Q-Learning to cooperate

Emilio Calvano, (with Giacomo Calzolari, Sergio Pastorello, Vincenzo Denicoló)

U Bologna and Toulouse School of Economics

September 14, 2018

Paper, Motivation and Agenda

- Run experiments with AI agents in controlled environments. (computer simulations)
- Inform debate on impact on algorithms & competition
- Al may potentially replace human subjects in the lab
- 1. Iterated prisoner's dilemma
- 2. Iterated price oligopoly with differentiated goods

Q-Learning

- ► Perception: state of the board all past prices, demand
- ► Actions: legal moves own price
- ► Reward: +1/-1 end of game period profit

Q-learning: why?

- Natural choice: designed to "crack" Markov Decision Problems
- Model free: versatile
- ▶ **Popular:** building block of many deep learning algos e.g. video-games Nature paper: Mnih et al (2015)
- Not fancy (tabular solution method)

Only three design dimensions

- ▶ Rate of learning $\alpha \in [0, 1]$
- ▶ Rate (and type) of experimentation $\beta \ge 0$
- ▶ Discounting δ

Baseline Game and setup

Baseline model

- 2 players
- Differentiated goods
- Logit demand, constant mc
- Fully Symmetric

Baseline Implementation

- ▶ 1 period memory: state space = last period prices.
- ▶ 15 price points $p = \frac{9}{10}p_{\text{Nash}}, \overline{p} = \frac{11}{10}p_{\text{mon}}$

Departures from baseline (one at a time)

$$\max_{p_i} (p_i - c_i) \frac{e^{\frac{b_i - p_i}{\sigma}}}{\sum_j e^{\frac{b_j - p_j}{\sigma}} + e^{\frac{b_0}{\sigma}}}$$

- 3 players
- **Asymmetric** Demand: $b_1 > b_2$
- **Asymmetric** cost: $c_1 > c_2$
- ▶ Demand increases $b_0 \uparrow$
- ▶ Differentiation increases $\sigma \uparrow$
- 2 period memory
- ▶ 30 price points

$$\underline{p} = \frac{1}{2}p_{\mathsf{nash}}, \ \overline{p} = \frac{3}{2}p_{\mathsf{mon}}$$

Approach

- ▶ Look at grid of parameters α, β, δ
- 435 parametrizations in total (baseline).
- Agents play (up to) 1 billion iterations per session
- ▶ 1000 sessions for each parametrization
- We report averages across sessions and parameterizations

Q-learning means:

- ▶ strategy $\sigma_i^t(p_1^{t-1}, p_2^{t-1})$ evolves over time
- How? actions that 'perform well' are reinforced

We observe both prices and strategies (!) and report on both!

Results

Two Q-learning agents interacting repeatedly typically:

- 1. Learn to Play (Converge)
- 2. Learn to Cooperate
- 3. Learn to Collude

1 - Convergence

- convergence = strategy does not change for 25k iterations.
- ▶ 99.9% sessions converge.
- takes 1.6M iterations on average over the grid
- ▶ **Not obvious:** no theoretical guarantees due to non stationary environment.
- Somewhat fast: few minutes in CPU time
- Somewhat slow: they can't "learn by doing."
- They need to be trained!

2(a) - Cooperation over the grid

Let $\Delta = \pi^{\text{collusion}} - \pi^{\text{nash}}$ be the 'extra profit'

2(b) - Cooperation & discounting

• % Extra profit Δ as a function of δ for $\alpha=0.15,\ \beta=0.3$

3 - Learn to collude: Impulse response of prices

- ▶ Let agents play according to learnt strategies
- Agent 1 (blue line) deviates charging p_{nash} at t=0
- ▶ Showing average of 200 impulse responses to such shock

Impulse responses, average prices

parameters: $\delta = 0.95, \alpha = 0.05, \beta = 0.3$

Same exercise - just zooming in

Impulse responses, average prices

Same exercise, looking at profits

▶ Normalized $1 = \pi^{\text{collusive}}$

Impulse response of profits

Robustness

ightharpoonup % extra profit Δ over the baseline grid

	max	min	avg	median
Baseline	99.1	12.7	57.7	59.1
3 players	80.4	32.1	67.4	69.3
30 prices	86.5	26.9	70.1	73.91
Asymmetric demand: $b_1 = 1.5b_2$	59.7	6.8	36	36.8
Asymmetric cost: $c_1 = 1.5c_2$	85.2	8.3	47.8	47.7
Differentiation \downarrow : $\sigma' = \sigma/5$	97.9	12.6	57.7	58.6
2 Period Memory (in progress)	?	?	?	?