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Abstract

This paper studies the design of enforcement policies to detect and deter harmful short-

term activities committed by groups of injurers. With an ordered-leniency policy, the

degree of leniency granted to an injurer who self-reports depends on his or her position in

the self-reporting queue. By creating a “race to the courthouse,” ordered-leniency policies

lead to faster detection and stronger deterrence of illegal activities. The socially-optimal

level of deterrence can be obtained at zero cost when the externalities associated with the

harmful activities are not too high. Without leniency for self-reporting, the enforcement

cost is strictly positive and there is underdeterrence of harmful activities relative to the

first-best level. Hence, ordered-leniency policies are welfare improving. Our findings for

environments with groups of injurers complement Kaplow and Shavell’s (1994) results for

single-injurer environments. Experimental evidence provides support for our theory.

KEYWORDS: Law Enforcement; Leniency; Self-Reporting; Ordered Leniency; Harmful Exter-

nalities; White-Collar Crime; Securities Fraud; Insider Trading; Market Manipulation; Whistle-

blowers; Non-Cooperative Games; Prisoners’ Dilemma; Coordination Games; Risk Dominance;

Pareto Dominance; Experiments

JEL Categories: C72, C90, D86, K10, L23

∗We acknowledge financial support from the National Science Foundation (NSF Grant SES-1155761). We

thank Susan Norton for administrative assistance, Tim Yuan for programming the software used in the experi-

mental section of this study, and the Harvard Decision Science Laboratory for the assistance in conducting the

experimental sessions.
†University of Alberta, Department of Economics. Henry Marshall Tory Building 7-25, Edmonton, AB T6G

2H4. Canada. landeo@ualberta.ca, tel. 780-492-2553.
‡Harvard Law School and NBER. 1575 Massachusetts Ave., Cambridge, MA 02138. kspier@law.harvard.edu,

tel. 617-496-0019.



 Electronic copy available at: https://ssrn.com/abstract=3155503 

1 Introduction

Illegal activities are often committed by groups of people working together rather than by indi-

viduals working alone. Common examples in the corporate setting include insider trading and

market manipulation schemes. In 2011, the FBI reported 726 corporate fraud cases, several of

which involved losses to public investors that individually exceeded $1 billion, and 343 securi-

ties fraud cases involving more than 120,000 victims and approximately $8 billion in losses (FBI,

2012). More generally, illegal activities committed by groups of wrongdoers impose considerable

costs on society. To combat illegal group activities, law enforcement agencies often grant leniency

to wrongdoers who come forward and self-report.

In a typical leniency program, wrongdoers who self-report early face lower sanctions than

those who self-report later.1 For instance, in 2014, the Securities and Exchange Commission

(SEC) brought insider trading charges against Christopher Saridakis, a top executive at GSI

Commerce, and several co-conspirators for providing tips to family and friends in advance of

eBay’s acquisition of GSI. Saridakis paid a penalty equal to twice the amount of his tippees’

profits,2 and was imprisoned after pleading guilty to criminal charges. One of Saridakis’ co-

conspirators was forced to disgorge his own profits and paid a penalty equal to three times his

own profits and all of the profits of his own tippees. In contrast, a co-conspirator who aided the

prosecution paid a reduced penalty equal to one half of his profits, while another co-conspirator

who cooperated early paid no penalty at all (Ceresney, 2015).3

This paper studies the design of enforcement policies to detect and deter illegal short-term

activities committed by groups of injurers.4 We focus on a class of mechanisms where the amount

of leniency granted to an injurer depends on his or her position in a self-reporting queue. The

earlier an injurer reports the act, the higher his or her position in the self-reporting queue. We call

these mechanisms “ordered-leniency policies.” Ordered-leniency policies that give greater leniency

1An example of such a program is the Securities and Exchange Commission’s Cooperation Program.
2In insider trading cases, the term “tipper” refers to a person who has broken his fiduciary duty by revealing

inside information. The term “tippee” refers to a person who knowingly uses inside information to make a trade.
3See also SEC v. Saridakis and Gardner, Civil Action No. 14 2397 (U.S. District Court Eastern District of

Pennsylvania 2014). For another interesting insider-trading case involving leniency for early cooperation, see SEC

v. Wrangell (2012), https://www.sec.gov/litigation/complaints/2012/comp-pr2012-193-wrangell.pdf.
4Illegal short-term activities do not involve an ongoing relationship among group members. They are sometimes

referred to as illegal “occasional” activities. See Buccirossi and Spagnolo (2006). In game-theoretic terms, they

correspond to one-shot strategic environments. Leniency programs have been also applied to illegal long-term

activities such as cartels. For a recent survey of this literature, see Spagnolo and Marvão (2016).
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to early cooperators create a so-called “race to the courthouse.”5 This leads to better detection

and to stronger deterrence. Although our paper is motivated by insider trading and securities

fraud, our analysis applies to any kind of harmful short-term activity committed by a group of

wrongdoers. To the best of our knowledge, there are no previous theoretical or experimental

analyses of ordered-leniency policies for short-term group activities.

In our model, the enforcement agency commits to an enforcement policy involving investiga-

tion efforts, a sanction, and a degree of leniency for injurers who self-report. Next, given the

enforcement policy, the potential injurers decide whether to participate in a harmful group act.

If the act is committed, then the injurers decide whether and when to report themselves to the

authorities. The decision of an injurer to self-report hinges on the likelihood of detection if he

remains silent, which itself depends on both the enforcement efforts of the agency and the self-

reporting decision of the other injurer. Specifically, the likelihood that an injurer will be detected

and sanctioned is assumed to be increasing in the number of injurers who self-report and in the

enforcement efforts of the agency. Hence, negative externalities are present in the self-reporting

stage. Depending on the detection probabilities and the degree of leniency, the self-reporting stage

might resemble a prisoners’ dilemma game or a coordination game.

We demonstrate that the ordered-leniency policy that creates maximal deterrence imposes

the highest possible sanction on injurers who fail to self-report but are caught nonetheless, and

discounts the sanction for the first injurer to self-report. Depending on the parameter values,

the second injurer to self-report may receive lenient treatment as well (albeit to a lesser degree).

Granting leniency to the second injurer is particularly valuable when the inculpatory evidence

provided by the first injurer alone is insufficient to convict the second injurer with certainty.

Granting leniency only to the first injurer to self-report or to both the first and second injurer

creates a race to the courthouse where both injurers promptly report the act. This strengthens

deterrence.

The degree of leniency for those who self-report depends critically on the equilibrium refine-

ment that applies in the self-reporting stage. With the Pareto-dominance refinement, the optimal

leniency policy is strong in the sense that it grants larger discounts to injurers who self-report.

Strong leniency creates a prisoners’ dilemma strategic environment where self-reporting is a dom-

inant strategy. With the risk-dominance refinement (Harsanyi and Selten, 1988), the optimal

5The expression “race to the courthouse” typically refers to the first-to-file legal rule that provides superior

rights to the first action filed in civil litigation cases. In our environment, earlier reporting raises the chances of

being the first in the self-reporting queue.
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leniency policy is mild in the sense that it gives smaller discounts to injurers who self-report.

With mild leniency, the self-reporting stage is a coordination game. Although self-reporting is

not a dominant strategy for the injurers, a mild leniency policy can in theory be highly effective

if the injurers are sufficiently distrustful of each other. We show that ordered-leniency policies

generate a race-to-the-courthouse effect where, in equilibrium, self-reporting occurs immediately.

Importantly, we show that ordered-leniency policies are welfare improving whenever the set of

possible fines is bounded from above. Without leniency for self-reporting, for any bounded set of

fines, the enforcement agency’s efforts must be strictly positive and there will be underdeterrence

of harmful activities relative to the first-best level. Holding the fine and the costs of enforcement

fixed, an ordered-leniency policy will increase the expected fine, thus raising level of deterrence

and increasing social welfare. Indeed, our analysis demonstrates that the socially-optimal level

of deterrence can be obtained at zero cost when the externalities associated with the harmful

activities are not too high.

We provide experimental evidence regarding the effects of ordered-leniency policies. Given that

there are multiple equilibria in the self-reporting stage, and the optimal ordered-leniency policy

depends on the equilibrium refinement applied, it is appropriate to use experimental economics

methods. Three leniency environments are studied: No Leniency, where no penalty reductions

are granted; Strong Leniency, where the first to report receives a strong reduction in the penalty;

and Mild Leniency, where the first to report receives a mild reduction in the penalty. Our find-

ings suggest that ordered-leniency policies are effective detection mechanisms. Importantly, we

provide empirical evidence of a “race-to-the-courthouse” effect of ordered-leniency policies. In

particular, our results indicate that the implementation of either Strong or Mild ordered-leniency

policies increases the likelihood of self-reporting by one or both injurers. Our findings under Mild

Leniency suggest that the parties’ behaviors are aligned with the risk-dominance refinement. Our

experimental results also indicate that some subjects systematically underestimate the likelihood

and severity of sanctions when making their decisions about committing the harmful act. These

findings might suggest the presence of self-serving bias on subjects’ beliefs about getting the first

position in the self-reporting queue. As a result, the deterrence power of ordered-leniency policies

are weakened, and harmful acts are committed more frequently than predicted.

Finally, we explore several extensions. First, we extend our theoretical framework to groups

of injurers with multiple members. Attention is restricted to coalition-proof Nash equilibria

(Bernheim et al., 1987). We show that the highest level of deterrence is achieved when all injurers

who commit the act later self report, and receive successive discounts for self-reporting based on
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their positions in the self-reporting queue. In general, the leniency for the first injurer to report

may not be full, and the leniency for the last injurer to report may not be zero. We demonstrate

that the race-to-the-courthouse effect is robust to the number of members in the group of injurers.

Our paper contributes to the literature on the control of harmful externalities by presenting

the first formal analysis of optimal enforcement policies with ordered leniency for harmful short-

term activities conducted by a group of wrongdoers, and by offering experimental evidence of the

effectiveness of ordered-leniency policies as detection mechanisms.6 Our work is related to several

strands of literature. The closest to our work are the studies on enforcement and self-reporting.

Kaplow and Shavell (1994) study self-reporting using a model of probabilistic enforcement. In the

context of a single injurer, they demonstrate that self-reporting of harmful acts might be induced

without compromising deterrence. This can be accomplished by allowing those who self-report

to pay a sanction equal to or slightly less than the expected sanction they would face if they

did not report the act. Given that enforcement efforts do not need to be allocated to identify

the injurers who self-report, the enforcement agency can economize on its investigatory efforts.7

Our findings regarding the superiority of enforcement policies with ordered leniency for groups of

injurers complement Kaplow and Shavell’s (1994) results for single-injurer environments.

Feess and Walzl (2004) study optimal enforcement with self-reporting for illegal activities

committed by two-member criminal teams. The focus of their paper are the consequences of

cooperation in the self-reporting stage on enforcement. They show that maximal deterrence can

be reached at virtually no cost when injurers decide non-cooperatively whether to self-report

or decide cooperatively with an exogenous probability of cooperation. Our analysis differs in

several respects. First, the mechanism studied by Feess and Walzl (2004) grants leniency only

when exactly one injurer self-reports. If both injurers report, then neither receives any sanction

reduction. Then, ordered-leniency policies are not studied and hence, a race-to-the-courthouse

effect cannot be elicited in their environment. Second, the authors assume that the Pareto-

dominance refinement applies in case of multiplicity of equilibria, and hence, leniency policies

6In seminal work, Becker (1968) demonstrates that a very small probability of detection coupled with a very

high sanction can deter crime at essentially zero cost. Polinsky and Shavell (1984) show that when injurers have

limited assets and sanctions are bounded above, then the optimal enforcement policy involves investigation costs

and deterrence falls short of the first-best level.
7Self-reporting is also socially valuable because early detection of harmful activities might minimize further

social costs (Malik, 1993; Innes, 1999). Self-reporting has also been studied in the context of pollution (Livernois

and McKenna, 1999) and tax evasion (Andreoni, 1991; and Malik and Schwab, 1991).
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under the risk-dominance refinement are not investigated.8 Buccirossi and Spagnolo (2006) study

the effects of leniency policies on sequential bilateral short-term illegal activities. They find that

moderate leniency policies (i.e., policies involving a reduction in the sanction but not a reward

for self-reporting) might have the perverse effect of providing an effective governance mechanism

for illegal short-term activities that otherwise will not be implemented due to a hold-up problem.

Optimal enforcement policies are not studied.

Another strand of literature related to our paper is that on plea bargaining, where an individual

has the option to plead guilty in exchange for a reduced sentence. In models with a single

defendant, Landes (1971) demonstrates that plea bargaining agreements reduce prosecutorial costs

and Grossman and Katz (1983) find that plea bargaining might produce insurance and screening

effects.9 Kobayashi (1992) studies plea bargaining using a model with two defendants where

the acceptance of a plea agreement by one defendant raises the probability of conviction of the

other, the probability of conviction of the more culpable defendant is higher than the probability

of conviction of the less culpable defendant, and the identities of the defendants are known by

the prosecutor. He finds that the plea bargaining policy that maximizes deterrence involves a

lower penalty for the most culpable defendant. None of these papers consider ordered-leniency

policies.10

Our paper is also related to the literature on enforcement of competition policy and leniency

programs for illegal long-term activities committed by criminal groups. Motta and Polo (2003)

find that, when the enforcement authority has limited resources and hence, is unable to prevent

collusion ex-ante, leniency policies enhance welfare by increasing the likelihood of cartel cessation

and shortening investigation. Spagnolo (2005) demonstrates that leniency policies undermine

internal trust by increasing individual incentives to defect. As a result, these policies destabilize

cartels. Optimal leniency policies reward the first party to report with the fines paid by all

other parties. When fines and rewards are sufficiently high, the first best is obtained at a zero

cost.11 Bigoni et al. (2012) provide experimental evidence of the effects of leniency and rewards

8In addition, Feess and Walzl’s (2004) social welfare analysis focuses on minimizing harm to victims and does

not include the injurers’ private benefits, and environments with multiple injurers are not investigated.
9Negative effects might occur if innocent defendants are more risk-averse than guilty defendants, and innocent

defendants might be induced to plead guilty. See also Reinganum (1988).
10See also Kraakman (1986) and Arlen and Kraakman (1997) for seminal work on third-party enforcement.
11Chen and Rey (2013) extend Spagnolo (2005) by considering not only pre-investigation leniency but also post-

investigation leniency. Harrington (2013) investigates the incentives to apply for leniency when each cartel member

has private information about the likelihood of conviction without self-reporting and leniency is granted only to the

first cartel member to self-report. Feess and Walzl (2010) study leniency policies when one cartel member might
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on enforcement and the stability of collusion in repeated-game environments. They find that

leniency enhances deterrence but contributes to the stabilization of surviving cartels. Prices fall

to the competitive levels when rewards are provided to whistleblowers.

Our work shares some features with studies on contract design in the presence of externalities

among contract recipients. In the context of exclusionary vertical restraints, Rasmusen et al.

(1991) and Segal and Whinston (2000) demonstrate that, when there are economies of scale in

production, incumbent monopolists can design profitable exclusive-dealing contracts by exploiting

the negative externalities among the buyers. Landeo and Spier (2009, 2012) provide experimental

evidence of the exclusionary power of these types of contracts.12

The rest of the paper is organized as follows. Section 2 introduces the model setup. Section

3 presents the equilibrium analysis of the injurers’ decisions about committing the act, self-

reporting, and the time to report. Section 4 constructs the optimal enforcement policies with

and without leniency for self-reporting. We show that the optimal ordered-leniency policy always

creates superior incentives, and we identify necessary and sufficient conditions for achieving the

first-best outcome. Section 5 presents experimental evidence of the effects of ordered-leniency

policies. Section 6 extends our benchmark model to groups of injurers with multiple members,

stochastic detection rates, and asymmetric benefits from committing a harmful act across injurers,

and demonstrates that the main insights derived from our benchmark model and their implications

for the design of optimal enforcement policies are robust. Section 7 concludes. Formal proofs are

presented in the Appendix.

2 Model Setup

Our strategic environment consists of a game of complete information. Our framework involves

three risk-neutral players: Two identical representative potential injurers and an enforcement

agency.13 We assume that the potential injurers seek to maximize their private benefits from

committing a harmful act. The enforcement agency seeks to maximize social welfare. Social

welfare includes the aggregation of the benefits to the injurers. It also includes the social costs:

The harm inflicted on others (externalities associated with the harmful activities) and the cost

provide stronger evidence than the other member. See Livernois and McKenna (1999) for a model of pollution

regulation and self-reporting in a repeated-game environment.
12See Landeo and Spier (2015) and Che and Yoo (2001) for applications to incentive contracts for teams, and

Kornhauser and Revesz (1994) and Spier (1994) for applications to civil litigation under joint and several liability.
13Later, we consider groups with more than two members. See Section 6.1.
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of enforcement. We assume that the enforcement agency cannot costlessly identify the parties

responsible for committing the harmful act, and that the set of fines or monetary sanctions is

bounded. Without loss of generality, we abstract from time discounting.

The timing of the game is as follows. First, the enforcement agency publicly commits to

an enforcement policy with ordered leniency to detect and prevent harmful short-term activities

committed by groups of injurers. The enforcement policy components are (f, r1, r2, e). (1) f ∈
(0, f̄ ] denotes a fine or monetary sanction (measured per injurer).14 The maximal fine, f̄ , can

be greater than, lower than, or equal to the harm inflicted on others (measured per injurer), h.

(2) r1, r2 ∈ [0, 1] denote the leniency multipliers that correspond to the first and second positions

in the self-reporting queue, respectively.15 The discount for position i in the reporting queue is

then 1 − ri, i = 1, 2. Thus, we study ordered-leniency policies where the first injurer to report

pays r1f , regardless of whether a second injurer reports, and the second injurer to report pays

r2f . (3) e ∈ [0, 1) denotes the enforcement agency’s effort (investigation effort), which, as we will

describe below, determines the probability that harmful acts are detected. We let c(e) be the

cost of enforcement or investigation (measured per injurer), and assume that c(0) = 0, c′(0) = 0,

c′(e) ≥ 0, c′′(e) > 0, and lime→1c
′(e) =∞.16

Second, after observing the enforcement policy, the potential injurers play a two-stage game.

In Stage 1, the potential injurers simultaneously and independently decide whether to participate

in a harmful activity. The act is committed if and only if both injurers decide to participate.

The benefit for each injurer is b ∈ [0,∞), which is distributed according to probability density

function g(b) and cumulative distribution function G(b), common knowledge. The realization of

b is revealed to both potential injurers before they make their decisions regarding committing

the act.17 If the act is committed, Stage 2 starts; otherwise, the game ends. In Stage 2, the

injurers simultaneously and independently decide whether and when to report the harmful act to

the enforcement agency. Specifically, each injurer can choose to report the act at any time t in an

interval [0, 1] where t = 0 represents immediate reporting and t > 0 represents delayed reporting.

Third, the injurers (parties responsible for causing harm), if detected, are accurately identified

by the enforcement agency and sanctioned. The probabilities of detection and the sanctions are

as follows. Absent any self-reporting by the injurers, harmful acts are detected with probability

p0 and each injurer pays a fine f . If one injurer reports the act, then the injurer who reports

14f̄ can be interpreted as the potential injurer’s wealth. When the fine is above f̄ , the injurer is judgment-proof.
15Multipliers (r1, r2) = (1, 1) imply that the enforcement policy does not grant leniency for self-reporting.
16These assumptions ensure an interior solution for the social welfare maximization problem.
17Note that committing the act is socially desirable if and only if the benefits, b, exceed the social harm, h.
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pays fine r1f and the silent accomplice is accurately detected and fully sanctioned (i.e., pays a

fine f) with probability p1. If both injurers report the act, then the first to report pays fine r1f

and the second to report pays fine r2f . If the two injurers report at exactly the same time, then

an equally-weighted coin flip determines who obtains the first and second positions in the self-

reporting queue. Finally, we assume that p0 and p1 depend on the enforcement agency’s effort,

e ∈ [0, 1), and p1 also depends on the exogenous strength of inculpatory evidence, π ∈ (0, 1).

Specifically, p0(e) = e and p1(e, π) = e+ (1− e)π.18 Then, 0 ≤ p0(e) < p1(e, π) < 1.

The equilibrium concept is subgame-perfect Nash equilibrium. Our focus is on pure-strategy

equilibria that survive the elimination of weakly-dominated strategies. When multiple pure-

strategy equilibria arise, we present separate equilibrium analyses for the Pareto-dominance and

risk-dominance refinements (Harsanyi and Selten, 1988).

The first-best outcome is used as a benchmark in the welfare analysis of ordered-leniency

policies. The first best is defined as the social welfare outcome of an environment in which the

enforcement agency can costlessly identify the parties responsible for committing the harmful act

(and their private benefits) and decide which acts to prohibit. Then, in the first-best outcome,

the cost of effort is zero and acts are committed if and only if b > h.19

We proceed backwards and begin our analysis with the injurers’ decisions. We then analyze

the optimal enforcement policy with ordered leniency and conduct social welfare analysis.

3 Injurers’ Decisions: Equilibrium Characterization

We begin by characterizing the equilibrium behavior of the injurers in Stage 2, the self-reporting

stage. Next, we study the potential injurers’ decisions regarding committing the act in Stage 1.

18This specification may be derived from first principles. Suppose that absent self reporting by either injurer,

detection is the outcome of a single Bernoulli trial with success probability p0 = e. When one injurer self reports

and another does not, there is a second independent Bernoulli trial that succeeds in detecting the non-reporting

injurer with probability π. Then p1 = e+ (1− e)π is the probability that the silent injurer is detected.
19In practice, of course, the enforcement agency cannot costly identify the injurers. Hence, to detect and deter

harmful acts, the enforcement agency needs to spend resources on detection and implement leniency programs for

self-reporting.
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3.1 Decision to Report the Act and Time to Report

Recall that when both potential injurers decide to participate in the harmful act in Stage 1, the

act is committed and Stage 2 occurs. In Stage 2, the injurers simultaneously and independently

decide whether and when to report the harmful act to the enforcement authority. Specifically, an

injurer who decides to report the act also needs to choose the time of his or her report, t ∈ [0, 1].

We first analyze the length of time taken by the injurers to report the harmful act. The

analysis presented here is general in the sense that it allows r1 to be greater than, equal to, or

lower than r2. In later sections, we verify that optimal enforcement policies with ordered leniency

require r1 > r2. Lemma 1 characterizes the equilibrium report time.

Lemma 1: If r1 < r2, then an injurer who reports the act will do so immediately, t = 0. If

r1 > r2, then an injurer who reports the act will delay reporting until the last moment, t = 1. If

r1 = r2, then an injurer who reports the act may do so at any time, t ∈ [0, 1].

Lemma 1 follows from the elimination of weakly-dominated strategies. Suppose that r1 < r2,

so the first injurer to report the act receives a larger penalty reduction than the second injurer

to report. Intuitively, r1 < r2 generates an incentive to minimize the time to report in order to

secure the first position in the self-reporting queue, i.e., “a race to the courthouse.” If injurer

k(k = 1, 2) believes that injurer j(j = 1, 2, j 6= k) will not report at all, then injurer i is just as

well off reporting immediately as delaying until some later time. However, if injurer k believes

that there is a non-zero chance that injurer j will report at time t = 0, then injurer k is strictly

better off reporting immediately as well. In other words, late reporting is a weakly-dominated

strategy. If instead r1 > r2, then the second injurer to report receives a larger penalty reduction

than the second injurer to report. In this case, early reporting is a weakly-dominated strategy.20

Importantly, Lemma 1 implies that if both injurers report the harmful act, and if r1 6= r2, then

both injurers are equally likely to get the first position or the second position in the self-reporting

queue.21

Second, we study the injurers’ decisions about whether to report the act. The strategic-form

20If an injurer believes that there is a non-zero chance that the other injurer will report the act at t = 1, then

the injurer strictly prefers to wait until t = 1 to report as well. If r1 = r2, then there is no advantage to being first

or second, and the injurers are indifferent about the reporting time.
21When r1 < r2, self-reporting occurs immediately at t = 0, and when r1 > r2 self-reporting occurs at t = 1. By

assumption, when the two injurers report at exactly the same time, an equally-weighted coin flip determines who

obtains the first position in the self-reporting queue.
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Figure 1: Strategic-Form Representation of the Self-Reporting Subgame (Expected Payoffs)

No Report (NR) Report (R)

No Report (NR) b− p0f , b− p0f b− p1f , b− r1f
Report (R) b− r1f , b− p1f b−

(
r1+r2

2

)
f , b−

(
r1+r2

2

)
f

representation of the self-reporting subgame is presented in Figure 1. If neither injurer self-reports,

then the act is detected with probability p0 and each injurer receives a payoff of b − p0f . If one

injurer self-reports but the other does not, then the injurer who self-reports pays r1f with certainty

and the silent accomplice pays p1f in expectation giving payoffs b− r1f and b− p1f , respectively.

Finally, if both injurers self-report, then they are equally likely to get the first and second positions

in the self-reporting queue. So, each injurer receives an expected payoff of b−
(
r1+r2

2

)
f .22 Lemma

2 characterizes the pure-strategy Nash equilibria of the self-reporting subgame.

Lemma 2. Take the benefit b, the fine f , and the detection probabilities, p0 and p1, as fixed. The

pure-strategy Nash equilibria of the self-reporting subgame are as follows.

1. r1 ≤ p0 and r1+r2
2
≤ p1: There is a unique pure-strategy Nash equilibrium where both injurers

self-report, (R, R).

2. r1 ≤ p0 and r1+r2
2

> p1: There are two pure-strategy Nash equilibria where exactly one

injurer self-reports, (R, NR) and (NR, R).

3. r1 > p0 and r1+r2
2
≤ p1: There are two pure-strategy Nash equilibria, one where both injurers

self-report and one where neither injurer self-reports. (R, R) Pareto dominates (NR, NR)

if and only if r1+r2
2
≤ p0. (R, R) risk dominates (NR, NR) if and only if 3r1+r2

4
≤ p0+p1

2
.

4. r1 > p0 and r1+r2
2

> p1: There is a unique pure-strategy Nash equilibrium where neither

injurer self-reports, (NR, NR).

In Case 1 of Lemma 2, self-reporting is a weakly-dominant strategy for both injurers. So, (R,

R) is the unique Nash equilibrium that survives the elimination of weakly-dominated strategies.23

When the expected sanction for self-reporting is not too small,
(
r1+r2

2

)
f > p0f , then the injurers

22If r1 = r2, different reporting times would lead to the same expected payoffs.
23More specifically, the second Nash equilibrium where both injurers decide not to report, (NR, NR) does not

survive the elimination of weakly-dominated strategies.
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are jointly worse off self-reporting than they are remaining silent and the self-reporting subgame

resembles a prisoners’ dilemma environment.24 In Case 2, there are two pure-strategy Nash

equilibria, (R, NR) and (NR, R), where exactly one injurer reports the act and the other does

not.25 In Case 3, both (NR, NR) and (R, R) are Nash equilibria. If one injurer believes that the

other will remain silent then he will remain silent as well, since the expected penalty associated

with remaining silent, p0f , is smaller than the penalty from being the only injurer to report,

r1f . But if he believes that the other injurer will report, then he is better off reporting too since

paying
(
r1+r2

2

)
f on average is better than paying p1f . Thus, the self-reporting subgame in Case

3 is a coordination game. Finally, in Case 4, no-reporting is a strictly-dominant strategy for both

injurers. So, (NR, NR) is the unique Nash equilibrium.

The set of Nash equilibria associated with Case 2, (R, NR) and (NR, R), cannot be narrowed

with either the Pareto-dominance or the risk-dominance refinements (Harsanyi and Selten, 1988).

In contrast, the two pure-strategy Nash equilibria that arise in Case 3, (R, R) and (NR, NR),

may be ranked using standard equilibrium refinements. When r1+r2
2
≤ p0, the expected sanction

is lower when both injurers report committing the act. So, (R, R) is the Pareto-dominant Nash

equilibrium if and only if r1+r2
2
≤ p0. When 3r1+r2

4
≤ p0+p1

2
, an injurer would prefer to self-report

when there is a fifty-percent chance that the other injurer will also report. Thus, (R, R) is the

risk-dominant Nash equilibrium if and only if 3r1+r2
4
≤ p0+p1

2
.

3.2 Decision to Commit the Act

In Stage 1, the potential injurers simultaneously and independently decide whether to participate

in the harmful activity.26 If both potential injurers decide to participate in the activity, then the

act is committed. The payoff for each injurer is equal to the payoff that corresponds to the Nash

equilibrium of the self-reporting subgame shown in Figure 1. If one or both potential injurers

decide not to participate, then the act is not committed. The game ends and the payoff for each

potential injurer is zero.

A potential injurer’s decision about whether to participate in the harmful activity in Stage 1

depends on his private benefit from committing the act and the expected fine (which is determined

24If
(
r1+r2

2

)
f < p0f , self-reporting is jointly efficient for the injurers and the game is not a prisoners’ dilemma.

25Without loss of generality, we assume that, when indifferent, the injurers decide to self-report. This assumption

allows us to eliminate the potential Nash equilibrium where both injurers decide not to report, (NR, NR).
26Our findings also hold in environments in which the injurers jointly decide whether to commit an act, but

binding agreements between the injurers regarding their reporting choices in Stage 2 are not allowed.
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in the Stage 2 continuation game). The b-value that equals the expected fine represents the

“deterrence threshold” and is denoted by b̂. When the individual benefit of committing the

act, b, is greater than the deterrence threshold, b̂, then participating in the activity is a weakly-

dominant strategy. In particular, if injurer k (k = 1, 2) believes that injurer j (j = 1, 2, j 6= k) will

participate in the activity with non-zero probability, then injurer k strictly prefers to participate

in the act.27 Conversely, when b is smaller than the deterrence threshold, b̂, the injurer will

choose not to participate in the activity.28 Finally, when b is exactly equal to the deterrence

threshold, b̂, then the injurer is indifferent between participating and not participating in the

act and, without loss of generality, we assume that the injurer does not participate in the act.

The deterrence thresholds are constructed using Lemma 2 above. Lemma 3 characterizes the

equilibrium decisions in Stage 1. Cases 1–4 correspond to Cases 1–4 included in Lemma 2.

Lemma 3. Take the fine f , and the detection probabilities, p0 and p1, as fixed. Each potential

injurer will decide to participate in the activity under the following conditions.

1. r1 ≤ p0 and r1+r2
2
≤ p1: The injurer decides to participate if and only if b > b̂ =

(
r1+r2

2

)
f .

2. r1 ≤ p0 and r1+r2
2

> p1: The injurer decides to participate if and only if b > b̂ =
(
r1+p1

2

)
f .

3. r1 > p0 and r1+r2
2
≤ p1: If r1+r2

2
≤ p0 (Pareto Dominance) or 3r1+r2

4
≤ p0+p1

2
(Risk Dom-

inance), the injurer decides to participate if and only if b > b̂ =
(
r1+r2

2

)
f . If r1+r2

2
> p0

(Pareto Dominance) or 3r1+r2
4

> p0+p1
2

(Risk Dominance), the injurer decides to participate

if and only if b > b̂ = p0f .

4. r1 > p0 and r1+r2
2

> p1: The injurer decides to participate if and only if b > b̂ = p0f .

In Case 1, since both injurers self-report in the unique Nash equilibrium, the deterrence

threshold is b̂ =
(
r1+r2

2

)
f . Then, each potential injurer will participate in the harmful act when

b > b̂ =
(
r1+r2

2

)
f. In Case 2, where multiple equilibria arise, (R, NR) and (NR, R), our refine-

ments do not eliminate either one and we assume that the deterrence threshold is the average

fine, b̂ =
(
r1+p1

2

)
f .29 Then, each potential injurer will participate in the harmful activity when

b > b̂ =
(
r1+p1

2

)
f . In Case 3, the equilibrium refinement will determine which of the two outcomes

27When b is greater than the deterrence threshold, then not participating is a weakly-dominated strategy.
28Participating is a weakly-dominated strategy in this scenario. If injurer k believes that there is a non-zero

chance that injurer j will participate in the act, then injurer k strictly prefers not to participate.
29Given that neither the Pareto-dominance nor risk-dominance refinements reduce the set of equilibrium out-

comes, it is reasonable to assume that neither the enforcement agency nor the players themselves can predict which
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is obtained, (R, R) and (NR, NR), and so the deterrence threshold is either b̂ =
(
r1+r2

2

)
f or

b̂ = p0f . Then, each potential injurer will participate when b > b̂ =
(
r1+r2

2

)
f or b > b̂ = p0f ,

depending on the equilibrium. Finally, in Case 4, since neither injurer self-reports in equilibrium,

the deterrence threshold is b̂ = p0f . Then, each injurer will participate when b > b̂ = p0f .

Our results suggest that ordered-leniency policies have the potential to create significant social-

welfare benefits. Without any opportunities to self-report, the expected fine for each injurer would

be capped at p0f̄ . Through a leniency program that grants a reduced fine to the first injurer to

report the harmful act, r1 = p0−ε for example, the enforcement agency can induce at least one of

the two injurers to come forward and report the act. When one injurer self-reports, the likelihood

of catching the silent accomplice rises from p0 to p1. With a well-designed enforcement policy with

ordered leniency, the enforcement agency can exploit negative externalities between the injurers

in the self-reporting subgame to deter a broader range of harmful acts and to economize on

enforcement efforts.

4 Optimal Enforcement Policies

This section characterizes the optimal enforcement policies with and without leniency. First, we

identify the optimal enforcement policy in the absence of leniency for self-reporting and show that

it involves positive enforcement cots, maximal fines, and underdeterrence relative to the first-best

level. Second, we consider enforcement policies with ordered leniency. We prove that policies that

offer leniency for self-reporting are superior to the optimal enforcement policy without leniency.

Holding the enforcement costs fixed, deterrence can be improved with ordered leniency for self-

reporting. We then highlight several key features of optimal ordered-leniency policies. Finally, we

demonstrate that the first-best outcome can be achieved with an ordered-leniency policy when

the externality from the harmful activities, h, is not too high.

outcome will occur, and hence, they assign an equal weight to each outcome. This assumption is intuitive and

empirically relevant but much stronger than necessary. All that is required for the results that follow is that the

deterrence threshold in Case 2 is strictly smaller than p1f . This would be true if the players, at the time that they

are committing the act, put a non-zero chance on both (R, NR) and (NR, R). We will see that the enforcement

agency can implement a deterrence threshold of p1f in a setting where self-reporting is a dominant strategy for

both players as in Case 1. Thus, for several reasons, the enforcement agency would eschew enforcement policies

associated with Case 2.
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4.1 Optimal Enforcement Policy without Leniency

Consider an environment where leniency for self-reporting is not granted, so the leniency multipli-

ers are (r1, r2) = (1, 1).30 According to Lemma 2 (Case 4), there is a unique pure-strategy Nash

equilibrium where neither injurer self-reports.31 The probability that the injurers are detected

and fined is p0 = e. Then, each injurer faces an expected fine ef , and so each will commit the

act if and only if b > b̂ = ef (Lemma 3, Case 4). Social welfare is the aggregation of the benefits

to the individuals who commit the act minus the social costs associated with the act (the harm

inflicted on others, h, and the cost of enforcement c(e)).32 Normalizing the size of the population

of injurers to unity, the social welfare function can be written as:

W =

∫ ∞
ef

(b− h) g(b)db− c(e). (1)

Next, we identify the optimal fine, f , and the optimal detection probability (optimal enforce-

ment effort), e,33 that maximize social welfare in the no-leniency environment. Consider first the

optimal fine f . It is easy to show that the optimal fine will be maximal, f = f̄ . To see why,

suppose that the optimal e > 0 and that the optimal fine is less than maximal, f < f̄ . By raising

the fine slightly while at the same time lowering the probability of detection so as to keep the

product ef constant, the same level of deterrence can achieved but at a lower cost than c(e).

Consider now the optimal detection probability (optimal enforcement effort), e. Substitute f̄

into the social welfare function and differentiate it with respect to e. The first-order condition is

given by:

(h− ef̄)f̄ g(ef̄)− c′(e) = 0. (2)

The first term is the incremental social benefit of increased deterrence. When the probability of

detection is raised, the acts that were previously exactly on the margin between committing and

not committing the act (those with private benefits b = ef̄) are now deterred. The social benefit

of deterring these marginal acts is h − ef̄ .34 The volume of additional cases that are deterred

when e is raised is f̄ g(ef̄), which depends upon the height of the probability density function

30The environment without leniency is a special case of enforcement with ordered leniency for self-reporting.
31If an injurer reports, he pays f (irrespective of the decision of his accomplice; if an injurer remains silent, he

pays p0f (if his accomplice does not report the act) or p1f (if his accomplice reports the act). Then, self-reporting

is a strictly-dominated strategy.
32The fines are simply transfers from the injurers to the enforcement agency, and therefore are not included in

the social welfare function.
33By assumption, the detection probability when no injurer self-reports p0 = e.
34If h− ef̄ < 0, there will be a destruction of social value when deterring the marginal act.
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when evaluated at ef̄ . The second term, c′(e), is the incremental social cost associated with the

higher detection probability. It is easy to verify that the optimal e will be always positive. Taking

the fine f̄ as fixed and starting with e = 0, the incremental social value of raising the probability

is positive (since harmful acts with very small benefits will no longer be committed) while the

incremental social cost is negligible since, by assumption, c′(0) = 0. Hence, the enforcement cost,

c(e), will be also positive.

Using equation (2) and rearranging terms, we find that under an enforcement policy with

no-leniency, the optimal deterrence threshold (optimal expected fine), b̂, satisfies:

b̂ = ef̄ = h− c′(e)

f̄ g(ef̄)
. (3)

There may be multiple solutions to this equation. However, under our assumptions on c(e), all

of the solutions involve e > 0. Then, the optimal enforcement policy has a deterrence threshold

b̂ ∈ (0, h).35 It is interesting to compare the optimal enforcement policy without leniency to

a social-welfare benchmark. Without leniency for self-reporting, the first-best outcome is not

achievable. Since b̂ < h, the optimal enforcement policy without leniency has positive enforcement

costs and a deterrence threshold that is strictly smaller than the first-best level. Proposition 1

outlines our findings.

Proposition 1. For any bounded set of fines, an enforcement policy without leniency for self-

reporting cannot implement the first-best outcome. The optimal enforcement policy has a maximal

fine, a positive enforcement cost, and underdeterrence.

As has been emphasized in the literature on control of harmful externalities (Polinsky and Shavell,

1984), the failure to implement the first-best outcome with an enforcement policy without leniency

for self-reporting is a consequence of having a maximal fine, f̄ .36 If the set of fines were instead

unbounded, the enforcement agency could get arbitrarily close to the first-best outcome with an

extremely high fine coupled with an arbitrarily small probability of detection (Becker, 1968).

35Our results regarding optimal enforcement without leniency policies for groups of injurers are aligned with

Kaplow and Shavell’s (1994) finding on enforcement without self-reporting in single-injurer environments.
36Intuitively, having a maximal fine implies that increasing deterrence is expensive. When the benefit to the

injurer, b, is very close to social harm, h, then the social benefit of increasing the expected fine is very small

(because b− h is negative but small). Since c′(e) > 0, increasing the fine leads to a first-order increase in costs.
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4.2 Optimal Enforcement Policy with Ordered Leniency

This section characterizes the optimal enforcement policy with ordered leniency. First, we show

that for any bounded set of fines, there exists an enforcement policy with ordered leniency that

is strictly superior the optimal enforcement policy without leniency described in the previous

section. Second, we take the agency’s enforcement effort, e, and the corresponding probabilities

of detection, p0 and p1, as fixed and identify the fine, f , and the leniency multipliers, r1 and r2,

that generate maximal deterrence (i.e., the highest expected fine). Third, we demonstrate that

the first-best outcome may be achieved with ordered-leniency policies at a zero cost when the

externalities associated with the harmful activities are not too high.

4.2.1 Superiority of Ordered Leniency

We will show that enforcement policies with ordered leniency for self-reporting always outperform

enforcement policies without leniency for self-reporting. As shown in the previous section, without

leniency, the optimal enforcement policy has strictly positive enforcement costs, maximal fines,

and underdeterrence of harmful activities relative to the first-best level. With ordered leniency,

and holding enforcement efforts fixed, the enforcement agency can raise the expected fines and

achieve a higher level of deterrence.

Proposition 2. For any bounded set of fines, there exists an enforcement policy with ordered le-

niency that is strictly superior to the optimal enforcement policy without leniency for self-reporting.

The proof of Proposition 2, which is omitted, is straightforward. Intuitive explanation follows.

When there is no leniency for self-reporting, (r1, r2) = (1, 1), the injurers do not self-report

and the deterrence threshold is b̂ = p0f̄ < h. There is underdeterrence relative to the first-

best level, and too many harmful acts are committed. Consider now an ordered-leniency policy

(r1, r2) = (p0 − v, p0 + 2v), where 0 < v < p0 is a small positive number. With these leniency

multipliers, self-reporting is a strictly dominant strategy for both injurers (Case 1 of Lemma 3).

Moreover, the expected fine with ordered leniency is higher than the optimal expected fine without

leniency, p0f̄ < (p0 + v/2)f̄ < h. Holding the level of enforcement effort and the probabilities

of detection fixed, the ordered leniency policy (r1, r2) = (p0 − v, p0 + 2v) raises the deterrence

threshold closer to the first-best level and increases social welfare. More generally, given any

optimal enforcement policy without leniency, one can always construct an enforcement policy

with ordered leniency that is strictly superior: By exploiting the negative externalities between
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the injurers at the self-reporting subgame, ordered-leniency mechanisms always achieve higher

levels of deterrence. Our findings regarding the superiority of enforcement policies with ordered

leniency for groups of injurers complement Kaplow and Shavell’s (1994) results for single-injurer

environments.

4.2.2 Maximal Deterrence with Ordered Leniency

Taking the enforcement effort, e, and the corresponding probabilities of detection, p0 and p1, as

fixed, we now characterize the fine, f , and leniency multipliers, (r1, r2), that create the highest

possible deterrence (i.e., highest expected fine). We will demonstrate that the fine should be set at

the maximal level, f̄ , and that the ordered-leniency policies that implement maximal deterrence

give greater leniency to the first injurer to report and induce immediate self-reporting by both

injurers. Importantly, we will show that the optimal leniency multipliers will be different for the

Pareto-dominance and risk-dominance refinements. Leniency will be stronger (smaller multipliers)

under the Pareto-dominance refinement, and leniency will be milder (larger multipliers) under the

risk-dominance refinement.

Denote (rS1 , r
S
2 ) and (rM1 , r

M
2 ) as the leniency multipliers for the Pareto- and risk-dominance

refinements, respectively, and b̂S and b̂M as the corresponding deterrence thresholds (expected

fines). The superscript S refers to “Strong Leniency” and the superscript M refers to “Mild

Leniency.” Proposition 3 characterizes the fine and leniency multipliers that create maximal

deterrence for groups of potential injurers.

Proposition 3. Take the enforcement effort e as fixed. Maximal deterrence is obtained with a

maximal fine, f = f̄ , and the following leniency multipliers:37

1. If p1 ≤ 1+p0
2

, then (rS1 , r
S
2 ) = (rM1 , r

M
2 ) = (p1−∆, p1+∆) where ∆ ∈ [p1−p0,min{p1, 1−p1}].

The injurers commit the act and self-report at time t = 0 if b > b̂S = b̂M = p1f̄ , and do not

commit the act otherwise.

2. If p1 >
1+p0
2

, then (rS1 , r
S
2 ) = (p0, 1) and (rM1 , r

M
2 ) =

(2(p0+p1)−1
3

, 1
)
. The injurers commit the

act and self-report at time t = 0 if b > b̂S =
(
1+p0
2

)
f̄ (Pareto Dominance) and b > b̂M =(

1+p0+p1
3

)
f̄ (Risk Dominance), where b̂S < b̂M , and do not commit the act otherwise.

37When p1 ≤ 1+p0

2 , the leniency multipliers are not unique.
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Proposition 3 provides fundamental implications for the optimal design of enforcement policies

with ordered leniency. The formal analysis is presented in the Appendix. An intuitive discussion

of the main insights follows.

Remark 1. The Fine Is Maximal.

The highest deterrence is obtained by imposing the maximal fine, f = f̄ . This follows from the

fact that the equilibria of the self-reporting subgame described in Lemmas 2 and 3 do not depend

on the level of the fine, f .

Remark 2. Both Injurers Self-Report.

Maximal deterrence is achieved when both injurers self-report. It is obvious that a leniency policy

where at least one injurer self-reports creates stronger deterrence than a policy where no injurer

self-reports. By offering (r1, r2) = (p0, 1), at least one injurer self-reports and the expected fine

rises above p0f̄ (the expected fine if neither reports). More specifically, if p1 ≥ 1+p0
2

, then we are

in Case 1 of Lemma 2 where both injurers self-report, and the expected fine is
(
1+p0
2

)
f̄ > p0f̄ .

On the other hand, if p1 <
1+p0
2

, then we are in Case 2 of Lemmas 2 and 3 where exactly one

injurer self-reports and the expected fine is
(
p0+p1

2

)
f̄ > p0f̄ . In this latter case, where only one

injurer self-reports, deterrence will be even stronger if leniency is granted to the second injurer as

well. When (r1, r2) = (p0, 2p1 − p0), both injurers self-report and the expected fine rises to p1f̄ .38

Remark 3. The First Injurer to Self-Report Always Receives More Lenient Treatment.

Suppose that p1 ≥ 1+p0
2

and (r1, r2) = (p0, 1). We are in Case 1 of Lemma 2, where both injurers

self-report. Rewarding the first injurer creates a proverbial race to the courthouse between the

two injurers, and the expected fine is
(
1+p0
2

)
f̄ > p0f̄ .39. If the multipliers were reversed, so

(r1, r2) = (1, p0) (i.e., the second to report gets the more lenient treatment), then neither injurer

would self-report and the expected fine would be p0f̄ , the same as in the absence of a leniency

policy.40 Giving more leniency to the first injurer to report the act increases deterrence.

Remark 4. The Second Injurer to Self-Report May Also Receive Leniency.

38According to Proposition 3 Case 2, this is an optimal policy (∆ = p1 − p0).
39If p1 ≥ 1+p0

2 then only one injurer would self-report, and the expected fine is still strictly higher than p0f̄
40More generally, given an ordered-leniency policy with r1 > r2, there exists an ordered-leniency policy with

r′1 < r′2 that creates stronger deterrence.
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When the strength of the inculpatory evidence is weak then the second injurer to report the act

receives leniency, too. To see why, suppose that p1 <
1+p0
2

. If leniency is granted only to the first

injurer, (r1, r2) = (p0, 1), we are in Case 2 of Lemmas 2 and 3 where only one injurer reports the

act and the other remains silent, and the deterrence threshold is
(
p0+p1

2

)
f̄ . Now suppose instead

that the agency gives partial leniency to the second injurer too, (r1, r2) = (p0, 2p1 − p0). With

these leniency multipliers, there is a race to the courthouse, both injurers self-report, and the

deterrence threshold rises to p1f̄ .41 Deterrence is stronger when the second injurer also receives

leniency.42

Remark 5. Stronger Deterrence Is Obtained with Risk Dominance.

Proposition 3 implies that the deterrence threshold never lower, and may be higher, when the

risk-dominance refinement is applied in the self-reporting subgame.43 In the first part of Propo-

sition 3, when p1 ≤ 1+p0
2

, leniency multipliers are the same under the Pareto-dominance and

risk-dominance refinements, and so the two equilibrium refinements lead to the same deterrence

threshold, b̂S = b̂M = p1f̄ . In the second part of Proposition 3, when p1 >
1+p0
2

, the optimal

leniency multipliers under the two equilibrium refinements diverge. Suppose that the enforcement

agency chooses the mild leniency policy, (rM1 , r
M
2 ) =

(2(p0+p1)−1
3

, 1
)
.44 Notice that rM1 > p0, so

neither self-reporting nor no-reporting are dominant strategies. When the risk-dominance re-

41When p1 > 1/2, maximal deterrence can be achieved by granting leniency to just the first injurer to report,

(r1, r2) = (2p1 − 1, 1). With these multipliers, both injurers self-report and the expected fine is p1f̄ . When

p1 < 1/2, however, 2p1 − 1 is a negative number. Some degree of leniency must be granted to the second injurer,

too.
42Note that, when viewed from an ex post perspective, the second injurer is worse off when he self-reports. Since

ri2 > p1 for i = S,M , the second injurer would be better off remaining silent and paying p1f̄ in expectation than

self-reporting and paying ri2f̄ . The reason why the second injurer is willing to self-report is because when the

injurer is making the important decision about whether or not to self-report, the injurer does not know whether

he will obtain the first position or the second position in the self-reporting queue. Hence, a race-to-the-courthouse

effect will be always observed in equilibrium when ordered-leniency policies are implemented.
43As demonstrated in the Appendix (proof of Proposition 3), the leniency multipliers under Pareto dominance,

(rS1 , r
S
2 ), satisfy the conditions stated in Case 1 of Lemma 2. When p1 ≤ 1+p0

2 , the leniency multipliers under risk

dominance, (rM1 , rM2 ), satisfy either the conditions stated in Case 1 of Lemma 2 or the conditions stated in Case

3 of Lemma 2 (both provide the same level of deterrence); when p1 >
1+p0

2 , the leniency multiplier under risk

dominance, (rM1 , rM2 ), satisfy the conditions stated in Case 3 of Lemma 2.
44Under these leniency multipliers, the environment corresponds to Case 3 of Lemma 2, where the self-reporting

subgame is a coordination game with two Nash equilibria (R, R) and (NR, NR). When risk-dominance is applied,

maximal deterrence is achieved.
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finement is applied in the self-reporting subgame, both injurers self-report and the deterrence

threshold is b̂M =
(
1+p0+p1

3

)
f̄ > p0f̄ . When the Pareto-dominance refinement is applied in the

self-reporting subgame, neither injurer self-reports and the deterrence threshold is p0f̄ . Then,

when the Pareto-dominance refinement is applied in the self-reporting subgame, the enforcement

agency must lower the multipliers to (rS1 , r
S
2 ) = (p0, 1) to transform the self-reporting subgame into

a prisoner’s dilemma.45 The resulting deterrence threshold is b̂S =
(
1+p0
2

)
f̄ < b̂M . Hence, when

Pareto-dominance is applied in the self-reporting subgame, the deterrence threshold is smaller

and the incentives to engage in the harmful activity rise.

4.2.3 Optimal Enforcement Effort with Ordered Leniency

This section characterizes the optimal enforcement effort e when ordered-leniency policies are

implemented. Remember that Proposition 3 identifies the leniency multipliers and fine that

create maximal deterrence (i.e., the highest expected fine), and that superscripts S and M denote

the leniency policies under the Pareto- and risk-dominance refinements, respectively.

The next lemma, which follows from Proposition 3, will be used in the analysis of the optimal

enforcement effort e when ordered-leniency policies are implemented. Recall that p0 = e and

p1 = e + (1 − e)π, where π ∈ (0, 1) represents the exogenous strength of inculpatory evidence.

Then, p1 ≤ 1+p0
2

holds if and only if π ≤ 1
2
, and p1 >

1+p0
2

holds if and only if π > 1
2
. In other

words, Cases 1 and 2 of Lemma 4 correspond to Cases 1 and 2 of Proposition 3.46

Lemma 4. The ordered-leniency multipliers (rS1 , r
S
2 ) and (rM1 , r

M
2 ), characterized in Proposition

3, yield corresponding expected fines b̂S(e, π) and b̂M(e, π) for the injurers. These functions, which

are continuous and piecewise differentiable, satisfy:

1. If π ≤ 1
2
, then b̂S(e, π) = b̂M(e, π) = [π + (1− π)e] f̄ and 0 < ∂b̂i(e,π)

∂e
< f̄ for i = S,M .

2. If π > 1
2
, then b̂S(e, π) =

(
1+e
2

)
f̄ and b̂M(e, π) =

[
(1+π)+(2−π)e

3

]
f̄ . Furthermore, b̂S(e, π) <

b̂M(e, π) and 0 < ∂b̂M (e,π)
∂e

< ∂b̂S(e,π)
∂e

< f̄ .

We now describe the circumstances under which ordered-leniency policies can achieve the first-

best outcome. Recall that, in the first-best outcome, the injurers commit the act if and only if

45This new strategic environment corresponds to Case 1 of Lemma 2, where (R, R) is the unique Nash equilibrium.
46Consider Case 1 of Proposition 3, where p1 ≤ 1+p0

2 . Substituting p0 = e and p1 = e + (1 − e)π into this

expression, we find that p1 ≤ 1+p0

2 holds if and only if π ≤ 1
2 . Similarly logic applies to Case 2 of Proposition 3.
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the benefit exceeds the social harm, b > h and no effort is spent on enforcement, e = 0. In this

benchmark, p0 = 0 and p1 = π.

When π ≤ 1
2
, we are in Case 1 of Lemma 4. With no enforcement effort, e = 0, the maximal

deterrence is obtained with a maximal fine f̄ and leniency multipliers (rS1 , r
S
2 ) = (rM1 , r

M
2 ) =

(0, 2π). With these multipliers, the injurers are deterred from committing the act when b ≤ b̂S =

b̂M = πf̄ . Note that if the level of harm is less than the deterrence threshold, h < πf̄ , then there

would be overdeterrence relative to the first-best level. However, this may be easily solved by

reducing the fine below its maximal level, granting additional leniency to the injurers, or both.

When the expected fine is exactly equal to the social harm, h, then the injurers will commit the

act if and only if b > h, as desired. When the level of harm exceeds the deterrence threshold,

h > πf̄ , then there is underdeterrence relative to the first-best level. In this case, deterrence can

be improved by spending resources on enforcement. Taken together, when π ≤ 1
2
, the first-best

outcome is achieved at zero cost if and only if the harm is not too high, h ≤ πf̄ .

When π > 1
2
, we are in Case 2 of Lemma 4. Suppose the enforcement efforts are zero, e = 0.

If the Pareto-dominance refinement is applied to the self-reporting subgame, then the multipliers

that create maximal deterrence are (rS1 , r
S
2 ) = (0, 1) and the associated deterrence threshold is

b̂S =
(
1
2

)
f̄ . If the level of harm is below this threshold, h <

(
1
2

)
f̄ , then the first-best outcome may

be obtained by lowering the fine, lowering the leniency multiplier for the second injurer, or both.

If the risk-dominance refinement applies, then the leniency multipliers that create the maximal

deterrence are (rM1 , r
M
2 ) =

(
2π−1

3
, 1
)

and the associated deterrence threshold is b̂M =
(
1+π
3

)
f̄ .

Applying the same logic as before, when h <
(
1+π
3

)
f̄ , the first-best outcome can be obtained by

lowering the fine, lowering the leniency multipliers, or both. Hence, when π > 1
2
, the first-best

outcome is achieved at zero cost if and only if the harm is not too high, h ≤
(
1
2

)
f̄ (Pareto

Dominance) and h ≤
(
1+π
3

)
f̄ (Risk Dominance).

Proposition 4 establishes the necessary and sufficient conditions under which the enforcement

agency can implement the first-best outcome with an ordered-leniency policy at a zero cost, and

describes the second-best enforcement policy when the first-best outcome cannot be achieved.

Proposition 4. For any bounded set of fines, an optimal enforcement policy with ordered leniency

for self-reporting can implement the first-best outcome at zero cost if and only if h ≤ b̂S(0, π) =

min{π, 1
2
}f̄ under the Pareto-dominance refinement, and h ≤ b̂M(0, π) = min{π, 1+π

3
}f̄ under

the risk-dominance refinement. When h > b̂i(0, π), i = S,M , the second-best enforcement policy

involves a maximal fine, positive enforcement costs, and underdeterrence relative to the first best.
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Intuitively, when the externalities associated with the harmful activities, h, are not too high

and enforcement policies with ordered leniency for self-reporting are implemented, injurers are

induced to report their harmful acts immediately without affecting their incentives to refrain from

committing the acts relative to the first-best outcome. Importantly, the enforcement agency does

not need to spend resources on enforcement, c(e) = 0. When the externalities associated with

the harmful activities, h, are relatively high, the first-best outcome cannot be not obtained. The

enforcement agency must spend resources to detect the harmful activities and too many harmful

activities will be committed.

Taken together, our previous findings provide a social welfare rationale for the current use of

ordered-leniency policies in the real-world. First, holding the enforcement costs fixed, we proved

that an enforcement policy with ordered leniency is strictly superior to the optimal enforcement

policy without leniency (Proposition 2). Second, we showed that ordered-leniency policies that

generate maximal deterrence give successively larger discounts to injurers who secure higher po-

sitions in the self-reporting queue, creating a so-called “race to the courthouse” where all injurers

report the act immediately (Proposition 3). Third, we demonstrated that socially-optimal level

of deterrence can be obtained at zero cost when the externalities associated with the harmful

activities are not too high (Proposition 4).

5 Experimental Evidence

This section reports the results from a series of experiments with human subjects. We investigate

whether the behavior of the subjects follows the theoretical predictions regarding the effects of

ordered-leniency policies on reporting of harmful acts (self-reporting of the act by one or both

injurers, and report time) and deterrence (decision not to commit the act by one or both potential

injurers). We study three leniency environments: No Leniency (N), where no fine reduction for

self-reporting is applied; Strong Leniency (S), where the fine reduction for self-reporting is large,

and hence, the expected fine is small; and, Mild Leniency (M), where the fine reduction for

self-reporting is small, and hence, the expected fine is high.

5.1 Model Parameterization and Theoretical Predictions

Consider the following parameterization of the model. Across leniency environments, the param-

eter values are as follows: b ∈ [200, 1600]; f = 900; p0 = 0.4, p1 = 0.9, and t ∈ [0, 90] (measured in
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Figure 2: Strategic-Form Representation of the Self-Reporting Subgame (Expected Payoffs)

No Leniency (N)

NR R

NR b− 360, b− 360 b− 810, b− 900

R b− 900, b− 810 b− 900, b− 900

Strong Leniency (S)

NR R

NR b− 360, b− 360 b− 810, b− 300

R b− 300, b− 810 b− 600, b− 600

Mild Leniency (M)

NR R

NR b− 360, b− 360 b− 810, b− 420

R b− 420, b− 810 b− 660, b− 660

seconds). We consider two sets of leniency multipliers: rS1 = 0.333 and rS2 = 1, in case of Strong

Leniency; and, rM1 = 0.466 and rM2 = 1, in case of Mild Leniency.47 The strategic-form repre-

sentation of the self-reporting subgame for the No Leniency, Strong Leniency, and Mild Leniency

environments under these parameters is presented in Figure 2.

The equilibrium predictions are as follows. (1) No Leniency: Both potential injurers decide

to commit the act in Stage 1 when b > 360; if the act is committed, both injurers decide not to

report the act in Stage 2. (2) Strong Leniency: Both potential injurers decide to commit the act in

Stage 1 when b > 600; if the act is committed, both injurers decide to report the act immediately

in Stage 2. (3) Mild Leniency with Pareto-dominance refinement: Both potential injurers decide

to commit the act in Stage 1 when b > 360; if the act is committed, both injurers decide not

to report the act in Stage 2. (4) Mild Leniency with risk-dominance refinement: Both potential

injurers decide to commit the act in Stage 1 when b > 660; if the act is committed, both injurers

decide to report the act immediately in Stage 2. In sum, the highest individual benefit b to induce

the injurers not to commit the act in Stage 1, the “deterrence threshold,” is b = 360, b = 600 or

b = 660.48 As described, the specific deterrence threshold depends on the leniency environment

47By Proposition 3 (Case 2, p1 >
1+p0

2 ), the leniency multipliers that generate maximal deterrence for these

parameter values are (rS1 , r
S
2 ) = (0.400, 1.00) and (rM1 , rM2 ) = (0.533, 1.00). To break indifference, we deduct

ε = 0.067 from rS1 and rM1 .
48We assume that in case of indifference, the potential injurer decides not to commit the act.
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Table 1 – Theoretical Point Predictions

Deterrence Report Ratesa No-Report Ratea Report

Rate (R, R) (R, NR)/(NR, R) (NR, NR) Timeb

No Leniency (N)

b ∈ [200, 360] 1 0 0 1 −
b ∈ (360, 1600] 0 0 0 1 −
Strong Leniency (S)

b ∈ [200, 600] 1 1 0 0 0

b ∈ (600, 1600] 0 1 0 0 0

Mild Leniency (M)

• Pareto Dominance

b ∈ [200, 360] 1 0 0 1 −
b ∈ (360, 1600] 0 0 0 1 −
• Risk Dominance

b ∈ [200, 660] 1 1 0 0 0

b ∈ (660, 1600] 0 1 0 0 0

Notes: aReport and no-report rates conditional on committing the act; breport time in seconds.

and the equilibrium refinement adopted. Table 1 outlines the theoretical point predictions.

5.2 Experimental Design

Next, we present a description of the laboratory implementation of our theoretical environments.

Experimental Conditions

Procedural regularity is accomplished by developing a software program that allows the subjects

to play the game by using networked personal computers. The software, constructed using the

Java programming language, consists of 3 versions of the game, reflecting the three experimental

conditions: No Leniency (N), Strong Leniency (S) and Mild Leniency (M).49 To ensure control

and replicability, a free-context environment is implemented. Specifically, neutral labels are used

to denote the subjects’ roles: Players B1 and B2 (potential injurers 1 and 2, respectively). The

“Act” is described as an economic decision involving potential benefits (associated with Stage 1)

and potential losses (associated with Stage 2).50 The players’ choices are also labeled in a neutral

49The use of a JAVA software especially designed for this study allows us to have flexibility in the design of

randomization processes and the design of user-friendly screens.
50Please see the Appendix for a sample of the instructions (Mild Leniency condition).
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way: Decision whether “To Agree to Jointly Commit the Act” or “Not to Agree to Jointly Commit

the Act;” and, decision whether “To Report the Act” or “Not to Report the Act.” The game

includes 5 practice matches and one actual match. The practice matches allow the subjects to

experiment with the different options and hence, learn about the consequences of their choices.

Only the actual match is considered in the subject’s payment.

The benchmark game corresponds to the Strong Leniency condition (S). Subjects play the role

of Player B1 or Player B2. The roles of Players B1 and B2 are similar. Each match involves two

stages. In Stage 1, each player independently decides whether to commit the act. The players

have 90 seconds to make their decisions in Stage 1. After the decisions are made, both players

are informed about the other player’s decision. If both players agree to commit the act, Stage

2 starts. Otherwise, the game ends. In Stage 2, each player independently decides whether to

report the act. The players have 90 seconds to decide whether to report the act and submit their

reports. When both players decide to report at the same time, the computer randomly assigns the

first position in the self-reporting queue to each player with equal probability. After the decisions

are made, both players are informed about the decision of the other player and the payoffs for

both players, and the game ends. The payoffs reflect the Strong Leniency policy (S): The first to

self-report receives a fine reduction. It is worth noting that our lab implementation also allows

us to collect data on the report time. These data are used to assess whether ordered-leniency

policies exhibit a “race to the courthouse” effect, i.e., whether immediate report is observed.

Variations of the benchmark game satisfy the other experimental conditions. In the Mild

Leniency condition (M) and No Leniency condition (N), the subjects play a similar game. The

only difference across conditions refers to the players’ payoffs. Specifically, in the Mild Leniency

condition (M), the first to report receives a fine reduction, which is lower than the one granted in

case of the Strong Leniency condition (S). In the No Leniency (N) condition, the first to report

does not receive a fine reduction.

Each experimental condition includes four 24-subject sessions. To achieve independent obser-

vations in the actual match, we use the following role and pairing procedure per session: (1) The

total number of subjects are randomly assigned to one of the following two groups, Group 1 and

Group 2; (2) half of the subjects in each group is assigned the role of Player B1 and the other half

is assigned the role of Player B2; (3) for each practice match, Players B1 from Group 1 are ran-

domly paired with Players B2 from Group 2, and Players B2 from Group 1 are randomly paired

with Players B1 from Group 2; (4) for the actual match, Players B1 and B2 from Group 1 are

randomly paired, and Players B1 and B2 from Group 2 are randomly paired. The same protocol
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Table 2 – Experimental Conditions

b-Value Segments No Leniency Strong Leniency Mild Leniency

(N) (S) (M)

b ∈ [200, 360] 4 4 4

b ∈ (360, 600] 11 11 11

b ∈ (600, 660] 11 11 11

b ∈ (660, 1600] 22 22 22

Total Number of Pairs 48 48 48

for pair formation is applied across sessions and conditions. As a result, for each session of 24

subjects, 12 independent observations (pairs) are obtained. Hence, 48 independent observations

per condition and 144 independent observations in total are obtained.

Table 2 summarizes the information regarding the experimental conditions and observations

per b-value segment for the actual match. The theoretical deterrence thresholds guide the design of

the distribution of b-values. To ensure comparability across conditions, we randomly predetermine

the b-values used in the actual match of each of the four sessions of a condition, and apply these

values to each condition.51 For each condition, the total number of b-values for the actual match

is equal to 48 (12 values per session; 4 sessions per condition).52 To ensure consistency across

sessions and conditions, we randomly predetermine the b-values for each of the five practice

matches, and apply these values across sessions and conditions.53

Experimental Sessions

We ran twelve 80-minute sessions of 24 subjects each (four sessions per condition; 96 subjects

per condition; 288 subjects in total) at Harvard University. Each session was conducted by two

research assistants at the Harvard Decision Science Laboratory. Subjects were recruited using the

51The chosen distribution of b-values has the following features: Four b-value segments are considered, [200, 360],

(360, 600], (600, 660], and (660, 1600]; the segments include 8, 23, 23 and 46% of the total b-values, respectively;

for each segment, the specific b-values are randomly chosen (equally likely values).
52The adopted distribution of b-values allows us: (1) To collect a sufficiently high number of observations

to perform statistical analysis of deterrence across conditions, and across relevant b-value segments within each

condition; and, (2) to collect a sufficiently high number of observations in which Stage 2 occurs with certainty in

equilibrium across conditions (b > 660) to perform statistical analysis of detection across conditions.
53For each practice match, at least one b-value pertains to each of the four b-value segments; and, the majority

of b-values pertain to the last b-value segment, which in theory, elicits a self-reporting stage with certainty. Hence,

the distribution of b-values ensures that the subjects will get enough experience regarding the self-reporting stage.
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lab’s Sona computer program and the lab’s subject pool. Subjects were allowed to participate

in one experimental session only, and received information only about the game version that

they were assigned to play. The participant pool included undergraduate and graduate students

from Harvard, Boston and Northeastern universities, from a wide variety of fields of study. A

laboratory currency called the “token” (29 tokens = 1 U.S. dollar) was used in our experiment.

To avoid negative payoffs, each subject received an initial endowment equal to 700 tokens.54 The

show-up fee was equal to $10. The average game earnings was equal to $32. Then, the average

total payment was equal to $42 (average game earnings plus participation fee) for an 80-minute

session.

At the beginning of each session, written instructions were provided to the subjects (see

the Appendix). The instructions about the game and the software were verbally presented by

the experimenter to create common knowledge. Specifically, subjects were informed: (1) about

the game structure, possible choices, and payoffs; (2) about the random process of allocating

roles; (3) about the randomness and anonymity of the process of forming pairs;55 (4) about the

token/dollar equivalence, and that they would receive the dollar equivalent of the tokens they

held at the end of the session. Finally, subjects were asked to complete a set of exercises to ensure

their ability to read the information tables. The answers to the exercises were read aloud by the

research assistants. Questions about the written instruction and questions about the exercises were

answered by the research assistants privately and before the beginning of the practice matches.

The rest of the session was entirely played using computer terminals and the software designed for

this experiment. After the actual match, subjects were required to fill out a short questionnaire

with general demographic questions. At the end of each experimental session, subjects privately

received their monetary payoffs in cash.

5.3 Qualitative Hypotheses

The qualitative hypotheses are presented below. Cooper et al. (1990) suggest that risk-dominance

is generally the equilibrium selection criterion chosen by subjects in the lab when there are multiple

equilibria.56 Then, we might expect that the majority of subjects will apply the risk-dominance

54Note that the minimum possible b-value was equal to 200 tokens and the maximum possible fine was equal to

900 tokens. Then, the minimum possible match payoff was equal to 0 tokens.
55In particular, subjects were informed that they would not play with the same partner in any practice match;

and, that they would not play with any of their previous partners in the actual match.
56Landeo and Spier (2009) offer important evidence in favor of the risk-dominance refinement in contractual

settings with multiple equilibria. Burton and Sefton (2004) provide powerful evidence of the role of riskiness in
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refinement in our experiment. Hence, the hypotheses related to Mild Leniency are constructed

under the risk-dominance refinement.

Hypothesis 1. Strong Leniency increases the rate of self-reporting by both injurers, with respect

to No Leniency. No Leniency increases the rate of no-reporting by both injurers, with respect to

Strong Leniency.

According to our theory, Strong Leniency induces both injurers to self-report, i.e., (R, R) is

the unique N.E. of the reporting subgame. In contrast, No-Leniency induces both injurers to

no-report, i.e., (NR, NR) is the unique N.E. of the reporting subgame.

Hypothesis 2. Mild Leniency increases the rate of self-reporting by both injurers with respect

to No Leniency. No Leniency increases the rate of no-reporting by both injurers, with respect to

Mild Leniency.

According to our theoretical predictions under the risk-dominance refinement, Mild Leniency

induces both injurers to self-report, i.e., (R, R) is chosen by both injurers. If the Pareto-dominance

refinement is applied instead, Mild Leniency induces both injurers to no-report, i.e., (NR, NR) is

chosen by both injurers.

Hypothesis 3. Mild Leniency and Strong Leniency exhibit the same rate of self-reporting by both

injurers. Mild Leniency and Strong Leniency exhibit the same zero rate of no-reporting by both

injurers.

According to our theoretical predictions under the risk-dominance refinement, Mild Leniency

induces both injurers to self-report, i.e., (R, R) is chosen by both injurers. Importantly, both the

Mild and Strong Leniency conditions exhibit a zero rate of no-reporting by both injurers. If the

Pareto-dominance refinement is applied instead, Mild Leniency induces both injurers to no-report,

i.e., (NR, NR) is chosen by both injurers.

Hypothesis 4. Strong and Mild Leniency exhibit a “race to the courthouse” effect – self-reporting

occurs immediately.

Under optimal ordered-leniency policies, earlier reporting implies higher penalty reduction.

According to our theory, when the risk-dominance refinement is applied, Strong and Mild Leniency

the choice of a strategy. See Ochs (1995) for a survey of seminal work on coordination games.
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generate a “race to the courthouse” between the two members of the group of injurers. As a result,

in equilibrium, both injurers will self-report immediately. In the lab, subjects have between zero

and 90 seconds to decide to report the act and submit their reports. Then, it is expected that

“immediate report” will occur at a time slightly later than zero seconds.

Hypothesis 5. Within each leniency environment, the deterrence rate is lower when the benefits

from the harmful act are greater than the deterrence threshold.

According to our theory, the benefits associated with the harmful act incentivize the potential

injurers to commit the act. In equilibrium, the act is committed only when the benefits are higher

than the expected fine (i.e., when the benefits are higher than the deterrence threshold).

Hypothesis 6. When the benefits from the harmful act are not greater than 660, Mild Leniency

increases the deterrence rate, with respect to Strong Leniency; and, Strong and Mild Leniency

increase the deterrence rate, with respect to No Leniency.

According to our theoretical predictions, only benefits greater than the expected fine (i.e.,

benefits greater than the deterrence threshold) will induce potential injurers to commit the harmful

act. Under the risk-dominance refinement, the expected fine for Mild Leniency is higher than the

expected fine for No Leniency (660 v. 360), and higher than the expected fine for Strong Leniency

(660 v. 600). Then, in theory, Mild Leniency will exhibit the highest deterrence rate and No

Leniency will exhibit the lowest deterrence rate. If the Pareto-dominance refinement is applied

instead, the expected fine for Mild and No Leniency will be the same (360). Then, there will not

be differences in deterrence rates between these two policies.

It is worth noting that, in theory, Strong and Mild Leniency (when the risk-dominance re-

finement is applied) have the property of incentivizing both injurers to be the first to report. As

a result, both injurers will report immediately, and hence, they will be equally likely to get the

first position in the self-reporting queue (i.e., the chance of each injurer to get the first position

will be equal to 50%).57 In the lab, however, some subjects might exhibit cognitive biases, such

as self-serving bias (Babcock et al., 1995),58 and hence believe that their chances to be the first

57Remember that, in the Strong Leniency environment, the expected fine under (R, R) and equal likelihoods of

getting the first or second position in the self-reporting queue is equal to .50(300) + .50(900) = 600; and, in the

Mild Leniency environment, the expected fine under (R, R) and equal likelihoods of getting the first or second

position in the self-reporting queue is equal to .50(420) + .50(900) = 660.
58Self-serving bias is attributed to motivated reasoning, i.e., a propensity to reason in a way that supports the
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to report are greater than the chances of the other injurers (i.e., they might believe that their

chances to get the first position in the self-reporting queue are greater than 50%). In the limiting

case, some subjects might believe that they will always be the first to report. Then, under Strong

Leniency, they might consider a fine equal to 300 instead of an expected fine equal to 600 when

making their decision about committing the act.59 Similarly, under Mild Leniency, some subjects

might consider a fine equal to 420 instead of an expected fine equal to 660 when making their

decision about committing the act.60 As a result, we might observe deterrence rates lower than

those predicted by the theory.

5.4 Results

This section discusses our experimental findings. Given our experimental design, the collected

144 observations (pairs) are independent. Then, it is appropriate to use non-parametric statistical

analysis. Specifically, our analysis involves the use of the Fisher-exact, Wilcoxon signed-rank, and

Wilcoxon rank-sum (Mann Whitney) tests.

Table 3 outlines our findings about the effect of ordered-leniency policies on self-reporting.

The Report and No-Report rates are conditional on committing the act. Consider first the effect

of the implementation of a Strong Leniency policy on self-reporting (first two lines of Table 3). In

theory, self-reporting by both injurers is the unique N.E. under Strong Leniency, and no-reporting

by both injurers is the unique N.E. under No Leniency. Our findings suggest that the (R, R) rate is

significantly higher under Strong Leniency (.79 v. .00, for Strong and No Leniency, respectively,

individual’s subjectively favored beliefs by attending only to some available information (Kunda, 1990, 1987). See

Babcock et al. (1995) and Landeo (2009) for experimental evidence of self-serving bias, and Landeo et al. (2013)

for theoretical work on self-serving bias in incomplete-information environments. See also Landeo (2018) for further

discussion of theoretical and experimental studies on self-serving bias.
59The expected fine for the biased injurer is 300 irrespective of the reporting decision of the other injurer.

Importantly, under these biased beliefs, report is the dominant strategy for the biased injurer. This is because

his expected fines under no-report are 360 or 810, depending on the choice of no-report or report by the other

injurer, respectively. Then, as in the case of the environment with unbiased injurers, the biased injurer will choose

to report.
60The expected fine for the biased injurer is 420 irrespective of the reporting decision of the other injurer.

Importantly, under these biased beliefs, report will be the best response when the other injurer chooses to report

(420 < 810) and no-report will be the best response when the other injurer chooses no-report (360 < 420). Then,

as in the case of the environment with unbiased injurers, the biased injurer might choose to report or no-report,

according to his beliefs about the strategy that the other injurer will choose and his assessment of the riskiness of

each strategy.
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Table 3 – Effect of Ordered- Leniency Policies on Self-Reportinga

Number of Report Rates No-Report Rate

Pairs (R, R) (R, NR)/(NR, R) (NR, NR)

Strong Leniency v. No Leniency 74 .79 v. .00 .21 v. .11 .00 v. .89

p < .01 p = .23 p < .01

Mild Leniency v. No Leniency 75 .58 v. .00 .38 v. .11 .04 v. .89

p < .01 p < .01 p < .01

Mild Leniency v. Strong Leniency 79 .58 v. .79 .38 v. .21 .04 v. .00

p < .05 p < .10 p = .25

Notes: ap-values correspond to the one-sided Fisher-exact test.

p < .01). Our findings also indicate that the (NR, NR) rate is significantly higher under No

Leniency (.89 v. .00, for No Leniency and Strong Leniency, respectively; p < .01). These results

are aligned with our theoretical qualitative predictions, and provide strong support to Hypothesis

1.

Result 1. Strong Leniency increases the rate of self-reporting by both injurers, with respect to No

Leniency. No Leniency increases the rate of no-reporting by both injurers, with respect to Strong

Leniency.

Second, we analyze the effect of implementing a Mild Leniency policy on self-reporting (lines

3 and 4 of Table 3). In theory, when the risk-dominance refinement is applied, Mild Leniency

increases the likelihood of self-reporting by both injurers, with respect to No Leniency; and, No

Leniency increases the likelihood of no-reporting by both injurers with respect to Mild Leniency.

If the Pareto-dominance refinement is applied instead, Mild Leniency and No Leniency exhibit the

same 100% likelihood of no-reporting by both injurers. Our results suggest that Mild Leniency

significantly increases the (R, R) rate (.58 v. zero, for Mild and No Leniency, respectively; p < .01).

Our findings also indicate that No Leniency significantly increases the (NR, NR) rate (.89 v. .04,

for No Leniency and Mild Leniency, respectively; p < .01). These findings are aligned with our

theoretical predictions under the risk-dominance refinement. Importantly, our results under Mild

Leniency demonstrate that the majority of pairs chose the risk-dominant N.E (i.e., chose the (R,

R) outcome in 58% of the cases), and only a minority of pairs chose the Pareto-dominant N.E.

(i.e., chose the (NR, NR) outcome in 4% of the cases). Our findings also indicate the presence of
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a coordination problem under Mild Leniency: 38% of the pairs ended up at the (R, NR)/(NR, R)

outcomes. Our results provide strong support to Hypothesis 2.

Result 2. Mild Leniency increases the rate of self-reporting by both injurers, with respect to No

Leniency. No Leniency increases the rate of no-reporting by both injurers, with respect to Mild

Leniency.

Third, we evaluate the effect of implementing Mild and Strong Leniency on self-reporting

(lines 5 and 6 of Table 3). In theory, when the risk-dominance refinement is applied, Strong

and Mild Leniency exhibit the same rates of self-reporting by both injurers and the same rates

of no-reporting by both injurers. If the Pareto-dominance refinement is applied instead, Strong

Leniency increases the rate of self-reporting by both injurers, and Mild Leniency increases the rate

of no-reporting by both injurers. Our findings suggest that Strong Leniency marginally increases

the (R, R) rate (.79 v. .58, for Strong and Mild Leniency, respectively; p < .05). This result might

be explained by the coordination problem exhibited under Mild Leniency: Although the majority

of pairs chose the risk-dominant N.E. (i.e., chose the (R, R) outcome in 58% of the cases), 38%

of the pairs ended up at the (R, NR)/(NR, R) outcomes. Importantly, the rates of self-reporting

by one or both injurers for Strong and Mild Leniency are not significantly different (.96 v. 1,

for Mild and Strong Leniency, respectively; p = .25). In other words, Mild Leniency does not

increase the rate of no-reporting by both injurers (.04 and zero, for Mild and Strong Leniency,

respectively; p = .25). Hence, our findings are aligned with our theoretical predictions under the

risk-dominance refinement and provide support to Hypothesis 3.

Result 3. Mild Leniency and Strong Leniency exhibit the same rates of self-reporting by one or

both injurers. Mild Leniency and Strong Leniency exhibit the same zero rate of no-reporting by

both injurers.

Next, we present an analysis of the report time under ordered-leniency policies. Table 4

summarizes our findings. In theory, self-reporting occurs immediately under Strong and Mild

Leniency. Recall that subjects had between zero and 90 seconds to decide to report the act and

submit their reports. Then, it is expected that “immediate report” will be represented by a time

slightly higher than zero seconds. Our results suggest that the modal report times under Strong

and Mild Leniency are equal to 1 second;61 and the average report times for Strong and Mild

61In fact, the majority of subjects exhibited a 1-second report time: 57 and 51%, for Strong and Mild Leniency,

respectively.
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Table 4 – Report Time under Ordered-Leniency Policiesa

(Within-Condition Analysis)

Number of Report Timeb

Individuals Average Value Modal Value

Strong Leniency (S) 70 1.64 1.00

(1.30)

Mild Leniency (M) 61 2.21 1.00

(2.70)

Notes: aStandard deviations in parentheses; breport time in seconds.

Leniency are not greater than 2.21 seconds.62 Importantly, although the median report times for

Strong and Mild Leniency are significantly different from zero seconds (as expected), we cannot

reject the null hypotheses that the median report time under Strong Leniency is equal to 1 second

and the median report time under Mild Leniency is equal to 1.5 seconds (Wilcoxon signed-rank

test, p = .15 and p = .61, respectively).63 Our results suggest that ordered-leniency policies

incentivized the participants to minimize their report times in order to get the first position

in the self-reporting queue. In other words, ordered-leniency policies generated a “race to the

courthouse” between the two members of the group of injurers. These findings are aligned with

our theory and provide strong support to Hypothesis 4.

Result 4. Strong and Mild Leniency exhibit a “race to the courthouse” effect – self-reporting

occurs immediately.

We now study, the effect of the benefits derived from the commission of the harmful act

(b-value) on deterrence, a within-condition analysis. Table 5 outlines our findings. For each

condition, we consider the theoretical deterrence threshold, and compare the deterrence rates for

b-values below and above this threshold. Given that our previous analysis of the effect of ordered-

leniency policies on self-reporting suggests that the risk-dominant N.E. (the (R, R) outcome) is

chosen by the majority of subjects under Mild Leniency, we consider the deterrence threshold

62When the subjects decided to report under No Leniency (an off-equilibrium strategy), the average report time

was equal to 16.2 seconds. Our results suggest that the median report time under No Leniency is significantly

higher than the median report times under Strong and Mild Leniency; Wilcoxon rank-sum (Mann-Whitney) test,

p = .02 and p = .04, respectively.
63Our findings also indicate that the median report times for Strong and Mild Leniency are not significantly

different, p = .41, Wilcoxon rank-sum (Mann-Whitney) test.
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Table 5 – Effect of b-Value of Deterrencea

(Within-Condition Analysis)

Number of Deterrence

Pairs Rate

Strong Leniency (S)

b ∈ [200, 600] 15 .47

b ∈ (600, 1600] 33 .06

p < .01

Mild Leniency (M)

b ∈ [200, 660] 26 .31

b ∈ (660, 1600] 22 .00

p < .01

No Leniency (N)

b ∈ [200, 360] 4 .75

b ∈ (360, 1600] 44 .23

p = .06

Notes: ap-value corresponds to the one-sided Fisher-exact test.

that corresponds to this refinement. Two important insights deserve attention. First, our findings

suggest that the benefits from the harmful act incentivize the potential injurers to commit the

act. Consider, for instance, the effect of the b-value on deterrence for the case of Strong Leniency

(first three lines of Table 5). The data indicate that when the benefits are above the theoretical

threshold (600), the deterrence rate is equal to 6%; and, when the benefits are below this threshold,

the deterrence rate rises to 47% (a statistically significant effect, p < .01). More generally, for

each leniency environment, the likelihood of deterrence is significantly lower when the benefits are

greater than the theoretical deterrence threshold. These results are aligned with our theory and

provide strong support to Hypothesis 5.

Result 5. Within each leniency environment, the deterrence rate is lower when the benefits from

the harmful act are greater than the deterrence threshold.

Second, our results indicate that the deterrence rates for b-values below the theoretical thresh-

olds are lower than the rates predicted by the theory for the Strong and Mild Leniency policies

(47 and 31% instead of 100%). The low deterrence rate under Strong Leniency might suggest

that some subjects considered an alternative deterrence threshold. In theory, both injurers report

immediately, and hence, they are equally likely to get the first position in the self-reporting queue
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Table 6 – Effect of Ordered-Leniency Policies on Deterrence

Number of Deterrence p-valuea

Pairs Rate

Strong v. No Leniency

b ∈ [200, 660] 52 .31 v. .38 p = .39

b ∈ (660, 1600] 44 .05 v. .14 p = .30

Mild v. No Leniency

b ∈ [200, 660] 52 .31 v. .38 p = .39

b ∈ (660, 1600] 44 .00 v. .14 p = .12

Mild v. Strong Leniency

b ∈ [200, 660] 52 .31 v. .31 p = .62

b ∈ (660, 1600] 44 .00 v. .05 p = .50

Notes: ap-values correspond to the one-sided Fisher-exact test.

(i.e., each has a 50% chance to get the first position). In the lab, some subjects might exhibit

cognitive biases, such as self-serving bias (Babcock et al., 1995), and believe that their chances

to be the first to report are greater than the chances of the other injurers (i.e., that their chances

are greater than 50%). In the limiting case, some subjects might believe that they will always be

the first to report. As a result, they will consider a fine equal to 300 instead of an expected fine

equal to 600 when making their decisions about committing the act. Hence, they will also choose

to commit an act when the benefits are lower than 600.

Regarding Mild Leniency, the low deterrence rate might be explained, in part, by the decisions

in Stage 2. Remember that, although the majority of subjects coordinated on the risk-dominant

N.E. (R, R), some subjects attempted to coordinate on the Pareto-dominant N.E. (NR, NR).

Subjects who expect to coordinate on (NR, NR) will consider a lower deterrence threshold (360

instead of 660). Hence, they will also choose to commit the act when the benefits are lower than

660. The low deterrence rate might be also explained by the presence of self-serving bias on the

subjects’ beliefs about their chances to be the first to report. Some subjects might believe that

they will always be the first to report. As a result, they will consider a fine equal to 420 instead of

an expected fine equal to 660. Hence, they will also choose to commit the act when the benefits

are lower than 660.64

Finally, we assess the effect of ordered-leniency policies on deterrence. Table 6 summarizes our

64Failure to apply backward induction due to limited computational abilities might explain some of the deviations

from the theoretical predictions on deterrence, under Strong and Mild Leniency. See Johnson et al. (2002) for

seminal experimental work on backward induction failure in sequential bargaining models.
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findings. In theory, when the benefits from committing the harmful act are not greater than 660

and the risk-dominance refinement is applied, the deterrence rate under Mild Leniency is higher

than the deterrence rate under Strong Leniency; and, the deterrence rates under Strong and Mild

Leniency are higher than the deterrence rate under No Leniency. Our finding suggest that the

deterrence rates across conditions are not significantly different. These results are explained by

the low deterrence rates under Strong and Mild Leniency. As discussed, the low deterrence rates

might indicate that some subjects considered alternative deterrence thresholds when making their

decisions about committing the act, due, for instance, to self-serving bias.

In sum, our experimental findings demonstrate the effectiveness of ordered-leniency policies as

detection mechanisms. In particular, our results indicate that the implementation of either Strong

or Mild Leniency policies significantly increased the likelihood of reporting by one or both injurers.

Importantly, our findings suggest that the majority of subjects chose the risk-dominant N.E. under

the Mild Leniency policy. We provide empirical evidence of a “race to the courthouse” effect of

ordered-leniency policies: Immediate self-reporting is observed when Strong or Mild Leniency

policies are implemented.

6 Extensions

This section discusses several relevant extensions to our benchmark model. We first consider

a setting where groups involve multiple potential injurers. Then, we consider two additional

extensions. The first setting relaxes the assumption of deterministic probabilities of detection

by considering an environment where the detection rates depend on the enforcement effort in a

stochastic way. The second environment allows for asymmetric benefits across injurers.

6.1 Groups with Multiple Members

Our key insights extend to settings involving groups with multiple injurers. Suppose n > 2 is

the number of potential injurers, and let pi for i = 0, 1, ..., n − 1 be the probability that any

given injurer will be detected and fined if exactly i injurers have self-reported. We assume that

0 ≤ p0 < p1 < .... < pn−1 < 1, so self-reporting by an injurer raises the probability that the silent

injurers will be apprehended. The injurers decide simultaneously whether to participate in the

act and, if the act is committed, decide whether to report and the time of reporting, t ∈ [0, 1].

As before, multiple equilibria may arise in the Stage 2 self-reporting subgame. We will restrict
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attention to coalition-proof Nash equilibria – CPNE (Bernheim et al., 1987).65

As in our benchmark model, an ordered-leniency policy r = (r1, r2, ..., rn) that grants a reduced

fine for the first position in the queue and possibly leniency for latter positions as well, r1 < r2 <

... ≤ rn ≤ 1, can lead to both faster detection and stronger deterrence. Consider first the time-to-

report decision. Since higher positions in the queue receive greater leniency, waiting to report the

act is a weakly-dominated strategy. So, in equilibrium, any injurer who chooses to report the act

will do so immediately (i.e., choose t = 0). In other words, an ordered-leniency policy will create

a race to the courthouse. Note also that if exactly m injurers report the act at time t = 0, then

the first m positions in the queue are randomly allocated and each of the m injurers receives a

payoff of b− 1
m

∑m
i=1 rif.

Next, consider the injurers’ decisions about whether to report the act in Stage 2. In an

equilibrium where all injurers self-report, it must be the case that

1

m

m∑
i=1

ri ≤ pm−1, (4)

for all m = 1, 2, ..., n. If this condition holds, no individual would want to deviate since the

average fine from self-reporting, 1
n

∑n
i=1 ri, is smaller than average fine from remaining silent,

pn−1. A coalition of two injurers would not deviate either. If one of the coalition members

expected the other coalition member to remain silent, that coalition member would prefer to join

the n− 2 self-reporters since 1
n−1

∑n−1
i=1 ri ≤ pn−2 according to condition (4). Following this basic

logic, no coalition of any size can deviate in a way that is mutually self-enforcing. As shown in

the appendix, condition (4) is necessary as well as sufficient for self-reporting to be a CPNE.

When designing an ordered-leniency policy, r the enforcement agency will seek to maximize

the average fine paid by the injurers, 1
n

∑n
i=1 ri, subject to the constraints that 1

m

∑m
i=1 ri ≤ pm−1

and rm ≤ 1 for all m = 1, 2, ..., n. The solution to this program will create the strongest possible

deterrence of the illegal activity. We denote this policy as “optimal ordered-leniency policy.”

Proposition 5. With an optimal ordered-leniency policy, all injurers self-report immediately in

equilibrium. An ordered-leniency policy with r1 = p0 and rm = min{mpm−1−
∑m−1

i=1 ri, 1} > 0 for

65An outcome is self-enforcing if and only if no proper subset (coalition) of players can deviate in a way that

makes all of its members better off. The CPNE refinement captures the concept of efficient self-enforcing outcomes

for environments with more than two players: An outcome is a CPNE if and only if it is Pareto efficient within

the class of self-enforcing outcomes. Finally note that the application of the Pareto- or risk-dominance refinements

in two-player games with no communication implicitly assumes that the players agree on the refinement. The

application of the CPNE refinement here follows a similar approach, and hence, communication is not required.
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all m > 1 is a solution to the enforcement agency’s problem and represents an optimal ordered-

leniency policy.

Our analysis demonstrates that the highest level of deterrence is achieved when all injurers who

commit the act later self-report immediately, and receive successive discounts for self-reporting

based on their positions in the self-reporting queue. In general, leniency for the first to report will

not be full and the fine for the last to report may not be maximal. Next, we provide a numerical

example to illustrate our main insights.

Example. Suppose that the group includes three injurers, n = 3, f̄ = 1, and (p0, p1, p2) =

(.2, .4, .5). Suppose that leniency is granted only to the first injurer to report the act, r = (.2, 1, 1).

In equilibrium, only one injurer self-reports and the average fine is .33.66 The enforcement agency

can increase deterrence by also giving leniency to the second and third injurers to report the

act. The optimal ordered-leniency policy is r = (.2, .6, .7). In equilibrium, all injurers self-report

immediately. The average fine is .5.67

6.2 Additional Extensions

Stochastic Detection Rate

In our benchmark model, we assume that the social planner could perfectly control the proba-

bilities of detection, p0 and p1, via its enforcement effort e. Injurers, when deciding whether to

commit the harmful act, know exactly what these probabilities are, and therefore can accurately

forecast their future self-reporting decisions. In the second-best enforcement mechanism, injurers

who decide to commit the act in Stage 1 later decide to self-report in Stage 2 (see Proposition 3).

Thus, in our baseline model, self-reporting of harmful acts is ubiquitous. Our framework can be

extended to allow for a stochastic detection rate.

Consider first our benchmark environment. Suppose that the inculpatory evidence is strong

enough to convict a silent injurer with almost certainty. Then, p1 = 1 − ε, where ε > 0 is an an

arbitrarily small number.68 Suppose also that all the other assumptions of our benchmark model

hold. Recall that the probability of detection in the absence of self-reporting is p0 = e. Following

our main analysis, the maximal deterrence will be obtained with multipliers (rS1 , r
S
2 ) = (e, 1)

66The likelihood of detection is p1 = .4. Then, the average fine is (.2 + .4 + .4)/3 = 1/3.
67The average fine is (.2 + .6 + .7)/3 = 1/2.
68For simplicity, and without loss of generality, we abstract from ε for the rest of the analysis.
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and (rM1 , r
M
2 ) =

(
1+2e
3
, 1
)
, for the Pareto- and risk-dominance refinements, respectively. Then,

the act will be deterred if b ≤ b̂S(e) =
(
1+e
2

)
f̄ and b ≤ b̂M(e) =

(
2+e
3

)
f̄ , for the Pareto- and

risk-dominance refinements, respectively (see Proposition 3).

Now suppose that the detection rate p0 is stochastic. Specifically, after the injurers commit the

act, p0 is drawn from common-knowledge density q(p0; e) on the unit interval where the median

value is e (the enforcement effort of the agency). Holding the leniency multipliers, (ri1, r
i
2), i =

S,M , fixed as described above, if p0 < e (i.e., if detection is relatively unlikely), then the injurers

will both remain silent in Stage 2 and not report the act, and will pay a sanction p0f̄ . If instead

p0 > e (i.e., if detection is relatively likely), then the injurers will choose to self-report in Stage 2

and will pay an expected sanction b̂i(e), i = S,M .

In Stage 1, before learning the realization of the random variable p0, the injurers must decide

whether to commit the act. They are deterred from committing the act when

b <

∫ e

0

p0f̄ q(p0; e)dp0 +

∫ 1

e

b̂i(e)q(p0; e)dp0. (5)

Note that the deterrence threshold in this stochastic environment (right-hand side of the inequal-

ity) is smaller than b̂i(e), the deterrence threshold with a certain detection rate. Then, having

an uncertain detection rate compromises deterrence in Stage 1. Intuitively, when p0 is stochastic

with a median value of e rather than a deterministic value of e, the potential injures benefit from

the option of not reporting the act when the probability of detection is small (p0 < e) but do not

experience any loss when the probability of detection is large (p0 > e). As a result, the deterrence

threshold is lower, and hence, harmful acts are committed more frequently in stochastic environ-

ments. As demonstrated earlier, deterrence is at its socially optimal level when the harm is not

too high (see Proposition 3). Hence, social welfare will be unambiguously lower in environments

with stochastic detection rates.69

Asymmetric Benefits to Group Members

In our benchmark framework, we assume that the two injurers derive the same private benefit

from committing the harmful act. Injurers might not be always symmetric.70 Our model can be

extended to allow for asymmetric benefits to group members.

69As in our benchmark model, the optimal enforcement effort and the leniency multipliers that maximize deter-

rence will depend on a variety of factors including the characteristics of the densities q(p0; e) and g(b).
70For instance, asymmetries might arise in environments where one injurer is the mastermind who conceives

and plans the harmful act, and recruits others to help him commit the act. Then, the mastermind is the residual

claimant of the benefits of the act, while the accomplices are just hired hands.
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Suppose that b1 and b2 are drawn from a joint density φ(b1, b2) and so the benefit to the first

injurer, b1, could be larger than or smaller than the benefit to the second injurer, b2. Suppose

also that all the other assumptions of our benchmark model hold. The act is socially desirable

if the sum of the private benefits of the act exceed the total harm, b1 + b2 > 2h or equivalently

(b1 + b2)/2 > h, and socially undesirable otherwise. When transfer payments between the two

injurers are impossible, the act will be committed when both potential injurers are willing to

participate: min(b1, b2) ≥ b̂, where b̂ is the expected sanction. Interestingly, this new environment

may feature overdeterrence of certain socially beneficial acts. To see why, consider an act where

the private benefit to the first injurer is very high, b1 > 2h, and the benefit to the second injurer

is zero, b2 = 0. This act is socially desirable, since b1 + b2 ≥ 2h, but the act will not be committed

for any positive expected sanction b̂ > 0. The second potential injurer will simply refuse to

participate.

With side payments, the potential injurers will commit the act when their joint benefit exceeds

the joint expected sanction, b1+b2 ≥ 2b̂.71 Hence, our earlier results will carry over to this enriched

setting with bargaining at Stage 1. To illustrate this point, consider the environment presented

in the previous paragraph. The first potential injurer who anticipates receiving b1 > 2h can pay

the second potential injurer with b2 = 0 to participate in the act as well. Finally note that, since

(b1 + b2)/2 ≥ min(b1, b2), the potential injurers will commit the act for a broader range of values

when bargaining is possible.

Although environments involving groups with multiple injurers, stochastic detection rates, or

asymmetric benefits to group members obviously raise some new issues, the main insights derived

from our benchmark model and the implications for the design of optimal enforcement policies

remain relevant.

7 Summary and Conclusions

This paper studies the optimal design of enforcement schemes with ordered-leniency policies for

detecting and preventing harmful short-term activities conducted by groups of injurers. We show

that ordered-leniency policies that generate maximal deterrence give successively larger discounts

to injurers who secure higher positions in the reporting queue, creating a so-called “race to the

courthouse” among the members of the group of injurers. In equilibrium, all injurers report the

act immediately.

71Note that this environment does not allow side payments to depend on future self-reporting.
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We provide a social welfare rationale for the current use of ordered-leniency policies in the real

world. Our analysis demonstrates that the socially-optimal level of deterrence can be obtained at

zero cost with an enforcement policy with ordered leniency when the externalities associated with

the harmful activities are not too high. In contrast, enforcement policies that do not grant leniency

for self-reporting cannot implement the first-best outcome when the set of fines is bounded. As a

consequence, underdeterrence and costly enforcement are observed. Hence, enforcement policies

with ordered leniency are superior to no-leniency policies. Our findings regarding the superiority

of enforcement policies with ordered leniency for groups of injurers complement Kaplow and

Shavell’s (1994) results for single-injurer environments.

Our experimental findings suggest that ordered-leniency policies are effective detection mech-

anisms. In particular, our results indicate that the implementation of either Strong or Mild

Leniency policies significantly increased the likelihood of self-reporting by one or both injurers.

Importantly, our findings suggest that the majority of subjects chose the risk-dominant N.E. un-

der the Mild Leniency policy. We provide empirical evidence of a “race to the courthouse” effect

of ordered-leniency policies: Immediate self-reporting is observed when Strong or Mild Leniency

policies are implemented. Interestingly, our results on deterrence indicate that some subjects

considered an alternative deterrence threshold when making their decisions about committing the

harmful act. These findings might suggest the presence of self-serving bias on subjects’ beliefs

about getting the first position in the self-reporting queue. As a result, the deterrence power of

ordered-leniency policies was weakened, and harmful acts were committed more frequently.

Several relevant extensions are discussed. First, we consider an environment with multiple

potential injurers and show that our main insights also hold in this setting. Second, we explore an

environment where where the detection rate depends on the enforcement effort in a stochastic way.

In this setting, injurers who commit the act may refrain from self-reporting if the probabilities of

detection are sufficiently low. As a result, deterrence might be compromised. Third, we discuss a

setting that allows for asymmetric benefits from committing a harmful act across injurers. In this

setting, the equilibrium outcomes heavily depend on the ability of group members to write side

contracts with each other and negotiate transfer payments. Our earlier results carry over when

monetary transfers are possible. These and other extensions are fruitful topics for future research.

41



References
Andreoni, James. 1991. “The Desirability of a Permanent Tax Amnesty.” Journal of Public

Economics, 45: 143–159.

Arlen, Jennifer and Reinier Kraakman. 1997. “Controlling Corporate Misconduct: An Analysis
of Corporate Liability Regimes.” New York University Law Review, 72: 687–779.

Babcock, Linda, George Loewenstein, Samuel Issacharoff, and Colin Camerer. 1995. “Biased
Judgments of Fairness in Bargaining.” American Economic Review, 11:109–26.

Becker, Gary S. 1968. “Crime and Punishment: An Economic Approach.” Journal of Political
Economy, 76: 169–217.

Bernheim, Douglas B., Bezalel Peleg, and Michael D. Whinston. 1987. “Coalition Proof Nash
Equilibria I: Concepts.” Journal of Economic Theory, 42: 1–12.

Bigoni, Maria, Sven-Olof Fridolfsson, Chloe Le Coq, and Giancarlo Spagnolo. 2012. “Fines,
Leniency, and Rewards in Antitrust.” RAND Journal of Economics, 43: 368–90.

Buccirossi, Paolo and Giancarlo Spagnolo. 2006. “Leniency Policies and Illegal Transactions.”
Journal of Public Economics, 90: 1281–1297.

Burton, Anthony and Martin Sefton. 2004. “Risk, Pre-Play Communication and Equilibrium.”
Games and Economic Behavior, 46: 23–40.

Ceresney, Andrew. 2015. “The SEC’s Cooperation Program: Reflections on Five Years of
Experience.” http://www.sec.gov./news/speech/sec-cooperation-program.html.

Che, Yeon-Koo and Seung-Weon Yoo. 2001. “Optimal Incentives for Teams.” American Eco-
nomic Review, 91: 525–541.

Chen, Zhijun and Patrick Rey. 2013. “On the Design of Leniency Programs.” Journal of Law
and Economics, 56: 917–957.

Cooper, Russell W., Douglas V. DeJong, D.V., Robert, Forsythe, and Thomas W. Ross. 1992.
“Communication in Coordination Games.” Quarterly Journal of Economics, 107: 739–771.

FBI. 2012. “Financial Crimes Report 2010–2011.” https://www.fbi.gov/stats-services/
publications/financial-crimes-report-2010-2011.

Feess, Eberhardt and Markus Walzl. 2010. “Evidence Dependence of Fine Reductions in Corpo-
rate Leniency Programs,” Journal of Institutional and Theoretical Economics, 166: 573-590.

Feess, Eberhardt and Markus Walzl. 2004. “Self-Reporting in Optimal Law Enforcement When
There Are Criminal Teams,” Economica, 71: 333-348.

Grossman, Gene M. and Michael L. Katz. 1983. “Plea Bargaining and Social Welfare.” American
Economic Review, 73: 749–757.

Harrington, Joseph E. 2013. “Corporate Leniency Programs When Firms Have Private Infor-
mation: The Push of Prosecution and the Pull of Pre-Emption.” Journal of Industrial
Economics, 51: 1–27.

Harsanyi, John C. and Reinhard Selten. 1988. A General Theory of Equilibrium Selection in
Games. Cambridge: MIT Press.

42



Innes, Robert. 1999. “Remediation and Self-reporting in Optimal Law Enforcement.” Journal
of Public Economics, 72, 379-393.

Johnson, Eric J., Colin Camerer, Sankar Sen, and Talya Rymon. 2002. “Detecting Failures of
Backward Induction: Monitoring Information Search in Sequential Bargaining.” Journal of
Economic Theory, 104: 16–47.

Kaplow, Louis and Steven Shavell. 1994. “Optimal Law Enforcement with Self-Reporting of
Behavior.” Journal of Political Economy, 102: 583–606.

Kobayashi, Bruce. 1992. “Deterrence with Multiple Defendants: An Explanation for “Unfair”
Plea Bargains.” RAND Journal of Economics, 23, 507–517.

Kornhauser, Lewis A. and Richard L. Revesz. 1994. “Multidefendant Settlements under Joint
and Several Liability: The Problem of Insolvency.” Journal of Legal Studies, 23: 517–542.

Kraakman, Reinier H. 1986. “Gatekeepers: The Anatomy of a Third-Party Enforcement Strat-
egy.” Journal of Law, Economics & Organization, 2, 53–104.

Kunda, Ziva. 1990. “The Case of Motivated Reasoning.” Psychological Bulletin, 108: 480–98.

Kunda, Ziva. 1987. “Motivated Inference: Self-Serving Generation and Evaluation of Causal
Theories.” Journal of Personality and Social Psychology, 53: 636–47.

Landeo, Claudia M. 2018. “Law and Economics and Tort Litigation Institutions: Theory and
Experiments.” In K. Zeiler and J. Teitelbaum, eds., Research Handbook on Behavioral Law
and Economics. Massachusetts: Edward Elgar Publishing.

Landeo, Claudia M. 2009. “Cognitive Coherence and Tort Reform.” Journal of Economic
Psychology, 6: 898–912.

Landeo, Claudia M. and Kathryn E. Spier. 2015. “Incentive Contracts for Teams: Experimental
Evidence.” Journal of Economic Behavior and Organization, 119: 496–511.

Landeo, Claudia M. and Kathryn E. Spier. 2012. “Exclusive Dealing and Market Foreclosure:
Further Experimental Results.” Journal of Institutional and Theoretical Economics, 168:
150–170.

Landeo, Claudia M. and Kathryn E. Spier. 2009. “Naked Exclusion: An Experimental Study of
Contracts with Externalities.” American Economic Review, 99: 1850–1877.

Landeo, Claudia M., Maxim Nikitin, and Sergei Izmalkov. 2013. “Incentives for Care, Litigation,
and Tort Reform under Self-Serving Bias.” In T. Miceli and M.J. Baker, eds., Research
Handbook on Economic Models of Law. Massachusetts: Edward Elgar Publishing.

Landes, William M. 1971. “An Economic Analysis of the Courts.” Journal of Law and Eco-
nomics, 14: 61–108.

Livernois, John and C.J. McKenna. 1999. “Truth or Consequences: Enforcing Pollution Stan-
dards with Self-Reporting.” Journal of Public Economics, 71: 415–440.

Malik, Arun S. 1993. “Self-Reporting and the Design of Policies for Regulating Stochastic
Pollution.” Journal of Environmental Economics and Management, 24: 241–257.

Malik, Arun S. and Robert M. Schwab. 1991. “The Economics of Tax Amnesties.” Journal of
Public Economics, 46: 29–49.

43



Motta, Massimo and Michele Polo. 2003. “Leniency Programs and Cartel Prosecution.” Inter-
national Journal of Industrial Organization, 21: 347–379.

Ochs, Jack. 1995. “Coordination Problems.” In J.H. Kagel and A.E. Roth, eds., Handbook of
Experimental Economics. New Jersey: Princeton University Press Inc.

Polinsky, A. Mitchell and Steven Shavell. 1984. “The Optimal Use of Fines and Imprisonment”
Journal of Public Economics, 24: 89–99.

Reinganum, Jennifer F. 1988. “Plea Bargaining and Prosecutorial Discretion.” American Eco-
nomic Review, 78: 713–728.

Spagnolo, Giancarlo. 2005. “Divide et Impera: Optimal Leniency Programs.” Mimeo, Stock-
holm School of Economics.

Spagnolo, Giancarlo and Catarina Marvão. 2016. “Cartels and Leniency: Taking Stock of
What We Learnt.” In L.C. Corchón and M.A. Marini, eds., Handbook of Game Theory and
Industrial Organization. Massachusetts: Edward Elgar Publishing.

Spier, Kathryn E. 1994. “A Note on Joint and Several Liability: Insolvency, Settlement, and
Incentives.” Journal of Legal Studies, 23: 559–568.

44



Appendix

This Appendix presents formal proofs of the lemmas and propositions.

Proof of Lemma 1. Denote the strategy of player j as σj = (ρj, tj) where ρj ∈ {R,NR} is
whether to report the act and tj ∈ [0, 1] is when to report the act. Suppose r1 < r2. If σ−j =
(NR, t−j), then player j is indifferent about their reporting time, (R, 0) ∼ (R, tj) ∀tj ∈ (0, 1]. If
σ−j = (R, t−j), then for player j we have (R, 0) ∼ (R, tj) ∀tj < t−j and (R, 0) � (R, tj) ∀tj ≥ t−j.
Therefore (R, 0) weakly dominates (R, tj) ∀tj ∈ (0, 1] when r1 < r2. Suppose instead that r1 > r2.
f σ−j = (NR, t−j), then player j is indifferent, (R, 1) ∼ (R, tj) ∀tj ∈ [0, 1). If σ−j = (R, t−j),
then (R, 1) ∼ (R, tj) ∀tj > t−j and (R, 1) � (R, tj) ∀tj ≤ t−j. Therefore (R, 1) weakly dominates
(R, tj) ∀tj ∈ [0, 1) when r1 > r2. If r1 = r2 then there is no advantage to being first or second and
so the players are indifferent as to the reporting time. �

Proof of Lemma 2. In Case 1, b−r1f ≥ b−p0f and b−
(
r1+r2

2

)
f ≥ b−p1f . With the tie-breaking

assumption, self-reporting is a dominant strategy and (R,R) is the unique Nash equilibrium (NE).
In Case 4, b− r1f < b− p0f and b−

(
r1+r2

2

)
f < b− p1f so not reporting is a dominant strategy

and (NR,NR) is the unique NE. In Case 2, b− r1f < b− p0f and b−
(
r1+r2

2

)
f ≥ b− p1f so (R,

NR) and (NR, R) are both pure-strategy NE. In Case 3 there are two pure-strategy NE, (R, R)
and (NR, NR). (R, R) Pareto-dominates (NR, NR) if b−

(
r1+r2

2

)
f ≥ b−p0f or r1+r2

2
≤ p0. (R, R)

risk-dominates (NR, NR) if the former is preferred by player j if player −j is randomizing 50/50
between R and NR, or 1

2
(b− r1f) + 1

2

(
b−

(
r1+r2

2

)
f
)
≥ 1

2
(b− p0f) + 1

2
(b− p1f), or 3r1+r2

4
≤ p1+p1

2
.

�

Proof Lemma 3. Consider the four cases included in Lemma 2. In Case 1, (R, R) is the
unique NE and each injurer receives a payoff of b −

(
r1+r2

2

)
f . It is therefore a weakly dominant

strategy for an injurer to participate in the act if b >
(
r1+r2

2

)
f . In Case 2, (R, NR) and (NR, R)

are both pure-strategy NE with an average payoff of b −
(
r1+p1

2

)
f . The act is committed when

b >
(
r1+p1

2

)
f . In Case 3 three are two NE, (R, R) and (NR, NR). The act is committed if b > p0f

or b >
(
r1+r2

2

)
f , depending on which of the two equilibria is expected to prevail. Finally, in Case

4, (R, NR) is the unique pure-strategy NE and the act is committed if b > p0f . �

Proof of Proposition 3. First, by Lemma 1, since rj1 < rj2 for j = S,M , all reporting takes
place at t = 0.

Second, we characterize the expected fine for each of the four cases included in Lemma 2, and
identify the maximal expected fines.

Case 1. Both injurers self-report in this case. We now characterize the values (r1, r2) that
maximize the expected fine

(
r1+r2

2

)
f subject to the constraints that (i) r1+r2

2
≤ p1, (ii) r1 ∈ [0, p0],

and (iii) r2 ∈ [0, 1]. Two sub-cases are considered.

Case 1.1 The first case refers to p1 ≤ 1+p0
2

. If p1 ≤ 1+p0
2

, then constraint (i) must hold with
equality, r1+r2

2
= p1. Suppose not: r1+r2

2
< p1. This would imply that both r1 = p0 and r2 = 1, for
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otherwise the expected fine
(
r1+r2

2

)
f could be increased. Then, r1+r2

2
= 1+p0

2
< p1, a contradiction.

Therefore r1+r2
2

= p1. We can write (r1, r2) = (p1 − ∆, p1 + ∆), where ∆ is a constant. Since
r1 ∈ [0, p0], it must be that p1− p0 ≤ ∆ ≤ p1. Since r2 ∈ [0, 1], it must be that −p1 ≤ ∆ ≤ 1− p1.
Taken together, ∆ ∈ [p1 − p0,min{p1, 1− p1}]. p1 ≤ 1+p0

2
implies that p1 − p0 ≤ min{p1, 1− p1},

so this range exists. The expected fine is p1f .

Case 1.2. The second case refers to p1 > 1+p0
2

. If p1 > 1+p0
2

, then constraint (i) does not
bind at the optimum: r1+r2

2
< p1. Suppose not: r1+r2

2
= p1, Then, as above we would have

(r1, r2) = (p1−∆, p1+∆), where ∆ ∈ [p1−p0,min{p1, 1−p1}]. But p1 >
1+p0
2

implies 2p1 > 1+p0,
which implies further that p1 − p0 > min{p1, 1 − p1}. So no such value for ∆ exists. Therefore
r1+r2

2
< p1. It must also be true that (r1, r2) = (p0, 1). If r1 < p0 and/or r2 < 1, then the expected

fine would be higher (and no constraints violated) if r1 and/or r2 were raised. The expected fine
is
(
1+p0
2

)
f < p1f .

Case 2. Since only one injurer self-reports, the expected fine is
(
r1+p1

2

)
f . Since r1 is constrained

to be less than or equal to p0 in this case, the strongest possible deterrence is obtained when
r1 = p0. So the expected fine is less than or equal to

(
p0+p1

2

)
f . This expected fine is strictly lower

than the expected fine in Case 1.

Case 3. There are multiple equilibria in this case.

With Pareto dominance, the injurers self-report if and only if r1+r2
2
≤ p0. The expected fine

is less than or equal to p0f . This expected fine is always strictly lower than the expected fine in
Case 1.

With risk dominance, the enforcer maximizes r1+r2
2

subject to the constraints that (i) 3r1+r2
4
≤

p0+p1
2

, (ii) r1 ∈ [p0, 1], and (iii) r2 ∈ [0, 1]. Holding r1 fixed, deterrence is increased by raising
r2 to the point where constraint (i) or constraint (iii) binds. Given r1, we must have r2 =
min{2(p0 + p1) − 3r1, 1}. The enforcer’s problem can be represented as choosing r1 ∈ [p0, 1] to

maximize r1+min{2(p0+p1)−3r1,1}
2

. Two sub-cases are considered.

Case 3.1 The first case refers to risk dominance and p1 ≤ 1+p0
2

. If p1 ≤ 1+p0
2

, then 2p1 ≤ 1 + p0.
This implies that 2(p0 + p1) − 3r1 ≤ 1 − 3(r1 − p0) ≤ 1, for all r1 ∈ [p0, 1]. So min{2(p0 + p1) −
3r1, 1} = 2(p0 + p1)− 3r1, and the expected fine is (p0 + p1 − r1)f for all r1 ∈ [p0, 1]. Deterrence
is maximized by making r1 as small as possible, so r1 = p0 and r2 = 2(p0 + p1)− 3r1 = 2p1 − p0,
and the expected fine is p1f . This expected fine is the same as the expected fine in Case 1.

Case 3.2 The second case refers to risk dominance and p1 >
1+p0
2

. If p1 >
1+p0
2

, then r1 will

be strictly greater than p0, and the expected fine strictly higher than p1f̄ . To see why this
is true, suppose r1 = p0 + ε where ε > 0. Since p1 > 1+p0

2
implies 2p1 > 1 + p0, we have

2(p0 +p1)−3r1 = 2p1−p0−3ε > 1 when ε is not too large. Therefore min{2(p0 +p1)−3r1, 1} = 1
when r1 = p0+ε for ε > 0 sufficiently small. The expected fine in this case is

(
r1+1
2

)
f . Deterrence

would be higher if r1 were raised above p0. r1 will be raised to the point where 2(p0+p1)−3r1 = 1

and so r1 = 2(p0+p1)−1
3

and r2 = 1. The expected fine is
(
1+p0+p1

3

)
f . This expected fine is strictly

higher than the expected fine in Case 1.

Case 4. Neither injurer self-reports. The expected fine is p0f . This expected fine is strictly lower
than the expected fine in Case 1.
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Hence, when Pareto dominance is applied in Case 3, the maximal expected fine always corresponds
to Case 1. When risk dominance is applied in Case 3 and p1 ≤ 1+p0

2
, the maximal expected fine

corresponds to Case 1 or Case 3; when risk dominance is applied in Case 3 and p1 >
1+p0
2

, the
maximal expected fine corresponds to Case 3.

Third, since the equilibria of the self-reporting subgame described in Lemmas 1 and 2 do not
depend on the level of the fine, f , the highest deterrence is obtained with the maximal fine, f = f̄ .
�

Proof of Lemma 4. Proposition 3 implies (1) if p1 ≤ 1+p0
2

, then b̂S = b̂M = p1f̄ ; and, (2)

if p1 >
1+p0
2

, then b̂S =
(
1+p0
2

)
f̄ , b̂M =

(
1+p0+p1

3

)
f̄ , and b̂S < b̂M . Substituting p0 = e and

p1 = e+ (1− e)π gives parts (1) and (2) of the lemma. �

Proof of Proposition 4. First, the characterization of the first-best outcome follows immediately
from the proofs of Proposition 3 and Lemma 4.

Second, the characterization of the fine and leniency multipliers implemented in the second-
best outcome follow the proofs of Proposition 3 and Lemma 4.

Third, we demonstrate that the second-best outcome involves positive enforcement efforts.
The social welfare function is given by:

W =

∫ ∞
b̂i(e,π)

(b− h)g(b)db− c(e),

where b̂i(e, π), i = S,M , correspond to the deterrence thresholds under the Pareto-dominance and
risk-dominance refinements, respectively. The enforcement agency chooses e to maximize social
welfare. The first-order condition is:

(h− b̂i(e, π))
∂b̂i(e, π)

∂e
g(b̂i(e, π))− c′(e) = 0.

As before, the first term represents the incremental benefit from increasing the probability e: h−
b̂i(e, π) is the social gain associated with deterring an additional harmful act, and ∂b̂(e,π)

∂e
g(b̂i(e, π))

is the incremental volume of harmful acts that are deterred when the detection rate e increases.
The second term, c′(e), represents the marginal cost of effort. Rearranging terms, we find that
the second-best optimal deterrence threshold (optimal expected fine) satisfies:

b̂i(e, π) = h− c′(e)
∂b̂i(e,π)
∂e

g(b̂i(e, π))
.

We need to show that the second-best outcome involves ei > 0. Suppose not: ei = 0. In this case,

h > b̂i(0, π) since by assumption the first-best enforcement policy cannot be obtained; ∂b̂i(e,π)
∂e

> 0

by Lemma 4; and g(b̂i(0, π)) > 0 since the density function has full support. Since c′(0) = 0,
we have that the slope of the social welfare function is strictly positive when ei = 0 and so we
conclude that ei > 0. Next, we show that b̂i(ei, π) < h. Suppose instead that b̂i(ei, π) ≥ h. Since
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∂b̂i(e,π)
∂e

g(b̂i(e, π)) > 0, the slope of the welfare function would be strictly negative. Social welfare
would be higher if e were reduced. �

Proof of Proposition 5. Without loss of generality, we normalize the fine to unity, f = 1.

First, by Lemma 1, since r1 < r2 < ... ≤ rn ≤ 1, all reporting takes place at t = 0.

Second, we prove that in an optimal ordered-leniency policy, r, all injurers report. Suppose
that in the optimal policy r that no injurer self-reports. The average expected fine is p0. Consider
an alternative policy with r1 = p0 − ε where ε > 0 (small) and ri = 1 for all i ≥ 2. It is a CPNE
for exactly one injurer to self-report. If one injurer self-reports, no remaining injurer (or coalition
of injurers) would want to self-report since ri < pi−1 ∀i ≥ 2. The expected fine is therefore
1
n
[p0 − ε + (n − 1)p1] > p0 and so deterrence is stronger. Now consider leniency policy r where

exactly m− 1 < n injurers self-report. The expected fine with leniency policy r is:

1

n

(
m−1∑
i=1

ri +
n∑

i=m

pm−1

)
.

Since injurer m− 1 is willing to self-report, the expected fine from self-reporting must be weakly
lower than the fine from remaining silent. So it must be the case that 1

m−1
∑m−1

i=1 ri ≤ pm−2. We
will now show that the social player can increase deterrence by inducing injurer m to self-report
as well. Consider a new leniency policy r′ where r′i = ri for i ≤ m− 1, r′m = pm−1− ε, and r′i = 1
for i ≥ m+ 1. Under r′, it is a CPNE for injurers i = 1, ...,m to self-report since

1

m

m∑
i=1

r′i =
1

m

(
m−1∑
i=1

r′i + r′m

)
≤ ( 1

m
) [(m− 1)pm−2 + pm−1 − ε] < pm−1.

The last step follows from the assumption that pm−1 > pm−2 and ε > 0 is small. The expected
fine under r′ is

1

n

(
m−1∑
i=1

ri + (pm−1 − ε) +
n∑

i=m+1

pm

)
,

which is higher than the expected fine under r. This concludes the proof that in an optimal
ordered-leniency policy, all injurers self-report.

Third, in the main text, we showed that (4) is sufficient for self-reporting by all injurers to be
a CPNE. We now demonstrate that (4) is also necessary. Suppose self-reporting by all n injurers
is a CPNE. In the CPNE, no individual injurer is better off deviating: 1

n

∑n
i=1 ri ≤ pn−1. Now

consider a deviation by a coalition of size m′ = n −m + 1. Note that since m′ + (m − 1) = n,
m − 1 injurers are not part of the deviating coalition and continue to self-report. So, the m′

injurers in the coalition would pay an expected fine of pm−1. There are two cases to consider.
(i) Suppose 1

n

∑n
i=1 ri > pm−1, so a coalition of size m′ is jointly better off not reporting. Since

self-reporting by all n injurers is a CPNE, it must be the case that a deviation by this coalition
is not self-enforcing. Thus, we require that an individual would prefer to abandon the coalition
and join the group of m − 1 injurers who self-report: 1

m

∑m
i=1 ri ≤ pm−1. This is condition (4).

(ii) Suppose 1
n

∑n
i=1 ri ≤ pm−1, so a coalition of size m′ is collectively worse off reporting. Since
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ri ≤ rj for all i < j, this condition implies that 1
m

∑m
i=1 ri ≤ pm−1. This is condition (4). So in

any CPNE where all injurers self-report, condition (4) is necessary and sufficient.

Fourth, we demonstrate that the characterization in Proposition 4 corresponds to the optimal
ordered-leniency policy. For notational ease, define ρn(r) = min{mpm−1 −

∑m−1
i=1 ri, 1} ∀m. We

show first that for any optimum, r̂, there is an alternative leniency policy r̃ that achieves the same
level of deterrence and satisfies r̃m = ρm(r̃). If r̂ is a solution to the social planner’s program,
then it must be the case that the injurer in the very last position, n, pays r̂n = ρn(r̂). Suppose
not: r̂n < ρn(r̂). Can increase r̂n to r̂n + ∆ for ∆ small. No constraints are violated, and the
optimand is larger. Now suppose that ρm(r̂) − r̂m = ∆ > 0 for some m < n. So constraint m
is slack. Consider an alternative policy r̃ = (r̂1, ..., r̂m−1, r̂m + ∆, r̂m+1 − ∆, r̂m+2, ..., r̂n). Note
that this new policy r̃ is identical to r̂ for all elements except m and m+ 1. The value taken by
the optimand under r̃ is unchanged. Since ρi(r̃) = ρi(r̂) ∀i 6= n,m + 1, we need only check the
constraints for m and m + 1 are satisfied. r̃m = r̂m + ∆ = ρm(r̂) = ρm(r̃) by construction. So
constraint m is satisfied by r̃. ρm+1(r̃) = min{(m+ 1)pm− (r̂1 + ...+ r̂m + ∆), 1} ≥ ρm+1(r̂)−∆.
Finally, we show that r̃m+1 ≤ ρm+1(r̃). r̃m+1 = r̂m+1−∆ ≤ ρm+1(r̂)−∆ ≤ ρm+1(r̃). So constraint
m+ 1 is satisfied by r̃. �
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1 

PLEASE GIVE THIS MATERIAL TO THE EXPERIMENTER 

AT THE END OF THE EXPERIMENT 

INSTRUCTIONS 
This is an experiment in the economics of decision-making. The National Science Foundation has provided 

the funds for this research.   

In this experiment you will be asked to play an economic decision-making computer game. The experiment 

currency is the “token.” The instructions are simple. If you follow them closely and make appropriate 

decisions, you may make a large amount of money.  At the end of the session you will be paid your game 

earnings in CASH. If you have any questions at any time, please raise your hand and the experimenter will 

go to your desk.  

PROBABILITY OR CHANCE 
The concept of probability or chance will be used in this experiment. PROBABILITY OR CHANCE 

(EXPRESSED IN PERCENTAGES) indicates the likelihood of occurrence of uncertain events. The 

concept of probability or chance can be illustrated as follows. Suppose that an urn contains 100 balls: 20 out 

of 100 balls are white, and 80 out of 100 balls are black. Suppose that you randomly extract one ball from the 

urn. The chance that the ball will be white is equal to 20% because 20 out of 100 balls in the urn are white. 

Similarly, the chance that the ball will be black is equal to 80%, because 80 out of 100 balls in the urn are 

black.  

Sample Instructions: Mild-Leniency Condition (M)



 2 

SESSION AND PLAYERS 
 

The session is made up of 6 matches. The first 5 matches are practice matches. After the last practice match, 

ONE ACTUAL MATCH will be played.  

 

1)    At the beginning of the session, every participant will be randomly assigned a role. The equally likely     

   roles are: Player B1 and Player B2.  

 

The ROLES WILL REMAIN THE SAME until the end of the session.  

 

2) Before the beginning of EACH PRACTICE MATCH, the computer will randomly form pairs of 

TWO PEOPLE: Player B1 and Player B2.  

 

YOU WILL NOT KNOW THE IDENTITY OF YOUR PARTNER.  

YOU WILL PLAY WITH A DIFFERENT PARTNER IN EVERY PRACTICE MATCH. 

 

 

3)  Before the beginning of the ACTUAL MATCH, the computer will randomly form pairs of TWO 

PEOPLE: Player B1 and Player B2.  

 

YOU WILL NOT KNOW THE IDENTITY OF YOUR PARTNER.   

YOU WILL NOT PLAY WITH ANY OF YOUR PREVIOUS PARTNERS.  
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MATCH STAGES 

 
STAGE 1: DECISION WHETHER TO JOINTLY 

COMMIT THE ACT 
 
 
 
 
 
1) Each player has an initial endowment equal to 700 tokens.  
 
 

 

2) THE DECISION TO JOINTLY COMMIT THE ACT refers to an economic decision involving 

potential economic benefits and potential economic losses. 

 

• ECONOMIC BENEFITS might occur in STAGE 1. 

• ECONOMIC LOSSES might occur in STAGE 2. 

 

 

 

3) THE COMPUTER randomly determines the NUMBER OF TOKENS X that each player will get IF 

BOTH PLAYERS AGREE TO JOINTLY COMMIT THE ACT. Both players will receive the 

same number of tokens X. 

 

• The number of tokens X can be equal to 200, …, 1598, 1599, 1600 tokens.  

• The number of tokens X will be revealed to both players. 
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4) Player B1 and Player B2 decide whether to JOINTLY COMMIT THE ACT 

 

• Each player will have 90 SECONDS TO DECIDE WHETHER TO AGREE TO 

JOINTLY COMMIT THE ACT OR NOT AGREE TO JOINTLY COMMIT THE 

ACT AND PRESS THE NEXT BUTTON.  

 

o If a player FAILS TO MAKE A CHOICE AND TO PRESS THE NEXT 

BUTTON WITHIN THE 90-SECOND PERIOD, it will be implied that he/she 

decided NOT TO AGREE TO JOINTLY COMMIT the act. 

 

 

 

5) The possible outcomes are as follows.  

 

• BOTH PLAYERS AGREE TO JOINTLY COMMIT THE ACT: Each player gets X 

TOKENS (in addition to the initial endowment of 700 tokens) and STAGE 2 BEGINS.  

 

• ONLY ONE PLAYER AGREES TO JOINTLY COMMIT THE ACT: Each player gets 

ZERO TOKENS and the MATCH ENDS. The match payoff for each player will be 700 

tokens (initial endowment).  

 

• NEITHER PLAYER AGREES TO JOINTLY COMMIT THE ACT: Each player gets 

ZERO TOKENS and the MATCH ENDS. The match payoff for each player will be 700 

tokens (initial endowment).  
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STAGE 2: DECISION WHETHER TO REPORT THE ACT 
 

 

 

1) If both payers agreed to jointly commit the act, then Stage 2 begins. 

 

 

2) A FINE EQUAL TO 900 TOKENS MIGHT BE DEDUCTED FROM A PLAYER’S TOKEN 

BALANCE AS A CONSEQUENCE OF JOINTLY COMMITTING THE ACT. 

 

• A player’s decision to report the act MIGHT DECREASE THE FINE HE/SHE WILL PAY 

from 900 tokens to 420 tokens.  

 

• A player’s decision to report the act MIGHT INCREASE HIS/HER PARTNER’S CHANCE 

TO PAY A FINE from 40% to 90% or from 40% to 100%. 

 

THE SPECIFIC FINE AND THE CHANCE OF PAYING THAT FINE DEPEND ON THE 

DECISIONS OF BOTH PLAYERS ABOUT REPORTING THE ACT.  

 

 

3) Each player will have 90 SECONDS TO DECIDE WHETHER TO REPORT OR NOT TO 

REPORT THE ACT AND PRESS THE NEXT BUTTON.  

 

• If a player FAILS TO MAKE A CHOICE AND TO PRESS THE NEXT BUTTON WITHIN 

THE 90-SECOND PERIOD, it will be implied that he/she decided NOT REPORT the act. 

 

 

4) The possible outcomes and match payoffs are presented below.  
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POSSIBLE OUTCOME 1: BOTH PLAYERS DECIDE NOT TO 

REPORT THE ACT 
 

 
o NEITHER PLAYER GETS A FINE REDUCTION  

o EACH PLAYER’S CHANCE OF PAYING A FINE EQUAL TO 900 TOKENS IS 40%: 

Each player pays a fine equal to 900 tokens with 40% chance and does not pay any fine with 

60% chance.  

 

Hence, the match payoffs are as follows. 

 

With a 40% CHANCE, the match payoffs will be:  

Player B1’s match payoff = 700 tokens + X tokens – 900 tokens  

Player B2’s match payoff = 700 tokens + X tokens – 900 tokens 

 

 

With a 60% CHANCE, the match payoffs will be:   

Player B1’s match payoff = 700 tokens + X tokens – 0 tokens 

Player B2’s match payoff = 700 tokens + X tokens – 0 tokens 
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POSSIBLE OUTCOME 2: ONLY PLAYER B1 DECIDES TO 

REPORT THE ACT 
 

 

 

 

 

o ONLY PLAYER B1 GETS A FINE REDUCTION: Instead of paying a fine equal to 900 

tokens, Player B1 always pays only 420 tokens.  

o PLAYER B2’S CHANCE OF PAYING A FINE EQUAL TO 900 TOKENS IS 90%: 

Player B2 pays a fine equal to 900 tokens with 90% chance and does not pay any fine with 

10% chance.  

 

Hence, the match payoffs are as follows. 

 

With a 90% CHANCE, the match payoffs will be:  

Player B1’s match payoff = 700 tokens + X tokens – 420 tokens  

Player B2’s match payoff = 700 tokens + X tokens – 900 tokens 

 

 

With a 10% CHANCE, the match payoffs will be:   

Player B1’s match payoff = 700 tokens + X tokens – 420 tokens  

Player B2’s match payoff = 700 tokens + X tokens – 0 tokens 
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POSSIBLE OUTCOME 3: ONLY PLAYER B2 DECIDES TO 

REPORT THE ACT 
 

 

 

o ONLY PLAYER B2 WILL GET A FINE REDUCTION: Instead of paying a fine equal to 

900 tokens, Player B2 always pays only 420 tokens.  

o PLAYER B1’S CHANCE OF PAYING A FINE EQUAL TO 900 TOKENS IS 90%: 

Player B1 pays a fine equal to 900 tokens with 90% chance and does not pay any fine with 

10% chance.  

 

Hence, the match payoffs are as follows. 

 

With a 90% CHANCE, the match payoffs will be:  

Player B1’s match payoff = 700 tokens + X tokens – 900 tokens  

Player B2’s match payoff = 700 tokens + X tokens – 420 tokens 

 

 

With a 10% CHANCE, the match payoffs will be:   

Player B1’s match payoff = 700 tokens + X tokens – 0 tokens  

Player B2’s match payoff = 700 tokens + X tokens – 420 tokens 
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POSSIBLE OUTCOME 4: BOTH PLAYERS DECIDE TO 

REPORT THE ACT 

 

 
• IF PLAYER B1 REPORTS FIRST 

o  ONLY PLAYER B1 GETS A FINE REDUCTION: Instead of paying a fine equal to 900 

tokens, Player B1 always pays only 420 tokens.  

o PLAYER B2’S CHANCE OF PAYING A FINE EQUAL TO 900 TOKENS IS 100%: 

Player B2 always pays a fine equal to 900 tokens.  

 

Hence, the match payoffs are as follows. 

 

With a 100% CHANCE, the match payoffs will be:  

Player B1’s match payoff = 700 tokens + X tokens – 420 tokens  

Player B2’s match payoff = 700 tokens + X tokens – 900 tokens 

 

 

• IF PLAYER B2 REPORTS FIRST 
o  ONLY PLAYER B2 GETS A FINE REDUCTION: Instead of paying a fine equal to 900 

tokens, Player B2 always pays only 420 tokens.  

o PLAYER B1’S CHANCE OF PAYING A FINE EQUAL TO 900 TOKENS IS 100%: 

Player B1 always pays a fine equal to 900 tokens.  

 

Hence, the match payoffs are as follows. 

 

With a 100% CHANCE, the match payoffs will be:  

Player B1’s match payoff = 700 tokens + X tokens – 900 tokens  

Player B2’s match payoff = 700 tokens + X tokens – 420 tokens 
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• IF BOTH PLAYERS REPORT AT THE SAME TIME  
o EACH PLAYER GETS A FINE REDUCTION WITH 50% CHANCE: Instead of paying 

a fine equal to 900 tokens, each player pays only 420 tokens with 50% chance.  

o EACH PLAYER’S CHANCE OF PAYING A FINE EQUAL TO 900 TOKENS IS 50%: 

Each player pays a fine equal to 900 tokens with 50% chance.  

 

  

Hence, the match payoffs are as follows.  

 

With a 50% CHANCE, the match payoffs will be:  

Player B1’s match payoff = 700 tokens + X tokens – 420 tokens  

Player B2’s match payoff = 700 tokens + X tokens – 900 tokens 

 

With a 50% CHANCE, the match payoffs will be:   

Player B1’s match payoff = 700 tokens + X tokens – 900 tokens  

Player B2’s match payoff = 700 tokens + X tokens – 420 tokens 
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EXERCISES 
 

Suppose that the number of tokens that each player gets IF BOTH PLAYERS AGREE TO JOINTLY 

COMMIT THE ACT is equal to X tokens.  

 

Nine exercises, based on the possible outcomes, are presented below. Please fill the blanks. 

 

 

 

Exercise 1 

Suppose that BOTH PLAYERS AGREE TO JOINTLY COMMIT THE ACT. Then, each player gets 

________________________________________ tokens. Suppose also that Player B1 decides NOT TO 

REPORT the act and Player B2 decides NOT TO REPORT the act.  

 

The MATCH PAYOFFS (IN TOKENS) are as follows.  

 

Player B1: 

Chance Payoff Chance Payoff 

    

 

Player B2:  

Chance Payoff Chance Payoff 
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Exercise 2 

Suppose that BOTH PLAYERS AGREE TO JOINTLY COMMIT THE ACT. Then, each player gets 

______________________________________ tokens. Suppose also that Player B1 decides TO REPORT 

the act and Player B2 decides NOT TO REPORT the act.  

 

The MATCH PAYOFFS (IN TOKENS) are as follows.  

 

Player B1: 

Chance Payoff Chance Payoff 

    

 

Player B2:  

Chance Payoff Chance Payoff 

    

 

 

Exercise 3 

Suppose that BOTH PLAYERS AGREE TO JOINTLY COMMIT THE ACT. Then, each player gets 

________________________________________ tokens. Suppose also that Player B1 decides NOT TO 

REPORT the act and Player B2 decides TO REPORT the act.  

 

The MATCH PAYOFFS (IN TOKENS) are as follows.  

 

Player B1: 

Chance Payoff Chance Payoff 

    

 

Player B2:  

Chance Payoff Chance Payoff 
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Exercise 4 

Suppose that BOTH PLAYERS AGREE TO JOINTLY COMMIT THE ACT. Then, each player gets 

_______________________________________ tokens. Suppose also that Player B1 decides TO REPORT 

the act and Player B2 decides TO REPORT the act, and that Player B1 IS THE FIRST TO REPORT.  

 

The MATCH PAYOFFS (IN TOKENS) are as follows.  

 

Player B1: 

Chance Payoff Chance Payoff 

    

 

Player B2:  

Chance Payoff Chance Payoff 

    

 

 

Exercise 5 

Suppose that BOTH PLAYERS AGREE TO JOINTLY COMMIT THE ACT. Then, each player gets 

_______________________________________ tokens. Suppose also that Player B1 decides TO REPORT 

the act and Player B2 decides TO REPORT the act, and that Player B2 IS THE FIRST TO REPORT.  

 

The MATCH PAYOFFS (IN TOKENS) are as follows.  

 

Player B1: 

Chance Payoff Chance Payoff 

    

 

Player B2:  

Chance Payoff Chance Payoff 
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Exercise 6  

Suppose that BOTH PLAYERS AGREE TO JOINTLY COMMIT THE ACT. Then, each player gets 

_______________________________________ tokens. Suppose also that Player B1 decides TO REPORT 

the act and Player B2 decides TO REPORT the act, and that BOTH PLAYERS REPORT AT THE 

SAME TIME.  

 

The MATCH PAYOFFS (IN TOKENS) are as follows.  

 

Player B1: 

Chance Payoff Chance Payoff 

    

 

Player B2:  

Chance Payoff Chance Payoff 

    

 

 

Exercise 7  

Suppose that Player B1 AGREES TO JOINTLY COMMIT THE ACT and Player B2 DOES NOT 

AGREE TO JOINTLY COMMIT THE ACT.  

 

The MATCH PAYOFFS (IN TOKENS) are as follows.  

 

Player B1: 

Chance Payoff Chance Payoff 

    

 

 Player B2:  

Chance Payoff Chance Payoff 
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Exercise 8 

Suppose that Player B1 DOES NOT AGREE TO JOINTLY COMMIT THE ACT and Player B2 

AGREES TO JOINTLY COMMIT THE ACT.  

 

 

The MATCH PAYOFFS (IN TOKENS) are as follows.  

 

Player B1: 

Chance Payoff Chance Payoff 

    

 

Player B2:  

Chance Payoff Chance Payoff 

    

 

 

Exercise 9 

Suppose that NEITHER PLAYER AGREES TO JOINTLY COMMIT THE ACT.  

 

 

The MATCH PAYOFFS (IN TOKENS) are as follows.  

 

Player B1: 

Chance Payoff Chance Payoff 

    

 

Player B2:  

Chance Payoff Chance Payoff 
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SESSION PAYOFF 
The game earnings in tokens will be equal to the PAYOFF FOR THE ACTUAL MATCH. The 

game earnings in dollars will be equal to: (game earnings in tokens)/29 (29 tokens = 1 dollar).  The session 

payoff will be equal to the game earnings in dollars plus the $10 participation fee.  

 

GAME SOFTWARE 
The game will be played using a computer terminal. You will need to enter your decisions by using 

the mouse. In some instances, you will need to wait until the other players make their decisions before 

moving to the next screen. Please BE PATIENT. There will be a box, displayed in the upper right-hand side 

of your screen, which indicates the “Match Number,” “Your Role,” and “Your Balance.”    

Please press the NEXT >> button to move to the next screen. DO NOT TRY TO GO BACK TO 

THE PREVIOUS SCREEN AND DO NOT CLOSE THE BROWSER: The software will stop working.  

 

Next, the 5 PRACTICE MATCHES will begin. After that, the ACTUAL MATCH will be played. 

YOU CAN CONSULT THESE INSTRUCTIONS AT ANY TIME DURING THE EXPERIMENT. 

 

THANKS FOR YOUR 

PARTICIPATION IN THIS 

STUDY!! 
 
 

PLEASE GIVE THIS MATERIAL TO THE EXPERIMENTER 

AT THE END OF THE EXPERIMENT 


