2017) for more details.17  Consistent with previous literature, we construct annual firm 

employment growth rates on an “organic” basis to represent changes in establishment-level 

employment rather than artificial growth caused by mergers and acquisitions. 

Similar to our TFP construction, we use (log) revenue per worker deviated from detailed 

(6-digit NAICS) industry-by-year means as a measure of firm labor productivity.  We thereby 

control for price differences across industries such that our labor productivity measure is a 

within-industry relative gross output per worker measure; Foster, Haltiwanger, and Krizan (2001, 

2006) show that within-industry relative gross output per worker is highly correlated with 

within-industry relative value added per worker and strongly correlated with within-industry 

relative TFP (suggesting that materials and capital shares are similar across firms within 

industries).  We omit firms in the Finance, Insurance and Real Estate sectors (NAICS 52-53) 

                                                           
17 About 20-percent of LBD firm-year observations cannot be matched to BR revenue data because firms can report 
income under EINs that may fall outside of the set of EINs that the Census considers part of that firm for 
employment purposes. We address potential match-driven selection bias by constructing inverse propensity score 
weights (separately for births, deaths, and continuers) such that the RE-LBD is representative of the LBD universe 
in terms of the size, age, employment growth rate, broad industry, and single/multi-unit structure of firms. 
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from all analysis due to the difficulty of measuring output and productivity in those sectors.  As 

we show below, in our adjustment cost framework inferences regarding changing responsiveness 

can also be made using revenue per worker. 

 

IV. Change in shocks vs. change in responsiveness 

A. Theoretical motivation 

Models of firm18 dynamics with adjustment frictions imply that a within-sector change in 

the pace of reallocation is due to either a change in the dispersion of shocks faced by firms or a 

change in firms’ responses to those shocks.  We analyze a standard model with adjustment 

frictions in the tradition of Hopenhayn and Rogerson (1993).  Technical details are in Appendix 

B, but we provide an overview of the model and key predictions in this section.  Firms face 

idiosyncratic productivity shocks, where the realization of productivity in the current period, 𝐴𝐴𝑒𝑒𝑒𝑒, 

is drawn from a persistent AR1 process.  Net hiring and downsizing are subject to non-convex 

(kinked) adjustment costs.19  The resulting decision rule for firms’ net hiring rates reflects 

adjustment costs and is given by 𝑔𝑔𝑒𝑒,𝑡𝑡 = 𝑓𝑓𝑡𝑡(𝐴𝐴𝑒𝑒𝑒𝑒,𝐸𝐸𝑒𝑒𝑒𝑒−1), where the state variables are the 

productivity realization 𝐴𝐴𝑒𝑒𝑒𝑒 and initial employment 𝐸𝐸𝑒𝑒𝑒𝑒−1, both of which are observed prior to 

the net hiring decision.20  We do not model entry or exit but discuss these margins below.  For 

purposes of discussion in this section and appendix B, 𝐴𝐴𝑒𝑒𝑒𝑒 is referred to as TFP or TFPQ.  If 

there are demand shocks, this measure should be interpreted as a composite shock measure 

reflecting both TFPQ and demand shocks.   

We calibrate the model and report numerical analysis to motivate the empirical 

specifications and moments we consider below (see appendix B for calibration details).  Our 

benchmark model and calibration allow for endogenous plant-level prices using a CES 

monopolistic demand structure.  Strictly speaking, this model implies that the more relevant 

empirical measure is RPR.  However, importantly for our empirical approach, in the model 

revenue productivity measures with endogenous plant-level prices —TFPR or revenue labor 

productivity—are highly correlated with TFPQ (pairwise correlations of about 0.90 in our 

                                                           
18 We use the term “firms” loosely in this subsection for expositional ease.   
19 Qualitative predictions on the multiple moments of interest are robust to convex adjustment costs. 
20 A similar rule would exist for investment in a model with capital. For net hiring rate dynamics, see, e.g., Cooper, 
Haltiwanger, and Willis (2007) and Elsby and Michaels (2013).  For investment dynamics, see, e.g. Cooper and 
Haltiwanger (2006). 
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benchmark calibration).  As discussed in detail below, this implies that the core prediction that a 

rise in adjustment frictions yields declining responsiveness to TFPQ carries over to revenue 

productivity measures (either TFPR or revenue labor productivity).  The high correlation 

between TFPQ and TFPR in the model is not a targeted moment but is consistent with our 

empirical finding that TFPR and RPR are highly correlated (about 0.8).   

While we leave model details to the appendix, here we summarize the model’s rich 

empirical predictions for two experiments: a decline in the dispersion of TFP and an increase in 

labor adjustment frictions.  We can easily generate changes in the rate of job reallocation with 

these experiments; our interest is in observing implications for other moments that would allow 

us empirically to distinguish between the “shocks” hypothesis and the “responsiveness” 

hypothesis (with the latter corresponding to changing adjustment frictions).  We study the 

experiments’ effect on “responsiveness” by using a regression estimate (on simulated data) of the 

net hiring—or, equivalently, employment growth—policy function 𝑔𝑔𝑒𝑒𝑒𝑒 = 𝑓𝑓(𝐴𝐴𝑒𝑒𝑒𝑒,𝐸𝐸𝑒𝑒𝑒𝑒−1); we 

simply regress employment growth on lagged productivity and employment then observe the 

coefficient on productivity.21  The other key moment of study is the standard deviation of labor 

productivity.   

First, we hold adjustment frictions constant at the baseline calibration and vary the 

dispersion of TFPQ (see Figure 4a).22  A decline in TFPQ dispersion yields: (1) lower job 

reallocation; (2) weaker responses of firm-level growth (𝑡𝑡 to 𝑡𝑡 + 1) to the realization of both TFP 

and labor productivity in 𝑡𝑡 (conditional on employment in 𝑡𝑡); 23 and (3) lower standard deviation 

of labor productivity (labor productivity in the model is measured as revenue per worker, 

consistent with our empirical approach). 

Second, we hold TFPQ dispersion constant at its baseline calibration and vary the 

magnitude of adjustment frictions (see Figure 4b).  An increase in adjustment frictions yields: (1) 

lower job reallocation; (2) weaker responses of firm-level growth (𝑡𝑡 to 𝑡𝑡 + 1) to the realizations 

                                                           
21 That is, we focus on 𝛽𝛽 from 𝑔𝑔𝑒𝑒𝑒𝑒+1 = 𝜂𝜂 + 𝛽𝛽 ln𝐴𝐴𝑒𝑒𝑒𝑒 + 𝛿𝛿 ln𝐸𝐸𝑒𝑒𝑒𝑒 + 𝜀𝜀𝑒𝑒𝑒𝑒+1.  This timing convention is designed to 
match our empirical work; the qualitative theoretical results are robust to other timing conventions. 
22 Holding constant the persistence of TFP so that this implies we are reducing the variance of innovations to TFP. 
23 Kinked adjustment costs give rise to inaction ranges. As TFP dispersion falls there is a decrease in the fraction of 
firms that make zero adjustment (i.e., the “real options” effect).  But declining TFP dispersion also implies smaller 
adjustments among those firms that do adjust (i.e., the “volatility” effect).  Vavra (2014) argues that the volatility 
effect dominants the real options effect in the steady state, a general result extending back to Barro (1972).  Bloom 
et al. (2016) and others use a similar model to study the effects of uncertainty on business cycles; even in their 
model, the volatility effect dominates at annual frequency. 
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of both TFP and labor productivity in 𝑡𝑡 (conditional on employment in 𝑡𝑡); and (3) higher 

standard deviation of labor productivity. 

These empirical predictions are sufficient to distinguish between the “shocks” and 

“responsiveness” hypotheses even in the absence of observable TFP dispersion.  The key 

distinguishing moment is labor productivity dispersion.  For example, in the presence of 

declining reallocation and responsiveness, rising labor productivity dispersion would imply that 

adjustment costs have increased while falling labor productivity dispersion would imply that TFP 

dispersion is declining.  Conveniently, we also observe TFP dispersion (in manufacturing), 

enhancing our ability to draw empirical inference.  This focus on multiple empirical moments is 

a key strength of our approach. 

Our model neglects firm entry and exit, but its key predictions are robust to consideration 

of these margins.  Specifically, Hopenhayn and Rogerson (1993) find that a rise in adjustment 

frictions reduces entry and exit.  In their model, the lower bound of productivity necessary for 

survival declines as frictions increase.  The empirical prediction, then, is that not only will firm 

growth for continuers become less responsive to productivity when adjustment frictions rise, but 

so will exit.  We explore this prediction in the empirical analysis below.  Our model also neglects 

any learning dynamics of young firms.  We seek to control for the latter by permitting the firm 

dynamics of young firms to differ from those of mature firms in our empirical analysis.  This 

approach is consistent with our emphasis on studying empirical moments within firm age groups 

to abstract from the contribution of changing startup rates.  

Our theoretical model in Appendix B also demonstrates that a decline in responsiveness 

from an increase in adjustment frictions yields a drag on aggregate productivity (see Figure B4).  

In our theoretical analysis, we develop a diff-in-diff counterfactual methodology that quantifies 

the contribution of the decline in responsiveness to aggregate productivity.  Details of this 

counterfactual methodology are in Appendix B, and we discuss the empirical implementation 

below. 

Our primary objective is to quantify the role of shocks vs. responsiveness empirically, so 

we do not identify empirically a structural model of adjustment frictions.  However, we think this 

is a rich area for future research.  One potential use of our empirical findings would be as 

moments to discipline such analysis.24   

                                                           
24 See Cooper and Haltiwanger (2006).  
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B. Empirical Analysis of U.S. Manufacturing 

In this section, we investigate these issues with establishment-level data for U.S. 

manufacturing with a particular focus on high-tech manufacturing.25  We first study the “shocks” 

hypothesis by directly exploring the evolution of TFP dispersion (i.e., the dispersion of 

establishment productivity draws), quantified as the standard deviation of (log) within-industry 

TFP (see Section III for TFP measurement details).  Figure 5 reports TFP dispersion separately 

for plants of young and mature firms, in high-tech and non-tech manufacturing.26  We focus on 

low-frequency variation by reporting HP trends.   

Figure 5 shows that TFP dispersion has risen gradually or been flat in high-tech 

manufacturing since the early 1980s and in non-tech manufacturing since the early 1990s.27  

Within-industry TFP dispersion is large (consistent with, e.g., Syverson (2004, 2011)); for 

example, a level of 0.4 (40 log points) on Figure 5 implies that a plant one standard deviation 

above the mean for its industry is about 𝑒𝑒0.4 ≈ 1.5 times as productive as the mean.  Within-

industry TFP dispersion is about the same for plants of young and mature firms.  Figure C1 in 

appendix C shows very similar results for the alternative RPR productivity measure based on 

Wooldridge (2009).  Bils, Klenow and Ruane (2017) suggest that the observed rising within-

industry TFP dispersion may be due to rising survey-based measurement error in the ASM, but 

as we discuss below (and show on Figure A6 in appendix A) we find rising revenue productivity 

dispersion even in administrative data.   

Employment dynamics at the plant level depend not only on dispersion but also on 

persistence of idiosyncratic TFP: plants facing adjustment costs are more likely to respond to 

TFP shocks if TFP is more persistent (Cooper and Haltiwanger (2006); Cooper, Haltiwanger, 

and Willis (2007)).  Our data are not ideally suited for estimating TFP persistence and 

innovations due to ASM panel rotation issues, but Figure A4 in appendix A suggests that 

persistence is reasonably stable with an estimated AR(1) coefficient of about 0.6 to 0.7, and 

                                                           
25 These include NAICS codes 3341 (computer and peripheral equipment), 3342 (communications equipment), 3344 
(semiconductor and other electronic components), 3345 (navigational, measuring, electromedical, and control 
instruments), 3254 (pharmaceutical and medicine), and 3364 (aerospace product and parts). 
26 Our unit of analysis in this section is the establishment (plant), but the LBD permits us to classify plants based on 
the age of the firm to which they belong. 
27 Bloom et al. (2016) report dispersion of a different measure of productivity shocks; while we study the within-
industry dispersion of TFP draws for the manufacturing sector generally, those authors study overall dispersion of 
innovations to TFP among a selected subset of plants that appear in manufacturing samples for 25 years or more. 
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trends of TFP innovation dispersion (Figure A5) mimic trends of TFP dispersion.28 

Figures 5, C1, A4 and A5 suggest that changing reallocation is not driven by changing 

TFP dispersion or persistence.  Consider high-tech: Figure 1 shows reallocation rising during the 

1990s then falling after 2000.  For dispersion and persistence of TFP to account for the 

reallocation trend we would expect dispersion and/or persistence to mimic these patterns; or, 

conversely, given the patterns of TFP dispersion and persistence, we should see flat or rising 

reallocation in the manufacturing sector in the post-2000 period.  That we see the opposite is 

evidence against the “shocks” hypothesis for declining reallocation during that period.  

Moreover, as we note below in our investigation of firm labor productivity, labor productivity 

dispersion has also risen in manufacturing (see Figure A6 in appendix A). 

Consistent with our multiple moments approach, we next estimate the relationship 

between growth (and survival) and TFP realizations at the establishment level.  Our main 

dependent variable of interest is establishment employment growth from year 𝑡𝑡 to 𝑡𝑡 + 1 using 

the Davis, Haltiwanger, and Schuh (1996) (hereafter DHS) concept that accommodates exit (by 

using the two-year average of employment as the denominator).  We estimate the following:  

𝑔𝑔𝑒𝑒,𝑡𝑡+1 = � [𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇𝑇𝑇𝑃𝑃𝑒𝑒𝑒𝑒 + 𝛿𝛿1𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇𝑇𝑇𝑃𝑃𝑒𝑒𝑒𝑒 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑡𝑡                             
𝑎𝑎𝑎𝑎𝑎𝑎=𝑦𝑦,𝑚𝑚

+ 𝛿𝛿2𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇𝑇𝑇𝑃𝑃𝑒𝑒𝑒𝑒 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑡𝑡2 ] ∗ 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎,𝑒𝑒𝑒𝑒    + 𝑋𝑋𝑒𝑒𝑒𝑒′ Θ + εe,t+1                 
(4) 

where 𝑔𝑔𝑒𝑒,𝑡𝑡+1 is the DHS employment growth rate for establishment e from time 𝑡𝑡 to 𝑡𝑡 + 1, 

𝑇𝑇𝑇𝑇𝑃𝑃𝑒𝑒𝑒𝑒 is (log) industry-deviated TFP for establishment 𝑒𝑒 at time 𝑡𝑡, and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑡𝑡 is a simple linear 

time trend.29  The responsiveness to TFP in terms of the main and trend effects can vary by firm 

age with 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎,𝑒𝑒𝑒𝑒 an indicator for young (age<5, subscript 𝑦𝑦) and mature (subscript 𝑚𝑚) plants 

(these dummy variables are denoted Young and Mature in the discussion below).  𝑋𝑋𝑒𝑒𝑒𝑒   includes 

year effects, establishment size, firm size, state effects and a state-level business cycle measure 

(the change in state unemployment rates).  We also interact the state cyclical measure with TFP 

and the young and mature dummies; our liberal inclusion of cyclical indicators is intended in part 

                                                           
28 When we estimate the AR1 structure we exclude first panel years of the ASM since the panel of pairwise 
continuers is not representative in those years. 
29 Ilut, Kehrig and Schneider (forthcoming) estimate broadly similar reduced-form policy functions with a focus on 
asymmetric responsiveness, finding that businesses respond more strongly to negative than to positive shocks. These 
authors do not study changes in this asymmetry over time, a potentially interesting question given our findings. 
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to avoid result contamination from the Great Recession.  We estimate equation (4) for 1981-2010 

using propensity score weights relating the ASM/CM to the LBD.  Since the measure of micro 

TFP is deviated from detailed industry-by-year effects, we are estimating the responsiveness of 

establishment growth to the idiosyncratic component of productivity.30 

This reduced form specification is broadly consistent with the specifications of selection 

and growth dynamics from the literature discussed above, and it is consistent with our model-

based exercises (which estimate the equivalent of equation (4) on simulated data).  Moreover, by 

using DHS growth rates we can incorporate both the intensive margin and the extensive margin 

(exit) of plant-level growth; as noted above, adjustment cost models of employment growth 

predict that growth (and exit) from 𝑡𝑡 to 𝑡𝑡 + 1 is related to the realization of TFP in period 𝑡𝑡 and 

state variables, and standard empirical specifications of exit (e.g., Syverson (2011)) likewise find 

that exit is related to TFP realizations.  In this sense, equation (4) produces a reduced-form yet 

direct estimate of policy functions generated by standard models.31   

 Our question is whether the response to idiosyncratic productivity shocks has changed 

over time.  The inclusion of the 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑡𝑡 variable allows us to estimate a time-varying 

relationship between productivity and growth. In unreported results we have considered 

alternative ways to capture a changing trend (e.g., interacting a linear trend with decade 

dummies), and results are robust to considering such alternatives.   

On Table 1, we report the main effects for TFP by firm age group and the interactions 

with the trend terms.  Columns 1 and 2 show the growth regressions of equation (4); columns 3 

and 4 show a linear probability model with exit as the dependent variable (but otherwise 

identical to equation (4)).  The estimates for 𝛽𝛽𝑦𝑦 and 𝛽𝛽𝑚𝑚 are given by the “TFP*Young” and 

“TFP*Mature” rows.  These positive (negative) coefficients show that, consistent with previous 

literature, productivity and growth (exit) are positively (negatively) related.32  The growth 

coefficients are stronger for establishments of young firms, consistent with intense selection 

                                                           
30 Results are robust to also including industry-by-year effects as controls. 
31 Results are robust to estimating (4) with the innovation to TFP in period t.  We focus on the estimation of (4) 
using the realization of TFP in period t to avoid the complications of panel rotation issues in the ASM (see Foster et 
al. (2016) for details).   TFP in period t is measured for calendar year t while establishment growth is measured from 
March of t to March of t+1. Thus, the empirical timing of the data is closer to the timing in the theoretical 
specifications in Appendix B than might first appear. In Appendix B, we show declining responsiveness of firm-
growth to current or lagged realizations in productivity from an increase in adjustment frictions. 
32 The coefficients relating productivity with growth or exit are statistically significant at the 1 percent level in all 
but one case: the coefficient for exit among young high-tech establishments is significant at the 10 percent level. 
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working on recently started businesses; the exit coefficients follow the same pattern in non-tech 

manufacturing, though interestingly this is not the case in high-tech.   

The estimates of 𝛿𝛿1𝑦𝑦 and 𝛿𝛿1𝑚𝑚 are given by the “TFP*Young*Trend” and 

“TFP*Mature*Trend” rows of Table 1, respectively.  These coefficients show how the marginal 

responsiveness of establishments to their idiosyncratic productivity has changed with time.  

Notably, in high-tech manufacturing 𝛿𝛿1𝑦𝑦 and 𝛿𝛿1𝑚𝑚 are positive (negative) and significant for the 

growth (exit) of plants of both young and mature firms, with the exception of the exit coefficient 

for mature firms, suggesting that productivity responsiveness generally strengthened in the early 

years of the sample (which begins in 1980), while the coefficients are close to zero among non-

tech establishments.  Both inside and outside of high-tech, however, the growth (exit) 

coefficients on the quadratic term (𝛿𝛿2𝑦𝑦 and 𝛿𝛿2𝑚𝑚) are negative (positive).   

We next graphically illustrate the implications of the combined linear and quadratic trend 

terms.  Since TFP is measured relative to industry-year means, we can calculate the growth 

differential between a “productive” plant—the plant with a TFP draw one standard deviation 

above its industry mean—and the average plant in an industry by multiplying the total regression 

coefficient (including trend effects) by the within-industry TFP standard deviation.33  To abstract 

from changing TFP dispersion, we fix the standard deviation at 0.40 for high-tech and 0.37 for 

non-tech (roughly the respective averages across time).  Figure 6 shows the resulting growth 

differentials averaged by decade. 

First note that young firm plants are more responsive to productivity than are mature firm 

plants, especially in high-tech.  In the 1980s (black bars), the growth differential among young 

high-tech plants was 13 percentage points:  the plant with productivity one standard deviation 

above its industry mean grew 13 percentage points faster, over a one-year period, than the plant 

with industry mean productivity, compared with 6 percentage points among mature high-tech 

plants.  This and Figure 5 imply that the high pace of reallocation of young-firm plants is not 

driven by a high variance of TFP but rather by a high responsiveness to TFP differences 

consistent with, for example, a learning model.  The difference in responsiveness between plants 

in young and mature firms implies that overall responsiveness depends in part on the age 

distribution—hence our within-age group approach. 

                                                           
33 We set the cyclical indicator (state change in unemployment) to zero to evaluate effects at a neutral cyclical state. 
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Our main focus is the variation in responsiveness over time.  First, consider high-tech 

manufacturing.  For plants in young firms, the growth differential rises from 13 to 16 percentage 

points from the 1980s to the 1990s then declines to 9 percentage points in the 2000s.  For plants 

in mature firms, responsiveness initially declines modestly from the 1980s to the 1990s then 

accelerates into the 2000s, with the growth differential stepping down from 6 to 5 percentage 

points then dropping to 3 percentage points.  These declines in responsiveness are large in 

magnitude. High-tech plants responsiveness in the post-2000 period is only about half that in the 

1990s for plants of both young and mature firms. 

Next, consider the non-tech results.  Again, plants in younger firms are more responsive 

to TFP draws.  Among young firms, the growth rate differential was about 10 percentage points 

in the 1980s, 9 percentage points in the 1990s, and 6 percentage points in the 2000s.  Among 

mature firms, the growth differential was just above 5 percentage points in the 1980s and 1990s 

and fell by about half a percentage point in the 2000s. 

On Figure C3 of appendix C, we report exercises using the Wooldridge (2009) RPR as 

our TFP measure.34  In high-tech manufacturing, young-firm RPR responsiveness rises then falls 

as with TFPR, and mature-firm RPR responsiveness falls sharply in the post-2000 period in a 

manner similar to the TFPR results.  For non-tech plants, the overall drop in responsiveness from 

the 1980s to the 2000s is similar with RPR compared to TFPR.  The RPR results tell broadly the 

same story as the TFPR results, with reasonable similarity both quantitatively and qualitatively. 

As can be seen from column 3 of Table 1, part of the growth responsiveness pattern is 

driven by selection dynamics associated with changing exit responsiveness (Figure A1 in 

appendix A shows exit charts analogous to Figure 6).  Among young firm high-tech 

establishments, exit selection intensified from the 1980s to the 1990s then weakened in the 

2000s; young non-tech establishments saw steadily weakening selection throughout the period.  

Among mature firm plants, selection intensity did not vary notably until it weakened somewhat 

in the 2000s.  The findings on exit are interesting in their own right as they imply that in the 

post-2000 period low-productivity plants are more likely to survive, constraining aggregate 

productivity (and potentially raising TFP dispersion). 

An alternative story is that rising dispersion of TFP (and its innovations) in the post-2000 

                                                           
34 The decline from the 1990s to the 2000s among young high-tech businesses is not as notable in the RPR-based 
regressions as it is for TFPR, but it is still substantial as we show below in aggregate productivity counterfactuals. 
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period not only could be partially endogenous to changing selection but also could independently 

contribute to weakening growth responsiveness: in the presence of non-convex adjustment costs, 

higher TFP dispersion widens inaction bands and reduces the frequency of adjustment, a 

mechanism that has inspired a large literature on uncertainty and business cycles.35  But these 

concerns are not likely to be playing a dominant role:  during the 1990s, we find increased 

responsiveness of exit in high-tech despite mild increases in TFP dispersion, a finding that also 

holds for RPR (Figure C1 in appendix C).  More broadly, the combined 30-year patterns of 

dispersion and responsiveness, across age and industry groups, cannot tell the alternative story 

coherently.  As noted above, our model and a broader literature theorize that the “frequency” 

effect of widening inaction bands is not likely to dominate the “volatility” effect of larger 

adjustment-conditional changes in employment due to higher TFP dispersion.36 

Taken together, these results have important implications for the evolution of firm 

dynamics in recent decades.  The way in which individual businesses respond to their 

idiosyncratic realizations of productivity has changed.  The positive relationship between 

realized productivity and subsequent employment growth remains robust, but it has weakened, 

particularly since 2000.  Through the lens of firm dynamics models, our results are evidence that 

establishment-level policy functions have changed over time, particularly for young firms but 

also for older ones.37  In the post-2000 period, these changes are consistent with an increase in 

adjustment costs or other frictions that reduce marginal responsiveness to productivity in these 

models.  The changes are most striking among high-tech businesses, where we observe a pattern 

of rising and falling productivity responsiveness that coincides with the ICT-driven acceleration 

and deceleration of aggregate productivity growth documented by Fernald (2014) and others. 

C. Implications for aggregate (industry-level) productivity 

How important are the changes in responsiveness for aggregate fluctuations in 

productivity?  For this purpose, we compute the following diff-in-diff counterfactual that is 

inspired by, but distinct from, the well-known Olley and Pakes (1996) decomposition:     

                                                           
35 See Bloom (2009), Bachmann and Bayer (2013). 
36 Bloom et al. (2016) construct a model similar to ours in which the real options effect dominates the volatility 
effect in the short term (less than four quarters) at high frequency.  We study annual responses in a steady state 
setting, consistent with our long-term (rather than cyclical) focus. 
37 Karahan, Pugsley, and Sahin (2016) argue that the dynamics of incumbent firms have not changed over this time 
period based on average growth rates for various age classes.  We differ from their approach by directly estimating 
policy functions at the establishment level.  Viewed through their framework, our results suggest that factors in 
addition to changes in the growth of the labor force are likely relevant for understanding the decline in startup rates. 
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Δ𝑡𝑡𝑡𝑡+1  = �(𝜃𝜃𝑒𝑒,𝑡𝑡+1
𝑇𝑇 − 𝜃𝜃𝑒𝑒,𝑡𝑡+1

𝑁𝑁𝑁𝑁 )𝑎𝑎𝑒𝑒𝑒𝑒
𝑒𝑒

 (5) 

where 𝑎𝑎𝑒𝑒𝑒𝑒is log(TFP),  𝜃𝜃𝑒𝑒𝑒𝑒+1𝑇𝑇  is the predicted employment share for establishment 𝑒𝑒 in period 𝑡𝑡 +

1 based upon the full empirical model that includes trend patterns in responsiveness (the 𝑇𝑇 

superscript refers to “trend”), and 𝜃𝜃𝑒𝑒𝑒𝑒+1𝑁𝑁𝑁𝑁  is the predicted employment share for establishment 𝑒𝑒 in 

period 𝑡𝑡 + 1 predicted by the estimated model with parameters reflecting responsiveness at the 

beginning of the sample period (that is, we set the trend terms 𝛿𝛿𝑖𝑖𝑖𝑖 equal to zero, so 𝑁𝑁𝑁𝑁 means 

“no trend”).38  The employment share prediction for an establishment in a given period (𝜃𝜃𝑒𝑒,𝑡𝑡+1
𝑇𝑇 ) 

is based on the actual realizations of productivity and initial employment for that establishment 

in the previous period, fed through the estimated growth rate model.39   

This diff-in-diff object is distinct from changes in the Olley-Pakes (OP) covariance 

because it reflects the changing marginal responsiveness from our estimated empirical model.  

The standard OP decomposition approach is based on the weighted average of establishment- (or 

firm-) level productivity.  As shown in Appendix B, this weighted index is equivalent to standard 

industry measures of productivity, defined as industry output per unit input, only under constant 

returns to scale and perfect competition.  Under these assumptions, the marginal revenue product 

of the composite input at the establishment level does not change with the level of inputs.  An 

implication is that, in the absence of frictions, all inputs should be allocated to the most 

productive establishment.  In contrast, under revenue function curvature from decreasing returns 

to scale and/or imperfect competition, the weighted average of establishment-level productivity 

is not equivalent to industry productivity.  A corollary is that under revenue function curvature it 

is generally not optimal to allocate all inputs to the most productive establishment, even in the 

absence of frictions.  Instead, inputs should be reallocated to establishments with higher marginal 

productivity. 

  These properties imply that, for any increase in frictions, the standard OP covariance 

declines more quickly than true aggregate productivity in the presence of revenue curvature.  We 

                                                           
38  We set the cyclical effects to zero by setting the state-level change in unemployment to zero.   
39 This approach is related to other accounting productivity decompositions in the literature (see, e.g., Foster, 
Haltiwanger, and Krizan (2001) for a review).  Our present approach focuses only on model-driven reallocation 
arising from variation in productivity across businesses, holding constant the productivity distribution.  Decker et al. 
(2017) use the Dynamic Olley-Pakes (DOP) decomposition developed by Melitz and Polanec (2015) to show that 
these accounting decompositions also imply a decline in the contribution of the change in the covariance terms after 
2000. Alon et al. (2017) use the DOP decomposition to study the cumulative contribution of changes in entry rates.   
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show in Appendix B (Figure B5) that the diff-in-diff counterfactual in (5), on the other hand, 

closely tracks the true aggregate productivity effects of changing adjustment costs and 

responsiveness in our benchmark model.  The reason for the superior performance of our diff-in-

diff counterfactual versus the standard OP covariance is intuitive: unlike the standard OP 

covariance, our diff-in-diff approach uses (estimated) optimal policy functions that reflect the 

impact of revenue function curvature on marginal revenue products.  It is easily shown in the 

model that the responsiveness of establishment-level growth to realizations of productivity 

declines with greater curvature in the revenue function.   

 Another attractive feature of this diff-in-diff counterfactual is that it only captures the 

effect of time-varying responsiveness within firm age groups.  Differences in responsiveness 

between young and mature firms will be present in both the counterfactual with and the 

counterfactual without the trend, as will the changing age structure of firms overall.  Moreover, 

this diff-in-diff design mechanically abstracts from potential effects of changing TFP dispersion. 

We report ∆𝑡𝑡𝑡𝑡+1 for each year on Figure 7.  For example, the observation for 𝑡𝑡 + 1 =

1981 has ∆19801981= 0 because the trend variable begins then, and for high-tech the year 2001 again 

gives ∆20002001= 0.  But the 2004 observation for high-tech shows that, given the productivity and 

size distributions of 2003, if responsiveness from 2003 to 2004 had been at the 1981 pace instead 

of the actual pace (as estimated by our model) then the productivity index in 2004 would have 

been about half a log point higher (∆20032004= −0.005).  For high-tech manufacturing plants, the 

increasing responsiveness over the 1980s and 1990s yields an implied counterfactual increase in 

the index that peaks at about half a log point per year in the 1990s.  The sharp decline in 

responsiveness during the post-2000 period implies a decline in the productivity index of as 

much as 2 log points per year by 2010.  Some caution needs to be used in interpreting the 

magnitude at the end points—and certainly extrapolating out of sample—since the pattern in 

Figure 6 is driven by fitting a quadratic trend.  But the drag on this index of industry level 

productivity due to the decline in responsiveness may be quite substantial.   

Figure C4 in appendix C reports the same exercise but using the RPR productivity 

concept; in high-tech, the RPR results are quite similar—qualitatively and quantitatively—to the 

TFPR results from Figure 7, while outside of high-tech the productivity drag implied by the RPR 

regressions starts somewhat sooner.  The basic message of the TFPR and RPR results is the 

same, however, particularly in high-tech: changing responsiveness has quantitatively large 
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implications for aggregate productivity.  In high-tech, changing responsiveness starts to be a drag 

on productivity around 2003, about the time that Fernald (2014) finds a trend break in 

productivity growth in the IT sector.  Outside of high-tech, both the TFPR and RPR results show 

a decline in aggregate productivity from the 1980s to the 2000s from declining responsiveness.    

 Some caution should be used in interpreting our counterfactual results as yielding 

patterns that mimic actual aggregate (industry-level) productivity growth since there may be 

changes in the within-plant productivity components of aggregate (industry-level) growth that 

we have not estimated in this context.  Fernald (2014), Byrne et al. (2016) and Gordon (2016) 

highlight many factors that are likely contributing to within-plant (and within-firm) declines in 

productivity growth in the post-2000 period.  In addition to the factors they emphasize, there 

may be a role for declining entrepreneurship in declining within-firm productivity growth given 

the contribution of young firms to innovative activity (Acemoglu et al. (2013) and Alon et al. 

(2017)).  We examine the within-firm productivity growth patterns later in the paper.  

D. Changing Business Models 

It is possible that changing responsiveness reflects changes in business models that are 

benign for productivity.  For example, perhaps businesses increasingly respond to shocks by 

adjusting their capital stock instead of labor (a form of capital/labor substitution).  We repeat the 

regressions from equation (4), replacing the employment growth rate with the investment rate 

(investment divided by initial capital) and adding initial capital as an additional control.40  This 

regression therefore includes the key state variables: productivity, employment, and capital.   

Table 2 reports the regression results for high-tech manufacturing, and Figure 8 shows 

results analogously to Figure 6.  As with employment, young firms’ investment is more 

responsive than is mature firms’.  Investment responsiveness in high-tech manufacturing displays 

a qualitatively similar pattern to employment responsiveness, with a significant decline in the 

2000s among young firms:  In the 1990s, a young-firm plant with a TFP draw one standard 

deviation above its industry-year mean had an equipment investment rate 8 percentage points 

higher than the plant at the mean; this differential is about 3 percentage points in the post-2000 

period.  The decline in employment responsiveness was not accompanied by stronger investment 

responsiveness in high-tech manufacturing.  Among non-tech manufacturing businesses, 

                                                           
40 See appendix D for more detail. Note that the theory linking adjustment costs to employment growth applies 
equally to investment in models of firm dynamics (Cooper and Haltiwanger (2006)). 



23 
 

however, there is rising investment responsiveness from the 1980s to the 1990s, with 

responsiveness remaining elevated in the 2000s, suggesting that capital-labor substitution may 

play some role outside of the high-tech sector.  More broadly, we cannot rule out other forms of 

capital investment—like intangibles—as substitute adjustment mechanisms. 

In appendix D, we describe two other exercises exploring changes in business model.  

First, we find mixed evidence that industries facing increased import competition saw bigger 

declines in responsiveness, suggesting that globalization may be an interesting avenue for future 

work.  Second, we find no evidence that industry composition shifts within high-tech 

manufacturing explain declining responsiveness. 

 

V. Beyond Manufacturing 

Thus far we have focused on the manufacturing sector for which we have high-quality 

TFP data.  An important question is whether the patterns of productivity dispersion and 

responsiveness we have described are present outside manufacturing.  For example, the 

information sector has been a key contributor to U.S. innovation in recent years.  Moreover, 

changes in startup rates and in the dispersion and skewness of firm growth rates are even more 

dramatic in non-manufacturing components of the high-tech sector (Decker et al. (2016)).   

We next conduct the same exercises as in section IV, but with firm-level gross output per 

worker as our productivity concept and with the full private nonfarm sector as our sample.41  

Output per worker cannot be used to directly track the pattern of shocks, but our adjustment cost 

framework in appendix B shows that moments based on output per worker move systematically 

with changes in adjustment frictions and shocks.  We employ RE-LBD data (described in 

Section III), which permit the measurement of revenue per worker at the firm level for the entire 

U.S. private, non-farm sector from the mid-1990s to 2013.  A contribution of this section is new 

evidence on the relationship between productivity and reallocation dynamics outside 

manufacturing.42   

                                                           
41 We omit finance, insurance, and real estate (NAICS 52-53) from our sample. This exercise requires that we assign 
each firm an industry code; we do this by choosing the industry that accounts for the largest share of the firm’s 
employment. An alternative approach is to construct firm-level within-industry labor productivity as the deviation of 
firm output per worker from a full set of relevant industry fixed effects. Our results are robust to this alternative 
approach to controlling for firm industry activity.  
42 Relatively little is known about these issues outside manufacturing. Exceptions include several retail trade studies 
(Foster, Haltiwanger, and Krizan (2006), Jarmin, Klimek, and Miranda (2009) and Foster et al. (2015)). 
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The inferences we draw in this section recognize that output per worker endogenously 

reflects not only TFP but also changes in adjustment frictions.  However, as our benchmark 

adjustment cost model illustrates, several empirical moments based on output per worker are 

informative for changing adjustment frictions.  First, recall from section IV that an increase in 

adjustment frictions implies an increase in the within-industry dispersion of labor productivity:  

adjustment frictions dampen the tendency for marginal revenue products to be equalized, 

implying higher labor productivity dispersion.  Second, an increase in adjustment frictions also 

reduces the responsiveness of firm-level employment growth from 𝑡𝑡 to 𝑡𝑡 + 1 to the realization of 

revenue labor productivity in 𝑡𝑡 (controlling for employment in 𝑡𝑡).  Finally, an increase in 

adjustment frictions reduces the diff-in-diff counterfactual using labor productivity in a manner 

that tracks the implications for aggregate productivity.  Our multiple moments approach, then, is 

still well suited to a study of labor productivity. 

A. Productivity and growth at the firm level 

Figure 9 reports the standard deviation of within-industry labor productivity for young 

and mature firms, in and out of high-tech; labor productivity dispersion has risen for each of 

these groups (note that our definition of high-tech now includes certain industry groups in 

services and information as well as manufacturing). Notably, unlike TFP, labor productivity is 

more dispersed among young than mature firms; younger firms likely face greater learning or 

other frictions and may also be more heterogeneous in capital intensity. 

To provide perspective on the relationship between the findings in this section using 

firm-level data for the private, non-farm sector and the earlier analysis using establishment-level 

manufacturing data, Figure A6 in Appendix A reports within-industry revenue labor productivity 

dispersion for manufacturing in both the RE-LBD and the ASM.  Labor productivity dispersion 

has risen in both the firm-level administrative data and the establishment-level survey data, 

contrary to the Bils et al. (2017) hypothesis of rising measurement error in the ASM.43  

Our finding of rising within-industry productivity dispersion is consistent with other 

work documenting increased differences between firms.  For example, Andrews, Criscuolo, and 

Gal (2015) find a widening productivity gap between “frontier firms” and others, arguing that the 

                                                           
43 Figure A6 shows that these findings are robust to employment weighting industries.  Interestingly, rising revenue 
labor productivity dispersion is more apparent in the administrative data than the survey data, raising more doubts 
about the measurement error hypothesis for rising productivity dispersion from the survey data. 
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pace of technological diffusion has slowed.  While the diffusion hypothesis could play a role, our 

estimates of TFP persistence (Appendix A Figure A4) suggest that the group of “frontier firms” 

is sufficiently fluid to somewhat limit the diffusion story’s explanatory power. Increased 

adjustment frictions is an alternative, but not mutually exclusive, explanation.  Both explanations 

allow for a decoupling of technological progress and aggregate productivity growth.44   

Rising labor productivity dispersion is evidence against the “shocks” hypothesis for 

falling reallocation in various U.S. sectors.  We next estimate equation (4)—the regression we 

used to measure changing TFP responsiveness in manufacturing—except that we now use firm-

level data (vs. establishment), labor productivity in place of TFP, all U.S. sectors (except finance, 

insurance and real estate), and only the years 1997-2013.45   

Table 3 reports results of these regressions.  The first two columns report regressions 

using the DHS growth rate denominator inclusive of exit; the last two columns report results 

using only a binary exit outcome as the dependent variable.  Figure 10 graphically shows the 

time series pattern of the growth coefficients; as with TFP results, we report the growth rate 

differential between the firm one standard deviation above its industry mean and the mean.  

Growth is indeed related to revenue labor productivity, as theorized; that is, firms with higher 

output per worker are more likely to grow.46  Figure A2 in Appendix A shows a strong 

relationship between labor productivity and exit as well.  Young firms are particularly sensitive 

to labor productivity, including on the exit margin, indicating that labor productivity is correlated 

with selection mechanisms.  Moreover, the relationship of labor productivity with growth and 

survival has weakened over time, particularly among young high-tech firms (where the growth 

differential has fallen by 10 percentage points), consistent with the TFP-based evidence from 

Section IV.  This decline implies that responsiveness of young high-tech firms in 2013 is only 

about two thirds of what it was in the late 1990s.  Broadly speaking, the evidence suggests that 

the survival and growth differential between high- and low-productivity firms is declining over 

time, particularly in high-tech. 

                                                           
44 Andrews, Criscuolo, and Gal (2015) (ACG) provide evidence of rising productivity dispersion within broad 
sectors using ORBIS data on both labor productivity (similar to our approach here) and multifactor productivity 
(similar to our analysis in Section IV).  ACG measure the difference between “frontier firms” and average firms, 
where the frontier firms are usually defined as the top 50 or 100 firms within a broad (2-digit) sector, and in the case 
of the U.S. their unit of analysis is actually the establishment (Pinto Ribeiro, Menghinello and De Backer (2010)).   
45 We also apply propensity score weights; see Section III for RE-LBD details. 
46 Growth differentials for labor productivity may seem large compared with TFP-based differentials from the 
previous section; this is partly because labor productivity dispersion is higher than TFP dispersion. 
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The data on both labor productivity dispersion and the relationship linking labor 

productivity with growth and survival indicate that the TFP-based patterns we found in 

manufacturing are likely to hold in other sectors.  Again, the framework of our model, applied to 

multiple moments of evidence, suggests slowing reallocation is a symptom of increased frictions 

rather than changes in the distribution of idiosyncratic productivity shocks.  

B. Reallocation and aggregate labor productivity 

Following the approach from Section IV, we quantify the labor productivity regression 

results by relating them to aggregate productivity growth using the diff-in-diff counterfactual 

approach from equation (5). As shown in Figure B5 in Appendix B, in the calibrated model the 

diff-in-diff counterfactual using labor productivity tracks the impact of increased adjustment 

frictions on true aggregate (industry-level) productivity quite well.47  

 The diff-in-diff counterfactual for the high-tech (not just manufacturing) and non-tech 

sectors is presented in Figure 11.  By 2013, the weakening responsiveness of growth and survival 

to productivity accounts for more than 5 log points in the diff-in-diff counterfactual.  This 

implies that if responsiveness during 2012-2013 had been as strong as in 1996, aggregate 

productivity in 2013 would be 5 log points higher (given the firm distribution of 2012).  In 

contrast to the TFP-based results from manufacturing, our labor productivity-based calculations 

for the entire economy show a similar pattern for firms inside and outside high-tech.  In 

unreported results we find that this is driven by particularly strong declines in the sensitivity of 

exit to productivity among firms outside high-tech; moreover, within manufacturing specifically, 

we do find stronger results in high-tech than outside of it in the labor productivity 

counterfactuals, as in the TFP counterfactuals.   

C. Changing Patterns of Within-Firm Productivity Growth 

Has a falling productivity contribution from reallocation been offset by stronger within-

firm productivity growth?  We use the firm labor productivity database to construct two related 

but distinct measures of within-firm productivity growth.  The first measure is the simple 

unweighted mean of annual within-firm productivity growth.  The second is the employment-

weighted mean of annual within-firm productivity growth using time-𝑡𝑡 employment weights for 

                                                           
47  Though we are using the diff-in-diff counterfactual, it is useful to note that for gross output per worker the 
weighted mean of micro productivity tracks gross output per worker at the industry level quite well (see Figure A3 
in Appendix A) 
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productivity growth from 𝑡𝑡 to 𝑡𝑡 + 1.  We compute these measures at the 6-digit industry level 

then aggregate using time-invariant employment weights for each industry.48 

Figure 12 shows trends in within-firm productivity growth, both weighted and 

unweighted, for the average industry, separately for high-tech and non-tech.  For high-tech, 

within-firm productivity growth declines using both measures; for non-tech, weighted within-

firm productivity growth declines, but the unweighted measure exhibits less systematic variation.  

The weighted measure is much larger than the unweighted measure for both tech and non-tech, 

and the unweighted measure is always negative for non-tech and turns negative for high-tech 

early in the sample; this might be surprising since it implies negative productivity growth for the 

average firm.  However, as discussed by Decker et al. (2017), the unweighted measure 

overwhelmingly describes very small firms (more than 90 percent of firms have fewer than 20 

employees).49  In sum, within-firm improvements (e.g., innovation by incumbents) have not 

quickened to compensate for weaker reallocation.50   

 

VI. Conclusion 

Reallocation has declined in all sectors—particularly the high-tech sector—since the 

early 2000s.  In the 1980s and 1990s, the declining overall pace of reallocation was dominated 

by sectors such as retail trade, while innovative high-tech sectors (including high-tech 

manufacturing) exhibited rising reallocation.  Within-industry TFP dispersion has risen gradually 

in recent decades, both in and out of high-tech manufacturing, as has within-industry labor 

productivity dispersion throughout U.S. industries.  The marginal employment growth response 

of businesses to idiosyncratic productivity draws has mimicked the pattern of aggregate 

reallocation over time, particularly among young firms, as has the relationship between 

productivity and exit.  The decline in responsiveness is especially large in the high-tech sector, 

with the responsiveness of young firms in the post-2000 period only about half (manufacturing) 

                                                           
48 Importantly, these measures of within-firm productivity growth exploit the RE-LBD’s longitudinal links and are 
therefore distinct from exercises that measure average productivity growth among specific groups of firms. 
49 Decker et al. (2017) further show that the positive difference between the weighted and the unweighted means 
reflects a positive relationship between within-firm productivity growth and initial shares (i.e., larger firms have 
higher within-firm productivity growth). 
50 Alon et al. (2017) also use the Dynamic Olley Pakes decomposition method described by Melitz and Polanec 
(2015) to study the productivity slowdown. The authors show that declining entry has had a significant cumulative 
negative effect on aggregate productivity growth, consistent with our emphasis on the contribution of changing firm 
dynamics. 
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to two thirds (economy-wide) of the peak responsiveness in the 1990s.  Counterfactual exercises 

imply that the decline in responsiveness yields a significant drag on aggregate (industry-level) 

productivity, as much as 2 log points in high-tech manufacturing and more than 5 log points 

economy-wide in recent years.   

These novel facts, taken together and studied through the lens of standard models of firm 

dynamics, imply that changing reallocation is the result not of changes in the dispersion or 

intensity of idiosyncratic shocks but rather of changes in the dynamic responsiveness to those 

shocks arising from an increase in adjustment frictions.  Moreover, the timing of reallocation and 

responsiveness patterns in high-tech is consistent with the timing of the productivity slowdown, 

which evidence indicates was driven by ICT-producing and using industries.  Importantly, our 

evidence abstracts from the confounding effect of declining startup rates since we study 

responsiveness within firm age groups.  Our main results are based on plant-level TFP in high-

tech manufacturing, but the results extend to manufacturing broadly and, when focusing on firm-

level labor productivity, to other U.S. industries more generally.  

In addition to shedding light on the drivers of declining business dynamism, these 

findings comprise a novel contribution to the literature on the U.S. productivity slowdown in the 

post-2000 period.  The cross-sector and time series dimensions of reallocation and 

responsiveness are consistent with the timing of aggregate productivity fluctuations, and our 

counterfactuals demonstrate the quantitative importance of this relationship.  Notably, 

productivity dispersion within industries has risen in the post-2000 period, while a slowing pace 

of innovation would produce falling dispersion in a Gort and Klepper (1982) framework.  

Slowing reallocation and business-level responsiveness is, at least, complementary to innovation-

based explanations for the productivity slowdown such as Gordon (2016) (and is consistent with 

Byrne, Fernald and Reinsdorf (2016) and Syverson (2016), who find that the productivity 

slowdown is not an artifact of mismeasurement). 

We document several other interesting patterns.  The responsiveness of equipment 

investment to TFP in high-tech manufacturing follows a similar pattern to employment 

responsiveness, rising during the 1980s and 1990s then falling sharply after 2000, while 

investment responsiveness in non-tech manufacturing was flat throughout the 1990s and 2000s 

after rising in the 1980s.  The strong relationship between growth and productivity that has 

previously been documented for TFP in manufacturing also holds for labor productivity in other 
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sectors.  The decline in productivity-enhancing reallocation has not been offset by stronger 

within-firm labor productivity growth. 

We do not study specific policy or other factors that may be contributing to declining 

responsiveness, a large task that we leave for future work.  Our theoretical framework focuses on 

increased adjustment costs, but broader interpretations may be plausible.  Globalization may 

have played a role in subdued business-level growth responsiveness by facilitating cross-border 

factor adjustment (see Appendix D).  Other explanations could include any forces that raise the 

cost of, or reduce the incentive for, factor adjustment; possibilities include unlawful discharge 

regulations, occupational licensing rules, scope of intellectual property protection, land use 

regulations, rules or norms that increase job match specificity, or various other state or federal 

regulations.51  Declining intensity of competition or increased prevalence of winner-take-all 

economics could also produce some of the empirical patterns we document (as argued by De 

Loecker and Eeckhout (2017)).  Given the implications of declining responsiveness for 

productivity growth, this is an important area for future research. 

We conclude by reemphasizing the strength of our multiple moments approach to 

studying changing business dynamism.  For example, rising markups are a potential mechanism 

that could alternatively account for declining responsiveness and reallocation.  However, a rise in 

average markups does not inherently predict rising within-industry revenue labor productivity 

dispersion.52  While this does not rule out the potential role of changing competition and 

markups, it is a reminder that competing explanations need to confront the changing patterns of 

multiple moments that are accompanying the changing patterns of business dynamism. 

 

                                                           
51 Using industry variation, Goldschlag and Tabarrok (2014) find no evidence that federal regulation counts relate 
with changes in the pace of gross flows, but both state and federal regulation may present further scope for research.  
Davis and Haltiwanger (2014) find evidence relating employment protection policies to lower rates of reallocation, 
consistent with earlier work by Martin and Scarpetta (2012) and Autor, Kerr and Kugler (2007). Kleiner and 
Krueger (2013) review occupational licensing data and research. Molloy et al. (2016) find that states with tighter 
land use restrictions as of the early 2000s did not see larger declines in labor flows in recent decades, but the effect 
of changes in land use regulations is unknown; Hsieh and Moretti (2017) estimate significant static misallocation 
from land use regulations.   
52 This argument is most transparent in Appendix B where we consider a frictionless model.  In that case, a rise in 
markups leads to declining responsiveness and reallocation but no change in revenue labor productivity dispersion 
(since, in the absence of frictions and distortions, labor productivity is equal across firms).  We include some 
analysis and discussion of markups in Appendix B.  An accompanying increase in dispersion in markups can cause 
an increase in revenue labor productivity dispersion. 
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Figure 1: Job reallocation patterns vary by sector 

 
Note: Y axis does not start at zero. HP trends using parameter set to 100. Industries defined on a consistent NAICS 
basis; high-tech is defined as in Hecker (2005). Data include all firms (new entrants, continuers, and exiters). Author 
calculations from the Longitudinal Business Database (LBD). 
 
Figure 2: Young firm share patterns vary by sector 

 
Note: Young firms have age less than 5. Industries are defined on a consistent NAICS basis; high-tech is defined as 
in Hecker (2005). Data include all firms (new entrants, exiters, and continuers). Author calculations from the LBD. 
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Figure 3:  Most variation in job reallocation is not explained by changing startup rates 

 
Note: Sectors are defined on a consistent NAICS basis. Author calculations from the LBD. 
 
Figure 4a:  Responses of key moments to changes in TFP dispersion in theoretical model 

 
Note: Model with kinked adjustment costs (𝐹𝐹+ = 0.85,𝐹𝐹− = 0). General equilibrium model with flexible wage and 
inelastic labor supply.  See Appendix B for details. 

Figure 4b:  Responses of key moments to changes in adjustment costs in theoretical model 

 
Note: The x axis reflects values of 𝐹𝐹−, or the cost of reducing employment, holding the hiring cost 𝐹𝐹+ fixed at 𝐹𝐹+ =
0.85. General equilibrium model with flexible wage and inelastic labor supply.  See Appendix B for details. 
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Figure 5: Within-industry TFP dispersion has risen (manufacturing) 

 
Note: Y axis does not start at zero. Young firms have age less than 5. Standard deviation of within-detailed industry 
log TFPR.   High-tech defined as in Hecker (2005). Author calculations from the LBD, the Annual Survey of 
Manufacturers (ASM), and the Census of Manufacturers (CM). HP Trends. 
 
Figure 6:  Establishment job growth has become less responsive to TFP (manufacturing) 

 
Note: Young firms have age less than 5. High-tech is defined as in Hecker (2005). Growth rate of plant with TFPR 
one std. dev. above industry mean vs. industry mean. Author calculations from the LBD, the ASM, and the CM. 
 
Figure 7: Changing contribution of reallocation to aggregate TFP (manufacturing) 

 
Note: Figure depicts diff-in-diff counterfactual as described in the text from TFPR concept.  High-tech is defined as 
in Hecker (2005). Author calculations from the LBD, the ASM, and the CM. 
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Figure 8:  Establishment investment rates have become less responsive to TFP (manufacturing) 

 
Note: Young firms have age less than 5. High-tech is defined as in Hecker (2005). Investment rate of plant with 
TFPR one std. dev. above industry mean vs. mean. Author calculations from the LBD, the ASM, and the CM. 
 
Figure 9: Within-industry labor productivity dispersion has risen (economywide) 

 
Note: Y axes do not begin at zero. Standard deviation of log labor productivity deviated from industry by year 
means. Young firms have age less than five. High-tech is defined as in Hecker (2005). Author calculations from the 
RE-LBD. Finance, Insurance and Real Estate (NAICS 52-53) omitted. 
 
Figure 10: Firm growth has become less responsive to labor productivity (economywide) 

 
Note: Y axis does not start at zero. Growth rate of firm with labor productivity one std. dev. above industry mean vs. 
industry mean. Young firms have age less than five. High-tech defined as in Hecker (2005). Author calculations 
from the RE-LBD. Finance, Insurance and Real Estate (NAICS 52-53) omitted. 
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Figure 11: Changing contribution of reallocation to aggregate labor productivity (economywide) 

 
Note: Figure depicts diff-in-diff counterfactual as described in the text.  High-tech is defined as in Hecker (2005). 
Author calculations from the RE-LBD. Finance, Insurance, and Real Estate (NAICS 52-53) omitted. 
 
Figure 12:  Within-firm productivity growth in the average industry (economywide) 

 
Note: Average within-firm productivity growth, with and without employment weights. Author calculations from 
the RE-LBD.  
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Table 1: Effect of Lagged Productivity on Plant-Level Employment Growth and Exit   
 Growth including exit Exit 

 High-tech Non-tech High-tech Non-tech 
TFP*Young 0.2025*** 0.2732*** -0.0292* -0.0905*** 

 (0.0390) (0.0090) (0.0162) (0.0037) 
TFP*Young*Trend 0.0317*** 0.0016 -0.0160*** -0.0005 

 (0.0061) (0.0014) (0.0025) (0.0006) 
TFP*Young*Trend2 -0.0012*** -0.0002*** 0.0005*** 0.0001*** 

 (0.0002) (0.00005) (0.0001) (0.00002) 
TFP*Mature 0.1228*** 0.1394*** -0.0403*** -0.0464*** 

 (0.0174) (0.0043) (0.0072) (0.0018) 
TFP*Mature*Trend 0.0054** 0.0016 -0.0016 -0.0012 

 (0.0026) (0.0007) (0.0011) (0.0003) 
TFP*Mature*Trend2 -0.0003*** -0.0001* 0.0001*** 0.00005*** 

 (0.0001) (0.00002) (0.00003) (0.00001) 
N 125000 2055000 125000 2055000 
R2 0.059 0.032 0.098 0.054 

Notes:  Standard Errors in Parentheses.  Dependent variable in Growth columns is DHS growth rate.  Dependent 
variable in Exit columns is indicator=1 if exit, 0 Young firms have age less than 5.  Unreported are estimates of 
controls including year effects, state effects, firm age dummies, firm size dummies, log plant level employment in 
period t, state cyclical indicators (change in state level unemployment rate), state cyclical indicators interacted with 
TFP.  All variables that use TFP including all interactions are fully interacted with firm age dummies.  Sample size 
rounded to nearest 5000 observations. 
* p < 0.1, ** p < 0.05, *** p < 0.01. 
 
 
Table 2: Estimated Effect of Productivity on Plant-Level Equipment Investment Rate   

 High-tech Non-tech  

TFP*Young 0.0826*** -0.0125**  

 (0.0236) (0.0052)  

TFP*Young*Trend 0.0189*** 0.0156***  

 (0.0037) (0.0008)  

TFP*Young*Trend2 -0.0008*** -0.0004***  

 (0.0001) (0.0000)  

TFP*Mature 0.0232** 0.0039  

 (0.0105) (0.0025)  

TFP*Mature*Trend 0.0024 0.0067***  

 (0.0016) (0.0004)  

TFP*Mature*Trend2 -0.0001* -0.0002***  

 (0.00005) (0.0000)  

N 125000 20055000  

R2 0.068 0.047  
Notes:  Standard errors in parentheses.  Young firms have age less than 5.  Unreported are estimates of controls 
including year effects, state effects, firm age dummies, firm employment size dummies, log plant level employment 
in period t, dummies for initial capital, state cyclical indicators (change in state level unemployment rate), state 
cyclical indicators interacted with TFP.  All variables that use TFP including all interactions are fully interacted with 
firm age dummies. * p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table 3: Lagged Labor Productivity and Firm-Level Employment Growth and Exit 

 Growth including exit Exit 
 High-tech Non-tech High-tech Non-tech 
LP*Young 0.3845*** 0.3467*** -0.1258*** -0.1224*** 
 0.0020 0.0005 0.0009 0.0002 
LP*Young*Trend -0.0141*** -0.0043*** 0.0026*** 0.0014*** 
 0.0006 0.0001 0.0002 0.0001 
LP*Young*Trend2 0.0004*** 0.0000*** -0.0001*** 0.0000*** 
 0.0000 0.0000 0.0000 0.0000 
LP*Mature 0.2755*** 0.2522*** -0.0710*** -0.0758*** 
 0.0021 0.0004 0.0009 0.0002 
LP*Mature*Trend -0.0042*** -0.0056*** -0.0008*** 0.0020*** 
 0.0006 0.0001 0.0002 0.0000 
LP*Mature*Trend2 0.0000 0.0001*** 0.0001*** -0.0001*** 
 0.0000 0.0000 0.0000 0.0000 
N 55385000 55385000 55385000 55385000 
R2 0.126 0.108 0.105 0.093 
Dependent variable in all regressions is firm-level employment growth rate (DHS). All regressions include 
controls for state business cycle (change in state unemployment rate) and firm employment size in period t-1. 
Labor productivity is measured as the log difference from 6-digit NAICS industry mean. High-tech is defined as 
in Hecker (2005).  Observations rounded to nearest five thousand. 
*** p<0.01; ** p<0.05; * p<0.10 
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Appendix A. Figures and tables to supplement the main text 
Figure A1:  Exit selection on TFP has weakened (manufacturing) 

 
Note: Young firms have age less than 5. High-tech is defined as in Hecker (2005). Exit probability of plant with 
TFPR one std. dev. above industry mean vs. industry mean. Author calculations from the Longitudinal Business 
Database, the Annual Survey of Manufacturers, and the Census of Manufacturers. 
 
Figure A2: Exit selection on labor productivity has weakened (economywide) 

 
Note: Annual coefficients constructed from Table 3. Young firms have age less than five. High-tech defined as in 
Hecker (2005). Exit probability of plant with labor productivity one std. dev. above industry mean vs. industry 
mean. Author calculations from the RE-LBD. Finance, Insurance and Real Estate (NAICS 52-53) omitted. 
 
Figure A3: Average industry-level productivity growth, BLS and aggregated microdata 

 
Source: BLS and author calculations from RE-LBD. 
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Figure A4:  Little change in persistence of TFP (manufacturing) 

 
Note: High-tech is defined as in Hecker (2005). AR(1) coefficients for establishment TFPR, averaged by decade. 
The LBD-ASM-CM database is not ideally suited for estimating persistence since this requires relying on the 
longitudinal nature of the ASM/CM, which is less robust than the longitudinal properties of the LBD.  That is, 
estimating productivity persistence parameters requires pairwise continuing plants in t and t+1 to be measured in the 
ASM/CM.  The panel rotation of the ASM as well as Census years make this a challenge.  That is, in the first years 
of a new ASM panel and in Census years we have a much smaller and less representative set of continuing plants 
than other years.  For this exercise we exclude those years; even for other years, though, our propensity score 
weights are not ideally suited for making the sample of continuers representative.  In principle, we can develop 
separate propensity score weights for this restricted sample of continuing plants.  Doing so is more of a challenge, 
given the rotating nature of the ASM sample.  See Figure B2 in appendix B for the same exercise on RPR 
productivity. 
 
Figure A5:  Standard deviation of innovations to plant-level TFPR 

 
Note: High-tech is defined as in Hecker (2005). For the set of years where we can estimate the AR(1) process (see 
note for Figure A4), we can also recover the distribution of innovations to plant-level TFP for continuing plants.  
Since this is for selected years we report averages of standard deviation of innovations to TFP by decade as we did 
with persistence.   
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Figure A6: Rising labor productivity dispersion in survey and administrative data (manufacturing) 

 
Note:  Revenue labor productivity is measured as real revenue per employee.  For the ASM, revenue and 
employment are from survey data.  For the RE-LBD, revenue and employment are from administrative data.  
Dashed lines for each series depict HP-Filtered series.  Two alternative types of weighting are used.  For the 
employment-weighted series, the within industry dispersion at the 6-digit NAICS level are computed for each 
industry and year cell using the propensity score weights as described in the text.  Then the employment shares for 
each industry are computed from the RE-LBD and the reported dispersion at the total manufacturing level uses such 
industry-level employment weights.  Both the ASM and RE-LBD series use the RE-LBD industry-level employment 
weights. Results are similar using ASM-based employment weights.  For the non-employment-weighted measures, 
the reported measure is based on first sweeping out 6-digit NAICS-by-year effects from the micro data and then 
computing the pooled dispersion measure using the propensity score weights.  This is equivalent to a 2-step method 
weighting industries by the number of producers in the data.  One source of discrepancy between the ASM and RE-
LBD is the former is at the establishment level while the latter is at the firm level.   
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Appendix B. Illustrative Model of Adjustment Costs 

A. Model environment 

Consider the following model of firm-level adjustment costs.53  A firm maximizes the 

present discounted value of profits.  The firm’s value function and its components are specified 

as follows: 

𝑉𝑉(𝐸𝐸𝑒𝑒𝑒𝑒−1;𝐴𝐴𝑒𝑒𝑒𝑒) =  𝐴𝐴𝑒𝑒𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒
𝜑𝜑 − 𝑤𝑤𝑡𝑡𝐸𝐸𝑒𝑒𝑒𝑒 − 𝐶𝐶(𝐻𝐻𝑒𝑒𝑒𝑒) + 𝛽𝛽𝛽𝛽(𝐸𝐸𝑒𝑒𝑒𝑒+1;𝐴𝐴𝑒𝑒𝑒𝑒+1) 

with: 

𝐶𝐶(𝐻𝐻𝑒𝑒𝑒𝑒) = �
𝛾𝛾
2
�
𝐻𝐻𝑒𝑒𝑒𝑒
𝐸𝐸𝑒𝑒𝑒𝑒

�
2

0,   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
+ 𝐹𝐹+max (𝐻𝐻𝑒𝑒𝑒𝑒, 0) + 𝐹𝐹−max (−𝐻𝐻𝑒𝑒𝑒𝑒, 0) 𝑖𝑖𝑖𝑖 𝐻𝐻𝑒𝑒𝑒𝑒 ≠ 0 

 

𝑎𝑎𝑒𝑒𝑒𝑒 = 𝜌𝜌𝑎𝑎𝑒𝑒𝑒𝑒 + 𝜂𝜂𝑒𝑒𝑒𝑒 

𝐸𝐸𝑒𝑒𝑒𝑒 = 𝐸𝐸𝑒𝑒𝑒𝑒−1 + 𝐻𝐻𝑒𝑒𝑒𝑒 

 

where 𝜑𝜑 ≤ 1 due to product differentiation so that 𝐴𝐴𝑒𝑒𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒
𝜑𝜑  is the revenue function,  𝐸𝐸𝑒𝑒𝑒𝑒 is 

employment for time 𝑡𝑡,  𝐻𝐻𝑒𝑒𝑒𝑒 is net hires made at the beginning of time 𝑡𝑡, or 𝐻𝐻𝑒𝑒𝑒𝑒 = 𝐸𝐸𝑒𝑒𝑒𝑒 − 𝐸𝐸𝑒𝑒,𝑡𝑡−1 

(this can be positive or negative), 𝑤𝑤𝑡𝑡 is the wage, and  𝑎𝑎𝑒𝑒𝑒𝑒 = log (𝐴𝐴𝑒𝑒𝑒𝑒) is a revenue shock 

potentially reflecting TFPQ and demand shocks (for expositional convenience we focus on 

TFPQ).  We interpret the revenue function curvature as reflecting product differentiation rather 

than decreasing returns to help draw out relations between revenue productivity and technical 

efficiency.  That is, let firm-level prices be given by  𝑃𝑃𝑒𝑒𝑒𝑒 = 𝑄𝑄𝑒𝑒𝑒𝑒
𝜑𝜑−1 where 𝑄𝑄𝑒𝑒𝑒𝑒 = 𝐴̃𝐴𝑒𝑒𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒  is firm-

level output subject to a CRTS technology.  This implies that 𝐴𝐴𝑒𝑒𝑒𝑒 = 𝐴̃𝐴𝑒𝑒𝑒𝑒
𝜑𝜑 .  In terms of the 

terminology of the literature and the main text, 𝐴̃𝐴𝑒𝑒𝑒𝑒 is TFPQ; and since labor is the only factor of 

production, both TFPR and revenue labor productivity (RLP) are given by 𝑃𝑃𝑒𝑒𝑒𝑒𝐴̃𝐴𝑒𝑒𝑒𝑒.  Note that this 

specification nests the price-taking version of the model with 𝜑𝜑 = 1.  In that case, TFPQ, TFPR 

and RLP are equivalent.  We focus on the 𝜑𝜑 < 1 case in our calibration but discuss some aspects 

of the price-taking case below. 

                                                           
53 We use the term “firm” for expositional purposes; for modeling purposes we do not distinguish between firms and 
establishments. Our main empirical results focus on establishments. 
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This simple adjustment cost model is similar to Cooper, Haltiwanger, and Willis (2007), 

Elsby and Michaels (2013), and Bloom et al. (2016) and, in principle, accommodates both 

convex and non-convex costs.  Under non-convex costs the solution has the following form: 

𝑉𝑉 = max (𝑉𝑉𝐼𝐼 ,𝑉𝑉𝐻𝐻) 

where 

𝑉𝑉𝐼𝐼 =  𝐴𝐴𝑒𝑒𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒−1
𝜑𝜑 − 𝑤𝑤𝑡𝑡𝐸𝐸𝑒𝑒𝑒𝑒−1 + 𝛽𝛽𝛽𝛽(𝐸𝐸𝑒𝑒𝑒𝑒;𝐴𝐴𝑒𝑒𝑒𝑒+1) 𝑖𝑖𝑖𝑖 𝐻𝐻𝑒𝑒𝑒𝑒 = 0 

 

𝑉𝑉𝐻𝐻 =  𝐴𝐴𝑒𝑒𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒
𝜑𝜑 − 𝑤𝑤𝑡𝑡𝐸𝐸𝑒𝑒𝑒𝑒 − 𝐶𝐶(𝐻𝐻𝑒𝑒𝑒𝑒) + 𝛽𝛽𝛽𝛽(𝐸𝐸𝑒𝑒𝑒𝑒;𝐴𝐴𝑒𝑒𝑒𝑒+1) 𝑖𝑖𝑖𝑖 𝐻𝐻𝑒𝑒𝑒𝑒 ≠ 0 

 

with the notation indicating that 𝑉𝑉𝐼𝐼 is the value of inaction (i.e., zero net hiring), and 𝑉𝑉𝐻𝐻 is the 

value of nonzero net hiring (in either positive or negative amounts). 

 We view this model as primarily designed to yield the reduced form hypotheses that we 

confront with the data, but we seek to use a reasonable baseline calibration that matches many of 

the features of the data and the parameters of the existing literature.  Appropriate caution is 

needed since we do not model entry or exit, and we do not have any lifecycle learning dynamics 

or frictions that make young firms different from more mature firms.   

Our main calibration exercise implements “general equilibrium” in the sense that the 

wage adjusts to clear the labor market; however, we fix the labor supply, so this calibration may 

be thought of as one relevant bound.  In unreported exercises, we also consider the opposite 

bound in which labor supply is perfectly elastic and the wage is fixed (i.e., partial equilibrium).  

A limitation of the partial equilibrium exercise is that when the wage is fixed, adjustment 

frictions can have large effects on average firm size and therefore aggregate productivity via 

channels that are unrelated to reallocation.  However, our key results on how adjustment costs 

affect reallocation rates, firm-level productivity responsiveness, and the OP covariance do not 

substantively depend on general vs. partial equilibrium.  We report the more realistic general 

equilibrium (inelastic labor supply) results here.  

B. Calibration 

 We set 𝛽𝛽 = 0.96, consistent with annual data.  We specify that 𝜑𝜑 = 0.8, consistent with a 

markup of 25 percent.  For the shock process, we specify 𝜎𝜎𝑎𝑎 = 0.35, which is roughly the 

standard deviation of TFPR or RPR in U.S. manufacturing during the 1980s; and we set 𝜌𝜌 =

0.65, broadly consistent with the AR(1) coefficient on TFPR and RPR that we find among 
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manufacturing establishments in the 1980s (see Figure A4 and Appendix C).  These values of 𝜎𝜎𝑎𝑎 

and 𝜌𝜌 imply that innovations to TFP have a standard deviation of 𝜎𝜎𝜂𝜂 = 0.26.  Strictly speaking, 

if plant-level prices are endogenous (which this model permits) the appropriate empirical 

moments are those from RPR since it reflects only the exogenous fundamentals.  However, as 

discussed below, the benchmark calibration yields a very high correlation between RPR and 

TFPR.  This in turn implies, as shown below, the critical inferences we use from the theory to 

take to the theory are robust to using either RPR or TFPR. 

 We calibrate the adjustment cost parameter(s) to target a job reallocation rate of 25 

percent, roughly the rate for the U.S. manufacturing sector in the 1980s.  Focusing only on 

kinked (non-convex) adjustment costs (i.e., setting 𝛾𝛾 = 0), we find that the target reallocation 

rate implies 𝐹𝐹+ = 0.85 when 𝐹𝐹− = 0.  For quadratic adjustment costs (i.e., 𝐹𝐹+ = 𝐹𝐹− = 0) 

matching the job reallocation rate of 0.25 requires 𝛾𝛾 = 1.3.  We make no attempt to jointly 

calibrate convex and non-convex adjustment costs for our illustrative purposes.  For the key 

moments we study empirically, the model produces broadly similar predictions regardless of cost 

type.  The literature suggests that non-convex costs are important for certain properties of 

microdata, so we focus on this cost type here and leave convex cost exercises unreported.  

However, the qualitative patterns we present are robust to consideration of variation of 

alternative adjustment cost parameters. 

 The model produces a (non-targeted) correlation between TFPQ and TFPR (which is the 

same as RLP in this one-factor setting) of 0.90, qualitatively similar to the 0.75 found by Foster, 

Haltiwanger, and Syverson.  This strong correlation implies that the responsiveness of growth to 

realizations of productivity is essentially the same whether we use TFPQ or TFPR/RLP as the 

measure of productivity.   

 We consider two types of experiments in the simulation.  The first is an increase in 

adjustment frictions starting from 𝐹𝐹+ = 0.85,𝐹𝐹− = 0, our baseline non-convex cost calibration 

described above.54  We increase 𝐹𝐹− from zero to study rising adjustment costs from a starting 

point that matches the patterns of TFP and reallocation in the 1980s. In the second experiment, 

we fix adjustment costs at the baseline (𝐹𝐹+ = 0.85,𝐹𝐹− = 0) but vary TFP dispersion around the 

                                                           
54 We also find similar patterns if we consider a case with F->0 and F+=0 and then begin increasing F+   Cooper, 
Haltiwanger, and Willis (2007) found that including a kinked adjustment cost to be important to match the shape of 
the growth rate distribution of employment but found similar results using either F-  or F+ to generate the kink. 



Web appendix: Not intended for publication 

50 
 

baseline to study the relation between TFP dispersion and responsiveness, RLP dispersion, and 

the OP covariance.  

C.  Changing adjustment costs 

Here we describe results from the general equilibrium (i.e., flexible wage with inelastic 

labor supply) model.  We consider several moments calculated on model-simulated data;55 these 

moments are the job reallocation rate; the standard deviation of labor productivity (or, 

equivalently in this model, TFPR); the TFP coefficient from a regression of firm-level 

employment growth from time 𝑡𝑡 to 𝑡𝑡 + 1 on TFP in time 𝑡𝑡 and (log) employment in time 𝑡𝑡 (that 

is, we run a regression analogous to equation (4) in the paper; hereafter we call this moment the 

“productivity coefficient”); the Olley-Pakes (OP) covariance for TFP (hereafter “OP 

covariance”); and the OP covariance for labor productivity.  As we discuss further below and in 

the main text, we do not use the OP covariance in our empirical analysis.  However, we find it 

instructive to calculate the OP covariance in our various experiments in the theoretical model.  

This also is helpful to highlight the limitations of the OP covariance relative to our diff-in-diff 

counterfactual developed below. 

Figures 4b of the main text and B1 of this appendix show the effect of increasing 

adjustment frictions (i.e., raising the downsizing cost 𝐹𝐹− while holding fixed 𝐹𝐹+ = 0.85).  An 

increase in adjustment frictions yields:  (i) a decline in the job reallocation rate; (ii) a decline in 

the productivity coefficient; (iii) an increase in the dispersion of RLP; and (iv) a decline in the 

OP covariance for both TFP and RLP (where employment serves as weights).  Each of these 

relationships is monotonic in adjustment costs except the Olley-Pakes covariance for RLP 

(which we discuss below). 

 There are many possible moments relating growth to TFP that are similarly sensitive to 

adjustment costs.  For example, in unreported regression results (in which we always control for 

period-𝑡𝑡 log employment), increasing adjustment costs yield (i) a decline in the estimated 

coefficient of a regression of firm-level growth between 𝑡𝑡 and 𝑡𝑡 + 1 on TFP in period 𝑡𝑡 + 1 

(rather than 𝑡𝑡); (ii) a decline in the estimated coefficient of a regression of firm-level growth 

between 𝑡𝑡 and 𝑡𝑡 + 1 on the change in TFP from period 𝑡𝑡 to 𝑡𝑡 + 1; and (iii) a decline in the 

estimated coefficient of a regression of firm-level growth between 𝑡𝑡 and 𝑡𝑡 + 1 on the innovation 

                                                           
55 We simulate 2000 firms for 1000 periods then discard the first 100 periods. 
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of TFP  (𝜂𝜂𝑒𝑒𝑒𝑒).  In principle, we could use any of these moments to detect a change in adjustment 

frictions.  We focus on the specification in B1 to be consistent with our main econometric 

specification in equation (4), which is our preferred specification for a number of econometric 

and measurement reasons discussed briefly in the main text.  For example, a limitation of using 

innovations of TFP with the ASM-LBD integrated data is that the panel rotation issues of the 

ASM imply that first panel years should be excluded in such specifications (see Foster et al. 

(2016) for details).  Nevertheless, in unreported results with the ASM-LBD integrated data we 

have found that the main patterns of changing responsiveness hold when estimating equation (4) 

with innovations of TFP.   We also note that the exact timing in the model vs. the data are 

different, so it is reassuring that the predictions on responsiveness hold equally well qualitatively 

in the numerical analysis using current or lagged productivity. 

 The model-based predictions in Figure 4b are the primary moments that we explore 

empirically in the main text.  In the empirical analysis we also consider the estimated coefficient 

of firm-level growth between 𝑡𝑡 and 𝑡𝑡 + 1 on revenue labor productivity in 𝑡𝑡 (with log period-𝑡𝑡 

employment as a control as usual).  Given the simple revenue functions in the model, this 

estimated coefficient is identical to the coefficient on TFP shown on Figure 4b (this is because 

the only production factor is labor, and initial employment is explicitly included in all 

regressions).  This precise equivalence is model dependent, but the general inference is not. That 

is, in response to an increase in adjustment frictions, there should be a decline in the covariance 

between firm-level growth and realizations of labor productivity as firms find it more costly to 

equalize their marginal products. 

D. Changing TFP dispersion 

   Figure 4a in the main text shows how key moments vary with TFP dispersion.  Increased 

TFP dispersion yields:  (i) an increase in the job reallocation rate; (ii) an increase in the 

productivity coefficient; and (iii) an increase in the dispersion of labor productivity.  As before, 

the finding for the productivity coefficient also holds using real labor productivity as the 

regressor. 

 While the results in Figure 4a are generally intuitive, one finding merits further 

discussion—specifically, the finding that responsiveness increases in TFP dispersion.  In the 

presence of non-convex adjustment costs, the net effect of TFP dispersion on responsiveness 

reflects two competing mechanisms (as discussed in the main text).  The first is the “real 
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options” effect:  Non-convex costs create “inaction bands” or regions of the TFP innovation 

range in which firms prefer inaction (i.e., zero hiring) to action.  Inaction bands widen as shock 

dispersion or volatility rises (consistent with an “uncertainty” interpretation), which, ceteris 

paribus, reduces responsiveness.  We observe this effect in our simulated data when we examine 

only the extensive margin: a given absolute change in TFP is more likely to induce action when 

TFP dispersion is smaller (holding initial employment constant).  However, in the model this 

effect is dominated by the “volatility effect” in which adjustments—when they actually do 

occur—are larger when TFP is more widely dispersed.  The dominance of the “volatility effect” 

is consistent with Barro (1972); Bloom et al. (2016) find, in a business cycle-focused model that 

is otherwise similar to ours, that the real options effect dominates for a few quarters at high 

frequency, but the volatility effect dominates after a year or more.  Given our long-run focus, the 

steady-state result that the “volatility effect” dominates is the relevant intuition. 

E. The frictionless case 

 The patterns in Figures 4a, 4b and B1 are, for the most part, robust to changes in the 

curvature of the revenue function, the shock space and the adjustment cost parameters.  One 

exception highlights the importance of using multiple moments in our empirical exercises.  

Specifically, in a frictionless benchmark with zero adjustment costs (in contrast to our baseline 

above, in which hiring costs are set to 𝐹𝐹+ = 0.85), there is zero labor productivity dispersion 

and, therefore, zero OP covariance for labor productivity (though still positive OP covariance for 

TFP).  At first glance, this implies that the OP covariance for labor productivity may not be an 

informative moment, but we show here that the frictionless benchmark yields patterns that are 

very far from empirical plausibility.  

Figure B2 shows the effects of increasing adjustment costs starting from zero, the 

frictionless case.  As adjustment frictions rise above zero, labor productivity dispersion rises 

(Figure B2) and, consistent with the discussion above, reallocation and the productivity 

coefficient decline.  But Figure B4 shows that the OP covariance for labor productivity initially 

rises as labor productivity begins to be dispersed, continuing to rise over the range of adjustment 

frictions that produce reallocation rates above 30 percent (compare Figure B4 to Figure B2).  But 

since productivity responsiveness declines monotonically as adjustment costs rise, the OP 

covariance eventually declines as labor is increasingly “trapped” in unproductive firms while 

productive firms are starved of resources (i.e., employment weight).  Thus, the OP covariance for 
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labor productivity is decreasing in adjustment costs (and increasing in misallocation) across the 

plausible range of costs.  This pattern is related to that found in Bartelsman, Haltiwanger, and 

Scarpetta (2013), in whose model distortions reduce the OP covariance for labor productivity as 

long as the benchmark is characterized by sufficient frictions; we explore the OP covariance in 

more detail below. 

As can be seen on Figure B2, the frictionless benchmark produces implausibly large rates 

of reallocation, above 100 percent, while empirical reallocation in the manufacturing sector was 

around 25 percent in the 1980s and has since declined.  Here we demonstrate basic analytical 

intuition underlying the empirical implausibility of the frictionless case.  In the frictionless case 

(𝛾𝛾 = 𝐹𝐹+ = 𝐹𝐹− = 0), the first-order condition for labor is given by: 

𝐸𝐸𝑒𝑒𝑒𝑒 = �
φAet

𝑤𝑤𝑡𝑡
�

1
1−𝜑𝜑

 

Taking logs (indicated by lower case) and differences (indicated by ∆) and sweeping out year 

and industry effects yields: 

∆𝑒𝑒𝑒𝑒𝑒𝑒 =
1

1 − 𝜑𝜑
∆𝑎𝑎𝑒𝑒𝑒𝑒 

which implies 

𝑠𝑠𝑠𝑠𝑠𝑠(∆𝑒𝑒𝑒𝑒𝑒𝑒) =
1

1 − 𝜑𝜑
𝑠𝑠𝑠𝑠𝑠𝑠(∆𝑎𝑎𝑒𝑒𝑒𝑒) 

where 𝑠𝑠𝑠𝑠𝑠𝑠() indicates standard deviation.  That is, in the frictionless model, the dispersion of 

employment growth rates (i.e., log differences) is proportional to the dispersion of TFP with the 

factor of proportionality greater than one.  The 𝑠𝑠𝑠𝑠𝑠𝑠(∆𝑎𝑎𝑒𝑒𝑒𝑒) among continuing manufacturing 

plants is about 0.33 (this is from RPR—similar statistics emerge from TFPR).  For 𝜑𝜑 = 0.8, 

corresponding to a markup of 25 percent, we should expect 𝑠𝑠𝑠𝑠𝑠𝑠(∆𝑒𝑒𝑒𝑒𝑒𝑒) = 1.65; for a 33 percent 

markup we should expect 𝑠𝑠𝑠𝑠𝑠𝑠(∆𝑒𝑒𝑒𝑒𝑒𝑒) = 1.32.  Yet in U.S. manufacturing data 𝑠𝑠𝑠𝑠𝑠𝑠(∆𝑒𝑒𝑒𝑒𝑒𝑒) = 0.35.  

This relatively low dispersion of plant-level employment growth rates compared to the 

dispersion in shocks illustrates that the frictionless model yields implausible empirical patterns.    

 Given the empirical implausibility of the frictionless model, then, we are comfortable 

drawing inference from key moments—including the OP covariance for labor productivity—

along the plausible range of adjustment costs.  We elaborate further on strengths and limitations 

of the OP decomposition below. 
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F. Markups 

Even though the frictionless model exhibits implausible dispersion of employment 

growth rates, this analysis is useful for demonstrating that an increase in markups reduces 

reallocation and responsiveness but does not inherently affect dispersion in revenue labor 

productivity.  The markup is given by 1/𝜑𝜑.  From the above, reallocation (dispersion in 

employment growth rates) and the responsiveness of employment growth are both decreasing in 

the markup, but the dispersion of revenue labor productivity is zero in the frictionless benchmark 

regardless of the markup. 

This independence of labor productivity dispersion holds under adjustment costs as well.  

Figure B3 shows the effect of varying the markup around our benchmark calibration of a 25 

percent markup and adjustment costs targeting the 1980s reallocation rate.  As the markup 

increases, reallocation and responsiveness sharply decline.  The standard deviation of labor 

productivity dispersion is flat, to numerical precision, over this wide range of markups.  

G. The Olley-Pakes decomposition and covariance 

While we show above that the OP covariance is declining in adjustment costs over 

plausible parameterizations, additional doubts about its usefulness may arise from limitations of 

the accounting-based decomposition on which it is based (Levinsohn and Petrin (2003); Petrin, 

White, and Reiter (2011); Hsieh and Klenow (2017)).  We do not formally use the OP covariance 

in any of our empirical analysis but instead use diff-in-diff counterfactuals.  However, it is 

instructive to compare and contrast our diff-in-diff counterfactuals with the OP covariance.  The 

OP productivity decomposition is given by:56 

𝐴𝐴𝑡𝑡𝑂𝑂𝑂𝑂 = �𝜃𝜃𝑒𝑒𝑒𝑒𝐴𝐴𝑒𝑒𝑒𝑒
𝑒𝑒

= 𝐴̅𝐴𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝑒𝑒𝑒𝑒,𝐴𝐴𝑒𝑒𝑒𝑒) 

where 𝐴𝐴𝑡𝑡𝑂𝑂𝑂𝑂 is the Olley-Pakes concept of industry aggregate productivity, 𝜃𝜃𝑒𝑒𝑒𝑒 is the employment 

share of firm 𝑒𝑒, 𝐴𝐴𝑒𝑒𝑒𝑒 is productivity of firm 𝑒𝑒, 𝐴̅𝐴𝑡𝑡 is (unweighted) average productivity for the 

industry, and 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝑒𝑒𝑒𝑒,𝐴𝐴𝑒𝑒𝑒𝑒) is the OP covariance (which is proportional to true covariance).   

                                                           
56 In empirical work, it is common to use a weighted average of log firm-level productivity to avoid index number 
problems.  We use the weighted average of firm-level productivity here to highlight that under CRTS and price-
taking behavior that this weighted average is equal to aggregate productivity.  Empirical implementation still 
requires addressing the index number problems.   
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 Define aggregate productivity as 𝐴𝐴𝑡𝑡 = 𝑄𝑄𝑡𝑡/𝐸𝐸𝑡𝑡, that is, aggregate output divided by 

aggregate employment.  A critical question is how well 𝐴𝐴𝑡𝑡𝑂𝑂𝑂𝑂 matches 𝐴𝐴𝑡𝑡; a related question is 

how to interpret the quantitative variation in the OP covariance term.  Continuing with our 

model, characterized by constant returns to scale but potentially imperfect competition,57 note 

that aggregate output is given by: 

𝑄𝑄𝑡𝑡 = ��𝑄𝑄𝑒𝑒𝑒𝑒
𝜑𝜑

𝑒𝑒

�

1
𝜑𝜑

 

where 𝜑𝜑 ≤ 1.  Aggregate productivity is as follows: 

𝐴𝐴𝑡𝑡 =
𝑄𝑄𝑡𝑡
𝐸𝐸𝑡𝑡

=
�∑ 𝐴𝐴𝑒𝑒𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒

𝜑𝜑
𝑒𝑒 �

1
𝜑𝜑

𝐸𝐸𝑡𝑡
 

It is straightforward to see that if 𝜑𝜑 = 1, that is, perfect competition, aggregate output of the final 

good is simply the sum of firm-level output, and the OP decomposition measures aggregate 

productivity exactly: 

𝐴𝐴𝑡𝑡 =
𝑄𝑄𝑡𝑡
𝐸𝐸𝑡𝑡

=
∑ 𝐴𝐴𝑒𝑒𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒

𝐸𝐸𝑡𝑡
= �𝐴𝐴𝑒𝑒𝑒𝑒𝜃𝜃𝑒𝑒𝑒𝑒

𝑒𝑒

= 𝐴𝐴𝑡𝑡𝑂𝑂𝑂𝑂 

In this case the size distribution can only be determined in the presence of frictions; but the OP 

covariance term’s effect on aggregate productivity is intuitive since the firm with the highest 

average productivity also has the highest marginal productivity.  Moving resources to the most 

productive firm will always increase aggregate productivity (this inference is robust to a model 

with multiple inputs).  The key is that with CRTS and perfect competition, the marginal revenue 

product of a firm does not change with scale but only varies with TFPQ.   

For 𝜑𝜑 < 1, however, aggregate productivity is no longer equal to the OP-based weighted 

measure of firm productivity.  Moreover, it is no longer the case that continually moving 

resources to the most productive firm (in terms of average productivity) will increase aggregate 

productivity.  This is because with 𝜑𝜑 < 1, as resources are moved to the most productive firms 

marginal revenue products rise for the least productive firms and fall for the most productive 

firms.  This implies that with 𝜑𝜑 < 1 the OP weighted average of firm productivity declines more 

                                                           
57 A broader interpretation of our simple model is that the revenue function curvature reflects either (or both) 
imperfect competition or decreasing returns to scale. The effects of either on the accuracy of the OP decomposition 
are similar, so we proceed in this subsection with a focus on the imperfect competition. 
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rapidly with an increase in adjustment costs than does aggregate productivity.  Intuitively, 

revenue function curvature (i.e., low or declining 𝜑𝜑) dampens the marginal responsiveness of 

firms to their TFP realizations relative to linear revenue, or 𝜑𝜑 = 1 (which, in unreported results, 

we verify in our model); the OP covariance declines more quickly than industry productivity as 

adjustment costs rise because it does not capture the impact of curvature on marginal revenue 

products and optimal responsiveness. 

To overcome this limitation of the OP covariance measure, in our empirical analysis we 

rely instead on a diff-in-diff counterfactual (equation (5) in the text) given by: 

Δ𝑡𝑡𝑡𝑡+1  = �(𝜃𝜃𝑒𝑒,𝑡𝑡+1
𝑇𝑇 − 𝜃𝜃𝑒𝑒,𝑡𝑡+1

𝑁𝑁𝑁𝑁 )𝑎𝑎𝑒𝑒𝑒𝑒
𝑓𝑓

 

This diff-in-diff counterfactual isolates the impact of changing responsiveness on the weighted 

mean holding everything else constant.  In particular, this diff-in-diff object implicitly relies on 

estimated policy functions that reflect optimal growth responses of firms to their productivity 

draws and initial size, taking the degree of revenue curvature as given and therefore implicitly 

acknowledging that equalization of marginal products is the driving force behind labor 

adjustment.  As such, the diff-in-diff object more accurately tracks changes in aggregate 

productivity than does the raw OP covariance, which relies on linear revenue function 

assumptions and therefore sees all movement of labor toward high-productivity firms as 

productivity enhancing. Conveniently, this diff-in-diff object can be easily constructed 

empirically, with the main source of error being estimation error inherent in the process of using 

OLS to estimate nonlinear policy functions. 

 Interestingly, using the OP covariance for revenue labor productivity (RLP) captures the 

effect of curvature on industry-level productivity in a way that the OP covariance for TFPQ does 

not. RLP is given by 𝐴𝐴𝑒𝑒𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒
𝜑𝜑−1 so that the employment-weighted average of RLP is given by: 

𝑅𝑅𝑅𝑅𝑃𝑃𝑡𝑡𝑂𝑂𝑂𝑂 = �𝜃𝜃𝑒𝑒𝑒𝑒𝐴𝐴𝑒𝑒𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒
𝜑𝜑−1

𝑒𝑒

=
∑ 𝐴𝐴𝑒𝑒𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒

𝜑𝜑
𝑒𝑒

𝐸𝐸𝑡𝑡
 

Comparing 𝑅𝑅𝑅𝑅𝑃𝑃𝑡𝑡𝑂𝑂𝑂𝑂 to 𝐴𝐴𝑡𝑡 shows that both reflect the curvature of the revenue function in a 

manner that 𝐴𝐴𝑡𝑡𝑂𝑂𝑂𝑂 does not; this convenient feature of RLP arises because RLP (the average 

revenue product of labor) is proportional to the marginal product of labor. 

Figure B4 illustrates how aggregate productivity, the OP covariance using TFPQ, the OP 

covariance using RLP, and the diff-in-diff counterfactuals using either TFPQ or RLP (equivalent 
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to TFPR in the one-factor model) evolve as adjustment costs rise.  Consistent with the discussion 

above, as adjustment costs rise, true aggregate productivity declines less rapidly than the OP 

covariance using TFPQ.  In contrast, the diff-in-diff counterfactuals track aggregate productivity 

very closely; moreover, the OP covariance using RLP also tracks aggregate productivity well 

over the reported range of adjustment costs of Figure B5.  In unreported results, we have shown 

that the properties of Figure B5 are robust to alternative values of 𝜑𝜑.  In particular, the close 

quantitative correspondence between changes in aggregate productivity and the diff-in-diff 

counterfactuals is robust to alternative values of 𝜑𝜑 < 1. 

The finding that the OP covariance for RLP tracks industry productivity well over the 

range of adjustment costs (Figure B6) is interesting since, as shown on Figure B4, the OP 

covariance for RLP exhibits a non-monotonic relationship with adjustment costs when starting 

from a frictionless benchmark.  Figure B4 suggests caution in using the OP decomposition with 

RLP over a wide range of adjustment costs that includes zero costs.  However, over the 

empirically relevant cost range the OP decomposition with RLP tracks industry productivity 

reasonably well.  This finding is not directly related to the findings in this paper since we focus 

on the diff-in-diff counterfactuals that directly exploit estimated policy functions.  However, it is 

relevant for the large literature that uses the OP decomposition or the dynamic OP decomposition 

with labor productivity (e.g., Decker et al. (2017) and Alon et. al. (2017)).  The findings here 

suggest that using the OP approach with the RLP index yields a decomposition that 

quantitatively tracks industry-level productivity reasonably well under empirically relevant 

adjustment costs. 

One might ask why we do not simply quantify changes in aggregate (industry) 

productivity in our empirical analysis.  The reason is that simple comparisons cannot isolate the 

change in aggregate productivity that is due specifically to changing adjustment frictions and 

slowing reallocation.  Our diff-in-diff counterfactual achieves this objective and, since it relies 

on actual (estimated) firm policy functions, is reasonably robust to the parameters of the 

economic environment. 
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Figure B1:  Responses of OP covariances to changes in adjustment costs 

 
Note: The x axis reflects values of 𝐹𝐹−, or the cost of reducing employment, holding the hiring cost 𝐹𝐹+ fixed at 𝐹𝐹+ =
0.85. General equilibrium model with flexible wage and inelastic labor supply. 
 
Figure B2: Responses of key moments to changes in adjustment costs from frictionless benchmark 

 
Note: Model with no upward or downward adjustment costs (𝐹𝐹+ = 0) with varying downward adjustment costs (𝐹𝐹−) 
indicated on the x axis. General equilibrium model with flexible wage and inelastic labor supply. 
 
Figure B3:  Responses of key moments to change in markups 

 
Note: Model with upward adjustment costs (𝐹𝐹+ = 0.85) with varying markups (curvature in revenue function) 
indicated on the x axis. General equilibrium model with flexible wage and inelastic labor supply. 
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Figure B4: Responses of OP covariances to changes in adjustment costs from frictionless benchmark 

 
Note: Model with no upward adjustment costs (𝐹𝐹+ = 0) with varying downward adjustment costs (𝐹𝐹−) indicated on 
the x axis. General equilibrium model with flexible wage and inelastic labor supply. 
 
Figure B5: Response of Diff-in-Diff Counterfactuals to Increase in Adjustment Costs 

 
Note: The x axis reflects values of 𝐹𝐹−, or the cost of reducing employment, holding the hiring cost 𝐹𝐹+ fixed at 𝐹𝐹+ =
0.85. General equilibrium model with flexible wage and inelastic labor supply.  
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Appendix C. Alternative TFP calculation 

While our TFPR measure as a measure of TFP is common in related literature, as we 

discus in the main text we also consider an estimate of RPR using the proxy method of  

Wooldridge (2009).   As we show in equation (3), RPR is only a function of exogenous TFPQ 

and demand shocks (even if plant-level prices are endogenous) because the elasticities recovered 

by revenue function estimation are revenue elasticities (not factor elasticities) capturing both 

production and demand parameters (Foster et al. (2017)).  In this appendix, we discuss the 

estimation of RPR and the results using the RPR measure of TFP.  Given the possible presence 

of demand shocks, RPR should be interpreted as reflecting both TFPQ and demand shocks.   

 Foster et al. (2017) find that the Woolridge residuals are sensitive to outliers; pooling 

across a large number of observations mitigates this sensitivity, so we estimate revenue 

elasticities that vary at the 3-digit NAICS level.58  After estimating the elasticities, we compute 

the revenue productivity residuals and deviate the latter from 6-digit NAICS industry by year 

means.  We find that 𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒 has a correlation of 0.76 with 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒.   

We replicate our main empirical exercises replacing TFPR with RPR.  Figure C1 shows 

the evolution of within-industry dispersion in 𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒 for manufacturing plants.  Consistent with 

Figure 5, we observe gradually rising RPR dispersion throughout the time period, with higher 

dispersion in high-tech than elsewhere.  Figure C2 reports AR(1) coefficients for plant-level RPR 

(see note to Figure A4 in appendix A for a discussion of this measure and its limitations in our 

dataset).  Again, RPR results are consistent with TFPR results, confirming that changes in the 

TFP distribution cannot explain aggregate job reallocation patterns. 

We estimate equation (4) using RPR in place of TFP.  Figure C3 reports growth 

differentials (between the plant with productivity one standard deviation above its industry mean 

and the mean) as discussed in the main text.  The results are generally consistent with those 

reported for TFP on Figure 6, with young firm productivity responsiveness in high-tech that rises 

from the 1980s to the 1990s then falls in the 2000s.  Among mature firms in high-tech, 

                                                           
58 The cost share-based TFPR measure we use in the main text is constructed with cost shares that vary at the 4-digit 
SIC level prior to 1997 and the 6-digit NAICS level thereafter. The instability and outlier sensitivity of the RPR 
elasticity estimates precludes this level of detail.  The cost share-based TFPR method therefore allows for more 
flexibility in elasticity values implying a better fit in detailed industries, while the RPR method avoids problems of 
price endogeneity and isolates exogenous TFPQ and demand shocks.  This tradeoff is the reason we ensure 
robustness of our exercises to both productivity concepts. 
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responsiveness is somewhat flat from the 1980s to the 1990s before falling markedly in the 

2000s. 

Finally, Figure C4 reports the diff-in-diff counterfactual described by equation (5).  

Among high-tech plants, declining responsiveness produces a counterfactual that is broadly 

similar—both qualitatively and quantitatively—with the TFPR-based results from Figure 7, with 

a productivity “drag” that is only slightly smaller under RPR than under TFPR.  Among non-tech 

plants, the counterfactual produces somewhat different results from those reported in Figure 7, 

with a gap opening up early in the sample then remaining stable (and negative) after the late 

1990s.  In general, the RPR results confirm the TFP-based findings suggesting a quantitatively 

significant change in the contribution of reallocation to aggregate productivity growth. 

We conduct an additional robustness check addressing the concerns of Gandhi et al. 

(2016), who argue that if some factors are completely variable then the Wooldridge (2009) and 

related proxy methods may not be not identified.  Ackerberg, Caves, and Frasier (2015) offer 

guidance about when their (and the equivalent Wooldridge (2009)) method is identified;59 

however, as a robustness check we consider a hybrid method that estimates revenue elasticities 

for materials and energy (the factors most likely to be completely variable) using non-parametric 

methods in a first step.  In practice, this amounts to using the means of the revenue cost shares of 

materials and energy to estimate the revenue elasticities.  Then the Wooldridge (2009) method is 

used to estimate the revenue elasticities for labor and capital in a second step.  We do not report 

this robustness exercise for the sake of brevity, but the results are quite similar to those we report 

for RPR.  This is not surprising since this hybrid measure yields an RPR measure with a 

correlation of 0.94 with the RPR measure estimated using the Wooldridge (2009) procedure that 

we describe above.  The standard deviation of the two alternative RPR measures (sweeping out 

industry-by-year effects) are both about 0.41.   

 

 

 

 

 

                                                           
59 If input prices of variable factors are serially correlated then this is one way that the ACF and Wooldridge 
estimators are still identified.   
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Figure C1: Within-industry dispersion in RPR (standard deviation), manufacturing 

 
Note: The standard deviation is the based on within-detailed industry log revenue productivity residual.  High-tech is 
defined as in Hecker (2005). Manufacturing is defined on a consistent NAICS basis. Author calculations from the 
Longitudinal Business Database, the Annual Survey of Manufacturers, and the Census of Manufacturers. HP trends. 
 
Figure C2:  Persistence of plant-level RPR:  High-tech vs. non-tech 

 
Note: High-tech is defined as in Hecker (2005). Author calculations from the Longitudinal Business Database, the 
Annual Survey of Manufacturers, and the Census of Manufacturers. 
 
Figure C3:  Relative employment growth rates, high-productivity vs. average-productivity plant (RPR) 

 
Note: Young firms have age less than 5. High-tech is defined as in Hecker (2005). Author calculations from the 
Longitudinal Business Database, the Annual Survey of Manufacturers, and the Census of Manufacturers. 
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Figure C4: Diff-in-diff counterfactual (RPR productivity), manufacturing 

 
Note: Figure depicts diff-in-diff counterfactual as described in the text.  High-tech is defined as in Hecker (2005). 
Author calculations from the Longitudinal Business Database, the Annual Survey of Manufacturers, and the Census 
of Manufacturers. 
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Appendix D.  Changing Business Models in Manufacturing 
A. Investment 

As noted in the text, Table 2 and Figure 6 report our standard responsiveness regression 

using establishment investment rates as the dependent variable in place of employment growth.  

We include the capital stock as an additional state variable in these regressions; we do not 

include the capital stock in our main employment growth regressions, but in unreported exercises 

we find our main results are robust to its inclusion. The timing is slightly different for equipment 

investment as opposed to the employment growth specifications:  in the employment growth 

specifications, we measure growth from March of t to March of t+1 as a function of size in 

March t and productivity for year t. In the investment specification, we measure investment 

throughout year t as a function of size in March t, productivity for year t, and capital stock at the 

beginning of year t. Consistent with standard models, we have in mind a time-to-build 

assumption that investment during period t contributes to capital used during period t+1, which 

means the difference in timing from the employment growth regressions is not large. Moreover, 

our model exercises in Appendix B suggest that our theoretical framework is not heavily 

dependent on specific timing concerns. 

B. Globalization 

Globalization may be playing a role in declining responsiveness since increased exposure 

to foreign trade facilitates adjustment by scaling international operations.  That is, it may be that 

rather than growing domestically, productive firms are more likely to expand and produce in 

other countries, a dynamic that could eliminate or even reverse the standard positive correlation 

between growth and productivity (since we do not observe employment outside the U.S.).  There 

is substantial evidence already that the decline in US manufacturing employment is closely 

linked to rising import penetration of production activity from low wage countries (see, e.g., 

Bernard, Jensen, and Schott (2006), Schott (2008) and Pierce and Schott (2016)).  

Bernard, Jensen and Schott (2006) and Schott (2008) develop measures of import 

penetration ratios from low wage countries.  Their measures vary by 4-digit SIC industry from 

1972-2005 and by 6-digit NAICS industry from 1989-2005; we extend the time series using the 

public domain information from Census on imports by country and industry.60  We integrate 

                                                           
60 To construct low-wage import penetration data by year and industry, Bernard, Jensen and Schott first construct 
domestic absorption for each industry. Next, they construct total imports of goods produced by each industry that are 
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these public domain data into our data infrastructure from 1981-2010.  Our ability to integrate 

this is facilitated by our having 4-digit SIC codes in the micro level data from 1981-1996 and 6-

digit NAICS codes from 1981-2010; hence, we need not rely on aggregate SIC/NAICS 

concordances.61  Figure D1 shows aggregate import penetration ratios in and out of high-tech 

manufacturing. 

Table D1 presents results of a modified version of our main regressions in equation (3).  

The additional regressors added are the 6-digit NAICS import penetration ratio for each year and 

the interaction of this ratio with lagged TFP.  We permit the coefficients on this interaction effect 

to differ between plants belonging to young and mature firms.  The main effect of the import 

penetration (not reported) is negative and significant:  Consistent with Bernard, Jensen, and 

Schott (2006), plants in industries with especially large increases in import penetration have 

lower net employment growth. 

The last two rows of Table D1 show that the interaction effect for young plants of lagged 

TFP and the import penetration ratio is estimated to be negative and significant.  This implies 

that young-firm plants in industries with especially large increases in import penetration ratios 

have larger decreases in responsiveness.  In Figure D2, we quantify the effect of changing import 

penetration ratios using the estimated effects from Table D1.  The overall effects show, 

consistent with Table 1, that the marginal effect of productivity on employment growth among 

young high-tech firms increased from the 1980s to 1990s then declined in the post-2000 period.  

We compute the fraction of these patterns accounted for by the changing import penetration 

ratios by using the coefficients from Table D1 along with the aggregate pattern of import 

penetration ratios for high-tech manufacturing.  The role of rising penetration is very modest in 

the 1980s to 1990s.  However, the rapid rise in import penetration during the 2000s accounts for 

a substantial share (about 16 percent) of the overall decline in responsiveness over that period.  

We also perform these analyses using the Wooldridge (2009) RPR productivity measure 

(unreported), finding no significant role for import penetration, so we consider this evidence 

mixed.  More research on globalization and dynamism is needed; promising avenues include 

                                                           
sourced in a low-wage country, which are defined as countries whose GDP per capita is less than 5 percent of the 
U.S.  Import penetration is the ratio of low-wage imports to total domestic absorption, by industry and year.  We 
thank Peter Schott for providing the import data and guidance necessary for extending the dataset. 
61 We integrate the SIC-based import penetration ratios from 1981-88 and the NAICS-based ratios from 1989-2010 
into the micro data.  We use the internally consistent NAICS codes in the micro data from 1981-2010 to conduct our 
analysis. (see Fort and Klimek (2016)). 
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specific policy variation, distinction between intermediate and final goods competition, and 

differences between TFP concepts. 

C. Composition Effects 

In the high-tech manufacturing sector, another possible cause of declining productivity 

responsiveness after 2000 is the transition from “general-purpose” to “special-purpose” 

equipment manufacturing in the U.S documented by Byrne (2015).62  Perhaps manufacturers of 

special-purpose products are less responsive to productivity shocks due to demand constraints or 

uncompetitive environments that reduce adjustment imperatives.  Figure D3 shows that during 

the 1990s the share of employment in among general purpose technology producers grew rapidly 

but, consistent with Byrne (2015) (who examined revenue shares), the general purpose share has 

fallen substantially since the late 1990s.  Given these compositional changes, it is possible that 

changing average responsiveness reflects differential responsiveness across industries.   

We estimate equation (4) separately for each 6-digit industry in high-tech manufacturing 

but, importantly, we omit time trend interactions from the specification.  With the estimated 

responsiveness coefficients for each 6-digit industry, we compute the employment-weighted 

aggregate responsiveness in each year using the actual annual 6-digit employment weights.63  If 

any industry composition effect—including the shift between general and special purpose 

electronics—is driving our results, we should see these aggregated responsiveness patterns 

mimicking the result from Figure 6. 

Figure D4 shows the implied changing responsiveness over time due to composition 

effects within high-tech manufacturing.  There is no implied increase in responsiveness due to 

composition effects from the 1980s to the 1990s (which would have been expected if general-

purpose producers were more responsive on average), and there is actually a modest increase in 

responsiveness from the 1990s to the 2000s rather than a decline.  Declining responsiveness must 

therefore be a within-category phenomenon with respect to the general-purpose/special-purpose 

taxonomy and other industry characteristics.   

 
  

                                                           
62 We thank Christopher Foote for this insight. 
63 We use employment weights given our interest in the implications of changing responsiveness for job 
reallocation. 
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Figure D1:  Import penetration ratios from low-wage countries  

 
Source:  Extended versions of Import Penetration Ratios from Bernard, Jensen and Schott (2006) and Schott (2008).  
Reported statistics are averages across 6-digit NAICS industries for high-tech and non-tech industries. 
 
Figure D2: The role of globalization in changing responsiveness (high-tech Manufacturing) 

 
Note:  “Overall” bars for young and mature are the change in marginal responsiveness of employment growth to 
productivity across decades.  Globalization reflects implied change in marginal responsiveness accounted for by 
changes in import penetration ratios from low wage countries. 
 
Figure D3:  General purpose technology share of high-tech Manufacturing 

 
Note:  Tabulations from the LBD by authors.  General purpose high-tech 4-digit industries are NAICS 3341 
(Computers), NAICS 3342 (Communication Equipment) and NAICS 3344 (Semiconductors). 
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Figure D4: Change in responsiveness due to industry composition changes (high-tech) 

 
Note:  Specification (2) as in Table 1 estimated for every 6-digit NAICS industry but without any trend effects.  
Reported coefficients are employment-weighted averages of the 6-digit NAICS industry estimated coefficients.  
Employment-weights vary by year. 
 
 
Table D1: Employment growth, lagged productivity, and import penetration 

TFP*Young 0.2085***  

 (0.0390)  

TFP*Young*Trend 0.0298***  

 (0.0061)  

TFP*Young*Trend2 -0.0011***  

 (0.0002)  

TFP*Mature 0.1246***  

 (0.0174)  

TFP*Mature*Trend 0.0052**  

 (0.0026)  

TFP*Mature*Trend2 -0.0003***  

 (0.0001)  

TFP*Young*Import Penetration -0.0037***  

 (0.0011)  

TFP*Mature*Import Penetration 0.0002  

 (0.0004)  
Notes:  Standard Errors in Parentheses.  High-tech sample used.  See notes to Table 1.  Young firms have age less 
than 5.  Unreported are estimates of controls including year effects, state effects, firm age dummies, firm size 
dummies, log plant level employment in period t, state cyclical indicators (change in state level unemployment rate), 
state cyclical indicators interacted with TFP, and a main effect for the 6-digit import penetration ratio.  All variables 
that use TFP including all interactions are fully interacted with firm age dummies. * p < 0.1, ** p < 0.05, *** p < 0.01. 
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