Monopsony in Online Labor Markets

Arindrajit Dube, Jeff Jacobs, Suresh Naidu, and Siddarth Suri

July, 2018 NBER Summer Institute

Searching for monopsony in labor markets

- Can there be substantial market power even on online labor markets?
 - "On-demand" and online work relatively new (Katz and Krueger 2016).
 - In particular market for crowdsourced "data services".

Searching for monopsony in labor markets

- Can there be substantial market power even on online labor markets?
 - "On-demand" and online work relatively new (Katz and Krueger 2016).
 - In particular market for crowdsourced "data services".
- "Tough test" for monopsony relative to other contexts.
 - Large number of jobs posted and seemingly low cost of search.
 - Little labor regulation.
 - Little work looking at market structure.

Searching for monopsony in labor markets

- Can there be substantial market power even on online labor markets?
 - "On-demand" and online work relatively new (Katz and Krueger 2016).
 - In particular market for crowdsourced "data services".
- "Tough test" for monopsony relative to other contexts.
 - Large number of jobs posted and seemingly low cost of search.
 - Little labor regulation.
 - Little work looking at market structure.
- Offers a laboratory for quantifying labor market power, especially experimentally.

Looking for work on Amazon Mechanical Turk

amazonmechanical turk	Your Accou	nt HITs	Qualifications	1,017,654 available n	HITS	Acco	unt Settings Sign Out Help
	All HITS HITS AV	vailable To You 📋	HITs Assigned To	You			
Find HITS 🗸 containing			that pay at lea	ost \$ 0.00	require Ma	you are qualified aster Qualification	•
All HITs 1-10 of 1033 Results							
Sort by: HITs Available (most first) 🗸 🥹	Show all details Hide	all details				1 <u>2 3 4 5</u> > <u>Nex</u>	Items per Page: 10 🗸
Extract purchased items from a shopping receipt (1-2 items)							View a HIT in this group
Requester: Scoutt	HIT Expiration Date:	Dec 18, 2017 (6 d	ays 23 hours)	R	eward:	\$0.01	
	Time Allotted:	2 hours		н	ITs Available:	127404	J
Extract purchased items from a shopping receipt (3-5 items)							View a HIT in this group
Requester: Scoutt	HIT Expiration Date:	Dec 18, 2017 (6 d	ays 23 hours)	R	eward:	\$0.03	
	Time Allotted:	2 hours		н	ITs Available:	119277	J
Rekognition Internal Boundingbox					E	equest Qualification (Wh	y2) View a HIT in this group
Requester: Amazon Requester Inc Rekognition Team	HIT Expiration Date:	Jan 6, 2018 (3 we	eks 4 days)	R	eward:	\$0.00	
	Time Allotted:	6 hours		н	ITs Available:	62038	J
Extract purchased items from a shopping receipt							View a HIT in this group
Requester: Scoutt	HIT Expiration Date:	Dec 18, 2017 (6 d	ays 23 hours)	R	eward:	\$0.08	
	Time Allotted:	2 hours		н	ITs Available:	56357	J
Extract purchased items from a shopping receipt (6-10 items)							View a HIT in this group
Requester: Scoutt	HIT Expiration Date:	Dec 18, 2017 (6 d	ays 23 hours)	R	eward:	\$0.06	
	Time Allotted:	2 hours		н	ITs Available:	55645	

What we do

Observational estimate

- Key idea: sensitivity of duration of HIT batch post to wage can be used measure of labor market power (residual labor supply elasticity).
- Large scraped dataset from MTurk.
- Use text of requester and job descriptions to form high-dimensional set of covariates to isolate causal effect.
- Use Double Machine Learning estimator proposed by Chernozhukov et al. (2016).
- Find remarkably stable, low sensitivity suggesting high degree monopsony power, with little heterogeneity by reward.

What we do

Observational estimate

- Key idea: sensitivity of duration of HIT batch post to wage can be used measure of labor market power (residual labor supply elasticity).
- Large scraped dataset from MTurk.
- Use text of requester and job descriptions to form high-dimensional set of covariates to isolate causal effect.
- Use Double Machine Learning estimator proposed by Chernozhukov et al. (2016).
- Find remarkably stable, low sensitivity suggesting high degree monopsony power, with little heterogeneity by reward.
- Experimentally validate degree of monopsony power on Mechanical Turk using archived data from previous experiments.
 - Estimate sensitivity of job acceptance probability to posted wage.
 - Distinguish between "recruitment" and "retention" margins.
 - Both surprisingly low, similar to observational estimates.

• Not first to notice MTurk may be non-competitive.

- Not first to notice MTurk may be non-competitive.
- Kingsley, Gray and Suri (2015) show skewed distribution of job posting, suggesting labor market concentration.

Some Theory

- Not first to notice MTurk may be non-competitive.
- Kingsley, Gray and Suri (2015) show skewed distribution of job posting, suggesting labor market concentration.
- But concentration not necessarily good measure of market power: could simply be productivity dispersion.

Some Theory

- Not first to notice MTurk may be non-competitive.
- Kingsley, Gray and Suri (2015) show skewed distribution of job posting, suggesting labor market concentration.
- But concentration not necessarily good measure of market power: could simply be productivity dispersion.
- Instead, want to directly estimate the sensitivity of job acceptance to wage/reward.

Some Theory

- Not first to notice MTurk may be non-competitive.
- Kingsley, Gray and Suri (2015) show skewed distribution of job posting, suggesting labor market concentration.
- But concentration not necessarily good measure of market power: could simply be productivity dispersion.
- Instead, want to directly estimate the sensitivity of job acceptance to wage/reward.
 - Competitive market should be very responsive.
 - Monopsonistic market should be pretty non-responsive.

Scraped Data

- Scrape MTurk data (alas no longer possible).
- Panos Ipseiros scraped between Jan 2014-Feb 2016.
- We scraped from May 2016 to August 2017.
- Both theoretically capture a near-census of posted HITs.
- Observe: time posted, time removed, reward, requester, and short text describing job.
- Idea: Duration = time removed time posted is another way to estimate recruitment elasticity.
- Assumption: HITs observed at constant rate λ .
- High paying jobs should disappear quickly.
 - But plenty of other determinants of duration (e.g. requester cancellation, other task characteristics).

Densities of Log Durations

Figure: Kernel density plots of log duration for the 3 different samples used in the analysis.

$$\log(duration_h) = -\eta \log(reward_h) + \nu_h + \epsilon_h \tag{1}$$

Suppose $E[\epsilon|\nu] = 0$, but if ν_h unobserved and not equal to 0 then resulting η estimate is biased.

Identification

- Approach 1: Fixed Effects
- FE strategy: control for requester, time allotted + batch size deciles, and time posted FE.
- But how do we know we have controlled for as much as we possibly can?
- Machine learning to the rescue!

Double-ML estimator

- General method for leveraging "big data" to approach causality.
- Caveat: assumes only selection on observables, but pushes it as far as possible.
- Idea: use machine learning (we use Random Forests) to control flexibly for observable determinants (X^{reward}, X^{duration}) of rewards and durations.
- Get functions for predicted rewards $E[log(reward)|X^{reward}]$ and durations $E[log(duration)|X^{duration}]$ and validate using standard out-of-sample methods.
- Robinson (1988) Intuition: coefficient $-\eta$ is recovered from regression of $\hat{\xi} = log(duration) E[log(duration)|X^{duration}]$ on $\hat{\mu} = log(reward) E[log(reward)|X^{reward}]$.
- Check: Adding any other covariates has little effect on point estimates.

Features Used

- Create a variety of requester and time level characteristics (mean reward, etc).
- **N-grams**: Sliding windows of length 1–3 over the text, where the feature value is the (unweighted) frequency of the gram within the title or description.
- **Topic Distributions**: LDA with topics *K* ∈ {5, 10, 15, 20} are run on all descriptions, use topic proportions as features..
- **Doc2Vec embeddings**: 100-dimensional embedding vector corresponding to each description was used as a feature for that description.

A split of 40% training, 10% validation, and 50% test was used, with 5-fold cross-validation for hyperparameter (number of trees/ features considered in each split) tuning, resulting in 2-fold sample-splitting for the final $\check{\theta}$ value.

Prediction Model

Out of sample R^2 values:

	Jan 2014 - Feb 2016		May 2016	- May 2017	May 2017 - Aug 2017	
	$A \rightarrow B$	B ightarrow A	A ightarrow B	B ightarrow A	$A \rightarrow B$	B ightarrow A
Reward	0.7716	0.7764	0.8951	0.8949	0.8982	0.8984
Duration	0.8968	0.8980	0.4379	0.4404	0.5085	0.5035

Most predictive features:

Rank	Feature Name	Gini
0	Requester Mean Reward	0.408642
1	Log Requester Mean Reward	0.392017
2	Time Allotted	0.040536
3	Requester Batch Count	0.016639
4	Title Length	0.014999

Residuals Binned Scatterplot

Table: Duration Elasticities from Observational M Turk Data							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Log Reward	0.186	-0.0600					
Log Reward-ML res	(0.0947)	(0.0585)	-0.0958	-0 0787	-0 198	-0 181	-0 0299
Log Reward ME res.			(0.00558)	(0.00651)	(0.0281)	(0.0161)	(0.00402)
N	644873	629756	644873	629756	93775	292746	258352
Clusters	41167	26050	41167	26050	6962	18340	24923
Туре	OLS	FE	ML	ML-FE	ML	ML	ML
Data	Pooled	Pooled	Pooled	Pooled	2017	2016-2017	2014-2016

~ \sim . •

Experimental measures of labor market power

- Two different margins for requester labor supply elasticity
- "Recruitment": responsiveness of worker to initial posted wage.
- "Retention": responsiveness of worker to bonus wage offered after worker accepts job.

Experimental Retention Elasticities

- Obtain replication data from two experiments (Horton and Zeckhauser 2011, Dube, Manning, Naidu 2016).
 - Design: post initial HIT at fixed reward.
 - Collect demographics and have do initial task (e.g. tag fugitive slave column in 1850 census).
 - Then ask if they would like to do more for additional randomized wage.

$$Pr(Accept_i) = \beta reward_i + \epsilon_i$$
 (2)

• Labor supply elasticity facing the firm is $\eta = \hat{\beta} \times \frac{E[reward]}{E[Accept]}$

Results

	Horton et	al 2011: P	robability of	Accepting Offer
Reward	0.127	0.140	0.0861	0.0973
	(0.0219)	(0.0241)	(0.0292)	(0.0333)
Ν	328	307	125	107
η	0.234	0.241	0.192	0.202
SE	0.0334	0.0364	0.0594	0.0664
Avg. Reward	11.60	11.63	11.37	11.50
Sophisticated	No	No	Yes	Yes
Controls	No	Yes	No	Yes
	Dube et a	al. 2017: P	robability of	Accepting Offer
Reward	Dube et a	al. 2017: P 0.0486	robability of 0.0764	Accepting Offer 0.0782
Reward	Dube et a 0.0267 (0.0171)	al. 2017: P 0.0486 (0.0202)	robability of 0.0764 (0.0348)	Accepting Offer 0.0782 (0.0329)
Reward Controls	Dube et a 0.0267 (0.0171) No	al. 2017: P 0.0486 (0.0202) Yes	robability of 0.0764 (0.0348) No	Accepting Offer 0.0782 (0.0329) Yes
Reward Controls N	Dube et a 0.0267 (0.0171) No 5184	al. 2017: P 0.0486 (0.0202) Yes 5017	robability of 0.0764 (0.0348) No 1702	⁷ Accepting Offer 0.0782 (0.0329) Yes 1618
Reward Controls N ໗	Dube et a 0.0267 (0.0171) No 5184 0.052	al. 2017: P 0.0486 (0.0202) Yes 5017 0.077	robability of 0.0764 (0.0348) No 1702 0.118	Accepting Offer 0.0782 (0.0329) Yes 1618 0.114
Reward Controls Ν η SE	Dube et a 0.0267 (0.0171) No 5184 0.052 0.0333	0.0486 (0.0202) Yes 5017 0.077 0.0322	robability of 0.0764 (0.0348) No 1702 0.118 0.0534	Accepting Offer 0.0782 (0.0329) Yes 1618 0.114 0.0479
Reward Controls Ν η SE Avg. Reward	Dube et a 0.0267 (0.0171) No 5184 0.052 0.0333 9	al. 2017: P 0.0486 (0.0202) Yes 5017 0.077 0.0322 9	robability of 0.0764 (0.0348) No 1702 0.118 0.0534 9	Accepting Offer 0.0782 (0.0329) Yes 1618 0.114 0.0479 9

Experimental Recruitment Elasticities

- Obtain replication data from three experiments (Hsieh 2016, Ho et al. 2015, Yin et al. 2018).
 - Design: post initial HIT at fixed reward.
 - Collect demographics and get Mturk worker id.
 - Randomize HIT postings to be seen by subset of worker ids ("honeypot" design).
 - Again estimate probability of accepting as function of reward and compute η .

Results

	Recruitment Elasticities From Three Experiments					
	(1)	(2)	(3)	(4)		
Reward	0.00186	0.0451	0.0287	0.00744		
	(0.00188)	(0.0587)	(0.0104)	(0.00385)		
N	600	1800	338	2738		
η	0.0497	0.0724	0.115	0.0610		
SE	0.0503	0.0944	0.0417	0.0290		
Avg. Reward	83.33	4	10.04	22.13		
Experiment	Spot Diff.	Classify Reviews	Brainstorming	Pooled		

Remarkably Stable Estimates - Experimental and Observational Approaches

Recruitment (Double-ML, pooled MTurk samples) By Reward Quintile

By Task Type: Employers Are Using Their Monopsony Power

Conclusion

- Labor supply elasticities facing requesters on MTurk quite low.
- Implies optimizing employers are paying workers less than 12% of productivity.
- Implies training sample sizes and statistical power lower than would be obtained under competitive market?
- Why is there this monopsony power? Job differentiation likely candidate.
- Solutions: Rating systems (e.g. Turkopticon), alternative platforms (Dynamo).
- Solutions: MTurk allowing more wage discrimination, but crowdsourcing market rewards pro-requester platforms.

Summary Statistics

	2014-2016 Scrape Mean	Std Dev	2016-2017 Scrape Mean	Std Dev	2017 Scrape Mean	Std Dev
Duration (Minutes)	3370.360	9414.101	3519.257	9721.523	2293.174	8375.199
Reward (Cents)	38.014	63.741	70.397	92.420	61.774	87.358
Log Reward ML Prediction	2.639	1.229	3.431	1.416	3.286	1.362
Log Duration ML Prediction	5.210	2.642	6.223	1.414	5.301	1.589
Log Duration ML Residuals	-0.004	0.892	-0.013	1.432	0.003	1.466
Log Reward ML Residuals	-0.001	0.679	-0.003	0.483	-0.001	0.459
Time Allotted (Minutes)	77.793	204.495	595.510	2916.676	434.435	2102.791
Max No. of HITs in Batch	83.413	1303.061	59.867	1627.825	53.539	931.335
Observations	258352		292746		93775	