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Abstract

What is the impact of sample selection on the inference payoff of an evaluator facing
a monotone decision problem? We show that anticipated selection increases or decreases
the accuracy of a statistical experiment according to whether the reverse hazard rate of the
data distribution is log-supermodular—as in location experiments with normal noise—or log-
submodular. The results are applied to the analysis of strategic sample selection by a biased
researcher and extended to the case of uncertain and unanticipated selection. Our theoretical
analysis offers applied research a new angle on the problem of selection in empirical and exper-
imental studies, by characterizing when sample selectivity, selective assignment to treatment,
and strategic omission of variables benefit or hurt the evaluator.
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1 Introduction

Observational data are often nonrandomly selected, due to choices made by the subjects under
investigation or sample inclusion decisions by data analysts.1 Suppose a new treatment is taken
by the healthiest patients rather than by random patients in a group. Because of selection, positive
outcomes become more likely, but they provide weaker evidence that the treatment is effective.
Balancing these two effects, how does sample selection affect the quality of inference? Is the eval-
uator’s assessment of the treatment effect more accurate with selective or with random assignment?
When estimating a regression coefficient of interest, is a selected sample more or less informative
than a random sample with the same sample size? In a different, yet similar vein, is a regression
with a random missing covariate more or less informative than a regression with a strategically
omitted variable?

Experimental data can also suffer from selection problems challenging internal validity, when
researchers subvert the random allocation of subjects to treatment rather than control.2 Similar
questions arise in a number of other contexts. For instance, the right of peremptory challenge gives
a defendant the option to strike down a number of jurors. Given that the defendant selects the most
favorable jurors, how is the quality of final judgement affected? When feeding consumer reviews
to potential buyers with limited attention, should an e-commerce platform post random reviews or
allow the merchant to cherry-pick them? When testing a student in an exam, should the teacher
ask questions at random or allow the student to select the most preferred questions out of a batch?

These comparisons are all instances of one and the same issue: assessing the impact of selection
in a monotone decision problem. There is an unknown real-valued state θ , e.g. the effect of a
new treatment, or the true value of a regression coefficient. An evaluator must choose an action,
e.g. approve the new treatment, or estimate the coefficient, knowing that marginally increasing the
action decreases the payoff in low states and increases it in high states. The evaluator decides after
observing the realization of a statistical experiment consisting of a random vector X = (X1, . . . ,Xn).
For instance, in a location problem, observations have the form xi = θ +ε i, where ε i represents the
baseline health of an individual, or the noise term in a regression.3 Our main question is, in which
of the following scenarios does the evaluator make better decisions:

1For instance, from the outset Heckman (1979) refers to these two sources of selection.
2See, for example, Schulz (1995) and Berger (2005) for extensive accounts of subversion of randomization in

clinical trials.
3In other applications, θ may represent a defendant’s level of guilt, the quality of a merchant’s good, or a student’s

ability, and ε i a juror’s bias, a reviewer’s leniency, or a student’s specific knowledge of a certain topic.
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Figure 1: Simple hypothesis testing with a normal experiment: selection provides more accurate
information, decreasing false negatives while keeping false positives the same.

• Random Experiment. The n observations are i.i.d. draws from a state-dependent cumula-
tive distribution F(·|θ). In a location problem, this means that the noise terms ε1, . . . ,εn are
i.i.d. draws from a known cumulative distribution F(·), and F(x|θ) = F(x−θ).

• Selected Experiment. The n observations are selected—possibly strategically, by another
party—as the n highest out of k > n presampled i.i.d. draws from F(·|θ). In a location
problem, equivalently, ε1, . . . ,εn are the n highest of k > n i.i.d. draws from F .

Following a standard approach pioneered by Blackwell (1951, 1953), we address this question
by comparing the probability distributions over actions that the evaluator can induce, in each state,
in the two experiments. The approach is easy to illustrate in the special case of a simple hypothesis
testing problem: two states, a low state θ L and a high state θ H , and two actions, rejection—the
correct choice in the low state—and acceptance—the correct choice in the high state. In this
case the evaluator’s decision is the familiar trade-off between the probability of a false positive—
accepting in the low state—and the probability of a false negative—rejecting in the high state.

Consider a one-dimensional (sample size n = 1) location problem with a normal noise distribu-
tion F . In the random experiment, the evaluator observes the realization of a random variable that
is normally distributed with mean θ L in the low state, and mean θ H in the high state, as illustrated
by the blue curves in Figure 1. The evaluator resolves the trade-off between false positives and
false negatives by accepting if and only if the observed realization x exceeds some cutoff point x̄.4

4A location problem with normal noise, like every other experiment considered in this paper, satisfies the monotone
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The optimally chosen probability of a false positive is then 1−F(x̄− θ L), denoted by FP in the
figure, while the probability of a false negative is F(x̄−θ H), denoted by FN.

How does a selected experiment with presample size k > 1 compare? In the selected exper-
iment, the noise distribution becomes Fk, that is, the evaluator observes a random variable dis-
tributed according to Fk(x−θ L) in the low state, and Fk(x−θ H) in the high state—these distribu-
tions are represented by the red curves in Figure 1. In this example with normal noise, the selected
experiment turns out to be better: by adopting the (possibly suboptimal) cutoff point ȳL in this ex-
periment, the evaluator induces as many false positives, because 1−Fk(ȳL−θ L) = 1−F(x̄−θ L),
but also induces fewer false negatives, because Fk(ȳL−θ H)< F(x̄−θ H).

What explains the beneficial impact of selection just described? To answer this question we
start from an observation made by Lehmann (1988), who pointed out that an equivalent way to
formulate the property that ȳL induces as many false positives and fewer false negatives is to say
that the selected experiment is more accurate.5 This means that the cutoff point ȳH that induces
as many false negatives, defined by the equation Fk(ȳH − θ H) = F(x̄− θ H), is larger than ȳL.6

Indeed, by adopting the smaller cutoff ȳL the evaluator necessarily induces more acceptance—and
in particular more acceptance in the high state—than by adopting the larger cutoff ȳH . Note that
this is exactly what happens in the normal case depicted in Figure 1.

Our first main result identifies a necessary and sufficient condition for a larger presample size k
to increase or decrease accuracy in one-dimensional location experiments. Theorem 1 shows that
accuracy monotonically increases in presample size k if and only if the reverse hazard function of
the basic noise distribution, − logF , is logconcave, as with normal or logistic noise. Likewise, ac-
curacy monotonically decreases in k if and only if − logF is logconvex, as with exponential noise.
Intuitively, our logconcavity criterion requires that neither the top tail of the distribution should be
thicker than in the Gumbel distribution, nor the bottom tail should be thinner—for otherwise the
thickening of the upper tail or the thinning of the bottom tail created by selection would decrease
accuracy. For example, the condition implies that the evaluator always gains from sample selection
when F is normal or logistic, but always loses when F is exponential.

To assess the impact of selection in the general case, with possibly non-additive noise and any

likelihood ratio property: given any two states, the higher the realization x, the higher the relative odds of the higher
state. This property implies that the evaluator’s optimal decision is increasing in x. With two actions and sample size
n = 1, this simply means choosing the higher action (acceptance) if and only if x is at least as large as some cutoff x̄.

5The latter nomenclature is due to Persico (2000).
6Going beyond binary state, and comparing arbitrary experiments X and Y with distributions F(·|θ) and G(·|θ),

the property that Y is more accurate than X means that the function (G(·|θ))−1(F(x|θ)) is increasing in θ for every x.
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sample size n > 1, we employ a natural generalization of Lehmann’s (1988) concept of accuracy,
which we call conditional accuracy. This notion is new to our paper, and allows comparisons
between any pair of experiments, with arbitrary patterns of correlation among observations. Con-
ditional accuracy shares the basic intuition with (and, for n = 1, it reduces to) Lehmann’s (1988)
original notion. To get this intuition in the most transparent way, consider the simple hypothesis
testing setup. In an n-dimensional experiment X the evaluator again adopts a cutoff strategy, but
now the cutoff is a more complicated object, an (n− 1)-dimensional curve in Rn. For example,
with a vector of i.i.d. observations x = (x1, . . . ,xn) from a location experiment with normal noise,
the evaluator accepts if and only if the average observation exceeds a certain threshold.7 We say
that another experiment Y is conditionally more accurate than X if the (suitably defined) cutoff
curve that induces as many false positives in Y as in X , lies entirely below the (analogously de-
fined) curve that induces as many false negatives. By Lehmann’s (1988) argument we can then
show that in Y the evaluator can achieve as many false positives as in X , but fewer false negatives.

The notion of conditional accuracy is the key technical tool needed to tackle the new issues
arising in the multidimensional case. Indeed, the main difficulty in comparing multidimensional
selected experiments is precisely due to the selected observations x1, . . . ,xn being correlated with
each other, even conditionally on the state θ . Our tool allows us to disentangle the net value of
information added by each observation, and hence understand when selection adds or subtracts
value to the evaluator’s problem as the presample size k increases. Our second and most impor-
tant result, Theorem 2, shows that conditional accuracy monotonically increases or decreases in
presample size k, according to whether the reverse hazard rate f (x|θ)/F(x|θ) is log-supermodular
or log-submodular. In a location experiment, log-supermodularity reduces to logconcavity of the
noise distribution’s reverse hazard rate f/F . This condition strengthens the logconcavity crite-
rion in Theorem 1 by adding a regularity condition. Intuitively, the noise distribution must be
increasingly thinner at the top and thicker at the bottom, compared to the Gumbel distribution.

Our results have important implications for applied research. While typically thought of ex-
clusively as a threat to internal validity, selective assignment based on untreated outcomes—or,
more generally, some unobservable characteristics correlated with untreated outcomes—can ac-
tually benefit an evaluator who properly anticipates selection. Actually, as we discuss at the end
of the paper, selection may benefit even an unwary evaluator who does not anticipate it. Similar
considerations apply in a regression context. Whereas other forms of selection—as occurring, for
instance, in truncated regression—decrease accuracy, selection based on order statistics is benefi-
cial (for a fixed sample size) under the conditions identified in our theorems. By the same token, a

7As is well known, in the normal case the average observation is a sufficient statistic for the whole vector of
observations. In this case, the cutoff curve has the form ∑i xi/n = x̃ for some x̃.
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regression with a random missing covariate can be less informative than a regression with, say, a
variable omitted in order to maximize selection bias.

Selection naturally arises when the evidence is provided by a strategic researcher who observes
a presample x1, ...,xk of size k and then reports the n most favorable realizations to the evaluator.
Given the presample size k and the fact that the evaluator uses an acceptance cutoff rule, it is indeed
optimal for the researcher to report the highest realizations. We provide a strategic foundation for
sample selection by introducing a researcher whose payoff increases in the evaluator’s action. For
example, the researcher aims at convincing the evaluator that the true state is high—e.g. that a
new treatment is effective, or that a regression coefficient is large. The researcher’s incentives to
bias upward the evaluator’s inference through sample selection are anticipated in equilibrium by
the evaluator. Under the conditions in our theorems, equilibrium selective sampling benefits also
the researcher in the empirically relevant case where the evaluator a priori favors rejection; when
instead the evaluator a priori favors acceptance, equilibrium selection harms the researcher.

We also endogenize the amount of selection in terms of costly investment by the researcher in
obtaining the k presample realizations. The evaluator’s anticipation and resulting adjustment for
selection partly frustrates the researcher’s attempt to manipulate. If selection is fully anticipated in
equilibrium—for example because the researcher’s cost of presample collection is known—then
sample selection is a pure rat race when the noise follows a Gumbel distribution. In that case, se-
lection has no impact on the payoffs of the two parties. The result is a loss by the researcher exactly
equal to the cost of presample collection. Thus, with Gumbel noise the researcher unambiguously
benefits from commitment not to allow (or, equivalently, to disclose) presample collection.8

Finally, we illustrate how an evaluator who can ex ante forbid sample selection may prefer not
to do so, in order to incentivize the researcher to provide more evidence. Intuitively, consider a
situation in which the researcher benefits from selection because of the increased acceptance rate
that results from selective reporting. Given that the researcher’s individual rationality constraint is
relaxed, the researcher’s incentives to collect a presample larger than the required sample ends up
benefitting the evaluator under our logconcavity condition on the reverse hazard rate. Through this
mechanism, the evaluator can benefit from limiting the sample size, tolerating sample selection
from a presample larger than the sample, and committing not to look at more data.

The final part of the paper discusses the welfare impact of unanticipated and uncertain selec-
tion. Surprisingly, there are natural situations—in particular, the realistic scenario in which the

8More generally, selection is not completely self defeating, even when the evaluator correctly anticipates the extent
of selection k. Our results characterize the net impact of properly anticipated selection on acceptance probability (the
researcher’s decision payoff) and the evaluator’s decision payoff.
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evaluator a priori strongly favors rejection—in which selection benefits even when it is completely
unanticipated. Intuitively, if the evaluator does not adjust for selection, acceptance occurs more
often in every state, and the increase in false positives can be smaller than the reduction in false
negatives. In addition we show that, while uncertainty about k tends to damage the evaluator,9 a
selected experiment with an uncertain k can still be better than a random experiment.

Related Literature. Concerns about data selection and manipulation have long been voiced by
the science and medicine literature and have led to important policy responses.10 However, there
is a dearth of modeling in the area.11 An early exception is Blackwell and Hodges (1957), who
analyze how an evaluator should optimally design a sequential experiment to minimize selection
bias, a term they coined to represent the fraction of times a strategic researcher is able to correctly
forecast the treatment assignment.12 However, they did not model the information available to
the researcher at the assignment stage. Moreover, the ensuing literature focused on exogenous
selection bias and on how to adjust for it, rather than on its strategic origin and its impact on the
quality of inference, on which we focus. Once we explicitly model information, we characterize
situations in which selection actually benefits the evaluator, contrary to what Blackwell and Hodges
(1957) stipulate.

Relative to work on optimal persuasion following Rayo and Segal (2010) and Kamenica and
Gentzkow (2011), in our setting information acquisition is costly and information manipulation is
naturally constrained by the need of reporting a signal selected from the presample. With sample
size n = 1, our researcher discloses a single observation, as in the limited-attention model first
proposed by Fishman and Hagerty (1990).13 Thus, we have a signal-jamming model of equilibrium

9This effect is most transparent in the Gumbel case, as indifference to selection hinges on the evaluator’s exact
knowledge of the extent of selection k.

10See, for example, the analysis of Schulz, Chalmers, Hayes, and Altman (1995) and the CONSORT statement,
http://www.consort-statement.org.

11Glaeser (2008) discusses a number of issues in this regard. Di Tillio, Ottaviani, and Sørensen (2017) compare
different types of selection in the context of an illustrative model with binary noise, which violates the logconcavity
assumption maintained in this paper.

12Blackwell and Hodges (1957) argue that selection bias is minimized by a truncated binomial design, according
to which the initial allocations to treatment and control are selected independently with a fair coin, until half of the
subjects are allocated to either treatment or control; from that point on, allocation is deterministic. Efron (1971), in-
stead, characterizes the selection bias resulting from a biased coin design, according to which the probability of current
assignment to treatment is higher if previous randomizations resulted in excess balance of controls over treatments.

13See also Henry (2009), Dahm, Gonzàlez, and Porteiro (2009), Felgenhauer and Schulte (2014), Hoffmann, Inderst,
and Ottaviani (2014), and Herresthal (2017) for persuasion models with endogenous information acquisition. Henry
and Ottaviani (2015) analyze a dynamic model of persuasion with costly information acquisition à la Wald (1945),
where information is truthfully reported at the time of application.
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persuasion through presample collection and then sample selection. The researcher’s choice of
the size k of the presample is akin to the agent’s effort choice in Holmström’s (1999) classic
career concern model. The wrinkle here is that this effort results in private information, which the
researcher then uses to select the reported information.

In a complementary approach to modeling conflicts of interest in statistical testing, Banerjee,
Chassang, Monteiro, and Snowberg (2017a) propose a theory of an ambiguity-averse researcher
facing an adversarial evaluator.14 In another complementary approach, Tetenov (2016) analyzes
an evaluator’s optimal commitment to a decision rule when privately informed researchers select
into costly testing. Instead, we focus on the impact of a researcher’s manipulation of data on the
welfare of an uncommitted evaluator.

2 Statistical Setup

An evaluator chooses an action from a finite set A = {a1, . . . ,aL} ⊆ R with a1 < · · · < aL under
uncertainty about the true value of a state θ ∈ Θ ⊆ R, where Θ is either a finite set or a (possibly
unbounded) interval. The evaluator holds a prior belief on the state, represented by a density (or
mass, if Θ is finite) function π , and a payoff function u : Θ×A→ R defining a monotone decision
problem: there exist states θ 1 6 · · · 6 θ L−1 such that, for every state θ and every 1 6 ` < L, the
difference u(θ ,a`+1)−u(θ ,a`) is nonpositive if θ 6 θ ` and nonnegative if θ > θ `.

Information and Optimal Decision. Before deciding, the evaluator observes the realization of
an experiment, an n-dimensional random vector X = (X1, . . . ,Xn) taking values in some domain
D⊆Rn and distributed according to a state-dependent density function g(·|θ) satisfying the mono-
tone likelihood ratio (MLR) property: for any two realizations x,x′ ∈ D with x′ = x, the ratio
g(x′|θ)/g(x|θ) is increasing in θ .15 The MLR property has an important consequence in mono-
tone problems: the evaluator can, without loss, limit attention to monotone strategies, where the
chosen action increases with the observed realization of X .16

14See also Kasy (2016) and Banerjee, Chassang, and Snowberg (2017b).
15Here and in the remainder of the paper, given two vectors x = (x1, . . . ,xn) and x′ = (x′1, . . . ,x

′
n), we say that x′ is

larger than x, and write x′ = x, to indicate that x′i > xi for every i = 1, . . . ,n. Similarly, we say x′ is smaller, and write
x′ 5 x, to indicate that x′i 6 xi for every i = 1, . . . ,n.

16By Bayes’ rule, the MLR property implies that the evaluator’s posterior belief on the state increases with the
observed realization x in the likelihood ratio order, that is, for every x and x′ = x the ratio π(θ |x′)/π(θ |x) is increasing
in θ . Thus, by our assumption on payoffs, the evaluator cannot lose by (weakly) increasing the chosen action in
response to a higher realization. For a proof of this claim, see Quah and Strulovici (2009, Theorem 2).
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Simple Hypothesis Testing. The most elementary instance of a monotone decision problem—
our leading example in much of our discussion below—is a simple hypothesis testing problem.
There are two states, a low state θ L and a high state θ H > θ L, and two actions, rejection (a1) and
acceptance (a2). The evaluator would like to reject in the low state and accept in the high state,
so that payoffs satisfy u(θ L,a2)6 u(θ L,a1) and u(θ H ,a2)> u(θ H ,a1). Given a realization x, the
evaluator optimally accepts if and only if

g(x|θ H)/g(x|θ L) > r, (1)

where r depends on the problem parameters.17 In a one-dimensional (n = 1) experiment, this
monotone strategy takes a familiar form: accept if and only if x > x̄, where x̄ is the cutoff point
satisfying (1) with equality. In general, with n > 1, the realizations x satisfying (1) with equality
define a curve in Rn, above which the evaluator accepts. More precisely, the acceptance region
defined by (1) is an upper set in the experiment’s domain, i.e. a set U ⊆ D containing every point
of D that is larger than some point of U . Given the decision to accept in U and reject in D\U , it is
easy to see that the evaluator’s optimal expected payoff can be written (disregarding constants) as

− r PrL(X ∈U)︸ ︷︷ ︸
prob. false positive

− PrH(X /∈U)︸ ︷︷ ︸
prob. false negative

, (2)

a negatively weighted sum of the probability of a false positive (accepting in the low state) and the
probability of a false negative (rejecting in the high state), with r serving as relative weight.

Random vs. Selected Experiments. Our main concern in this paper is the welfare comparison
between experiments of a particular form: the evaluator observes the n highest of k > n random
variables that are conditionally i.i.d. given the state. Formally, given a family of distribution func-
tions (F(·|θ))θ∈Θ with associated densities ( f (·|θ))θ∈Θ satisfying the MLR property, a selected
experiment is a random vector X = (X1, . . . ,Xn) where, for each state θ , the random variable X1 is
the highest of k > n random draws from F(·|θ), the random variable X2 the second highest, and so
on. Thus, the random vector X takes values in the domain

D = Rn
> := {x ∈ Rn : x1 > · · ·> xn},

and the density function of X in state θ is given by the following formula:

g(x|θ) = k!
(k−n)!

Fk−n(xn|θ) f (x1|θ) · · · f (xn|θ).18

17The conditional probability of θ H given that X = x equals π(θ H)g(x|θ H)/[π(θ L)g(x|θ L)+π(θ H)g(x|θ H)], that
is, 1/[(π(θ L)/π(θ H))(g(x|θ L)/g(x|θ H))+1]. Thus, the expected payoff difference between acceptance and rejection
is nonnegative if and only if g(x|θ H)/g(x|θ L)> r := [π(θ L)/π(θ H)][u(θ L,a1)−u(θ L,a2)]/[u(θ H ,a2)−u(θ H ,a1).

18The MLR property holds for this density because log-supermodularity is preserved by integration (Athey, 2002).
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Note that the cumulative distribution function of X1 is Fk(·|θ) and, for every i = 2, . . . ,n, the
conditional cumulative distribution function of Xi given that X1 = x1, . . . ,Xi−1 = xi−1 depends only
on the last of these conditions, and is given by

Fk−i+1(xi |θ)
Fk−i+1(xi−1|θ)

(xi 6 xi−1). (3)

We call n the sample size and k the presample size of the selected experiment. When k = n, we call
the experiment random, because it is informationally equivalent to n i.i.d. draws from F(·|θ).19

A particular case that often arises in applications is the case of a location experiment, where
the evaluator knows the shape of the data distribution, but does not know where the distribution is
located. Formally, the distributions in the family (F(·|θ))θ∈Θ are all shifted versions of one and
the same cumulative distribution function F admitting a logconcave density function f , that is,

F(x|θ) = F(x−θ) ∀θ ∈Θ, ∀x ∈ R.

In this case we call F the basic noise distribution, because the random variables X1, . . . ,Xn in a
selected location experiment X with sample size n and presample size k have the following form:
X1 = θ + εk:k, . . . ,Xn = θ + εk−n+1:k, where the noise term εk:k is the highest of k > n noise terms
ε1, . . . ,εk randomly drawn from F , the noise term εk−1:k the second highest, and so on.

Comparing One-Dimensional Experiments by Accuracy. Our comparison between selected
experiments with sample size n = 1 is based on the notion of accuracy, first investigated by
Lehmann (1988).20 Given two arbitrary one-dimensional experiments X and Y with respective
distributions F(·|θ) and G(·|θ), we say that Y as more accurate than X if the function ζ θ (x) =
(G(·|θ))−1(F(x|θ)) is increasing in θ for every x. This monotonicity criterion is a necessary and
sufficient condition for Y to be preferred to X in every monotone decision problem: if Y is more
accurate, then the evaluator can induce a state-by-state more favorable distribution over actions
than with X , as shown in Lehmann (1988, Theorem 5.1); see also Proposition 1 below for the
special case with n = 1. For example, in a simple hypothesis testing problem, as discussed in the
introduction and in our illustration of Theorem 1 in the next section, the cutoff ȳL = ζ L(x̄) induc-
ing in Y the same false positives as in X , is smaller than the cutoff ȳH = ζ H(x̄) matching the false

19Clearly, knowing in advance that in every state the random variables X1, . . . ,Xn are sorted so that X1 is the highest,
X2 the second highest, etc. is of no value for the evaluator.

20Accuracy can be defined as Blackwell’s (1951,1953) sufficiency, restricted to monotone decision problems in-
volving one-dimensional experiments satisfying the MLR property. This class of problems was first studied by Karlin
and Rubin (1956). The term accuracy was introduced in Persico (2000) and later adopted by Quah and Strulovici
(2009). For applications of the notion of accuracy to economic problems, see also Jewitt (2007).
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negatives.21 This implies that ȳL induces fewer false negatives in Y than x̄ does in X , and a fortiori,
recalling (2), that the evaluator must prefer Y to X . Our analysis of multidimensional experiments
in Section 3.2 builds on a natural generalization of accuracy, that we will call conditional accuracy.

3 Welfare Impact of Selection

In this section we characterize the families of distributions (F(·|θ))θ∈Θ such that selection has
a monotone welfare impact: the larger the presample size, the better (or the worse) the selected
experiment. We begin our analysis with the simple case of one-dimensional location experiments.
Our characterization is tighter and simpler to illustrate in this case, and it will provide a useful
starting point for introducing the characterization in the general case.

3.1 One-Dimensional Selected Location Experiments

A selected location experiment with sample size n = 1 and presample size k > 1 has the form
X = θ + εk:k where εk:k = max{ε1, . . . ,εk} and ε1, . . . ,εk are random draws from a basic noise
distribution F with logconcave density f . Our first main result characterizes the basic noise distri-
butions F for which the evaluator’s optimal expected payoff is increasing, and those for which it is
decreasing, in the presample size k.

Theorem 1. Fixing the sample size to n = 1, an increase in the presample size makes a selected
location experiment more (resp. less) accurate if and only if the reverse hazard function of the
basic noise distribution, − logF(ε), is logconcave (resp. logconvex) in ε .

To gain intuition for the role of logconcavity of the reverse hazard function in our characteriza-
tion,22 it is helpful to discuss the result in the context of simple hypothesis testing. Let X = θ +εk:k

and Y = θ + εm:m be selected experiments with sample size n = 1 and different presample sizes,
k and m 6= k, respectively. Let x̄ denote any cutoff point that the evaluator may set in experiment
X , accepting if and only if X > x̄. Then Y guarantees a larger payoff than X if, for any such cutoff
point, there is a corresponding cutoff point ȳL that, in experiment Y , leads to as many false positives

21Here and in the sequel, to ease notation, we write ζ L and ζ H instead of the more cumbersome ζ θ L
and ζ θ H

. We
adopt analogous notations for other objects as well.

22Marshall and Olkin (2007) define the hazard function as logF . Since F ranges between zero and one, logF is
necessarily negative. Our definition uses a minus sign, so that logconcavity of the function makes sense.
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Figure 2: Normal one-dimensional location experiment: double-log transformation.

and fewer false negatives, so that

Fm(ȳL−θ L) = Fk(x̄−θ L) and Fm(ȳL−θ H)6 Fk(x̄−θ H). (4)

Solving the equation in (4) for ȳL and plugging the result into the inequality in (4), we conclude
that Y guarantees a higher payoff in every simple hypothesis testing problem (i.e. whatever values
θ L, θ H and x̄ may take) if and only if the function ζ θ (x) = (Fm)−1(Fk(x−θ)

)
+θ is increasing

in θ for every x, that is, if and only if Y is more accurate than X . Taking the derivative of ζ θ (x)
with respect to θ , for every x we must then have

mFm−1(ζ θ (x)−θ) f (ζ θ (x)−θ)> kFk−1(x−θ) f (x−θ). (5)

Equivalently, changing variable from x to u = Fk(x−θ), it must be the case that for all u ∈ [0,1]
the slope of Fm computed at the quantile ζ θ (x)−θ = (Fm)−1(u) is greater than the slope of Fk

computed at the corresponding quantile x−θ = (Fk)−1(u).

Under what conditions on F , m and k does property (5) hold for every x? To answer this ques-
tion, it is convenient to first transform Fk and Fm in such a way that the transformed functions are
parallel vertical shifts of each other. The suitable transformation is the strictly increasing function
u 7→ φ(u) = − log(− logu), because then φ(Fm(·)) = φ(Fk(·))− log(m/k). The transformation
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is illustrated in Figure 2 for the case of a standard normal F and m > k.23 Since our double-log
transformation is strictly increasing, property (5) is equivalent to the slope of φ(Fk(·)) at x− θ

being less than the slope of φ(Fm(·)) at ζ θ (x)− θ . Equivalently, the slope of φ(Fk(·)) itself is
greater at ζ θ (x)−θ than at x−θ . Since φ(Fk(·)) = φ(F(·))− logk, this is satisfied when either
φ(F(·)) is convex and m > k (because m > k implies ζ θ (x)> x), or φ(F(·)) is concave and m < k
(because m < k implies ζ θ (x) 6 x). Thus, we conclude that a larger presample size benefits the
evaluator when the reverse hazard function − logF is logconcave (as in the normal case illustrated
in Figure 2) and hurts the evaluator when − logF is logconvex.

Dispersion and Accuracy. When X and Y are location experiments, so that F(x|θ) = F(x− θ)

and G(y|θ) = G(x− θ) for some noise distributions F and G, we can also equivalently apply
the notion of dispersion, instead of appealing to accuracy. Bickel and Lehmann (1979) define G
as less dispersed than F if the quantile difference G−1(u)−F−1(u) is decreasing in u ∈ [0,1].
This notion also appeared in our discussion (and is, in fact, used in the proof) of Theorem 1,
when we asked whether the slope of Fm computed at ζ θ (x)−θ = (Fm)−1(u) is greater than the
slope of Fk computed at x−θ = (Fk)−1(u). Accuracy and dispersion are equivalent for location
experiments. A location experiment is more accurate if and only if the noise distribution is less
dispersed (Lehmann, 1988, Theorem 5.2).

Gumbel Distribution. There is only one distribution F such that − logF is both logconcave
and logconvex, i.e. loglinear, namely the Gumbel (maximum) extreme value distribution, F(ε) =

exp(−exp(−ε)). This distribution, which plays a special role in the ensuing analysis, is such that
for every k the selected experiment with presample size k is neither less nor more accurate than
a random experiment—the evaluator is indifferent to selection. The following intuitive argument
also leads to the same conclusion. With a presample size equal to k, the noise distribution is
Fk(ε) = exp(−k exp(−ε)) = F(ε− logk). Thus, compared to a random sample, selection inflates
noise by a constant, logk. The evaluator adjusts for this inflation, and is back to square one.

Logistic and (Generalized) Exponential Distributions. Besides the normal case discussed ear-
lier, another instance where more selection is better for the evaluator is the logistic case, F(ε) =

1/(1+ e−ε). (We prove this and the following claim below.) Our main example of the opposite
case, where more selection hurts the evaluator, is the exponential distribution F(ε) = 1− e−ε (for
ε > 0). More generally, given any a <−1, the distribution F such that

F(ε) = exp
(

1
1+a

[
(1− exp(−ε))1+a−1

])
(ε > 0) (6)

is such that − logF is logconvex. (The exponential distribution is the special case a→−1.)

23The plots are drawn for k = 1 and m = 8, but any k > 1 and m > k give the same qualitative result.
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Contribution to Stochastic Ordering of Order Statistics. Previous results in the literature on
stochastic ordering of order statistics only covered basic noise distributions with decreasing hazard
rate. Notably, Khaledi and Kochar (2000, Theorem 2.1) showed that for any distribution with de-
creasing hazard rate higher order statistics are more dispersed.24 Given that logconcavity implies
increasing hazard rate by Prekopa’s theorem, the only basic noise distribution with logconcave
density for which Khaledi and Kochar’s (2000) result applies is the exponential (loglinear) distri-
bution, which has constant hazard rate.25 The novel characterization in Theorem 1 applies more
generally to the relevant case of basic noise distributions with logconcave densities.

Real Presample Size. According to our definition, the presample size is a natural number k, but the
interpretation—as well as the statement in the theorem—for real numbers k > 1 is equally valid.
Increasing selection from k to m > k changes the noise distribution from Fk to Fm = (Fk)m/k. This
is akin to having basic noise distribution Fk and a fractional presample size m/k > 1. Our compar-
ative statics result in Theorem 1 characterizes when this increases accuracy. Note the implication
that the basic noise distribution F is such that selection monotonically benefits (or hurts) the eval-
uator if and only if the basic noise distribution Fk has the same property for every real number
k > 1. Indeed, both properties are equivalent to logconcavity of − logF .

3.2 General Multidimensional Selected Experiments

We now turn to the comparison between selected experiments from a (not necessarily location
type) family of distributions (F(·|θ))θ∈Θ with any sample size n > 1. As we shall see, the results
obtained in the context of one-dimensional location experiments for the common distributions dis-
cussed earlier (normal, Gumbel, exponential, etc.) carry over to arbitrary sample sizes. However,
the extension of the characterization in Theorem 1 to the multidimensional case is far from imme-
diate, and poses some important challenges.

In a selected experiment with sample size n and presample size k, the evaluator observes the
highest, second highest, . . . , nth highest of k random draws from F(·|θ). Toward a generalization
of our analysis beyond one-dimensional experiments, one may therefore try to grasp intuition from
the individual comparisons of each intermediate order statistic with a random draw. However,
following this approach would be misleading, for two reasons. First, even in those cases where the

24According to Khaledi and Kochar (2000, Theorem 2.1), if Xi’s are i.i.d. with decreasing hazard rate, then Xi:n is
less dispersed than X j:m whenever i 6 j and n− i > m− j. Setting i = n = 1 and j = m = k, we have that the maximum
of k i.i.d. variables with decreasing hazard rate is more dispersed than the original variable.

25Theorem 1 also covers distributions with decreasing hazard rate, where − logF is necessarily logconvex.
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n highest of k > n realizations are better than, say, n random draws, an intermediate order statistic
(say, the second highest, or third highest, etc.) is, in isolation, generally not more accurate than a
random draw.26 Second, as is evident from (3), the n highest realizations of k > n random draws
are correlated among themselves, even conditionally on the state. Intuitively, correlation tends to
reduce information,27 which creates further ambiguity about the sign of the net marginal value of
information added by an intermediate order statistic.

To shed light on these issues, we now introduce a generalization of Lehmann’s (1988) notion
of accuracy, which allows the comparison between experiments (not necessarily selected experi-
ments) featuring arbitrary correlation patterns.

Comparing Multidimensional Experiments by Conditional Accuracy. Let X = (X1, . . . ,Xn)

and Y = (Y1, . . . ,Yn) be experiments with respective domains DX and DY . For every state θ , we
define a function ζ θ : DX → DY such that in state θ the random vector ζ θ (X) has the same dis-
tribution as Y , as follows: ζ θ (x1, . . . ,xn) = (z1, . . . ,zn), where z1, . . . ,zn are defined recursively by
the equations below (for brevity, we write < i for the indices 1, . . . , i−1):

Prθ (X1 6 x1) = Prθ (Y1 6 z1) and Prθ (Xi 6 xi|X<i = x<i) = Prθ (Yi 6 zi|Y<i = z<i). (7)

Then we say that Y is conditionally more accurate than X if ζ θ (x) is an increasing function of θ

for every x ∈ DX . Note that if n = 1, the function ζ θ is defined by the first equation in (7). In this
case, our definition reduces to Lehmann’s (1988).

In what sense is a conditionally more accurate experiment better for the evaluator? To gain
intuition, consider simple hypothesis testing. In experiment X the evaluator optimally accepts if
and only if X ∈ U , where U is some upper set. Now consider experiment Y and suppose that
the evaluator, perhaps suboptimally, accepts if and only if Y ∈ ζ L(U). How does this strategy

26Consider, for example, a location experiment where the basic noise distribution is the positive exponential distri-
bution: F(x|θ) = F(x−θ) = exp(x−θ) for x 6 θ . Let X1, . . . ,Xk be i.i.d. draws from F(x|θ), and let Y1 and Y2 be
the highest and the second highest of these draws. The cumulative distribution functions of Y1 and Y2 are given by
Prθ (Y1 6 y) = exp(k(y−θ)) and Prθ (Y2 6 y) = k exp((k−1)(y−θ))− (k−1)exp(k(y−θ)), respectively. Thus, the
function ζ θ such that ζ θ (X1) has the same distribution as Y1 is ζ θ (x) = (x−θ)/k+θ , which increases with θ . Indeed,
by Theorem 1, experiment Y1 is more accurate than X1, because log(− logF(ε)) = log(−ε +θ) is (strictly) concave
in ε . Now consider the function ζ

′
θ such that ζ

′
θ (X2) has the same distribution as Y2. This function is U-shaped in θ ,

because its reciprocal, log(k exp((k− 1)(y− θ))− (k− 1)exp(k(y− θ)))+ θ , is a bell-shaped function of θ . Thus,
Y2 is neither less nor more accurate than X2. Yet, the basic noise distribution F(·) = exp(·) satisfies the condition of
Corollary 1 below, so the evaluator is better off with (Y1,Y2) than with (X1,X2) in every (monotone) problem.

27The statistical literature on the comparison of multidimensional experiments with correlated observations is rather
small. Shaked and Tong (1990, 1993) identify conditions under which an experiment with correlated draws is less
informative than an experiment with independent draws. Their results, however, do not apply to our context.

14



fare? In the low state it induces as many false positives, for PrL(Y ∈ ζ L(U)) = PrL(X ∈ U) by
the very definition of ζ L. In the high state, it induces fewer false negatives: PrH(Y ∈ ζ L(U)) >

PrH(Y ∈ ζ H(U)) = PrH(X ∈U), where the inequality follows from U being an upper set and Y
being conditionally more accurate than X , and the equality from the definition of ζ H . Much like
in Lehmann’s (1988) argument, then, since Y can guarantee a state-by-state higher payoff than X ,
a fortiori it must give at least as much expected payoff.

The analogous argument applies more generally to any monotone decision problem and any
pair of experiments, as we show in the proof of the following:

Proposition 1. Let X and Y be two n-dimensional experiments. If Y is conditionally more accurate
than X, then for every prior π the optimal expected payoff in experiment Y is greater than or equal
to the optimal expected payoff in experiment X. If n = 1, then the converse also holds.

We provide further intuition and discussion on our notion of conditional accuracy in the course
of illustrating our second and more important main result, which we are now ready to state.

Welfare Impact of Selection in General Multidimensional Experiments. Using our notion of
conditional accuracy, we now identify the crucial property of the family of distributions (F(·|θ))θ∈Θ

which guarantees that the correlation structure of the entire vector of selected observations adds or
subtracts value to the evaluator’s problem as the presample size increases:

Theorem 2. For a fixed sample size n > 1, an increase in the presample size makes a selected
experiment conditionally more (resp. less) accurate if the reverse hazard rate f (·|θ)/F(·|θ) is log-
supermodular (resp. log-submodular, with support of f (·|θ) unbounded above for every θ ), that
is, if for all states θ and θ

′ > θ the reverse hazard rate ratio

f (·|θ ′)/F(·|θ ′)
f (·|θ)/F(·|θ)

is increasing (resp. decreasing).

For location experiments, log-supermodularity of the reverse hazard rate is the same as logcon-
cavity of the reverse hazard rate of the basic noise distribution:

Corollary 1. For a fixed sample size n > 1, an increase in the presample size makes a location
experiment conditionally more (resp. less) accurate if the basic noise distribution’s reverse hazard
rate, f (ε)/F(ε), is logconcave (resp. logconvex, with support of f unbounded above) in ε .

To reconcile this corollary with Theorem 1, observe that the reverse hazard function is the right-
sided integral of the reverse hazard rate:

∫
∞

ε
( f (ε)/F(ε))dε =− logF(ε). Thus, the reverse hazard
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function inherits logconcavity (and logconvexity, if the support of f is unbounded above) of the
reverse hazard rate (An, 1998, Lemma 3). Indeed, in all examples of location experiments listed in
the previous section, Corollary 1 applies, with the Gumbel distribution again sitting at the bound-
ary between the basic noise distributions for which more selection benefits, and those for which
less selection does. In the normal case, the reciprocal of the reverse hazard rate, F(ε)/ f (ε) =∫ x
−∞

eε2/2e−t2/2dt =
∫ 0
−∞

e−u2/2e−uεdu, is logconvex because e−uε is logconvex (actually loglinear)
and logconvexity is preserved under mixtures (An, 1998, Proposition 3).28 Thus, the reverse hazard
rate is logconcave. In the logistic case, the reverse hazard rate is f (ε)/F(ε) = 1/(eε +1), which
is easily seen to be logconcave. In the Gumbel case, f (ε)/F(ε) = exp(−ε), a loglinear function.
Finally, in the generalized exponential case, f (ε)/F(ε) = (1− e−ε)ae−ε , which is easily seen to
be logconvex (as a <−1).

Let us now illustrate the idea behind Theorem 2, focusing again on simple hypothesis testing.
For simplicity, assume sample size n= 2. Let X be a selected experiment with presample size k > 2
from a distribution in some family (F(·|θ))θ∈{θ L,θ H}. In this experiment the evaluator optimally
accepts after observing a realization x ∈U , and rejects otherwise, where the acceptance region U
is some upper set in R2

>. This is illustrated in Figure 3(a), where we assume that X is a random
experiment (k = 2) from a normal location family—for every state θ , the distribution F(·|θ) is
normal with mean θ and variance one. The blue curve partitions the domain of X (the unshaded
area in the diagram, R2

>) into the acceptance region U , the area above the curve, and the rejection
region, the area below the curve.29

Consider now another selected experiment, Y , with presample size m 6= k. Following the same
logic used for the one-dimensional case, in order to argue that Y gives a higher payoff than X we
must define an acceptance region V ⊆R2

> for experiment Y , leading to as many false positives and
fewer false negatives, that is,

PrL(Y ∈V ) = PrL(X ∈U) and PrH(Y ∈V )> PrH(X ∈U). (8)

But, unlike the one-dimensional case, where V is uniquely determined by U ,30 there are now many
ways to define an upper set V satisfying the equality in (8). Moreover, the inequality in (8) may
hold for some choices of V and not for others. How should we define the set V , then?

28Balakrishnan, Burkschat, Cramer, and Hofmann (2008) use the same argument to prove, in their Lemma A.2, that
the hazard rate f/(1−F) is logconcave in the normal case.

29The blue curve is, in fact, a straight line. As is well known, the optimal strategy in a location experiment with
i.i.d. normal observations (recall that we are assuming k = n here) only depends on the average observed value, because
this is a sufficient statistic for the whole vector of observations.

30Recall, going back to our illustration of Theorem 1, that equation (4) uniquely defines the cutoff point ȳ from x̄.
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Figure 3: Normal location experiment: increasing presample size increases accuracy.

Our definition of conditional accuracy proves crucial to answering this question. Recalling (3)
and (7), for any state θ the function ζ θ is defined by ζ θ (x1,x2) = (z1,z2), where

Fk(x1|θ) = Fm(z1|θ) and
Fk−1(x2|θ)
Fk−1(x1|θ)

=
Fm−1(z2|θ)
Fm−1(z1|θ)

. (9)

Letting V = ζ L(U), as illustrated in Figure 3(b), the equality in (8) holds by construction. More-
over, since U is an upper set, checking the inequality in (8) simply requires checking that for every
realization x we have z := ζ L(x)6 ζ H(x) or, by (9),

Fm(z1|θ H)

Fk(x1|θ H)
6 1 and

Fm−1(z2|θ H)
/

Fm−1(z1|θ H)

Fk−1(x2|θ H)
/

Fk−1(x1|θ H)
6 1.

At this point, log-supermodularity and log-submodularity enter the picture. Since both of the
above inequalities hold in the limit as x1 tends to the upper bound of the support of Fk(·|θ L) and x2

tends to its largest possible value (namely x1), they both hold if their left-hand sides are increasing
functions of x1 and x2, respectively. As we show in the proof, taking derivatives and simplifying,
this simply means that, for each i = 1,2,

f (zi|θ H)/F(zi|θ H)

f (zi|θ L)/F(zi|θ L)
>

f (xi|θ H)/F(xi|θ H)

f (xi|θ L)/F(xi|θ L)
, (10)

revealing that Y is more accurate than X when either the reverse hazard rate is log-supermodular
and m > k (as then zi > xi), or the reverse hazard rate is log-submodular and m 6 k (as then zi 6 xi).

As we argued while discussing Corollary 1, the inequality ζ H(·) > ζ L(·) holds in the normal
case depicted in Figure 3. In panel (c) of that figure, the dashed red curve defines the set ζ H(U),
the region above the curve. In state θ H the probability of Y falling above the dashed curve equals
the probability that X falls in U . The solid curve, which is the same as in panel (b), lies below the
dashed curve, so the probability that Y falls above the solid curve is larger—in other words, the
inequality in (8) is satisfied.
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4 Applications

Selection bias is an important concern in observational studies, as well as in the practice of con-
trolled experiments. The received statistical and econometric literature on regression and treatment
effects is typically concerned with identification issues—finding ways to avoid or at least account
for bias. Our analysis offers insights from a complementary angle: for a fixed sample size, does se-
lection provide more or less precise information about the phenomenon of interest? In this section
we discuss the implications of our results in three typical applied scenarios.

4.1 Subversion of Randomization in Randomized Controlled Trials

Following Neyman (1923) and Rubin (1974, 1978), consider a population of individuals and two
alternative treatments—a default, known treatment 1 and a new treatment 2 whose benefit beyond
the default is unknown. Let Xt,i denote the potential outcome of individual i when receiving treat-
ment t ∈ {1,2}. For simplicity, assume for now that the unknown treatment effect X2,i−X1,i on
individual i is the same for every individual i. Thus, the potential outcomes of individual i are

X1,i = ε i and X2,i = θ + ε i

where the treatment effect θ is only known to belong to a subset Θ ⊆ R, and ε i is drawn from
a known distribution F with logconcave density f . The evaluator would like to approve the new
treatment (action a2) if the treatment effect exceeds some specific value, and stick with the tradi-
tional treatment (action a1) otherwise.

Enter a researcher, who runs a randomized controlled trial with n treated individuals i1, . . . , in
and as many untreated individuals in+1, . . . , i2n. The evaluator then observes the following table of
experimental results:

Treatment Group Control Group
X2,i1 = θ + ε i1 X1,in+1 = ε in+1

...
...

X2,in = θ + ε in X1,i2n = ε i2n

We are interested in comparing two scenarios. In the first scenario, the researcher picks 2n
individuals at random, and randomly assigns n individuals to each treatment. In this case the
control group adds no valuable information, because the distribution of outcomes under the first
treatment, namely F , is known. Thus, the experiment boils down to the observation of the treatment
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group only—in the language used in this paper, the random experiment X = (X1, . . . ,Xn) where
X1 = θ + εn:n, . . . ,Xn = θ + ε1:n.

In the second scenario, the researcher has information on the outcome of the first treatment
(more generally, on characteristics correlated with this outcome) for k > 2n individuals, and on this
basis (i) selects 2n individuals for the experiment, and (ii) assigns n individuals to each treatment.
Out of the k presampled individuals, the researcher assigns the n individuals with the highest value
of X1 to the treatment group, and the n individuals with the lowest value of X1 to the control group.
Thus, the evaluator observes the following data:

Treatment Group Control Group
θ + εk:k εn:k

...
...

θ + εk−n+1:k ε1:k

How do the two scenarios compare? Clearly, the control group can only add information—
and in the second scenario it does, because the random vectors ε1:k, . . . ,εn:k and εk−n+1:k, . . . ,εk:k

are correlated. Thus, the experiment must be at least as accurate as the experiment consisting
of the vector of observations in the treatment group—in our language, the random experiment
Y = (Y1, . . . ,Yn) where Y1 = θ + εk:k, . . . , Yn = θ + εk−n+1:k. By Corollary 1, we can therefore
conclude that the evaluator is better off in the second scenario, provided that the reverse hazard
rate f/F is logconcave.

4.2 Sample Selectivity in Regression

The estimation of a regression parameter is another prominent example of a monotone decision
problem. Here, the set of actions A coincides with the state space Θ, and the evaluator would like
to choose an action that is as close as possible to the true state.

Consider a linear regression setup Yi = α +θXi + γZi + ε i where Xi is a nonnegative treatment
variable, Zi a vector of covariates, and θ the unknown parameter of interest.31 We assume that any
sample of individuals must be representative of the population, in the sense that the distribution of
X and Z in the sample is the same as in the population. More precisely, we assume that X and Z

31For simplicity, assume that the other two parameters, α and γ , are known. Our arguments can be easily extended
to the case where α is unknown, using Lemma 1 below. The case where the parameter γ is also unknown is more
complicated, but we conjecture that our arguments again apply.
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define S different strata—so that, across all individuals i in each stratum s, the values of Xi and Zi

are the same—and that any sample of n individuals must contain exactly ns individuals from each
stratum s, with n1 + · · ·+nS = n.

Our question here is whether a more accurate estimate of θ obtains with random sampling,
where the noise terms ε1, . . . ,εn are i.i.d. draws from some basic noise distribution F , or with the
following form of selection: for each stratum s, the ns individuals in the sample are selected as
those with the highest value of ε , among ks > ns randomly drawn individuals from stratum s. Note
that we allow stratum-specific presample sizes, reflecting the possibility that selection may be more
or less severe depending on the values of X and Z.

Here, too, Corollary 1 provides the answer: the estimate of θ is more accurate in the selected
scenario when f/F is logconcave, and less accurate when f/F is logconvex (and the support of f
is unbounded above). To see this, consider first each stratum separately. For each individual i in
the stratum, the evaluator observes

Ỹi = θ + ε̃ i,

where ε̃ i = α + γZi/Xi + ε i/Xi. Since Xi and Zi are constant within strata, in both the random and
the selected case the noise terms ε̃ i are drawn from the same basic noise distribution. Moreover,
this distribution inherits logconcavity (or logconvexity) of the reverse hazard rate from the basic
noise distribution of ε i, because ε̃ i is an affine transformation of ε i (An, 1998, Corollary 2).

The above argument proves our claim for the case of a single stratum. The result for an ar-
bitrary number S of strata obtains immediately from the fact that, conditional on θ , observations
in different strata are independent. Indeed, it is easy to see that combining conditionally more
accurate mutually independent experiments results in a conditionally more accurate experiment.32

Truncated Regression. It is instructive to contrast our findings with the common applied scenario
in which observations on Y , X and Z are only available for individuals whose value of Y exceeds
a certain (possibly stratum-specific) threshold—the case of truncated regression. In this scenario,
for each stratum s the evaluator observes ns i.i.d. draws from the truncated distribution Ỹ |Ỹ > ȳs,
where ȳs denotes the left-truncation point for individuals in stratum s. Using the notion of accuracy,
and variants of the arguments used to establish Theorem 2, we show (see Theorem 3 in the Sup-
plementary Appendix) that in some important cases (e.g. with a normal basic noise distribution)
this type of selection hurts the evaluator, even under the assumption that the truncation points ȳs

32More precisely, take a pair of experiments X ,X ′ with, say, sample sizes n and n′, and suppose that X is independent
of X ′ in each state. Let Y,Y ′ be another pair of experiments with sample sizes n and n′, again with Y independent of
Y ′ in each state. If Y is conditionally more accurate than X , and Y ′ conditionally more accurate than X ′, then the
(n+n′)-dimensional experiment (Y,Y ′) is conditionally more accurate than (X ,X ′).
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are known, while selection based on order statistics is beneficial. This contrast is striking: the two
types of selection bear a superficial resemblance, as they both skew upward the data distribution.
Through the lens of accuracy, however, they reveal fundamentally different welfare implications.
More generally, our notion of conditional accuracy can help in systematically assessing the bene-
ficial or harmful nature of any type of selection—both inside and outside regression contexts.

4.3 Selective Regression Specification

At least since Griliches (1957), economic researchers have sought to address a particular source
of bias arising from missing variables. We illustrate here how our analysis can be applied to the
situation where the omitted variable has been strategically selected to maximize the bias.33 Before
doing so, we first need to develop a useful add-on to Theorem 1.

Correlated Draws. Our analysis of one-dimensional selected location experiments, which has so
far focused on selection among conditionally independent draws, carries over to a relevant case
of conditionally correlated draws. In this case, the k presample observations are subject to an
identically distributed noise component. More precisely, the k presample observations have the
form θ + δ i + ε i, where the vectors (δ 1, . . . ,δ k) and (ε1, . . . ,εk) are mutually independent, and
independent of θ . As before, ε1, . . . ,εk are i.i.d. draws from a basic noise distribution F with a
logconcave density. The additional noise components δ 1, . . . ,δ k are identically (but not necessarily
independently) distributed with a logconcave density. Note that δ i + ε i has a logconcave density,
as recorded in An (1998, Corollary 1). Selection takes place on the basic noise terms ε1, . . . ,εk.
That is, we assume that the evaluator observes θ + δ i∗ + ε i∗ , where i∗ = argmax{ε1, . . . ,εk}, so
that the correlation in the draws is introduced after selection.

The key result here is that the added noise components are without consequence for our main
question. Whether the evaluator benefits from selection still turns on whether the basic noise
distribution’s reverse hazard function − logF is logconcave or logconvex.

Lemma 1. The selected experiment θ + δ i∗ + ε i∗ is more (resp. less) accurate than the random
experiment θ + δ i + ε i if the selected experiment θ + ε∗i is more (resp. less) accurate than the
random experiment θ + ε i.

Strategic Variable Omission. Consider a researcher who privately collects a data set (xi,yi,zi) for
i = 1, . . . ,n. Here, xi is a treatment variable, yi an outcome variable, and zi a vector of k covariates.

33We provide an explicit game-theoretic foundation for this model in the next section.
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The statistical relationship among these variable is captured by the linear model

yi = θxi + z1i + · · ·+ zki + vi, (11)

where vi is a random noise term. We assume that the marginal effects of covariates are all known,
say because the covariates are familiar. Covariates have been scaled so these effects are identical.

An evaluator is concerned that treatment need not be random. The evaluator correctly under-
stands that a regression of z j on x yields the population relationship

z ji = ε jxi +u ji, (12)

where u ji is noise. However, the evaluator does not know the realized regression coefficients
ε1, . . . ,εk.

Assume that θ ,ε,u,v,x are independent stochastic variables, satisfying E
[
u ji
]
= E [vi] = 0.

Moreover, ε1, . . . ,εk are i.i.d. draws from a distribution F admitting a logconcave density. Also,
the vectors u1, . . .uk are identically distributed. Furthermore, assume that one of the following sets
of assumptions applies:

1. The treatment variable x is known and non-stochastic. Noise terms u ji and vi have logcon-
cave densities.

2. The treatment variable x is stochastic, unknown to the evaluator. The term
(
xT x
)−1 xT (u j + v

)
has a logconcave density.

One of the control variables is omitted when the researcher uses the realizations to compute an
estimate of θ . We compare the case where this omission is of a random control variable to the case
where the omitted variable is selected to maximize the estimate. Selection is performed when the
researcher knows ε1, . . . ,εk, but before obtaining the actual data set (x,y,z) for the estimation of
θ . The bias thus results from the researcher’s prior analysis of covariates, or from a non-random
assignment procedure.

Proposition 2. Omission of variable j results in estimate θ + ε j +δ j, where

δ j =
(
xT x
)−1

xT (u j + v
)
.

This proposition reduces the problem to our earlier analysis. Our technical assumptions mean
that we can apply Lemma 1 in order to characterize whether selected omission benefits or harms
the evaluator.34 The answer turns on whether − logF is logconcave or logconvex.

34We have directly assumed that ε j are i.i.d. with a logconcave density, independent of vector δ . We have also
imposed two alternative assumptions to guarantee that the terms δ j are identically distributed with logconcave density.
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5 Strategic Selection

Sample selection of the sort considered above naturally arises as an equilibrium phenomenon in
a strategic setting where the experiment is carried out by a researcher who desires the evaluator
to take higher actions. Taking the researcher’s payoff into account allows us to discuss the non-
trivial impact on the researcher’s own welfare when sample selection becomes easier. Initially,
we exogenously fix both size n of the reported sample and size k of the researcher’s presample.
Subsequently, we endogenize these features, while also imposing more restrictive assumptions on
signals and payoffs in order to facilitate the analysis.

5.1 Selective Sampling Game

In many settings, size n of the reported sample may be determined by forces outside the model.
For instance, costly or limited attention from the evaluator may cap the number of items that the
evaluator is willing to inspect. In some areas, a sample size may be guided by standards unrelated
to the specific problem. Similarly, natural constraints may endow the researcher with a presample
of fixed and known size k > n.

Consider the following timeline:

Stage 1. Researcher privately observes presample (x1, . . . ,xk) and then chooses a subset I ⊆
{1, . . . ,k} of size n.

Stage 2. The evaluator observes the vector (xi)i∈I and then chooses an action in A.

Payoffs to the evaluator are as specified before. The researcher’s payoff is v(a) where v is a
strictly increasing function from the ordered set A to the reals.

Proposition 3. There exists a Bayes Nash equilibrium where the researcher always selects the n
greatest realizations from presample (x1, . . . ,xk). The evaluator’s map from data to actions is as
analyzed before.

We use the Bayes Nash equilibrium concept since the researcher has private information. On
the other hand, with the proposed strategy, no sample (x1, . . . ,xn) is outside the support, so there is
no reason to discuss any refinement of off-path beliefs.
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Note that the evaluator’s strategy is precisely the one we have analyzed until now. The re-
searcher’s strategy is a best response because it generates the highest possible realization of sam-
ple vector (x1, . . . ,xn), and the evaluator then responds with no smaller action. It is technically
possible to construct examples of equilibria in which either the evaluator adopts a non-monotonic
strategy or the researcher does not always report the n highest of the k observations. These other
equilibria are more intricate, and perhaps less natural in light of the researcher’s goal to maximize
the evaluator’s response, so we choose to disregard them for now. When the evaluator is uncer-
tain about the extent of selection k, there are situations in which maximal selection is no longer
an equilibrium—see the discussion at the end of Section 6.1; Proposition 7 in the Supplementary
Appendix analyzes equilibria without maximal selection.

If the researcher could somehow ex post choose to reveal the entire presample, there are cases
when the researcher would wish to do so. Generally, these cases arise when the hidden part of
the sample has a favorable realization, beating the posterior odds assumed by the evaluator. This
unraveling effect is well known in the literature on strategic disclosure, at least since Grossman
(1981) and Milgrom (1981). Our assumption is that the evaluator can ex ante commit to study
precisely n observations before making a decision, preventing such unraveling. We will endogenize
n in the next subsection.

The result is robust to a natural modification of the game for the case of location problems,
where xi = θ +ε i. We can modify the first stage of the game by allowing the researcher to observe
the noise terms (ε1, . . . ,εk) rather than the outcomes. Of course, for any realization of the state,
maximal selection in (ε1, . . . ,εk) is equivalent to maximal selection in (x1, . . . ,xk). The result is
therefore unchanged.35

Equilibrium Impact of Selection on Researcher’s Welfare. Holding fixed the sample size n,
does more selection improve the researcher’s situation? If the evaluator were unaware of an in-
crease in presample size k, a direct effect would benefit the researcher. Increasing k would directly
raise the maximally selected sample in the sense of first-order stochastic dominance. Holding fixed
the evaluator’s response, higher actions would result, to the benefit of the researcher.

We are more interested in the equilibrium effect. When both the evaluator and the researcher
know that selection is easier—that is, k is larger—is the researcher necessarily better off? Does
this depend on whether the evaluator is better off?

We can immediately note that the researcher is entirely indifferent to k in the special case of

35For example, this setup can be interpreted as subversion of randomization in randomized controlled trials, with
known effect from the default treatment.
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Figure 4: Researcher gain from selection, as evaluator’s preference varies.

a location experiment with Gumbel basic noise distribution. As we know, in this case all selected
experiments (with the same sample size) are equally conditionally accurate. By definition of con-
ditional accuracy, this means that any joint distribution on Θ×A that the evaluator can induce
with a strategy in a selected experiment, the evaluator can also induce in another selected exper-
iment. Hence, in particular, the distribution over A induced by the evaluator’s optimal strategy is
independent of the presample size k.

For a more interesting example, consider a simple hypothesis testing problem and a one-
dimensional location experiment with a normal basic noise distribution. For convenience, from
now on normalize the evaluator’s payoffs, so that the payoff from acceptance in each state θ is
simply equal to θ , and rejection leads to a safety payoff R. Thus,

θ L = u(θ L,a2) 6 u(θ L,a1) = u(θ H ,a1)︸ ︷︷ ︸
=R

6 u(θ H ,a2) = θ H .

We investigate the comparative statics of the researcher’s welfare gain from selection, as the eval-
uator’s safety payoff R varies between θ L and θ H . Letting p denote the prior probability of state
θ H , the researcher’s payoff is the ex ante probability of acceptance, that is,

p[1−F(x̄−θ H)]+(1− p)[1−F(x̄−θ L)],

where x̄ is the cutoff point chosen by the evaluator.

Figure 4 illustrates the comparative statics result when n = 1 and k = 2, and the prior p = 1/2.
The green curve represents the researcher’s payoff difference between the selected and random
experiment. When R is low, the researcher suffers from selection. When R is high, the researcher
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benefits.36 Intuitively, when R is low, the evaluator is more willing to accept. Providing more
information (with higher k in the normal example), allows the evaluator to reject more often (in
state θ L). This is not in the researcher’s interest. Conversely when R is high.37

5.2 Data Production Game

In the previous section we exogenously fixed sample size n and presample size k > n. Here, we
endogenize the choice of n and k. Specifically, we consider two stages preceding the selection
game studied before:

Stage -1. Evaluator chooses the sample size n and decides whether a presample is permitted.

Stage 0. Researcher privately chooses presample size k > n, or opts out of the game. If a presam-
ple is not permitted, the researcher only considers k = n or opting out.

The researcher’s gross payoff is still v(a), but the researcher must bear cost C (k) for obtaining
the presample. We assume that this cost function is increasing and convex—if we restrict attention
to natural numbers k, convexity means that C (k+1)−C (k) is increasing in k. Opting out is free,
so C (0) = 0. The choice of k is private, and we assume that there is no credible way to directly
signal any information about it. In equilibrium, the evaluator correctly anticipates k. We focus on
pure-strategy equilibria, consistent with our statistical analysis so far where k was fixed.38

Payoffs to the evaluator are as specified before. We endow the evaluator with an option to
completely forbid sample selection, assuming that such a rule can be perfectly enforced. This
assumption allows the evaluator who stands to suffer from sample selection to completely rule it
out. More interestingly, as we will show, the evaluator will in some circumstances prefer to tolerate
sample selection, despite the availability of such a strong instrument. For simplicity, we ignore the
evaluator’s cost of studying larger samples. In case the researcher opts out, we assume that the
evaluator must rely on an expensive alternative source of information—we will use this only to
break ties in stages −1 and 0.

36At R = (θ L +θ H)/2, the researcher benefits from selection. Without selection, in this symmetric case, the eval-
uator chooses the cutoff x̄ inducing as many false positives as false negatives: 1−F(x̄− θ L) = F(x̄− θ H). Max-
imal selection introduces an asymmetry in the distribution that leads the evaluator to optimally choose x̄ such that
1−F(x̄−θ L)> F(x̄−θ H), that is, more false positives are tolerated.

37This intuition is close to that in Johnson and Myatt (2006).
38We later discuss the implications of uncertainty regarding k.
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Following stages −1 and 0 above, we assume sequential rationality: the researcher selects
the highest observations, and the evaluator best-responds to that selection, given the conjectured
presample size, as in Proposition 3. Since the presample size k is privately chosen in stage 0,
we need an expression for the researcher’s expected payoff after deviating. With sample size n,
actual presample size k, and k̂ the presample size conjectured by the evaluator, we let V

(
n,k, k̂

)
denote this expected payoff. The distribution over observations here is governed by k and maximal
selection by the researcher, but the evaluator best-responds to n out of k̂.

Equilibrium Choice of Presample Size. Both parties observe the evaluator’s choice of n in stage
−1. We now consider stage 0 in the nontrivial case where greater presamples k > n are permitted.

We restrict attention to simple hypothesis testing, and we also focus this first analysis on the
case n = 1. The evaluator accepts when the realization x exceeds cutoff point x̄, an increasing
function of the conjectured presample size k̂. In stage 0, the researcher chooses k in order to
maximize the payoff V

(
n,k, k̂

)
−C (k), that is,

p
[
1−Fk (x̄−θ H)

]
+(1− p)

[
1−Fk (x̄−θ L)

]
−C (k) . (13)

Considering a deviation from equilibrium, the researcher has a potential gain through the upward
shift of the realized observation x. This is to be weighed against the cost of looking at more
subjects, when already looking at k.

Proposition 4. The researcher’s objective function is concave in k. The first order condition (as-
suming k > 1 is a real number) is given by

− p log(F (x̄−θ H))Fk (x̄−θ H)− (1− p) log(F (x̄−θ L))Fk (x̄−θ L) =C′ (k) . (14)

The researcher opts out if this k provides lower payoff in (13) than the probability of acceptance
when the evaluator employs the alternative information source.

The equilibrium described in Proposition 4 exhibits a rat race effect: when the evaluator cor-
rectly anticipates a higher degree k of selection, the researcher’s cost C (k) to manipulate the ex-
periment is partly wasted. To see the cleanest instance of this, consider the Gumbel example. The
private choice of k tempts the researcher to choose k > 1 (we prevent opt-out by assuming that
the evaluator is significantly less likely to accept without the researcher’s sample). The evaluator’s
acceptance probability is independent of k > 1. The researcher’s total payoff, having chosen k > 1,
is then less than if the researcher could be tied to the mast, unable to augment k. Beyond the Gum-
bel example, costs of manipulation could even harm a researcher who already lost welfare due to
sample selection.
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The researcher’s best response k may increase or decrease with the evaluator’s cutoff x̄, de-
pending on parameters. The sign of this slope depends on the sign of the derivative of the left hand
side in (14) with respect to x̄,

− p(1+ k log(F (x̄−θ H)))Fk−1 (x̄−θ H) f (x̄−θ H)

− (1− p)(1+ k log(F (x̄−θ L)))Fk−1 (x̄−θ L) f (x̄−θ L) ,

which is positive when x̄ is sufficiently small, as happens when the safety payoff R is small. In
that case, the best response k is an increasing function of x̄. Conversely, when R is large, the best
response k is a decreasing function of x̄.39

This comparative statics result allows us to discuss the evaluator’s optimal commitment to an
ex-post suboptimal acceptance standard. If R is large, the researcher’s best response is downward
sloping. If the evaluator stands to gain welfare from selection (e.g., if F has logconcave reverse
hazard function), it is optimal for the evaluator to commit to reduce the acceptance standard below
the Nash level in order to induce the researcher to increase k. Conversely, when R is small.

Equilibrium Choice of Sample Size. We finally turn to stage −1. If the researcher ends up
considering a presample of size k, why should the evaluator not request to see all the evidence?
The evaluator could increase n until it hits k, or the evaluator could forbid presampling. The
argument against this is that a freedom to presample can create value for the researcher, and hence
make the researcher more willing to produce the sample. We will show by a simple example that
this can be consistent with equilibrium. The example serves as proof of the more general concept.

For this example, we consider again simple hypothesis testing with normal noise. To simplify
the analysis, we consider parameters that satisfy equipoise: ex ante, the evaluator is indifferent
among acceptance and rejection.40 Slightly stronger, we assume p = 1/2 and R = (θ L +θ H)/2.

Suppose that k̂ = n, that is, the evaluator anticipates no selection. Then the evaluator accepts if
and only if (1/n)∑

n
i=1 xi > (θ L +θ H)/2. By symmetry of this setting, the equilibrium probability

of acceptance is 1/2, independent of n. The researcher’s equilibrium payoff (if k = n) from the
evaluator’s action is then invariant to k, that is, V (n,n,n) = 1/2. However, participation cost C (k)
rises with k = n. In this example, we make the natural assumption that the evaluator accepts with
probability 1/2 if the researcher does not produce evidence. By implication, the researcher opts

39It can be easily verified that the best reply of the researcher is increasing for x̄ < θ L +F−1(e−1/k) and decreasing
for x̄ > θ H +F−1(e−1/k).

40The condition of equipoise, requiring experimental subjects to be indifferent between treatment and control, is an
ethical prerequisite that is often required for carrying out a randomized experiment. See Freedman (1987).
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out. Were the researcher still to participate, the evaluator’s welfare would rise with k = n, as more
evidence allows acceptance to grow more likely in state H and less likely in state L (at equal rates).

Consider now the case n = 1 and k = 2. As noticed in footnote 36, the evaluator accepts with
a chance strictly greater than 1/2, to the interest of the researcher, so V (1,2,2) > 1/2. Thus, the
researcher is willing to participate when n = 1 and presampling is allowed, provided that C (2) <
V (1,2,2)− 1/2. Recall from Proposition 4 that the researcher’s objective function is concave in
k, so for C (3) sufficiently large, the researcher will not deviate to choose k = 3 when k̂ = 2 is
conjectured. Likewise, for C (3) sufficiently large, the researcher will opt out if n = 2 or larger.
Finally, when alternative information is expensive, the evaluator will prefer the case n = 1,k = 2
over a researcher who opts out.

The example discussed above uncovers a mechanism whereby the evaluator benefits from fix-
ing the sample size and tolerating sample selection from a presample larger than the sample—thus
committing not to look at more data. Intuitively, the bias (in terms of increased acceptance) that
results from selective reporting benefits the researcher, relaxes the individual rationality constraint,
and thus induces the researcher to observe a presample larger than the required sample. In turn,
the evaluator also benefits in our leading case with logconcave reverse hazard rate. In other words,
selective disclosure arises endogenously in this model—the evaluator benefits from blocking un-
raveling. Both parties are better off with strategic sample selection, even when the evaluator has
the possibility to forbid it.

6 Extensions

So far, we considered situations in which the evaluator perfectly predicts the extent of selec-
tion, for example because the parameters of the model—such as the researcher’s bias and cost
of presampling—are known. This is the most optimistic scenario when evaluating the impact of
selection. In this section we relax these assumptions and consider more realistic scenarios. We
sketch extensions of the analysis to situations where the evaluator may be uncertain about the
correct extent of selection k, or even fail altogether to anticipate any selection.

6.1 Uncertain Selection

Sometimes, the extent of selection is known, for instance because a study has been conducted in n
of k possible groups, or because a student has solved n of k given problems. Nevertheless, in other
settings it seems natural that the evaluator is uncertain about k, the extent of selection. Seeing a
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Figure 5: Evaluator’s gain over certain k = 1 in normal hypothesis testing, as a function of the
safety payoff R. Blue curve: certain selection k = 2. Red curve: equal chance of k = 1 and k = 2.

sample of size n, the presample size k > n appears random. For instance, uncertainty arises with
endogenous sample selection when the evaluator does not know precisely the costs and preferences
of the researcher.

As one should expect, uncertainty about the extent of selection tends to harm the evaluator. This
is particularly evident in the Gumbel case, where known selection leaves the evaluator indifferent:

Proposition 5. Consider a location experiment with sample size n = 1, and suppose that the basic
noise distribution is Gumbel. (i) If k follows a logconcave Gamma distribution on (1,∞), then the
noise distribution in the selected experiment has a logconcave density. (ii) For any non-degenerate
distribution of k, when the evaluator sees the maximally selected outcome, the evaluator’s welfare
is strictly lower than when k is known.

Extending beyond the Gumbel case, the lack of information about the extent of selection k is a
force that tends to reduce the evaluator’s welfare. While this is an important caveat to our earlier
findings where the evaluator sometimes benefits from selection, our main results are only partly
overturned by uncertainty. Figure 5, for instance, compares the welfare impact of certain selection
(k = 2) and uncertain selection (equal chance of k = 1 and k = 2) in simple hypothesis testing
with a normal basic noise distribution. As we know from Theorem 1, certain selection benefits the
evaluator for all parameter values, as shown by the blue curve. Now suppose that nature decides
whether k = 1 or k = 2. If the evaluator could observe nature’s move, the gain over a random exper-
iment would be measured by the dotted curve, which is exactly half the blue curve (since there are
equal chances of k = 1 and k = 2). Under uncertainty, the evaluator must fare worse—the red curve
lies below the dotted curve. Still, the evaluator often fares better than in a random experiment: this
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occurs in the realistic case where the evaluator a priori does not favor acceptance too strongly (R
is not too small). In fact, if the evaluator a priori strongly favors rejection, uncertainty has almost
no impact—the red and dotted curves almost coincide for R sufficiently large.

Our earlier characterizations also remain robust to the introduction of a small amount of un-
certainty. Indeed, the evaluator can behave as if k is known. If the distribution over random k
converges to this degenerate assumption, the evaluator’s payoff converges to the payoff where it
really is known, by continuity of expected payoffs. Responding optimally to uncertainty can only
improve the evaluator’s payoff.

Returning to Proposition 5, part (i) of the result is less trivial than it may appear. The mix-
ture (over k) of logconcave distributions generally need not be logconcave.41 Once logconcavity
fails, then we cannot guarantee existence of the monotone equilibrium from Proposition 3. There
will now exist signals x′ > x such that, assuming maximal selection, the optimal action after x′ is
lower than the action after x. A strategic researcher who has both x and x′ in the presample will
then be tempted not to reveal the maximal signal. We illustrate the construction of a Bayes Nash
equilibrium when the MLR property fails, and strategic selection is not everywhere maximal, in
the Supplementary Appendix.

6.2 Unanticipated Selection

Consider an unwary evaluator who wrongly anticipates a smaller presample size than true. Holding
fixed the true sample size, clearly the evaluator is generally worse off by being unwary than being
rational. More interestingly, it is ambiguous whether an unwary evaluator gains or loses when the
true sample size is larger than expected. If a rational evaluator would benefit from selection, this
gain might be greater than the cost of irrationality.

In an important benchmark case, we find that the unwary evaluator is exactly indifferent to an
increase of selection from k = 1 to k = 2. Consider again a situation of equipoise, whereby at
the prior the evaluator is indifferent between accepting and rejecting. Suppose that the basic noise
distribution F is symmetric, so that for some ε0 we have F (ε0 + ε) = 1−F (ε0− ε) for all ε . Start
from the acceptance cutoff that is optimal in the random experiment, namely x̄= ε0+(θ L+θ H)/2,
and consider how selection with k = 2 affects an unwary evaluator who maintains the acceptance
standard unchanged at x̄. The probability of acceptance clearly increases, in both states. The

41Our footnote to the proof of Proposition 5 notes the existence of such examples.
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Figure 6: Evaluator’s gain from anticipated (blue) and unanticipated (red) selection, compared to
a random experiment.

resulting change in the evaluator’s payoff equals

−(1− p)
[
F (x̄−θ L)−F2 (x̄−θ L)

]︸ ︷︷ ︸
increase in false positives

(R−θ L)+ p
[
F (x̄−θ H)−F2 (x̄−θ H)

]︸ ︷︷ ︸
reduction in false negatives

(θ H−R) .

By equipoise, (1− p)(R−θ L) = p(θ H −R). Thus, false positives and false negatives are equally
costly for the evaluator. By symmetry, F(x̄− θ L)+F(x̄− θ H) = 1. Thus, the increase in false
positives exactly equals the reduction in false negatives. We conclude that the unwary evaluator,
who anticipates no selection (k = 1), is indifferent between no selection and selection with k = 2.

Can the unwary evaluator strictly benefit from selection? Figure 6 shows that this can indeed be
the case, in the important special case of a normal location experiment and in the realistic scenario
where the evaluator a priori favors rejection—with parameters p = 1/2 and R > (θ L +θ H)/2. As
we know from Theorem 1, a rational evaluator benefits from selection—this is illustrated by the
blue curve in the figure, where we assume k = 2. But, as the red curve shows, an unwary evaluator
who would reject at the prior, and wrongly anticipates random data, k = 1, also benefits from
observing selected data with k = 2. Intuitively, when the upper tail of the basic noise distribution is
sufficiently thin—as in the normal case—and R is large enough, the cutoff point x̄ is relatively near
the upper bound of the (either random or selected) data distribution in the low state. This makes
the increase in false positives relatively small. The cutoff point x̄ is relatively farther away from
the upper bound of the data distribution in the high state, because this distribution stochastically
dominates the data distribution in the low state. This makes the decrease in false negatives—the
vertical distance between F and F2 at x̄ in the high state—relatively larger. More generally, for
every k > 2 there exists a critical threshold on R above which an unwary evaluator benefits from
selection with presample size k.
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7 Conclusion

Contrary to naive intuition, sample selection does not necessarily damage the evaluator. Increased
selection benefits when the data distribution features a log-supermodular reverse hazard rate. For
location experiments, this property corresponds to logconcavity of the noise distribution’s reverse
hazard rate—with a top tail thinner than the extreme value Gumbel distribution and the bottom
tail thicker than Gumbel—a condition satisfied by normal noise. Sample selection is detrimen-
tal in the log-submodular case—for location experiments, a logconvex reverse hazard rate of the
noise distribution. Adding uncertainty or unawareness of selection adds further damage. We also
characterize situations in which the researcher ends up suffering from information manipulation
like in a rat race, even if we abstract away from the cost of acquiring information. At the same
time, we exhibit cases in which the evaluator willingly chooses to allow sample selection in order
to incentivize the researcher to provide more evidence. We also develop a generally applicable
methodology for comparing the value of information in multidimensional experiments with corre-
lated observations.

The Supplementary Appendix discusses a number of extensions. First, we analyze the impact
of other forms of selection such as truncation. Second, drawing on extreme value theory, we
analyze the case of extreme selection, with k tending to infinity. We show that for a large class
of noise distributions the evaluator achieves full information—in simple hypothesis testing, zero
false positives and false negatives—in the limit. Third, we develop the equilibrium analysis under
uncertain selection, allowing for non-monotone strategies. Fourth, we sketch how to generalize our
analysis to encompass comparisons of experiments that are not ranked by accuracy or conditional
accuracy. Finally, we suggest an approach for developing practical criteria to assess the impact of
selection in empirical data.

We leave to future work the design of experiments and policy responses in the presence of
strategic selection. A natural starting point in this direction is Chassang, Padró i Miquel, and
Snowberg’s (2012) characterization of experimental design when outcomes are affected by experi-
mental subjects’ unobserved actions. Also, given the work by Allcott (2015) on site selection bias,
another open question is a general characterization of the impact of selection challenging external
validity in the presence of heterogeneous treatment effects.

A Proofs

Proof of Theorem 1. Let φ(ε) = − log(− log(F(ε))) and observe that for all ε and k > 1 the
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horizontal distance between Fk and F , namely (Fk)−1(F(ε))− ε , is the same as the horizontal
distance between the double-log transformations of Fk and F , namely ϕ−1(ϕ(ε)+ log(k))− ε .
The derivative of the latter distance is

ϕ ′(ε)

ϕ ′(ϕ−1(ϕ(ε)+ log(k)))
−1, (15)

which is negative (resp. positive) for all ε and k > 1 if and only if ϕ is convex (resp. concave). By
Theorem 5.2 in Lehmann (1988), Fk is more accurate than F if and only if ϕ is convex.

Proof of Proposition 1. The second statement was proved by Lehmann (1988, Theorem 5.1). We
now prove the first statement. Since the evaluator’s optimal strategy is monotone, the evaluator
partitions D into a sequence of sets (D1, . . . ,DL) such that, for every `, the set U` = D`∪ ·· ·DL is
an upper set in D, and chooses action a` if and only if the observed realization of X belongs to D`.
For every `= 1, . . . ,L define U` = D`∪·· ·∪DL. Then the optimal expected payoff,

∫
Θ ∑`Prθ (X ∈

D`)u(a`,θ)π(θ)dθ , can be rewritten, summing by parts and disregarding constants, as∫
Θ

∑
`<L

Prθ (X ∈U`+1)
[
u(θ ,a`+1)−u(θ ,a`)

]
π(θ)dθ .

In order to prove the lemma it therefore suffices to show that if Y is conditionally more accurate
than X then we can exhibit nested upper sets V2 ⊇ ·· · ⊇VL such that, for every `= 1, . . . ,L−1 and
every state θ , the difference

Prθ (Y ∈V`+1)−Prθ (X ∈U`+1) (16)

is nonpositive if θ 6 θ ` and nonnegative if θ > θ `. Define V`+1 = ζ θ `
(U`+1) for every ` =

1, . . . ,L−1. Then we can rewrite the difference in (16) as

Prθ (Y ∈ ζ θ `
(U`+1))−Prθ (Y ∈ ζ θ (U`+1)).

For θ 6 θ ` the difference is nonpositive, because ζ θ (·) 6 ζ θ `
(·) in this case. For θ > θ ` it is

nonnegative, because then ζ θ (·)> ζ θ `
(·).

Proof of Theorem 2. For each state θ , let ζ θ be the function such that ζ θ (X) has the same
distribution as Y . Thus, ζ θ (x1, . . . ,xn) = (z1, . . . ,zn), where z1, . . . ,zn are defined by

Fk(x1|θ) = Fm(z1|θ) and
Fk−i+1(xi|θ)

Fk−i+1(xi−1|θ)
=

Fm−i+1(zi|θ)
Fm−i+1(zi−1|θ)

for i = 2, . . . ,n.

Before proceeding with the proof, we make the following preliminary observation: since the densi-
ties of the distributions Fk(·|θ) and Fm(·|θ) have the same support, namely the support of F(·|θ),
as x1 converges to the upper bound of this support, so does z1. Similarly, for every i = 2, . . . ,n and
every xi−1, as xi converges to its largest possible value, namely xi−1, zi converges to zi−1.
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Fix two states θ
′ and θ

′′ > θ
′, and let z′ = ζ θ

′(x) and z′′ = ζ θ
′′(x) for brevity. We must prove

that under either condition in the theorem (m > k and the reverse hazard rate is log-supermodular,
or m 6 k and the reverse hazard rate is log-submodular) for every x we have z′′ = z′, or equivalently

Fm(z′1|θ ′′)6 Fm(z′′1|θ ′′) and
Fm−i+1(z′i|θ ′′)

Fm−i+1(z′′i−1|θ
′′)

6
Fm−i+1(z′′i |θ ′′)

Fm−i+1(z′′i−1|θ
′′)

for i = 2, . . . ,n.

Plugging the definition of z′′, we can rewrite these inequalities as

Fm(z′1|θ ′′)6 Fk(x1|θ ′′) and
Fm−i+1(z′i|θ ′′)

Fm−i+1(z′′i−1|θ
′′)

6
Fk−i+1(xi|θ ′′)

Fk−i+1(xi−1|θ ′′)
for i = 2, . . . ,n.

But, for every i = 2, . . . ,n, if (z′′1, . . . ,z
′′
i−1) = (z′1, . . . ,z

′
i−1) then the denominator of the left-hand

side of the second inequality becomes smaller, and hence the left-hand side of the inequality larger,
if we replace z′′i−1 with z′i−1. Rearranging terms, we conclude that it suffices to prove that

Fm(z′1|θ
′′)

Fk(x1|θ ′′)
6 1 and

Fm−i+1(z′i|θ ′′)
Fk−i+1(xi|θ ′′)

6
Fm−i+1(z′i−1|θ

′′)

Fk−i+1(xi−1|θ ′′)
for i = 2, . . . ,n. (17)

By the preliminary observation, as x1 tends to the upper bound of the support of the density
associated to F(·|θ ′), so does z1. Thus, under either condition in the theorem (m > k, or m 6 k and
the support of F(·|θ ′) is unbounded above), the left-hand side of the first inequality in (17) tends
to a number no greater than one. This implies that the first inequality in (17) holds if the left-hand
side of the inequality increases with x1, that is, differentiating with respect to x1 and dropping the
positive denominator in the derivative,

mFm−1(z′1|θ ′′) f (z′1|θ ′′)
dz′1
dx1

Fk(x1|θ ′′)> kFk−1(x1|θ ′′) f (x1|θ ′′)Fm(z′1|θ ′′). (18)

But, by definition of z′,
dz′1
dx1

=
kFk−1(x1|θ ′) f (x1|θ ′)
mFm−1(z′1|θ

′) f (z′1|θ
′)
.

Plugging the latter in (18) and simplifying, we conclude that the first inequality in (17) holds if

f (z′1|θ
′′)/F(z′1|θ

′′)

f (z′1|θ
′)/F(z′1|θ

′)
>

f (x1|θ ′′)/F(x1|θ ′′)
f (x1|θ ′)/F(x1|θ ′)

,

which in turn follows from log-supermodularity (resp. log-submodularity) of the reverse hazard
rate when m > k (resp. m 6 k), because m > k implies z′1 > x1 (resp. m 6 k implies z′1 6 x1).

Again by the preliminary observation, for every i = 2, . . . ,n and every xi−1, as xi converges to
xi−1, z′i converges to z′i−1. Thus, as before, under either condition in the theorem the left-hand side
of the second inequality in (17) tends to a number no greater than the right-hand side. The second
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inequality in (17) then holds if its left-hand side increases with xi. Differentiating with respect to
xi and simplifying, as before, we obtain

f (z′i|θ ′′)/F(z′i|θ ′′)
f (z′i|θ

′)/F(z′i|θ
′)

>
f (xi|θ ′′)/F(xi|θ ′′)
f (xi|θ ′)/F(xi|θ ′)

,

which again follows from log-supermodularity (resp. log-submodularity) of the reverse hazard rate
when m > k (resp. m 6 k), because m > k implies z′i > xi (resp. m 6 k implies z′i 6 xi).

Proof of Lemma 1. By independence of the vectors (δ 1, . . . ,δ k) and (ε1, . . . ,εk), and by the
identical distribution assumption on δ 1, . . . ,δ k, it follows that δ i∗ + ε i∗ has the same distribution
as δ 1 + ε i∗ . Since δ 1 is independent of (ε1, . . . ,εk) and has a logconcave density, the convolution
η i∗ + ε i∗ is less (more) dispersed than η i + ε i whenever ε i∗ is less (more) dispersed than ε i, as
shown in Theorem 7 of Lewis and Thompson (1981). See also Theorem 3.B.9 in Shaked and
Shanthikumar (2007). The conclusion now follows from Theorem 5.2 in Lehmann (1988).

Proof of Proposition 2. The researcher first corrects for control variables z− j and then estimates
θ with OLS. The first step uses (11) to adjust the outcome variable into

ŷ = y−∑
l 6= j

zl = xθ + z j + v.

The second step provides the familiar OLS estimate(
xT x
)−1

xT ŷ =
(
xT x
)−1

xT (xθ + z j + v
)
=
(
xT x
)−1

xT (xθ + xε j +u j + v
)
,

where the algebraic manipulations used (11) and (12). This reduces to the claimed expression.

Proof of Proposition 3. It follows from the analysis above that the evaluator’s strategy satisfies
the property: for any sample pair x′ > x, if a is an optimal choice at x then any optimal choice a′ at
x′ has a′ > a. From presample (x1, . . . ,xk), selection of the n greatest elements provides a sample
vector that dominates any other sample after ranking their elements. The evaluator’s strategy is
independent of such re-ranking. The posited strategy is thus a best response for the researcher
whose utility increases in action.

Proof of Proposition 4. Since the cost function is convex, it suffices to check that the first two
terms in (13) are concave in k. It suffices to take k to be a real number. The first derivative of ak is
log(a)ak and the second derivative is (log(a))2 ak which is positive when a /∈ {0,1}. It is easy to
see that the first terms are instead constant in k, if the base is zero or one.

Proof of Proposition 5. (i) The density for k is β
α (k−1)α−1 e−β (k−1)/Γ(α) for k > 1, where α >

1 is a shape parameter that guarantees logconcavity of this density, and β > 0 is the rate parameter
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in the Gamma distribution. Then the distribution of basic noise in the uncertain experiment is

F̃ (ε) =
∫

∞

1
e−k exp(−ε) β

α

Γ(α)
(k−1)α−1 e−β (k−1)dk =

e−exp(−ε)β
α

(β + exp(−ε))α .

Its density is

f̃ (ε) =
e−ε−exp(−ε)β

α (β +α + exp(−ε))

(β + exp(−ε))α+1 .

The second derivative of log f̃ is

e−ε

[
β +α

(β +α + e−ε)2 −
β (α +1)

(β + e−ε)2 −1

]
.

This is negative because(
β +α + e−ε

)2 (
β + e−ε

)2

=
(
β + e−ε

)4
+2α

(
β + e−ε

)3
+α

2 (
β + e−ε

)2

> α

[(
β + e−ε

)2−β
(
β +α + e−ε

)2−βα−β2
(
β + e−ε

)]
,

which holds because the only positive term on the right-hand side is exceeded by the third term on
the left-hand side when α > 1.42

(ii) When k is known in the Gumbel case, the noise distribution is shifted up by logk. The
unique best response is a cutoff point that also shifts up by logk. The evaluator’s welfare is constant
in k. Ex ante, before knowing k, then this constant is also the expected welfare. The mixture is
worse in the strong sense of Blackwell (1951, 1953). The ex ante welfare cannot be greater than
before. It must be lower because the unique best response varied with k.
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B Supplementary Appendix: Additional Extensions

B.1 Other Forms of Selection: Truncated Data

The particular form of selection that is our focus in this paper is but one instance of lack of ran-
domness in empirical or experimental data. Another kind of selection that is often relevant—for
instance in the regression contexts discussed in Section 4.2—involves (independent) observations
from a truncated distribution. Here we review this kind of selection and contrast it with the form
of selection analyzed earlier.

Given a random variable with distribution F(·|θ) and density f (·|θ) satisfying the MLR prop-
erty, and given two left-truncation points−∞6 a< b<∞, define Ya :=X |X > a and Yb :=X |X > b.
Similarly, given two right-truncation points −∞ < c < d 6 ∞, define Wc := X |X 6 c and Wd :=
X |X 6 d. Does the evaluator prefer the more left-truncated experiment Yb or the less left-truncated
experiment Ya? And how do Wc and Wd compare?43 Using the notion of accuracy, and variants of
the arguments used to establish Theorem 2, we obtain a new, simpler proof of the following result,
due to Goel and DeGroot (1992).

Theorem 3. Experiment Ya is more accurate than Yb if the hazard rate f (x|θ)/[1−F(x|θ)] is log-
supermodular. Moreover, Wd is more accurate than Wc if the reverse hazard rate f (x|θ)/F(x|θ) is
log-supermodular.

Proof. Consider first the comparison between Wc and Wd . In any state θ , the cumulative distribu-
tion function of Wc is F(w|θ)/F(c|θ), for w 6 c. Similarly, the cumulative distribution function of
Wd is F(w|θ)/F(d|θ), for w6 d. Thus, the function ζ θ such that ζ θ (Wc) has the same distribution
as Wd is defined as follows: for every w 6 c,

F(w|θ)/F(c|θ) = F(ζ θ (w)|θ)/F(d|θ).

Now, fixing two states θ
′ and θ

′′ > θ
′, we must show that ζ θ

′′(w)> ζ θ
′(w) for all w 6 c. But, by

definition of ζ θ
′′ , we have F(ζ θ

′′(w)|θ ′′)/F(d|θ ′′) = F(w|θ ′′)/F(c|θ ′′), so it suffices to show that

F(w|θ ′′)/F(c|θ ′′)> F(ζ θ
′(w)|θ ′′)/F(d|θ ′′).

The inequality holds (with equality) in the limit as w increases to the upper bound c, because both
sides converge to one. Thus, all we need to prove is that the ratio between the right-hand side and
the left-hand side of the inequality increases with w. Taking derivatives, this condition says that

f (w|θ ′′)/F(w|θ ′′)
f (w|θ ′)/F(w|θ ′)

6
f (ζ θ

′(w)|θ ′′)/F(ζ θ
′(w)|θ ′′)

f (ζ θ
′(w)|θ ′)/F(ζ θ

′(w)|θ ′)
,

43Here a =−∞ means that Ya = X , so that Ya is a random draw from F(·|θ). Similarly for Wd , when d = ∞.
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which holds precisely when the reverse hazard rate is log-supermodular, given that ζ θ
′(w)> w by

the fact that Wd first-order stochastically dominates Wc.

Next, consider the comparison between Ya and Yb. In any state θ , the cumulative distribution
function of Ya is [F(y|θ)−F(a|θ)]/[1−F(a|θ)], for y > a. Similarly, the cumulative distribution
function of Yb is [F(y|θ)−F(b|θ)]/[1−F(b|θ)], for y > b. Thus, the function ζ θ such that ζ θ (Yb)

has the same distribution as Ya is defined as follows: for every y > b,

[F(y|θ)−F(b|θ)]/[1−F(b|θ)] = [F(ζ θ (y)|θ)−F(a|θ)]/[1−F(a|θ)].

As before, fixing two states θ
′ and θ

′′ > θ
′ we must show that ζ θ

′′(y) > ζ θ
′(y) for every y > b,

and using the definition of ζ θ
′′ it suffices to show that

[F(y|θ ′′)−F(b|θ ′′)]/[1−F(b|θ ′′)]> [F(ζ θ
′(y)|θ ′′)−F(a|θ ′′)]/[1−F(a|θ ′′)].

This inequality holds in the limit as y decreases to the lower bound b, as both sides converge to
one, so we must prove that the ratio between right-hand and left-hand side decreases with y, or

f (y|θ ′′)/[1−F(y|θ ′′)]
f (y|θ ′)/[1−F(y|θ ′)]

>
f (ζ θ

′(y)|θ ′′)/[1−F(ζ θ
′(y)|θ ′′)]

f (ζ θ
′(y)|θ ′)/[1−F(ζ θ

′(y)|θ ′)]
.

The latter inequality holds when the hazard rate is log-supermodular, given that ζ θ
′(y)6 y by the

fact that Yb first-order stochastically dominates Ya.

The theorem compares one-dimensional experiments. The extension of the result to an arbi-
trary number of independent observations is immediate. As we have shown earlier, combining
conditionally more accurate mutually independent experiments (in this case, more accurate one-
dimensional experiments) results in a conditionally more accurate experiment.

Left-truncation type selection bears a resemblance to the kind of selection considered earlier:
with both forms of selection, probability mass is moved toward the upper tail of the distribution.
In some important cases, however, the welfare consequences of the two types of selection are
strikingly different. Consider, for instance, a normal location experiment. In this case the basic
noise distribution has both a logconcave hazard rate (see Footnote 28) and a logconcave reverse
hazard rate. Moreover, as we have already shown, more selection (of the form analyzed in this
paper) benefits the evaluator. However, the more truncated experiment Yb is worse than the less
truncated experiment Ya. Section 4.2 further discusses this contrast when analyzing (different kinds
of) data selection in a regression context.
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B.2 Extreme Selection

Adding to our analysis of the impact of selection in one-dimensional location experiments, on
the evaluator’s welfare, we examine here the effect of extreme selection, with sample size n = 1
and presample size k→ ∞. We draw on the fundamental result in extreme value theory, which
characterizes the limit distribution of the maximum of k i.i.d. random variables, properly normal-
ized for location and scale inflation. Take a basic noise distribution F and suppose that, for some
nondegenerate distribution F̄ and some sequence of numbers ak > 0 and bk,

Fk (bk +akε)→ F̄ (ε)

for every continuity point ε of F̄ . The fundamental theorem of extreme value theory says that F̄
must belong to one of the following three types: Gumbel, Extreme Weibull or Frechet.44

Since the distribution of the noise term is shifted upwards (in the sense of first-order stochastic
dominance) as k increases, the location normalization sequence bk is growing. However, the evalu-
ator can adjust for any translation of the noise distribution without any impact on payoff. The limit
impact of selection thus hinges on whether the scale normalization sequence ak shrinks to zero or
not. If ak → 0, then the noise distribution becomes more and more concentrated around bk as k
grows, providing the evaluator with arbitrarily precise information about the state—the value of the
evaluator’s problem converges to the full information payoff. If instead we can choose a constant
sequence ak, then we can also choose ak = 1 for all k, and an extremely selected experiment is as
accurate as a random experiment based on F̄ .

It is well known that many familiar distributions are in the domain of attraction of the Gumbel
distribution. Specifically, when F is normal—or half-normal, which has the same right tails—then
ak must be decreasing to zero—the scale normalization sequence ak = (2logk)−1/2 is appropriate
in this case—and the limit distribution F̄ is the Gumbel distribution. More generally, consider a
distribution F in the exponential power family, with density

f (ε) =
s

Γ(1/s)
e−|ε|

s
,

where s is a shape parameter and Γ is the Gamma function. This family includes the Laplace
(s = 1), normal (s = 2), and uniform (s = ∞) distributions as special cases. Our next result shows
that when the shape parameter s is strictly greater than 1, the scale normalization sequence ak must
be decreasing to zero, and the limiting distribution F̄ is the Gumbel distribution.

44See e.g. Leadbetter, Lindgren, and Rootzén (1983) for a primer on extreme value theory. As shown in Müller and
Rufibach (2008), every logconcave distribution F has a Gumbel or Extreme Weibull limiting distribution F̄ .
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Proposition 6. Let F be an exponential power distribution with shape parameter s > 1. Then
Fk(bk + akε)→ e−e−ε

for some sequence of constants bk and ak → 0. Thus, the value of the
evaluator’s problem converges to the full information payoff as k→ ∞.

Proof. We show that if ε1, . . . ,εk are i.i.d. exponential power with shape s > 1, location and
scale parameters 0 and 1, then Mk = max〈ε1, . . . ,εk〉 satisfies Pr(Mk 6 akε +bk)→ e−e−ε

for all
ε , where

ak = (s logk)−
s−1

s and bk = (s logk)1/s−
s−1

s log logk+ log(2Γ[1/s])

(s logk)
s−1

s
.

Start by noticing that f (ε)/
(
εb−1[1−F(ε)]

)
→ 1 as ε→∞. Fix ε and define yk for each k > 1 by

1−F (yk) = e−ε/k, so that
e−ε

k
ys−1

k
f (yk)

→ 1 as k→ ∞. (19)

We may assume yk > 0 for all k. Then f (yk) = s
s−1

s e−ys
k/s/2Γ[1/s] and hence, by (19),

− logk− ε +(s−1) logyk−
s−1

s
logs+ log(2Γ[1/b])+

ys
k
s
→ 0. (20)

From (20) we see that− logk+(s−1) logyk+ys
k/s =− logk+o

(
ys

k/s
)
+ys

k/s converges to a con-
stant. Thus,−s logk/us

k+o
(
ys

k/s
)
/(us

k/s)+1 converges to 0, i.e. logyk =(1/s)(logs+ log logk)+
o(1). Using this fact in (20), we obtain

ys
k
s
= logk+ ε− s−1

s
(logs+ log logk)+

s−1
s

logs− log(2Γ[1/s])+o(1)

= logk+ ε− s−1
s

log logk− log(2Γ[1/s])+o(1) .

Equivalently,

yk = (s logk)1/s

[
1+

ε− s−1
s log logk− log(2Γ[1/s])

logk
+o
(

1
logk

)]1/s

= (s logk)1/s

[
1+

ε− s−1
s log logk− log(2Γ[1/s])

s logk
+o
(

1
logk

)]

= (s logk)1/s +
ε− s−1

s log logk− log(2Γ[1/s])

(s logk)
s−1

b
+o

(
1

(logk)
s−1

s

)
= akε +bk +o(ak) .

Thus, Pr(Mk 6 akε +bk +o(ak))→ e−e−ε

, as was to be shown.

We find the conclusion in Proposition 6 striking, because it is known that when F is the ex-
ponential distribution—or the Laplace distribution, since the two distributions have the same right
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tails—then Fk also converges to the Gumbel distribution, but we can take ak = 1 for each k. (The
same normalizing constants work for the generalized exponential distribution defined in (6).) Thus,
while extreme selection leads to full information as k→ ∞ for any b > 1 in the exponential power
family, the limit result is very different when b = 1. The negative impact of selection in the ex-
ponential case discussed earlier is, in this sense, fragile, as any arbitrarily close distribution in the
exponential power family reverses the conclusion.45

B.3 Uncertain Selection: Non-Monotone Equilibrium

Here we illustrate the construction of a Bayes Nash equilibrium under uncertainty about the pre-
sample size k, when the MLR property may fail, and hence the monotone equilibrium from Propo-
sition 3 may not exist. We restrict attention to simple hypothesis testing, and to reduce strate-
gic complexity we assume that k− 1 follows a Bernoulli distribution: there is probability h that
k = n = 1 and remaining probability 1−h that k = 2. For instance, we can think of a heterogeneous
population of researchers, some honest (fraction h) and some strategic (fraction 1− h) as posited
for all researchers in the baseline strategic model we presented earlier. At observation x, when the
researcher plays maximal selection, the evaluator’s likelihood ratio can be written as

f (x−θ H)

f (x−θ L)

(
ĥ(x)+

[
1− ĥ(x)

] F (x−θ H)

F (x−θ L)

)
, (21)

where ĥ(x) = h/ [h+(1−h)2F (x−θ L)] may be interpreted as a posterior weight on honesty.
This weight is decreasing in x, so weight is gradually shifted towards selection as x grows. When
x is very low, there is little correction in the likelihood ratio, as selection is unlikely. When x is
very high, there is again little correction because F2 is very close to F . In the middle, however, the
change in weight towards selection can be so powerful that the expression in (21) falls in x.

A (locally) decreasing likelihood ratio has a simple interpretation in the scenario described in
this section. Since there is uncertainty not only about the state θ but also about the presample size,
the experiment provides information about both, so the net effect on the evaluator’s posterior is
the result of two forces. On one hand, a higher realization x increases the odds that the state is
high, because the MLR property does hold separately in each case, k = 1 or k = 2. On the other
hand, it increases the odds that k = 2, and conditionally on k = 2 the evaluator may be unwilling
to accept even facing the higher realization. In other words, in a region where the likelihood ratio
is decreasing, better results indicate greater selection, and are therefore “too good to be true.”
Figure 7 illustrates this failure of the MLR property where F is the normal distribution.46

45Of course, as s approaches 1, the convergence to full information becomes slower.
46To illustrate a larger effect, here k is either 1 or 5, but the illustration is representative also of the smaller effect
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Figure 7: Evaluator’s posterior expectation of the state as a function of the experimental obser-
vation (dashed curve). With known presample size k = n = 1 the expectation would be the blue
curve, with known k = 5 the red curve.

What if the failure of the MLR property is, in a sense to be made precise, not too large?47 In
this case, we can extend our monotone equilibrium from Proposition 3, as follows. The evaluator
continues to accept when the observation exceeds some cutoff point x̄. The researcher adopts a
new best response that we detail in the proof of the following result. The strategic researcher still
obtains approval exactly when the maximal signal exceeds x̄. However, when both signals are on
the same side of the cutoff point, the researcher with a presample of size k = 2 is willing to report
the minimal signal. Doing this in some instances will modify the evaluator’s posterior belief in
Bayes Nash equilibrium, justifying acceptance at the cutoff point x̄.

Proposition 7. Consider simple hypothesis testing with n = 1 and Bernoulli k− 1, so that k = 1
with probability h and k = 2 with probability 1− h. (i) If the failure of the MLR is small, then
there exists a continuum of cutoff points x̄ consistent with Bayes Nash equilibrium. The evaluator
approves when the reported signal exceeds x̄. (ii) Comparing the welfare achieved over such
equilibria, in the special case of known k = 2, the evaluator prefers the equilibrium with cutoff
point derived from maximal selection, while the researcher prefers a lower equilibrium cutoff point.

Proof. To prove part (i), let g(x|θ) denote the density of the signal realization under maximal
selection. For any r in the interior of the support of g(x|θ H)/g(x|θ L), the evaluator accepts
when g(x|θ H)/g(x|θ L) > r, by (1). Define x̂(r) = min{x|g(x|θ H)/g(x|θ L)> r} and x̌(r) =

obtained when k is 1 or 2.
47We define this property in the proof of Proposition 7. It holds, in particular, if there is no failure of the MLR

property, e.g., if k is known.
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max{x|g(x|θ H)/g(x|θ L)6 r}. By definition, the failure of the MLR is small if, uniformly over
all r, the probability F (x̌(r) |θ L)−F (x̂(r) |θ L) is small, and g(x|θ H)/(rg(x|θ L)) is close to 1 on
[x̂(r) , x̌(r)]. As illustrated in Figure 7, a small failure typically occurs for a bounded set of r.

Given r, we argue that any cutoff point x̄ 6 x̂(r) close to x̂(r) is consistent with equilib-
rium. The construction of the researcher’s strategy involves a point xa (r) > x̌(r) in the support
of F (x|θ H). The researcher who actually has a presample of size k = 2 will report the maximal
signal except when x2 ∈ [x̄, x̌(r)] and x1 ∈ [xa (r) ,∞). In this special case, the researcher reports the
minimal signal, x2. Intuitively, the researcher seeks to raise the evaluator’s posterior on [x̄, x̌(r)] by
drawing in signal pairs that would otherwise have led to a higher posterior.48

Immediately, this is a best response for the k = 2 researcher. Where the strategy is modified,
both signals exceed x̄ and provide acceptance, so there is no loss to reporting the minimum. The
researcher with k = 1 must report the obtained signal, with no strategic flexibility.

The change in strategy affects the researcher’s inference on [x̄, x̌(r)]∪ [xa (r) ,∞), and we need
to verify that it is optimal to accept when x falls in this set. In equilibrium, the evaluator cor-
rectly conjectures the researcher’s strategy, updates beliefs with Bayes’ rule, and accepts when the
likelihood ratio exceeds r.

Consider x ∈ [xa (r) ,∞). With the proposed strategy, an observation in this interval has density

g̃(x|θ) = h f (x|θ)+(1−h)2 f (x|θ) [F (x|θ)−F (x̌(r) |θ)+F (x̄|θ)]
= g(x|θ)− (1−h)2 f (x|θ) [F (x̌(r) |θ)−F (x̄|θ)] .

The new likelihood ratio is g̃(x|θ H)/g̃(x|θ L). When x̄ is near x̂(r) and F (x̌(r) |θ)−F (x̂(r) |θ)
is small, the likelihood ratio is uniformly close to g(x|θ H)/g(x|θ L). The latter is monotone, and
xa (r)> x̌(r) implies that g(x|θ H)/g(x|θ L)> r.

Consider x ∈ [x̄, x̌(r)]. With the proposed strategy, an observation in this interval has density

g̃(x|θ) = h f (x|θ)+(1−h)2 f (x|θ) [F (x|θ)+1−F (xa (r) |θ)] .

After simple algebra, the inequality g̃(x|θ H)/g̃(x|θ L)> g(x|θ H)/g(x|θ L) is equivalent to

h
[

1−F (xa (r) |θ H)

1−F (xa (r) |θ L)
−1
]
> 2(1−h)F (x|θ L)

[
F (x|θ H)

F (x|θ L)
− 1−F (xa (r) |θ H)

1−F (xa (r) |θ L)

]
.

48Depending on parameters, there often exists a similar equilibrium with cutoff point x̄ > x̌(r). Here, the researcher
reports the minimum when x2 lies in a lower interval and x1 ∈ [x̂(r) , x̄]. The lower interval contains signal realizations
that on their own have likelihood ratio f (x|θ H)/ f (x|θ L) > r, and moving these events may depress the evaluator’s
posterior belief on [x̂(r) , x̄].
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Figure 8: Likelihood ratio in equilibrium of Proposition 7.

Due to the MLR, the left-hand side is positive and the right-hand side is negative, so this is sat-
isfied. The bound is uniform when x̄ is near x̂ and the failure of MLR is small, so near this limit
g̃(x|θ H)/g̃(x|θ L)> r.

To prove part (ii) note that, in an equilibrium of the proposed form, there is approval if and
only if the researcher’s maximal signal exceeds the cutoff point x̄. With known k = 2, the cutoff
point from the equilibrium with maximal selection was optimal for the evaluator. The lower is x̄,
the more likely is approval, to the benefit of the researcher.

With the existence of many (a continuum of) equilibria, it may be harder to predict which one
is actually played by the two parties. At least, it may seem desirable that the evaluator should keep
a monotone acceptance strategy, for normative or positive reasons. Proposition 7 describes such
equilibria for small failures of the MLR, for instance due to small h. The construction is illustrated
in Figure 8, where the dashed curve represents the likelihood ratio in formula 21, the red line the
acceptance threshold r, and the blue curve the equilibrium likelihood ratio. As the researcher with
k = 2 chooses minimal rather than maximal selection when both presample observations fall in
the set [x̄, x̌]∪ [xa,∞), the evaluator’s inference becomes more favorable, and monotonicity in the
acceptance strategy is restored.

B.4 Local Accuracy

The notion of conditional accuracy provides a sufficient condition that is intuitive and easy to
check, and requires no knowledge of the problem parameters: as long as the evaluator’s payoff
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function defines a monotone decision problem, if an experiment Y is conditionally more accurate
than experiment X , then the evaluator must prefer Y to X , as shown in Proposition 1. Moreover,
as stated in that proposition, in the one-dimensional case considered by Lehmann (1988) (and the
following papers based on Lehmann’s article) the condition is sharp, for no weaker condition can
guarantee that Y is always the preferred experiment—if Y and X are one-dimensional and Y is
not more accurate than X , then there exists at least one monotone problem such that the evaluator
strictly prefers X to Y .

Despite these convenient features, the accuracy (or conditional accuracy) criterion is often
inapplicable—the ordering of experiments in terms of accuracy (or conditional accuracy) is only
partial. If the function ζ θ defined in (7) is not monotone, then the evaluator’s preference over X
and Y can depend on the specific problem at hand. But suppose now that we do know something
about the problem, that is, we are interested in determining the evaluator’s preference in some
prespecified subset of monotone problems. Then, as the class of conceivable problems becomes
smaller, more pairs of experiments become comparable.49 In other words, global monotonicity of
the function ζ θ on the whole set Θ becomes unnecessarily strong a condition, and we may be able
to compare experiments by looking at the local behavior of the function on a subset of Θ.

To develop the idea a little further, take two location experiments X and Y with respective noise
distributions F and G. Since ζ θ (x) = G−1(F(x−θ)

)
+θ , it is easy to see that for every realization

x and every ∆ > 0 we have

ζ θ (x)−ζ θ−∆(x)
∆

= 1− ζ θ (x+∆)−ζ θ (x)
∆

.

Besides confirming that Y is more accurate than X if and only if G is less dispersed than F , as
proved by Lehmann (1988, Theorem 5.2),50 the latter equality reveals a correspondence between
the shape of the function ζ θ (x) and the shape of the quantile difference G−1(u)−F−1(u). In
particular, ζ θ (x) is a bell-shaped (resp. U-shaped) function of θ , in which case we say that Y is
more accurate at the top and less accurate at the bottom (resp. more accurate at the bottom and
less accurate at the top) if and only if the quantile difference G−1(u)−F−1(u) is a bell-shaped
(resp. U-shaped) function of u.

49Lehmann’s (1988) concept of accuracy, in turn, shares a similar motivation. By limiting attention to monotone
decision problems (and one-dimensional experiments satisfying the MLR property), more pairs of experiments can
be ranked than using Blackwell’s (1951,1953) notion of sufficiency. Of course, in the extreme case where we focus
attention on one decision problem, any two experiments become comparable, by simply computing which experiment
gives the highest expected payoff in that problem. But this computation is, in general, not useful for comparing the
same two experiments in a different decision problem. This is precisely why Blackwell’s (or Lehmann’s) ordering of
experiments, despite being partial, is a valuable tool.

50See condition (5.6) in Lehmann (1988), an equivalent condition for G to be less dispersed than F .
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Figure 9: Simple hypothesis testing with uniform basic noise distribution: selection decreases
(increases) accuracy for an evaluator strongly favoring acceptance (rejection) a priori.

Now suppose that Y is a selected experiment with presample size k, so that G = Fk. Then,
by the proof of Theorem 1, the quantile difference is bell-shaped (resp. U-shaped) if and only if
the reverse hazard function − logF(ε) is logconvex (resp. logconcave) for low values of ε and
logconcave (resp. logconvex) for high values of ε . This immediately implies that, in a simple
hypothesis testing problem, an evaluator who sets a high cutoff point benefits (resp. loses) from
selection, while an evaluator who sets a low cutoff point loses (resp. benefits) from selection.
Recall that in simple hypothesis testing with a location experiment with distribution F the evaluator
accepts when the likelihood ratio, f (x−θ H)/ f (x−θ L) is at least as large as

r =
1− p

p
R−θ L

θ H−R
.

Proposition 8. Consider an experiment with reverse hazard function− logF that is first logconvex
(logconcave) and then logconcave (logconvex). Then for every k > 1 there exists rk such that the
evaluator prefers F to Fk (resp. Fk to F) for r 6 rk and Fk to F (resp. F to Fk) for r > rk.

As illustrated in Figure 9, suppose X corresponds a single random observation drawn from a
uniform F (the two blue curves with locations θ L and θ H), while Y corresponds to a single selected
observation from a presample of size k = 2, with distribution F2 (the two red curves). Suppose that
R is sufficiently high, so that the evaluator optimally chooses the high cutoff point x̄′ in experiment
X . The evaluator stands to gain from switching to Y : choosing cutoff point ȳ′L in Y gives as many
false positives, but fewer false negatives. This is because at x̄′ the horizontal difference between the
selected and the random signal distribution is smaller in the low state than in the high state—the
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selected experiment is more accurate at the top and less accurate at the bottom. For an evaluator
more concerned about false negatives (low R), who was choosing a lower cutoff point like x̄ in
experiment X , the mechanics of the change to Y work just the opposite way.

Noise drawn from a Laplace distribution, where F(ε) = (1/2)eε for ε < 0 and F(ε) = 1−
(1/2)e−ε for ε > 0, provides our second illustration of Proposition 8. In this case, − logF is
logconcave for ε < 0 and logconvex for ε > 0. Thus, the evaluator’s preference for selection is
reversed compared to a uniform experiment. Here, the evaluator prefers Fk to F for low values of
R, and F to Fk for large values of R. The distribution functions F and Fk are such that the quantile
difference (Fk)−1(u)− F−1(u) is U-shaped, and hence so is the function ζ θ (x)—the selected
experiment is more accurate at the bottom and less accurate at the top.

B.5 Testing for Logconcavity of Reverse Hazard Function

As we have shown in the main text, a basic noise distribution F is such that selection monotonically
benefits (or hurts) the evaluator if and only if the basic noise distribution Fk has the same prop-
erty for every real number k > 1. This is because in a one-dimensional location experiment, the
reverse hazard functions − logF − logFk only differ by a constant (namely logk). Thus, − logF
is logconcave (logconvex) if and only if − logFk is logconcave (logconvex).

This selection-invariance property can be helpful in devising a practical criterion to assess the
possible impact of selection in empirical data. Whether selection is known to have occurred or not,
empirical outcome distributions with logconvex reverse hazard function should “raise a flag.” If
selection did occur, then the analyst is bound to having less informative data, even when the analyst
is aware of selection and correctly sets the acceptance standard. Instead, a logconcave shape in the
data distribution’s reverse hazard function indicates that if the analyst does take selection into
account, then selection actually results in a more informative experiment.

Suppose an evaluator has obtained data (x1, . . . ,xN) from N distinct sites, where the observation
in each site has been selected, and has computed an estimate θ̂ . The noise terms correspond to the
residuals ε i = xi− θ̂ , which are independent draws from Fk. Then we can use the realized residuals
to test − logF for logconvexity or logconcavity. In the context of field experiments, it is possible
to test the same null hypothesis directly on data (x1, . . . ,xN) under the assumption of homogeneous
treatment effect—that is, assuming that θ does not vary across observations, so that distributions
coincide up to a constant term.

A first visual assessment of logconvexity or logconcavity can be obtained by plotting the
double-log transformation of the empirical cumulative distribution function. Going beyond this
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suggestive graphical approach, our analysis provides the starting point for the development of em-
pirical tests for logconcavity or logconvexity of the reverse hazard function—for instance, as an
extension of Hazelton’s (2011) non-parametric test for logconcavity of a density based on a sample
of observations.
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