Inequality, Redistribution, and Optimal Trade Policy: A Public Finance Approach

Roozbeh Hosseini, Ali Shourideh UGA, CMU

Unequal Gains from Trade

- Gains from globalization are unequally distributed
 - ★ Often benefits productive workers and firms
- China shock: import competition from China
 - ★ Quarter of decline in US manufacturing during 1990-2007: Autor, Dorn, and Hanson (2013)
- Possible cause: large relocation costs and low elasticity of sectoral/ location choice:
 - * Artuc, Chaudhuri, McLaren (2010)

REDISTRIBUTING GAINS FROM TRADE

- Second Welfare Theorem Logic: Aggregate gains from trade are positive;
 redistribute them using lump-sum taxes and transfers
- Public Finance: Lump-sum taxes are unavailable/unrealistic
 - ★ What policy instruments to use? What margins to distort?
- If lump-sum taxes are unavailable: trade policy cannot be separated from fiscal policy
- How should we design optimal tax/trade policy to balance:
 - ★ Efficiency gains from trade
 - ★ Costs associated with increased inequality

WHAT WE DO

- General and tractable competitive model of trade
 - ★ Input-Output linkages in production
 - ★ Imperfect worker mobility
 - ★ Government policy:
 - Direct taxes: Income taxes
 - Indirect taxes: Taxes on consumption and production
- Study the optimal cooperative tax system across countries
 - ★ Abstract from strategic interactions
- Key friction:
 - ★ Income taxes cannot depend on workers' characteristics and sector

WHAT WE FIND

- Production must be taxed differently across sectors
- Its determinants:
 - ★ Only income and employment distribution as well as labor supply elasticities in each country
- VAT taxes are optimal
- Quantitative implication: explore how taxes must react to China shock

RELATED LITERATURE

- Optimal commodity/intermediate good taxation: Diamond and Mirrlees (1971), Atkinson and Stiglitz (1976), Deaton (1980), Naito (1999)
- Optimal taxation in trade/spatial models: Dixit and Norman (1986),
 Costinot and Werning (2018), Lyon and Waugh (2017), Fajgelbaum and Gaubert (2018), Ales and Sleet (2018)
- Optimal non-cooperative trade policy: Bagwell and Staiger (1999),
 Costinot, Donaldson, Vogel, and Werning (2015), Beshkar and
 Lashkaripour (2017)
- Interplay between distortions and production networks: Caliendo,
 Parro and Tsivinsky (2017), Baqaee and Farhi (2017)

SIMPLE MODEL NO LABOR MOBILITY

ullet N_c countries, indexed by c

- ullet N_c countries, indexed by c
- Many sectors with production function

- ullet N_c countries, indexed by c
- Many sectors with production function

$$Y_i^c = G_i^c \left(L_i^c, \left\{ Q_{ij}^c \right\}_{j=1}^N \right), \forall i = 1, \dots, N$$

- ullet N_c countries, indexed by c
- Many sectors with production function

$$Y_i^c = G_i^c \left(L_i^c, \left\{ Q_{ij}^c \right\}_{j=1}^N \right), \forall i = 1, \dots, N$$

- ullet N_c countries, indexed by c
- Many sectors with production function

$$Y_i^c = G_i^c \left(L_i^c, \{Q_{ij}^c\}_{j=1}^N \right), \forall i = 1, \dots, N$$

Labor

- ullet N_c countries, indexed by c
- Many sectors with production function

$$Y_i^c = G_i^c \left(L_i^c, \left\{ Q_{ij}^c \right\}_{j=1}^N \right), \forall i = 1, \dots, N$$

Labor

- ullet N_c countries, indexed by c
- Many sectors with production function

Labor

Intermediate Inputs

Workers

- Continuum of workers in each country
 - \star Have preferences over consumption $\mathbf{x} \in \mathbb{R}^N$ and leisure

- Continuum of workers in each country
 - \star Have preferences over consumption $\mathbf{x} \in \mathbb{R}^N$ and leisure
- Heterogeneous: $\theta \in \Theta$, p.d.f. $\mu^c(\theta)$
 - ***** For now: each worker works for $j^c(\theta)$; relax later

- Continuum of workers in each country
 - \star Have preferences over consumption $\mathbf{x} \in \mathbb{R}^N$ and leisure
- Heterogeneous: $\theta \in \Theta$, p.d.f. $\mu^c(\theta)$
 - ***** For now: each worker works for $j^c(\theta)$; relax later
- Preferences:

$$v = U^c(\mathbf{x}) - v^c(\ell)$$

Workers

Assumption. Workers preferences satisfy

$$U^{c}\left(\mathbf{x}\right)$$
: Homothetic in \mathbf{x} , linear in income

$$U^{c}\left(\mathbf{x}\right)$$
: Homothetic in \mathbf{x} , linear in income
$$v^{c}\left(\ell\right) = \frac{1}{1+\frac{1}{\varepsilon^{c}}}\ell^{1+\frac{1}{\varepsilon^{c}}}$$

Assumption. Workers preferences satisfy

$$U^{c}(\mathbf{x}):$$
 Homothetic in \mathbf{x} , linear in income

$$U^{c}\left(\mathbf{x}\right)$$
: Homothetic in \mathbf{x} , linear in income
$$v^{c}\left(\ell\right) = \frac{1}{1+\frac{1}{\varepsilon^{c}}}\ell^{1+\frac{1}{\varepsilon^{c}}}$$

Useful benchmark: uniform commodity taxation applies

Assumption. Workers preferences satisfy

$$U^{c}(\mathbf{x})$$
: Homothetic in \mathbf{x} , line

$$U^{c}\left(\mathbf{x}\right)$$
: Homothetic in \mathbf{x} , linear in income
$$v^{c}\left(\ell\right) = \frac{1}{1+\frac{1}{\varepsilon^{c}}}\ell^{1+\frac{1}{\varepsilon^{c}}}$$

- Useful benchmark: uniform commodity taxation applies
 - More general results in the paper

Consumption tax

- Consumption tax
 - $\star t_i^{x,c}$: ad-valorem tax on consumption of i

- Consumption tax
 - $\star t_i^{x,c}$: ad-valorem tax on consumption of i
- Production taxes

- Consumption tax
 - $\star t_i^{x,c}$: ad-valorem tax on consumption of i
- Production taxes
 - $\star t_i^{p,c}$: sales

- Consumption tax
 - $\star t_i^{x,c}$: ad-valorem tax on consumption of i
- Production taxes
 - $\star t_i^{p,c}$: sales
 - $\star t_{ij}^{p,c}$: intermediate inputs

- Consumption tax
 - $\star t_i^{x,c}$: ad-valorem tax on consumption of i
- Production taxes
 - $\star t_i^{p,c}$: sales
 - $\star t_{ij}^{p,c}$: intermediate inputs
- Special case:

- Consumption tax
 - $\star t_i^{x,c}$: ad-valorem tax on consumption of i
- Production taxes
 - $\star t_i^{p,c}$: sales
 - $\star t_{ij}^{p,c}$: intermediate inputs
- Special case:
 - * tariffs: $t_i^{x,c} = -t_i^{p,c} = t_{ji}^{p,c}$

- Income tax:
 - ★ Linear in income: $\mathcal{T}^c(z) = \tau^c z T^c$

- Income tax:
 - * Linear in income: $\mathcal{T}^{c}(z) = \tau^{c}z T^{c}$

With $\mathcal{T}^c(\theta)$: second welfare theorem holds; no need to use production taxes

- Income tax:
 - ★ Linear in income: $\mathcal{T}^{c}(z) = \tau^{c}z T^{c}$
- Allow transfers between governments

With $\mathcal{T}^c(\theta)$: second welfare theorem holds; no need to use production taxes

- Income tax:
 - * Linear in income: $\mathcal{T}^{c}(z) = \tau^{c}z T^{c}$
- Allow transfers between governments
- Markets:

With $\mathcal{T}^c(\theta)$: second welfare theorem holds; no need to use production taxes

TAXES AND MARKETS

- Income tax:
 - * Linear in income: $\mathcal{T}^{c}(z) = \tau^{c}z T^{c}$
- Allow transfers between governments
- Markets:
 - ★ Goods: international competitive markets

With $\mathcal{T}^c(\theta)$: second welfare theorem holds; no need to use production taxes

TAXES AND MARKETS

- Income tax:
 - * Linear in income: $\mathcal{T}^{c}(z) = \tau^{c}z T^{c}$
- Allow transfers between governments
- Markets:
 - ★ Goods: international competitive markets
 - ★ Labor: domestic competitive markets

With $\mathcal{T}^c(\theta)$: second welfare theorem holds; no need to use production taxes

• Objective in country *c*

$$W^{c}\left(\left\{ v^{c}\left(\theta\right)\right\} _{\theta\in\Theta}\right)$$

Objective in country c

$$W^{c}\left(\left\{v^{c}\left(\theta\right)\right\}_{\theta\in\Theta}\right)$$

Policy determined under cooperation

$$\max \sum_{c=1}^{N_c} \lambda^c W^c \left(\left\{ v^c \left(\theta \right) \right\}_{\theta \in \Theta} \right)$$

Objective in country c

$$W^{c}\left(\left\{v^{c}\left(\theta\right)\right\}_{\theta\in\Theta}\right)$$

Policy determined under cooperation

$$\max \sum_{c=1}^{N_c} \lambda^c W^c \left(\left\{ v^c \left(\theta \right) \right\}_{\theta \in \Theta} \right)$$

* No strategic motives for terms of trade manipulation

Objective in country c

$$W^{c}\left(\left\{v^{c}\left(\theta\right)\right\}_{\theta\in\Theta}\right)$$

Policy determined under cooperation

$$\max \sum_{c=1}^{N_c} \lambda^c W^c \left(\left\{ v^c \left(\theta \right) \right\}_{\theta \in \Theta} \right)$$

- ★ No strategic motives for terms of trade manipulation
- ★ Trade agreement; efficient negotiation

• Indeterminacy: set $\tau^c = 0$

• Indeterminacy: set $\tau^c = 0$

Optimal Producer Taxes

Optimal Producer Taxes
$$\varepsilon^{c} \frac{t_{j}^{p,c}}{1 - t_{j}^{p,c}} = 1 - \overline{\mathcal{W}}_{j}^{c}$$

$$t_{ji}^{p,c} = -t_{j}^{p,c}$$

• Indeterminacy: set $\tau^c = 0$

Social value of 1% increase in income of workers in *j*

$$arepsilon^c rac{t_j^{p,c}}{1-t_j^{p,c}} = 1-\overline{\mathcal{W}}_j^c$$
 $t_{ji}^{p,c} = -t_j^{p,c}$

• Indeterminacy: set $\tau^c = 0$

Social value of 1% increase in income of workers in *j*

Optimal Producer Taxes

Sprimal Producer Taxes
$$\varepsilon^{c} \frac{t_{j}^{p,c}}{1 - t_{j}^{p,c}} = 1 - \overline{\mathcal{W}}_{j}^{c}$$

$$t_{ji}^{p,c} = -t_{j}^{p,c}$$

VAT tax is optimal

Optimal Producer Taxes

$$arepsilon^{c} rac{t_{j}^{p,c}}{1-t_{j}^{p,c}} = 1-\overline{\mathcal{W}}_{j}^{c}$$
 $t_{ji}^{p,c} = -t_{j}^{p,c}$

Optimal Producer Taxes

$$\varepsilon^{c} \frac{t_{j}^{p,c}}{1 - t_{j}^{p,c}} = 1 - \overline{\mathcal{W}}_{j}^{c}$$
$$t_{ji}^{p,c} = -t_{j}^{p,c}$$

• LHS: percentage behavioral decrease in government revenue from a small increase in VAT tax

- LHS: percentage behavioral decrease in government revenue from a small increase in VAT tax
- RHS: percentage mechanical increase in revenue less welfare effect

- LHS: percentage behavioral decrease in government revenue from a small increase in VAT tax
- RHS: percentage mechanical increase in revenue less welfare effect
- Where are the G.E. effects?

- LHS: percentage behavioral decrease in government revenue from a small increase in VAT tax
- RHS: percentage mechanical increase in revenue less welfare effect
- Where are the G.E. effects?
 - * Changes in supply of *j* potentially changes prices, revenue and welfare

- LHS: percentage behavioral decrease in government revenue from a small increase in VAT tax
- RHS: percentage mechanical increase in revenue less welfare effect
- Where are the G.E. effects?
 - ★ Changes in supply of *j* potentially changes prices, revenue and welfare
 - * At the optimum: G.E. welfare effect cancels G.E. revenue effect

 Trade/technological shocks affect optimal taxes only through distribution of income

- Trade/technological shocks affect optimal taxes only through distribution of income
 - * input-output linkages, trade elasticities, trade costs, etc.

- Trade/technological shocks affect optimal taxes only through distribution of income
 - ★ input-output linkages, trade elasticities, trade costs, etc.
- ullet Trade is undistorted if $\overline{\mathcal{W}}_j^c$ the same for all j

$$\overline{\mathcal{W}}_{j}^{c} = \frac{\int \mathbf{1} \left[j^{c}(\theta) = j \right] \frac{\partial W^{c}}{\partial v(\theta)} z^{c}(\theta) \mu^{c}(\theta) d\theta}{\int \mathbf{1} \left[j^{c}(\theta) = j \right] z^{c}(\theta) \mu^{c}(\theta) d\theta}$$

- Trade/technological shocks affect optimal taxes only through distribution of income
 - ★ input-output linkages, trade elasticities, trade costs, etc.
- Trade is undistorted if $\overline{\mathcal{W}}_{j}^{c}$ the same for all j

$$\overline{\mathcal{W}}_{j}^{c} = \frac{\int \mathbf{1} \left[j^{c}(\theta) = j \right] \frac{\partial W^{c}}{\partial v(\theta)} z^{c}(\theta) \mu^{c}(\theta) d\theta}{\int \mathbf{1} \left[j^{c}(\theta) = j \right] z^{c}(\theta) \mu^{c}(\theta) d\theta}$$

 $\star \overline{\mathcal{W}}^c_j$ depends on inequality within and across sectors

Sector-specific VAT taxes are optimal:

- Sector-specific VAT taxes are optimal:
 - * Border-adjustments are distortionary and not optimal

- Sector-specific VAT taxes are optimal:
 - * Border-adjustments are distortionary and not optimal
- Alternative way of implementing: sector-specific payroll taxes

MODEL WITH MOBILITY

• If θ works in j, labor productivity $a_j^c(\theta)\eta_j$

- If θ works in j, labor productivity $a_j^c(\theta)\eta_j$
 - \star individual-specific component: $a_j^c(\theta)$
 - Determined by education, location, etc.

- If θ works in j, labor productivity $a_j^c(\theta)\eta_j$
 - \star individual-specific component: $a_j^c(\theta)$
 - Determined by education, location, etc.
 - * idiosyncratic shock: $\eta = (\eta_1, \dots, \eta_N)$

WORKERS - SECTORAL CHOICE

- If θ works in j, labor productivity $a_j^c(\theta)\eta_j$
 - \star individual-specific component: $a_j^c(\theta)$
 - Determined by education, location, etc.
 - * idiosyncratic shock: $\eta = (\eta_1, \dots, \eta_N)$
 - η_j : Frechet distribution: $\Pr(\eta_j \leq \eta) = e^{-\eta^{-\sigma}}$

- If θ works in j, labor productivity $a_j^c(\theta)\eta_j$
 - \star individual-specific component: $a_j^c(\theta)$
 - Determined by education, location, etc.
 - * idiosyncratic shock: $\eta = (\eta_1, \cdots, \eta_N)$
 - η_j : Frechet distribution: $\Pr(\eta_j \leq \eta) = e^{-\eta^{-\sigma}}$

$$L_j^c = \int_{\Theta} \int_{\mathbb{R}^N} a_j^c(\theta) \eta_j \ell_j(\theta, \eta) \mathbf{1} \left[w_j^c a_j^c(\theta) \eta_j \ge w_{j'}^c a_{j'}^c(\theta) \eta_{j'} \right] dH(\boldsymbol{\eta}) \mu^c(\theta) d\theta$$

- - $\star \sigma = \infty$: perfectly elastic case

- \bullet captures the elasticity of relocation across sectors to wages
 - $\star \sigma = \infty$: perfectly elastic case
 - \star $\sigma \to 1 + \varepsilon^c$: no mobility: sectoral labor supply only depends on wage in that sector; elasticity of labor supply ε^c

- \bullet captures the elasticity of relocation across sectors to wages
 - $\star \sigma = \infty$: perfectly elastic case
 - \star $\sigma\to 1+\varepsilon^c$: no mobility: sectoral labor supply only depends on wage in that sector; elasticity of labor supply ε^c
 - \star $\sigma > 1 + \varepsilon^c$ to ensure integrals exist

Frechet distribution:

- Frechet distribution:
 - \star Distribution of labor productivity of type θ in each sector is the same

- Frechet distribution:
 - \star Distribution of labor productivity of type θ in each sector is the same
 - Higher wage sectors attract lower productivity workers

- Frechet distribution:
 - \star Distribution of labor productivity of type θ in each sector is the same
 - Higher wage sectors attract lower productivity workers
 - \star Average income of workers of type θ

$$\overline{z}^{c}(\theta) = \kappa \left[\sum_{i} \left(w_{i}^{c} a_{i}^{c}(\theta) \right)^{\sigma} \right]^{\frac{1+\varepsilon^{\circ}}{\sigma}}$$

- Frechet distribution:
 - \star Distribution of labor productivity of type θ in each sector is the same
 - Higher wage sectors attract lower productivity workers
 - \star Average income of workers of type θ

$$\overline{z}^c(\theta) = \kappa \left[\sum_i \left(w_i^c a_i^c(\theta) \right)^{\sigma} \right]^{\frac{1+\varepsilon^2}{\sigma}}$$

* Fraction of workers of type θ in sector j

$$\Lambda_j^c(\theta) = \frac{\left(w_j^c a_j^c(\theta)\right)^o}{\sum_i \left(w_i^c a_i^c(\theta)\right)^\sigma}$$

$$(\sigma - 1) \frac{t_{j}^{p,c}}{1 - t_{j}^{p,c}} = 1 - \overline{W}_{j}^{c}$$

$$+ (\sigma - 1 - \varepsilon^{c}) \left[\sum_{i} \frac{\int \Lambda_{i} \Lambda_{j} \overline{z} \mu^{c} d\theta}{(1 - t_{i}^{p,c}) \int \Lambda_{j} \overline{z} \mu^{c} d\theta} - 1 \right]$$

Elasticity of labor supply in *j* to wage in *j*

Elasticity of labor supply in *j* to wage in *j*

Relocation effect

Absolute advantage, i.e., no specialization

Absolute advantage, i.e., no specialization

$$a_j^c(\theta) = \alpha_j^c \times \beta^c(\theta)$$

Absolute advantage, i.e., no specialization

$$a_j^c(\theta) = \alpha_j^c \times \beta^c(\theta)$$

Proposition. Under absolute advantage, optimal VAT taxes are uniform, i.e., no need for VAT taxes

Absolute advantage, i.e., no specialization

$$a_j^c(\theta) = \alpha_j^c \times \beta^c(\theta)$$

Proposition. Under absolute advantage, optimal VAT taxes are uniform, i.e., no need for VAT taxes

Intuition: taxes cannot affect inequality across types

Absolute advantage, i.e., no specialization

$$a_j^c(\theta) = \alpha_j^c \times \beta^c(\theta)$$

Proposition. Under absolute advantage, optimal VAT taxes are uniform, i.e., no need for VAT taxes

Intuition: taxes cannot affect inequality across types

$$\frac{\overline{z}^c(\theta)}{\overline{z}^c(\theta')} = \left(\frac{\beta^c(\theta)}{\beta^c(\theta')}\right)^{1+\varepsilon^c}$$

SUMMARY OF THEORY

- Optimal VAT producer taxes can be used to redistribute gains from trade across sectors
- Taxes are fully determined by employment and income distribution
- Optimal taxes depend on the specialization in the labor force
 - * Absent specialization

QUANTITATIVE EXERCISE

QUANTITATIVE MODEL

- Main Question: How should a trade agreement involving U.S. and China be designed? What should be the VAT taxes?
- Closely follow Galle, Rodriguez-Clare, Yi (2017) and Caliendo,
 Dvorkin, Parro (2017)
- Two layers of production: final and intermediate goods
 - ★ Intermediate goods: using labor and final goods; tradable
 - ★ Final goods are produced with intermediate goods; non-tradable
 - * Production of intermediate goods: Eaton and Kortum (2002)

- Key assumption: data comes from Laissez-Faire version of the model; in line with trade literature
- Parameters chosen independently

Parameter	Description	Values
ε^c	Frisch elasticity of hours	0.5
ν	Trade elasticity	4
σ	Elasticity of Labor Mobility	2
γ	Elasticity of substitution (preferences)	1

- Parameters of production functions
 - ★ Use WIOT to determine expenditure, factor shares
- Trade costs:
 - ★ Price data from Groningen Growth and Development Center
 - * trade shares from WIOT
- Sectoral productivity
 - ★ Use price and bilateral trade share data

- Following Galle, Rodriguez-Clare and Yi (2017), each type is an education/location in the U.S.
 - ★ Education: No-college vs. some college
 - ★ Location: 722 Commuting Zones as in Autor, Dorn and Hanson (2013)
 - * All other countries have one type
 - ★ Use employment and earning data from 2000 American Community Survey to calculate labor productivities

- Following Galle, Rodriguez-Clare and Yi (2017), each type is an education/location in the U.S.
 - ★ Education: No-college vs. some college
 - ★ Location: 722 Commuting Zones as in Autor, Dorn and Hanson (2013)
 - * All other countries have one type
 - * Use employment and earning data from 2000 American Community Survey to calculate labor productivities $a_j^c(\theta)$

CHINA SHOCK

 Model China shock as an increase in TFP in China - estimated by Caliendo, Dvorkin, Parro (2017); time horizon 2000-2007

CHINA SHOCK: EMPLOYMENT CHANGE

Mean	C.V.	Min	Max	% losers
0.28%	0.79	-0.38	0.86	6.5

Mean	C.V.	Min	Max	% losers
0.28%	0.79	-0.38	0.86	6.5

Skilled in Monterey, CA

OPTIMAL POLICY EXERCISE

- Assume post China shock technology
- Maximize weighted average of welfare in other countries subject to delivering at least pre-shock welfare to all types in the U.S.
 - ★ Tax reform that is Pareto improving
- Notice: Laissez-Faire is efficient
 - * Pareto optimal taxation: without the China shock do nothing

Optimal Taxes

Optimal Taxes

Employment Change

Fin. Services

OPTIMAL TAXES - DECOMPOSITION

CONCLUSION

- Developed a framework to analyze optimal taxation when trade creates winners and losers
- Optimal producer taxes:
 - **★** VAT
 - ★ Depend on degree of specialization of the labor force
- China shock: significant variation in across sectors; distortionary to trade
- Important question: dynamic effects

ADDITIONAL SLIDES

- Two types of goods in each sector:
 - ★ Tradable intermediate goods and non-tradable final goods
- Continuum of varieties of intermediate goods in each sector
- Final goods can be used for consumption or in production
- Workers problem is the same as before

Continuum of varieties in intermediate goods

$$q_{j}^{c}(\omega_{j}) = a_{j}^{c}(\omega_{j}) \left(L_{j}^{c}(\omega_{j})\right)^{\chi_{j}^{c}} \prod_{k=1}^{N_{J}} \left(M_{j,k}^{c}(\omega_{j})\right)^{\gamma_{j,k}^{c}}, \quad \sum_{k=1}^{N_{J}} \gamma_{j,k}^{c} = 1 - \chi_{j}^{c}.$$

variety: $\omega_j \in [0, 1]$

• Assume a_j^c has a Frechet distribution

$$F_j^c(a) = e^{-\lambda_j^c a^{-
u}}$$
 Sectoral TFP Trade elasticity

• Unit cost in sector *j* in country *c*:

$$\psi_{j}^{c} = \left(\frac{w_{j}^{c}}{(1 - t_{j}^{c,p}) \chi_{j}^{c}}\right)^{\chi_{j}^{c}} \prod_{k=1}^{N_{J}} \left(\frac{P_{k}^{c}}{\gamma_{j,k}^{c}}\right)^{\gamma_{j,k}^{c}}$$

Wage of *j* in *c*

Price of *k* in *c*

Trade cost:

- * $\tau_j^{c,c'}$: cost of shipping j from c' to c
- * $X_j^{c,c'}$: expenditure in c on j produced in c'; X_j^c : expenditure on j in c

$$\pi_{j}^{c,c'} \equiv \frac{X_{j}^{c,c'}}{X_{j}^{c}} = \frac{\lambda_{j}^{c'} \left(\tau_{j}^{c,c'} \psi_{j}^{c'}\right)^{-\nu}}{\sum_{c''} \lambda_{j}^{c''} \left(\tau_{j}^{c,c''} \psi_{j}^{c''}\right)^{-\nu}}$$