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Introduction

The productivity of the agriculture sector has been growing for most of the 20th century, and
the dairy industry is no exception; specifically, per cow milk yield has been growing nearly
3-4% per year and 50% of this growth is attributed to genetic selection (Thornton, 2010;
Wang et al., 2015). Selective breeding of dairy cattle as a vector of productivity growth has
been facilitated by two main factors. First, genetic selection has been made possible at a
large scale by breeding and herd testing associations that collect massive amounts of data on
animal production and lineage. These data are used for isolating the contribution of genetics
to cow productivity to rank and price different genetics using a variety of statistical tools.
Second, the invention of artificial insemination (AI) has made nearly any of these tested
bulls available around the country. Combined, these two sector innovations have made sire
evaluation through herd testing a huge source of productivity growth.

The statistical methods used to evaluate sire genetics in the industry, however, have
tended to ignore the role of management in the productivity of genetics. In fact, genetics is
an input whose productivity depends directly on managerial ability and farm environment.
In animal science, this is known as “genotype by environment interaction,” (GxE) and in the
economics literature on technology adoption as heterogeneous returns to technology. (Suri,
2011; Mundlak et al., 2012) Management ability matters because it affects how a certain
genotype expresses in a given physical environment. Feeding environment, climate, and
herd level production all have been shown to affect how certain sires perform in different
environments (Kearney et al., 2004; Hayes et al., 2003). By ignoring these effects, genetic
evaluations of sires do not currently capture the full extent to which management and genetics
interact or how productive a given sire would be in different environments. This limits both
our knowledge of how productivity has grown in the dairy sector and the usefulness of
breeding values to managers who want to know the variance of certain sires across physical
environments and, most importantly, management practices.

We investigate heterogeneous returns to genetics in the dairy industry using herd testing
data and explore the extent to which management practices can hinder or enhance the
productivity of certain sires. We define the cow level production function as a Correlated
Random Coefficients (CRC) model of Mundlak (1978) and Heckman and Vytlacil (1998)
where there is an average return but also a farm level return that is random. Using the
CRC model, we use a control function approach with instrumental variables to identify
farm specific returns to genetics and thus the distribution of returns across farms. After
estimating farm specific returns to genetics, we use unsupervised machine learning techniques
like K-means clustering to divide farms by management practices from herd testing data
(Bonhomme and Manresa, 2015).

After explaining the methodology and data, we present preliminary results on the hetero-
geneity of returns in using sires with high predicted transmitting ability (PTA) in Wisconsin.
Using the coarsest degree of heterogeneity possible, herd level dummy variables, we estimate
herd specific returns to the amount of PTA in the chosen sire. We find that there is sig-
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nificant heterogeneity in returns from increasing PTAs across both fat and protein at the
lactation level.

Theory and Methodology

The seminal model of sire evaluation, the Henderson mixed model, describes a progenys trait
y as a function of its sire Z and its environment X:

y = Xβ + Zu+ e

where β is a fixed coefficient vector and u is a random coefficient vector. Each sire has an
estimated draw from u which is divided in half to get the PTA for the trait y. The matrix X
contains factors that are systematically affecting progeny performance, and usually includes
an intercept specific to that herd. The matrix Z is an incidence matrix for sires but the
effects u are considered realizations from a random variable. This model assumes that
Cov(u, e) = 0, which is typically violated when sires are not randomly selected by farmers.
Henderson (1975) details the effect of sire selection on observable characteristics that violates
Cov(u, e) = 0 but depends on knowing how selection is made on the observed characteristics
(Robinson, 1991). Unfortunately, this does not help when, as can often be the case, selection
is done on unobservables; such endogeneity is partly addressed by specifying relationships
between different sires, but still requires detailed relationships be known for all of the sires
in the sample.

The economics literature frequently deals with the problem of endogenous technology
choice and heterogeneous returns, often by focusing on choice of inputs being correlated to
an unobserved productivity shock in the error term. In the cow production function, the
selection of sires can be endogenous to the herd’s specific return for that sire, similar to how
choice of schooling is endogenous to individual returns to schooling (Heckman and Vytlacil,
1998) and choice of seeds is endogenous to farm specific returns to those seeds (Suri, 2011).

Suppose we rewrite the returns to a certain sire as u = ū+ ui where ū is average return
across all farms and ui is a farm specific return drawn from a distribution with mean zero.
We would then rewrite the Henderson equation for one progeny i as:

yi = Xiβ + Zi(ū+ ui) + ei

yi = Xiβ + Ziū+ (Ziui + ei)

There is a bias in our estimate of ū when Cov(Zi, ui) 6= 0, and often ui is not observed. The
above equation is the same formulation as the Correlated Random Coefficient (CRC) model
as described by Wooldridge (2003) and Heckman and Vytlacil (1998) for choice of sires; using
instrumental variables for both ui and Zi, we would recover both the average return to a sire
and the distribution across herds under the typical conditions on the instruments (relevance
and independence). Unlike the mixed model, getting unbiased estimates in CRC does not
rely on knowing the relationships between all sires or progeny in the data, only the incidence
of each sire. Once we estimate the distribution of sire effects, unsupervised machine learning
techniques such as K-means clustering can be used to partition ui into management groups
dictated by the data to explore heterogeneous sire effects (Bonhomme and Manresa, 2015).
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When we treat each sire as its own technology, a straightforward instrument choice is
the posted price of each sire; the price of a sire affects choice of that sire but is plausibly
exogenous to the performance of indvidial progeny provdided that the price used is the one
at the time of selection. Unfortunately, instrumenting for each sire also assumes that every
sire is available to every farmer. If we describe bulls not as discrete as in the Z matrix
but in terms of PTAs, we have more options for instruments and avoid defining the exact
choice set. Using net merit (NM), a linear combination of PTAs with economic weights,
as the characteristic describing sires leads to a straightforward instrument choice, which is
the economic weights used to calculate NM at the time the genetics were purchased; since
such weights are updated every couple of years, these weights should determine the net
merit of bulls at the time they were chosen but be plausibly exogenous from the progenys
performance nearly three years later. Instruments for the farm specific returns to net merit
could be, similar to Suri (2011), a linear projection of the history of sire choices.

Preliminary Results

Here we present preliminary results of an empirical exercise to illustrate the heterogeneity to
returns in genetics using PTA’s of sires at the time they were selected. By describing sires
using PTA’s of traits, we treat PTA as an input into the production function. Specifically,
we estimate farm specific returns to lbs of PTA for fat and protein.

Dairy Herd Improvement Associations (DHIA) collect monthly, cow level observations
on milk yield, somatic cell count, fat, protein, and other breeding and replacement decisions.
Such field data is routinely used for genetic evaluations in dairy science research or for
calculating PTA’s in the industry, as a system of cow and sire IDs helps connect relatives,
especially sires to their progeny. We focus on lactation level records of fat and protein yield
for cows in Wisconsin between June 2011 and January 2015 with days in milk between 270
and 350 on farms with at least 50 cows, which encompassed around 440,000 cows, 10,000
sires, and 1,300 herds for a total of about 1.2 million records.1 For the sires in the sample,
we recover their PTA numbers from around the time they were chosen (when their progeny
was conceived) from historical valuation data from the Council on Dairy Cattle Breeding.
Heterogeneity in returns to chosen sire PTA here is captured by interacting PTA with a
herd dummy variable, creating around 1,300 different coefficients. The regression equation
is thus:

yit = α + βXit +
H∑
j=1

αj1{hit = j}+ γj1{hit = j} × PTAi + eit

Where yit is the trait, Xit is the vector of controls, and PTAit of the sire for the trait. The
herd specfici returns to PTAit, γj, are calculated for each herd j in H. Controls included
calving month, parity number, parity number squared, days in milk, breed, age at calving,
and herd level intercept αj. If returns to PTA are the same across herds, we should expect
all γj to be roughly the same. If not, some herds have different returns to increasing the
amount of PTA for that trait in the sires they select. The standard errors were clustered at

1Around half of Wisconsin dairy herds use DHIA services, so the sample only represents herds in Wisconsin
that use DHI services.
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the progeny level and PTA numbers are in units of one-hundred.2

Figures 1 shows graphs of the increases in revenue from an increase in 100 PTA. The red
lines are the point estimates, the blue lines the upper and lower bounds, and the black dotted
line the mean effect, recovered by estimating the effect of PTAs on y without interactions.
Areas colored in green indicate significantly different than zero coefficients that are positive
and red that are negative.

The mean increases in fat and protein were 68 and 42 lbs respectively, meaning purchasing
100 lbs of PTA gives, on average, 68% and 42% return per lactation. Coefficients are noisy
since there is usually considerable variance in how a given sire trait will express in progeny.
There is a large amount of variation in the return across herds, as the top quartile of herds
can get on average 150 lbs of return on fat and 113 lbs of return on protein, more than twice
the average. Conversely, the bottom quartile got on average negative returns, though most
all the coefficients in that quartile were not statistically different than zero.

While great progress has been made with dairy cow productivity, there is clearly vari-
ability in returns for certain genetics across farms that has not been well explored; as such,
while there has been an overall upward trend in dairy cow productivity, it is not clear how
genetic selection has generated productivity across environments or management practices,
making it difficult to understand the interaction between genetics and management. We
hope to address this gap in understanding by characterizing heterogeneous returns to ge-
netics across useful dimensions of farm heterogeneity using economic modeling via the CRC
and unsupervised machine learning to uncover useful patterns in farm heterogeneity.

Figures 1-2: Returns to PTA (units of 100) in lbs

2PTA numbers themselves are in pounds of fat or protein.
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