

Quantifying Heterogeneous Returns to Genetic Selection:

Evidence from Wisconsin Dairies

Brent Hueth, Jared Hutchins, and Guilherme Rosa

Economics of Research and Innovation in Agriculture - NBER

Genetic Technology in the Dairy Sector

- Biological innovation is a key driver in agricultural productivity (Olmstead and Rhode 2008).
- A largely unstudied sector for biological innovation (by economists) is the dairy sector, which grew because of two innovations:
 - Artificial insemination (AI).
 - Herd testing and genetic evaluations.
- Approach has been less "top down" than other biological innovations, but has delivered large genetic gains in yields.

The Role of Heterogeneous Returns

- Issue: data used for estimating mean returns is **observational** data, so the environment can confound estimates.
 - Animal science: genotypes *interact* with environments (Hayes et. al. 2003, Kearney et. al. 2014).
 - Economics: farmers adopt technology into environments based on their expected returns (Grilliches 1957, Suri 2011)
- How might this selection behavior be driving heterogeneity in returns or vice versa?

Research Question

RQ: Are returns to different dairy genetics heterogeneous across producer characteristics?

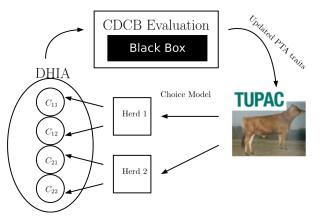
- Applying a theoretical framework to sire selection.
- Handling herd data to define "choices."
- Getting accurate counter-factual predictions.

Outline

- 1. Institutional Framework
- 2. Theoretical Framework
- 3. Data Description
- 4. Empirical Exercises
- 5. Future Directions

How to Price Genetics for Dairy Bulls

Given one dairy bull:


- 1. DHIA collects data on all of its offspring.
- 2. CDCB uses data to evaluate that bull on multiple traits relative to base.
- 3. Evaluation of bull on multiple traits is published.
- 4. Use evaluation to price the bull on the market.

An Example Bull

Only God can judge him

			TUPAC {4}			07/04/14 1 84	40 Reg. 312452	0305		
CDCB PTA, AJCA PTA, GENEX 8/2017					 Tank topping 	production		and a state		
Net Merit Cheese Merit Fluid Merit Daus. G Milk	+\$522 +\$528 +\$510 Herds +1959	74%Rel	PTAT JUI [™] JPI [™] Fertility (SCR) ProgCheck [™]	+0.60 +2.9 +152 0.0 99	74%Rel 90%Rel 89%Rel	Unmatched C		CA-Trait Profile	1	The second se
Protein	+61	-0.04%	HCR	0.5	50%Rel	AJGA-ITAIL Profile				
Fat	+75	-0.08%	CCR	-1.5	61%Rel	Stature	Short		Tall	500
CFP	+136		Dtr. Pregnancy Rate	-3.3	62%Rel	Strength Body Depth	Frail Shallow		Strong	5
Prod. Life	+3.0		EFI%	8.4%		Dairy Form	Tight Rib High Plos		Open Rib	N
SCS	+2.93					Rump Angle Thuri Width	High Pins Narrow	_	Sloped	0
LIV	-0.7	41%Rel				Rear Legs-Side Vw.	Posty		Sickle	K
	+1.3					Rear Legs-Rear Vw. Foot Angle	Hock-In Low		Straight	P
		57%Rel				Feet & Leas Score	Low		High	N
GL	T1.0	HARRIS X RENEGADE X VIBRANT					Loose		Strong	112
		VIRRANT	,			Fore Udder Attach.				
HARRIS X REM	IEGADE X		,			Rear Udder Height	Low		High	0
HARRIS X REM	IEGADE X		* [4]			Rear Udder Height Rear Udder Width Udder Cleft	Low Narrow Weak		High Wide Strong	\mathbf{T}
HARRIS X REM	TZ VOLCA	NO HARRIS				Rear Udder Height Rear Udder Width Udder Cleft Udder Depth	Low Narrow Weak Deep	_	High Wide Strong Shallow	\mathbf{T}
HARRIS X REM Sire JX SCHUL Dam FARIA BR	TZ VOLCA	NO HARRIS	15565 {3}, VG-80%			Rear Udder Height Rear Udder Width Udder Cleft Udder Depth Front Teat Place.	Low Narrow Weak Deep Wide	-	High Wide Strong Shallow Close	0000
HARRIS X REM Sire JX SCHUL Dam FARIA BR	TZ VOLCA	NO HARRIS				Rear Udder Height Rear Udder Width Udder Cleft Udder Depth	Low Narrow Weak Deep	÷	High Wide Strong Shallow	\mathbf{T}

Life and Times of Tupac

• Repeated choices of Tupac will generate a history of evaluations and updated estimates of productivity.

How to Evaluate Tupac

Explain phenotype (output) y as a function of "environment" X and genetics (sire) Z with noise e.

$$y = X\beta + Z\mu + e$$

• For unbiased fixed/random μ , we need:

- A_{FE} : E(Ze) = 0
- A_{RE} : Cov(Z, e) = 0
- The classic case of an "endogenous input" in a production function.

The Henderson Mixed Model (HMM)

Opening the Black Box

 $y = X\beta + Z\mu + e$

The Henderson Mixed Model (HMM) assumes μ is a random variable and that Tupac's evaluation, PTA = $\hat{\mu}/2$, is a realization from this distribution.

- Model specifies a relationship matrix between all sires to attribute the performance of genetic relatives to Tupac.
- If Tupac is used "enough," A_{RE} is satisfied.
- If we think Tupac's value changes in *X*, make *β* a random variable ("Reaction Norm" analysis).

An Alternative Approach

- Reasons we might think A_{FE} or A_{RE} is violated:
 - Unobserved "productivity shock" affecting choice and output (production function literature).
 - Farm specific return to that input affects choice (technology adoption literature).
- Instead of using genetic relationships, we could use selection behavior to estimate returns to genetics.
- ... but this approach requires a model of selection.

A (Rough) Theory of Sire Selection

The return for farmer *i* choosing sire *j* is $q_{ij} = \mu_j + u_{ij}$, where μ_j is a random variable and u_{ij} is farm specific heterogeneity. They must pay price p_i and choose *j* over *j'* when:

$$E(q_{ij}|\mathbb{I}) - p_j > E(q_{ij'}|\mathbb{I}) - p_{j'}$$

$$E(\mu_{ij}|I) - E(\mu_{ij'}|\mathbb{I}) > u_{ij'} - u_{ij} + p_j - p_{j'}$$

$$E(\mu_j - \mu_{j'}|\mathbb{I}) - \Delta p_{jj'} > \Delta u^i_{jj'}$$

- Expected net return should be larger than the difference in price plus the unobserved "disadvantage": Δuⁱ_{ii} = u_{ij} – u_{ij}.
- Expected difference conditioned on information I.

A (Rough) Theory of Sire Selection

We claim that ex-ante returns are a function of X and productivity "signals" W, which also influences $\Delta p_{jj'}$.

$$E(\mu_j - \mu_{j'} | X, W) - \Delta p_{jj'}(W) > \Delta u^i_{jj'}$$
$$R(X, W) > U$$

- Some component of match heterogeneity is explained by X in the first term, but the rest is U.
- Here *W* has two, countervailing effects; improves expected benefit of match but also may increase the price.

Revised Model

Define Z as a binary variable for choosing j over j' which gives return $\mu(X, U) = f(X) + U$, where f(X) is the heterogeneous effect.

$$y = X\beta + Zf(X) + e$$

$$e = ZU + \epsilon$$

$$Z = \begin{cases} 1 \quad R(X, W) - U \ge 0 \\ 0 \quad R(X, W) - U < 0 \end{cases}$$

- In general, A_{FE} and A_{RE} are violated: U is unobserved but relates to both Y and Z.
- The function μ(X, U) is the "marginal treatment effect" identified with instrument W (Heckman et. al. 2006).

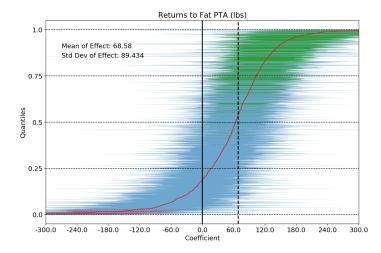
Collecting Data

- DHIA data has the lineage of different dairy cows with their outcomes (format 4) as well as what genetics were chosen for breeding (format 5).
- With these two data sources we have a comprehensive picture of past adoption (lineage of current cows) and current adoptions (breeding attempts).
- Using the CDCB website, we collected historical evaluations of dairy sires and matched them to data to know the characteristics at the time they were chosen.

Data Summary

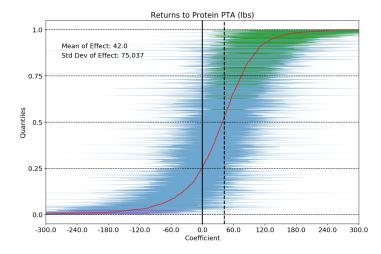
	Format 4	Format 5	Format 4 w/
			sire info
Total Obs	15,519,414 (test day)	7,906,774 (total)	
	2,129,699 (lactation)	4,530,960 (breeding)	1,713,102 (lactation)
No. Cows	1,180,447	1,072,263	448,775
No. Sires	26,529	24,555	10,054
No. Herds	4,259	3,161	1,539
State	Wisconsin		
Timeframe	June 2011 - Jan 2015		

Exercise 1:


Heterogeneity in Returns to Selecting on Traits

$$y_{iht} = \beta X_{iht} + \tilde{\mu}_h PTA_{iht} + \eta_{iht}$$

- Suppose that every bull is described fully by their PTA number for offspring *i* on farm *h* in time *t*: *PTA*_{*iht*}. What are the differences in returns to selecting on just this "input"?
- Controls include lactation number and length, milked 3x, breed, herd fixed effect, ect.
- Next slides are all 1500 $\tilde{\mu}_h$ returns to PTA for fat and protein (lactation level).


Returns to Fat

Units of 100 PTA

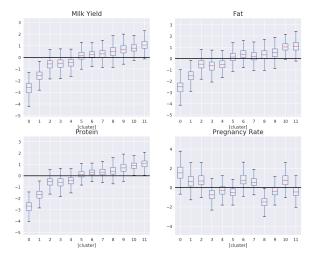
Returns to Protein

Units of 100 PTA

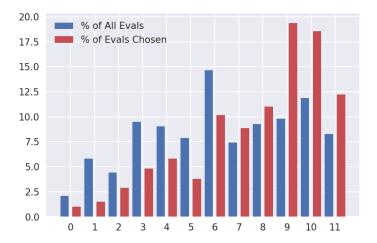
Summary of Exercise 1

- About 1/4 of herds experience significant, positive returns; another 1/4 in point estimate get negative returns.
- The effect of increasing the PTA of a sire, all else equal, is *not homogeneous*.
- A selection model involving several traits could generate negative selection on certain traits depending on objective.

Exercise 2: Defining the Choice Set


- Why every sire should not be its own "technology":
 - Anecdotal evidence suggests sire identity is not typically a consideration.
 - Not full support for propensity scores unless every sire is adopted everywhere.
- Alternative: the choice set is described by sire "types."
 - Such a classification can be done with clustering.
 - Instead use \bar{W} , the mean NM of each cluster at the time the choice was made.

Defining Categories using K-means


- Using K-mean clustering, each bull evaluation was put into one of K categories.
- Choice of *K* must balance:
 - Capturing the diversity of choices (high K).
 - Making sure each category is chosen often enough (low K).
- Silhoutte scores suggested K should be more than between 8 and 12. Here I use 12.
- Features: PTA Milk Yield, PTA Fat, PTA Protein, PTA SCS, PTA DPR.

PTA Characteristics of Categories

Boxplot grouped by cluster

Category Frequency

Future Directions

• Estimation of treatment heterogeneity:

- Semi-Structural approach: "Marginal Treatment Effects" (Heckman et. al. 2006).
- Nonparametric approach: "Deep IV" (Hartford et. al. 2016)
- More analysis of the first stage to understand how to form groups of sires.
 - Understand stability of preferences.
 - Model the choice more accurately.
- How do we understand "heterogeneity"? What component is other technology choices?

Thank you!