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Abstract

Technological change, from the advent of robots to expanded trade opportunities,

tends to create winners and losers. When are such changes welcome? How should

government policy respond? We provide a general analysis of optimal technology

regulation in a second best world, with linear taxes on goods and a nonlinear tax on

labor income. Our first result shows that, despite these limited instruments, produc-

tivity improvements are always welcome and valued in the same way as in a first

best world. Our second set of results offers three optimal tax formulas, with minimal

structural assumptions, involving sufficient statistics that can be implementing using

existing reduced-form evidence on the distributional impact of robots and trade. Our

final result is a comparative static exercise illustrating that while distributional con-

cerns create a rationale for non-zero taxes on robots and trade, the magnitude of these

taxes may decrease with improvements in new technologies. Hence, as the process of

automation and globalization deepens, more inequality may best be met with lower

luddism.
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1 Introduction

Robots and artificial intelligence technologies are on the rise. So are imports from China
and other developing countries. Regardless of its origins, technological change creates
opportunities for some workers, destroys opportunities for others, and generates signif-
icant distributional consequences, as documented in the recent empirical work of Autor,
Dorn and Hanson (2013) and Acemoglu and Restrepo (2017) for the United States.

When should technological change be welcome? Should any policy response be in
place? And if so, how should we manage new technologies? Should we become more
luddites as machines become more efficient or more protectionist as trade opportunities
expand? The goal of this paper is to provide a general second-best framework to help
address these and other related questions.

In seeking answers to these questions one first needs to take a stand on the range of
available policy instruments. Obviously, if the idilic lump-sum transfers are available,
distribution can be done efficiently, without distorting production. Even in the absence
of lump-sum transfers, if linear taxes are available on all goods and factors, production
efficiency may hold, as in Diamond and Mirrlees (1971b). In both cases, zero taxes on
robots and free trade are optimal. At another extreme, in the absence of any policy instru-
ment, whenever technological progress creates at least one loser, a welfare criterion must
be consulted and the status quo may be preferred.

Here, we focus on intermediate, and arguably more realistic, scenarios where tax in-
struments are available, but are more limited than those ensuring production efficiency.
Our framework is designed to capture general forms of technological change. We con-
sider two sets of technologies, which we refer to as “old” and “new”. For instance, firms
using the new technology may be producers of robots or traders that export some goods
in exchange for others. Since we are interested in the optimal regulation of the new tech-
nology, we do not impose any restriction on the taxation of firms using that technology,
e.g. taxes on robots or trade. In contrast, to allow for a meaningful trade-off between re-
distribution and efficiency, we restrict the set of taxes that can be imposed on firms using
the old technology as well as on consumers and workers. In the economic environment
that we consider, the after-tax wage structure can be influenced by tax policy, but not
completely controlled.

Our first set of results focuses on the welfare impact of new technologies under the
assumption that constrained, but optimal policies are in place. We offer a novel envelope
result that generalizes the evaluation of productivity shocks in first-best environments,
as in Solow (1957) and Hulten (1978), to distorted economies. Because of restrictions
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on the set of available tax instruments, marginal rates of substitution may not be equal-
ized across agents and marginal rates of transformation may not be equalized between
new and old technology firms. Yet, “Immiserizing Growth,” as in Bhagwati (1958), never
arises. Provided that governments can tax new technology firms, the welfare impact of
technological progress can be measured in the exact same way as in first best environ-
ments (despite not being first best).

A direct implication of our envelope result is that even if new technologies tend to
have a disproportionate effect on the wages of less skilled workers, and we care about re-
distribution, this does not create any new rationale for taxes and subsidies on innovation.
In the case of terms-of-trade shocks, our envelope result states that such shocks are bene-
ficial if and only if they raise the value of the trade balance at current quantities. In other
words, the gains from international trade can still be computed by integrating below the
demand curves for foreign goods. Distributional considerations may affect how much we
trade, but not the mapping between observed trade flows and welfare, as in Arkolakis,
Costinot and Rodríguez-Clare (2012).

Our second set of results characterizes the structure efficient taxes on old and new
technology firms in general environments when the taxation of different labor factors is
limited to non-linear income taxation, as in Mirrlees (1971). In a two-type setting, Naito
(1999) has proven that governments seeking to redistribute income from high- to low-skill
workers may have incentives to depart from production efficiency. Doing so manipulates
relative wages, which cannot be taxed directly, and relaxes incentive compatibility con-
straints. Our analysis generalizes this result and , more significantly, goes beyond quali-
tative insights by deriving optimal tax formulas expressed in terms of sufficient statistics.

Specifically, we provide three optimal tax formulas using minimal structural assump-
tions. The sufficient statistics we identify provide insight into the optimal taxation of
new technology and are, in principle, empirically measurable. In all three formulas, the
change in the wage schedule plays a central role, as captured by the change in the wage
distribution. This is intuitive, since the key motive for considering a distortion in pro-
duction is its distributional effect across households. Our formula makes clear that this
intuitively important object, which may be of empirical interest for descriptive reasons, is
actually a sufficient statistic for optimal policy design. Given knowledge of this statistic,
the underlying structure of the economy leading to the change in wages can be left in the
background.

Our formulas are informative about how taxes should be set. We apply our formulas
to robots and trade, using the reduced-form evidence of Acemoglu and Restrepo (2017)
on the impact of robots and the evidence of Chetverikov, Larsen and Palmer (2016) on the
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impact of Chinese imports on inequality as illustrations. This exercise produces taxes on
robots of 99% and on trade of 15%.1

We conclude our analysis with a comparative static exercise that asks: as progress in
Artificial Intelligence and other areas makes for cheaper and better robots, should we tax
them more? Or in a trade context, does hyper-globalization call for hyper-protection?
Through a simple example, we show that in contrast to many popular discussions, im-
provements in new technologies may be associated with more robots and more trade, as
well as more inequality caused by those improvements, but lower optimal taxes on robots
and trade.

Our paper makes three distinct contributions to the existing literature. The first one is
a new perspective on the welfare impact of technological progress in the presence of dis-
tortions. In a first best world, the impact of small productivity shocks can be evaluated,
absent any restriction on preferences and technology, using a simple envelope argument
as in Solow (1957) and Hulten (1978). With distortions, evaluating the welfare impact
of productivity shocks, in general, requires additional information about whether such
shocks aggravate or alleviate underlying distortions. In an environment with markups,
for instance, this boils down to whether employment is reallocated towards goods with
higher or lower markups, as in Basu and Fernald (2002), Arkolakis, Costinot, Donaldson
and Rodríguez-Clare (Forthcoming), and Baeqee and Farhi (2017). If the aggravation of
distortions is large enough, technological progress may even lower welfare, as discussed
by Bhagwati (1971). Here, we follow a different approach. Our analysis builds on the idea
that while economies may be distorted and tax instruments may be limited, the govern-
ment may still have access to policy instruments to regulate the new technology. If so, we
show that the envelope results of Solow (1957) and Hulten (1978) still hold, with direct
implications for the measurement of the welfare gains from globalization and automation
as well as for the taxation of innovation.

Our second contribution is a general characterization of the structure of optimal taxes
in environments with restricted factor income taxation. In so doing, we fill a gap between
the general analysis of Diamond and Mirrlees (1971b,a) and Dixit and Norman (1980),
which assumes that linear taxes on all factors are available, and specific examples, typi-
cally with two goods and two factors, in which only income taxation is available, as in the
original work of Naito (1999), and subsequent work by Guesnerie (1998), Spector (2001),
and Naito (2006).2 On the broad spectrum of restrictions on available policy instruments,

1To put these numbers in perspective, in the case of robots, a tax of near 100%, doubles its price, which
is equivalent to taxing half of its rental earnings.

2In all three papers, like in Dixit and Norman (1980), the new technology is international trade. In
another related trade application, Feenstra and Lewis (1994) study an environment where governments
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one can also view our analysis as an intermediate step between the work of Diamond
and Mirrlees (1971b,a) and Dixit and Norman (1980) and the trade policy literature, as
reviewed for instance in Rodrik (1995), where it is common to assume that the only in-
struments available for redistribution are trade taxes.

Our third contribution is to offer a more specific application of our general formulas to
the taxation of robots and trade. In recent work, Guerreiro, Rebelo and Teles (2017) have
studied a model with both skilled and unskilled workers as well as robots, with a nested
CES production function. Assuming factor-specific taxes are unavailable, they find a non-
zero tax on robots to be generally optimal, in line with Naito (1999). Although we share
the same rationale for finding nonzero taxes on robots, based on Naito (1999), our main
goal is not to sign the tax on robots, nor to explore a particular production structure, but
instead to offer tax formulas highlighting key sufficient statistics needed to determine the
level of taxes, with fewer structural assumptions. In this way, our formulas provide a
foundation for empirical work as well as the basis for novel comparative static results.3

In another recent contribution, Hosseini and Shourideh (2018) analyze a multi-country
Ricardian model of trade with input-output linkages and imperfect mobility of workers
across sectors. Although sector-specific taxes on labor are not explicitly allowed, these
missing taxes can be perfectly mimicked by the available tax instruments. By implication,
their economy provides an alternative implementation but fits Diamond and Mirrlees
(1971a,b) and Dixit and Norman (1980, 1986), where households face a complete set of
linear taxes, including sector-specific taxes on labor. Production efficiency and free trade
then follow, just as they did in Diamond and Mirrlees (1971a,b).4

2 Environment

Our model economy allows for a finite number of goods indexed by i = 1, ..., N and a
continuum of households indexed by their skill θ ∈ Θ with distribution F. Importantly,
we do not restrict heterogeneity to be one dimensional, as the classical Mirrleesian anal-
ysis does. Indeed, allowing for rich multidimensional heterogeneity is an important step

cannot subject different worker types to different taxes, but can offer subsidies to workers moving from one
industry to another in response to trade. They provide conditions under which such a trade adjustment
assistance program are sufficient to guarantee Pareto gains from trade, as in Dixit and Norman (1980).

3Our specific tax formulas in Section 5 relate to the work of Jacobs (2015) who considers the same tax
instruments as in Naito (1999), in an environment without robots, featuring a continuum of workers and
no general equilibrium effects.

4A separate line of work, e.g. Itskhoki (2008), Antras, de Gortari and Itskhoki (2017) and Tsyvinski and
Werquin (2018), studies technological changes such as trade or robots, without considering taxes on these
new technologies, but instead focusing on how the income tax schedule may respond to these changes.
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in terms of generality.

2.1 Preferences

Households have identical and weakly separable preferences between goods and labor.
The utility of household θ is given by

U(θ) = u(C(θ), n(θ)),

C(θ) = v(c(θ)),

where C(θ) is the sub-utility that household θ derives from consuming goods, n(θ) is her
labor supply, c(θ) ≡ {ci(θ)} is her vector of good consumption, and u and v are the utility
functions associated with lower- and upper-level preferences, respectively.

2.2 Technology

There are two types of technologies, which we refer to as “old” and “new,” each asso-
ciated with a distinct production set. In our applications, the new technology may rep-
resent trade with the rest of the world or the production of machines, like robots. This
dichotomy between new and old technology, as opposed to the consolidation into a sin-
gle aggregate production set, allows us to consider the differential taxation of firms using
these two technologies, and, in turn, allows for aggregate production inefficiency.

Old Technology. Let y ≡ {yi} denote the vector of total net output by old technology
firms and let n ≡ {n(θ)} denote the schedule of their total labor demand. Positive values
for yi represent output, while negative yi represent inputs. The production set associated
with the old technology corresponds to all production plans (y, n) such that

G(y, n) ≤ 0,

where G is some convex and homogeneous function of (y, n). Homogeneity of G implies
constant returns to scale.

New Technology. Let y∗ ≡ {y∗i } denote the vector of total net output by new tech-
nology firms. The production set associated with the new technology corresponds to all
production plans y∗ such that

G∗(y∗, φ) ≤ 0,
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where G∗ is some convex and homogeneous function of y∗ and φ > 0 is a productivity
parameter. We assume that G∗ is decreasing in φ so that an increase in φ corresponds to
an improvement in the new technology.

Unlike the old technology, the new technology does not employ labor directly. Ab-
stracting from labor in the new technology is convenient, as it implies that wages are
determined by the old technology. New technology has an effect on wages, through its
effect on the structure of production within the old technology, but not directly through
employment. For given φ, one can show that the omission of labor from G∗ is without
loss of generality; thus, this assumption has no effect on our tax formulas. Essentially, the
new technology sector can be thought of as the last stage of production, when taxation is
imposed.5 For changes in φ, as in our comparative static results, the assumption restricts
attention to labor-neutral technological changes, which are well-suited to our two main
applications trade and robots, allowing us to capture reduction in trade barriers or qual-
ity improvements in robots.6 In the first case, new technology firms are traders who can
export and import goods,

G∗(y∗; φ) = p̄(φ) · y∗,

where p̄(φ) ≡ { p̄i(φ)} denotes the vector of world prices and · denotes the inner product
of two vectors. An increase in φ corresponds to a positive terms-of-trade shock, that may
be due to a change in transportation costs or productivity in the rest of the world. In the
second case, new technology firms may be robot-producers that transform a composite of
all other goods in the economy, call it gross output, into robots.

Resource Constraint. For all goods, the demand by households is equal to the supply
by old and new technology firms,

ˆ
c(θ)dF(θ) = y + y∗.

5By defining the elements of the vector y and y∗ appropriately, the production of a machine or robot
may take place in the traditional G sector, combining labor and other inputs. This machine can then be
required to be pass through the new technology sector G∗ before returning to the traditional sector G as an
input.

6The technological changes are labor-neutral only in the sense that that they do not induce changes in
wages for given prices p faced by the old technology firms (or for a given production y). However, without
government intervention, in general equilibrium, changes in φ generally induce changes in p (or output y)
that affect equilibrium wages, for given {n}.
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2.3 Prices and Taxes

Factors. Let w ≡ {w(θ)} denote the schedule of wages faced by firms. Because of in-
come taxation, a household with ability θ and labor earnings w(θ)n(θ) retains

w(θ)n(θ)− T(w(θ)n(θ)),

where T(w(θ)n(θ)) denotes its total tax payment. Crucially, the income tax schedule T is
the same for all households. This rules out agent-specific lump-sum transfers, in contrast
to the Second Welfare Theorem, as well as factor-specific linear taxes, in contrast to the
analysis of Diamond and Mirrlees (1971b,a) and Dixit and Norman (1980).

Goods. Let p∗ ≡ {p∗i } denote the vector of good prices faced by new technology firms.
Because of ad-valorem taxes t∗ ≡ {t∗i }, these prices may differ from the vector of good
prices p ≡ {pi} faced by old technology firms and households,

pi = (1 + t∗i )p∗i , for all i.

Production inefficiency arises if t∗ 6= 0. In a trade context, an import tariff or an export
subsidy on good i corresponds to t∗i > 0, whereas an import subsidy or an export tax
corresponds to t∗i < 0.

Since demand and supply only depend on relative prices, we can normalize prices
and taxes such that p1 = p∗1 = 1 and t∗1 = 0. We maintain this normalization throughout.

2.4 Social Welfare

We consider a general social welfare criterion that depends on the distribution of indi-
vidual well-beings, not the particular well-being of certain agents. Any consumption
and labor supply schedule (c, n) ≡ {c(θ), n(θ)} is associated with a utility schedule
U ≡ {U(θ)}. This induces a cumulative distribution µU over utilities levels µU(x) =´

U(θ)≤x dF(θ) for all x. The social welfare objective is assumed to be a function of µU,

W(µU).

We assume W is increasing with respect to first-order stochastic dominant changes in µU.
In what follows, we let W̄(c, n) ≡W(µ{u(v(c(θ)),n(θ))}) denote the social welfare associated
with a given consumption and labor supply schedule.

When θ is one dimensional and higher-θ households achieve higher utility, as in the
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standard Mirrleesian setup, our welfare criterion nests the special case of a weighted
utilitarian objective ˆ

U(θ)λ(θ)dF(θ),

without any further restriction on the Pareto weights λ(θ) ≥ 0 of the households.
When θ is multidimensional, our assumption about W only restricts Pareto weights to

be the same for all households θ earning the same wage, since these households obtain
the same utility.

2.5 Planning Problem

The government problem is to select a competitive equilibrium with taxes that maximizes
social welfare. That is, the government chooses an allocation, c ≡ {c(θ)}, n ≡ {n(θ)},
C ≡ {C(θ)}, y ≡ {yi}, and y∗ ≡ {y∗i }, prices and wages, p ≡ {pi}, p∗ ≡ {p∗i }, and w ≡
{w(θ)}, as well as an income tax schedule, T, and taxes on new technology firms, t∗ ≡
{t∗i }, in order to maximize W(µ{u(v(c(θ)),n(θ))}) subject to the constraints that households
maximize their utility, firms maximize their profits, markets clear, and prices satisfy the
above non-arbitrage condition. The formal definition of a competitive equilibrium and
the associated planning problem can be found in Appendix A.

3 When Is Technological Change Welcome?

Our first set of results focuses on the welfare impact of new technologies under the as-
sumption that constrained, but optimal policies are in place.

3.1 An Envelope Result

Let V(φ) denote the value function associated with the government problem. As shown
in Appendix B, it takes the general form,

V(φ) = max
(c,n,y)∈Z

W̄(c, n) (1a)

G∗(
ˆ

c(θ)dF(θ)− y; φ) ≤ 0, (1b)
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where the feasible set Z is independent of φ. Now consider a small productivity shock
from φ to φ + dφ. By the Envelope Theorem, we have

dV
dφ

= γ
∂G∗

∂φ
, (2)

with γ ≥ 0 the Lagrange multiplier associated with the resource constraint (1b).
This envelope condition can be thought of as a generalization of Hulten’s (1978) The-

orem. In spite of the economy not being first-best, the welfare impact of technological
progress can be measured in the exact same way as in first-best environments. This ob-
servation leads to our first result.

Proposition 1. Technological change increases social welfare, dV/dφ ≥ 0, if and only if it ex-
pands the production possibility of new technology firms, that is, if and only if ∂G∗/∂φ ≤ 0.

In the presence of distortions, it is well-known that technological progress may lower
welfare. This is what Edgeworth (1884) and Bhagwati (1958) refer to as “Economic Damni-
fication” and “Immesirizing Growth”. How does Proposition 1 rule it out?

The critical assumption here is not that there are no distortions or, equivalently, that
our planner has enough tax instruments to target any underlying distortion. In fact, the
planning problem described above would also hold in an environment with externalities
and other market imperfections, such as price and wage rigidities leading to labor market
distortions. Proposition 1 instead follows from the assumption that, in spite of distortions
and restrictions on the set of available instruments, our planner still has a tax instruments
t∗ to control the new technology firms, which is where technological change occurs.

Take the example of international trade: G∗(y∗; φ) = p̄(φ) · y∗. Equation (2) implies
that a country gains from a terms-of-trade shock if and only if it raises the value of its net
exports, evaluated at the initial quantities,

V′(φ) ∝ p̄′(φ) · y∗.

Intuitively, if world prices p̄(φ) change, the government always has the option to main-
tain domestic prices p unchanged by raising trade taxes by p̄′(φ). Starting from a con-
strained optimum, the only first-order effect of such a policy change would be to raise
tax revenues by p̄′(φ) · y∗, regardless of whether or not the economy is first-best. Raising
trade taxes by p̄′(φ) · y∗, of course, may not be the optimal response, but the possibility
of such a response is sufficient to evaluate the welfare impact of a terms-of-trade shock at
the margin.7

7The previous observation does not depend on whether the country is a small open economy or not.
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3.2 Implications

We now illustrate the usefulness of our envelope result through two applications.

Taxation of Innovation. Consider first the issue of whether governments may ever want
to tax innovation because of its adverse distributional consequences. To shed light on this
issue in the simplest possible way, suppose that there exists a set of feasible new tech-
nologies, Φ, that can be restricted by the government. The profit maximization problem
of new technology firms is then given by

y∗, φ ∈ max
ỹ∗,φ̃∈Φ̄

p∗ · ỹ∗

G∗(ỹ∗; φ̃) ≤ 0,

where Φ̄ ⊂ Φ is the set of technologies allowed by the government. The government’s
problem, in turn, takes the general form,

max
(c,n,y)∈Z ,φ∈Φ

W̄(c, n)

G∗(
ˆ

c(θ)dF(θ)− y; φ) ≤ 0,

By equation (2), the optimal technology φ̄ simply satisfies

∂G∗(y∗; φ̄)

∂φ
= 0.

Provided that taxes of new technology firms, t∗, have been set such that they find it opti-
mal to produce y∗, conditional on φ̄, they will also find it optimal to choose φ̄ , if allowed
to do so. It follows that the government does not need to affect the direction of innovation,
in spite of its potential distributional implications.8

Valuation of New Technologies. Next we turn to the issue of evaluating the welfare
gains from new technologies. Using our envelope result, one can follow, in a general
equilibrium environment with distortions, the same steps used to compute equivalent

p̄(φ) could itself be a function of y∗. The same result would hold. In fact, our envelope result provides
the basis for a generalization of the results in Bagwell and Staiger (1999, 2001, 2012a,b): if trade taxes are
unrestricted, the only rationale for a trade agreement is to correct terms-of-trade externalities.

8More generally, there may be externalities across firms that directly call for subsidizing, or taxing,
innovation. In such environments, the implication of our envelope result is that distributional concerns do
not add a new motive for taxing, or subsidizing, innovation.
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and compensating variations in standard consumer theory.
Consider the following generalized version of our government’s problem

V(φ, D) = max
(c,n,y)∈Z

W̄(c, n) (3a)

G∗(
ˆ

c(θ)dF(θ)− y; φ) ≤ D, (3b)

The parameters φ and D play the same role here as prices and income in the utility max-
imization problem of a single consumer. In a trade context, D corresponds to a trade
deficit, that is a transfer from the rest of the world. The welfare impact of a productivity
shock from φ0 to φ1 can then be computed either as the transfer, EV(φ0, φ1), that would
be equivalent to the shock, V(φ0, EV(φ0, φ1)) = V(φ1, 0), or as the transfer, CV(φ0, φ1),
required to compensate for the shock, V(φ1,−CV(φ0, φ1)) = V(φ0, 0).

Let y∗(φ, D) denote the vector of output by new technology firms associated with the
solution to (3). Equation (2) implies that

EV(φ, φ + dφ) = CV(φ, φ + dφ) =
∂G∗(y∗(φ, 0); φ)

∂φ
. (4)

This is the counterpart to Shephard’s Lemma in standard consumer theory. And, like in
standard consumer theory, this envelope condition can be integrated to compute the wel-
fare impact of arbitrary productivity shocks, as described in Appendix (B.2). Gains from
trade, for instance, can be computed by integrating (4) between the current productivity
level and the one at which the economy reaches autarky, as in Arkolakis, Costinot and
Rodríguez-Clare (2012).

Note that distortions will, in general, affect y∗(φ, D). So, the point here is not that dis-
tortions do not matter for the welfare consequences of globalization or automation. The
point rather is that like in a first-best environment, the demand for goods produced using
the new technology, either Chinese imports or robots, fully reveals the welfare gains as-
sociated with that technology. Concerns for redistribution and other potential sources of
distortions affects how much we trade or how much we use robots, but not the mapping
between quantities demanded, productivity shocks, and welfare.9

9The extent to which the previous result is useful in practice, of course, depends on whether con-
strained, but optimal policies are in place. The assumption that the government fully controls the new
technology clearly is non-trivial. We view it, however, as a useful benchmark, not necessarily stronger than
the opposite assumption, implicit in many papers, that governments cannot control the new technology at
all. Galle, Rodríguez-Clare and Yi (2017), and Waugh and Lyon (2017) are recent welfare analysis of the
so-called China shock that fall into this category. Brexit and the current debate about the renegotiation of
NAFTA are stark reminders that trade policies are not set in stone.
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4 How Should We Tax New Technologies?

Our next set of results characterizes the structure of taxes on new technology firms.
Specifically, we provide optimal tax formulas expressed in terms of sufficient statistics
and using minimal structural assumptions. The sufficient statistics we identify provide
insight into the optimal taxation of new technology and are, at least in principle, empiri-
cally measurable.

Our formulas are informative about how taxes should be set. All our formulas coin-
cide and hold at any optimum, for any given welfare function. Conversely, away from
the optimum, each formula provides a different perspective and if any formulas does not
hold, they indicate how welfare can be improved. In this way, the formulas can be applied
even when the government is not optimizing.

4.1 Efficiency versus Redistribution

Our tax formulas are derived starting from any initial equilibrium, with taxes (t∗, T) and
are based on a marginal change δt∗ in the taxes on the new technology, potentially ac-
companied by adjustments in the nonlinear tax schedule δT. These marginal tax changes
induce equilibrium marginal adjustments in prices δp, wages δw, quantities δy∗ and la-
bor δn. Our three formulas differ in whether the nonlinear tax is adjusted and how it is
adjusted.

We first present an intermediate result that encompasses all cases, providing a condi-
tion that the marginal changes δt∗, δT and the marginal adjustments δp, δw, δy∗ and δn
must satisfy so that welfare is not improved by the variation. Let z ∈ [0, 1] represent the
percentile in the wage distribution; abusing notation slightly, we write w(z), n(z), etc.

Lemma 1. A necessary condition for a feasible variation not to improve welfare is that

(p− p∗) · δy∗ −
ˆ

τ(z)w(z)δn(z) dz

=

ˆ
(λ̃(z)− 1)((1− τ(z))n(z) δw(z)− c(z) · δp− δT(x(z))) dz

where λ̃(z) = 1
γ

∂Φ
∂U(z)uc1(z) and γ > 0 represents the marginal value of resources in the hand of

the government.

Before discussing the terms in this expression, the fact that all variables and adjust-
ments are expressed in terms of z shows that one can collapse heterogeneity and proceed
as if there were of a single dimension of heterogeneity. In terms of its implementability,
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this aspect is crucial. It implies that researchers can focus empirical measurement on the
quantile distribution (as is often done in practice) without modeling the underlying rich
sources of heterogeneity.

Turning to the expression, the equality condition identified in the lemma trades off a
distributional effects accruing directly to households with two fiscal externalities.

The distributional effect is captured by the first term on the right hand side. It evalu-
ates the change in utility in monetary terms directly perceived by a household, weighted
by λ̃(θ) − 1. By an envelope argument, the marginal change in utility for θ is given by

1
uc1 (θ)

δu(θ) = (1− τ(θ))n(θ) δw(θ)− c(θ) · δp− δT(x(θ)). The terms (1− τ(θ))n(θ) δw(θ)−
δT(x(θ)) capture the change in income, due to both the change in before-tax income as
well as the change in the tax schedule. The term −c(θ) · δp adjusts this change in income
by a household-specific measure of inflation. The total change in utility is a change in real
income.

There are two fiscal externalities. The term on the left hand side represents the change
in revenues from the linear tax t∗, also equal to the marginal increase in the deadweight
burden or “Harberger triangle”. The second fiscal externality is represented by the last
term on the right hand side, capturing the increase in revenue from the non-linear income
tax schedule.

4.2 Three Tax Formulas

We now explore three feasible tax variations, each leading to an optimal tax formula. All
variations involve a change in y∗i , in any desired direction. The variations differ with
respect to the nonlinear labor income tax schedule. In particular, we consider variations
with

i. no change in in the income tax, δT = 0;

ii. no change in (the distribution of) labor supply, δn = 0;

iii. no change in (the distribution of) utility, δU = 0.

The first variation is straightforward and the most obvious to consider. The second vari-
ation adjusts the income tax schedule T to keep the distribution of labor supply remains
unchanged, while the third does the same for utility. Note that in the canonical Mir-
rleesian case, where θ is one dimensional, the second and third variations ensure that
labor supply and utility are unchanged for each household, respectively. When θ is mul-
tidimensional, there are not enough instruments to ensure this, but the second and third
variations ensure that the distribution of labor and utilities are unchanged, respectively.
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Our next result develops the optimality conditions derived from each of these varia-
tions.

Proposition 2. A necessary condition for a feasible variation not to improve welfare is that

pi− p∗i =


´ (

(λ̃(z)− 1)(1− τ(z)) + τ(z) εu(z)
)

n(z) dw(z)
dy∗i
|δT=0 dz−

´
(λ̃(z)− 1)c(z) · dp

dy |δT=0 dz´
ψ(z)(1− τ(z))w(z)n(z) dω(z)

dy∗i
|δn=0 dz´

τ(θ)w(z)n(z) ε(z)
ε(z)+1

1
ω(z)

dω(z)
dy∗i
|δU=0 dz

where ω(z) = w′(z)/w(z), εu(z) is an uncompensated elasticity of labor supply, while ε(z) is
a consumption-compensated elasticity of labor supply. The coefficient ψ(z) is detailed in the ap-
pendix and depends only on private preferences and social weights, not technology. In the quasi-
linear utility case it simplifies to ψ(z) = Λ̃(z)− z where Λ̃(z) =

´ z
0 λ̃(z̃)dz̃.

In all three formulas, the change in the wage schedule plays a central role, as captured
by the change in the wage level w or wage growth ω. The precise statistic summarizing
the effects on the wage schedule varies across each formula. In the first formula, it is the
elasticity of the wage level w, whereas in the second and third equation it is the elasticity
of the growth rate ω. Additionally, each formula requires the elasticity to capture the
change in wages under the associated variation. Thus, the second equation holds the
distribution of labor constant, the first and third include any effects from changes in labor
supply.

The fact that the impact on wages appears as a key input into optimal taxes is intuitive,
since the only motive for considering a distortion in production is its distributional effect
across households. Our formula makes clear that this intuitively important object, which
may be of empirical interest for descriptive reasons, is actually a sufficient statistic for
optimal policy design. Given knowledge of this statistic, the underlying structure of the
economy leading to the change in wages can be left in the background.

Each formula interacts information on wages in a different ways with other variables,
placing different informational demands for its implementation. The first two formulas
require information on welfare weights, whereas the third formula does not. The first
and third formula require information on labor supply elasticities, whereas the second
condition does not.

Interestingly, all three formulas provide a direct expression for the tax rate. This is
unusual compared to the optimal linear tax literature (e.g. Diamond and Mirrlees, 1971a),
which usually derives a system of simultaneous equations, with the entire set of tax rates
on the left hand side. Our expression is more akin to the Pigouvian tax literature, which

14



provides an explicit expression for the tax on each good in terms of its externality. Indeed,
we favor a Pigouvian interpretation of these formulas, as correcting for distributional and
fiscal externalities: if an extra unit of y∗i is increased, then this has effects on the wage
schedule that affect distribution and social welfare, as well the resources in the hands of
the government; the tax asks agents to pay for these marginal effects.

All three formulas necessarily hold at an optimum. Indeed, even away from a full
optimum, if the nonlinear tax schedule T is conditionally optimal given t∗, but t∗ is not
optimal, then all three formulas will not hold and in the same direction, providing the
same diagnostic. Thus, when T is conditionally optimal in this way, any of the formulas
conveys all the information of the others. However, if the current nonlinear tax sched-
ule T is not conditionally optimal in this way, then each formula may provide different
guidance and each one can be used to identify potential improvements.

The first formula follows from the simplest thought experiment and has a straight-
forward interpretation. On the one hand, if the tax schedule is unchanged the impact
on household utility depends solely on the increase in retained income from the change
in wages, (1− τ(z))n(z)dw(z). The formula evaluates the distributional value from the
planner’s perspective of paying out income in this pattern relative to the value it places
on holding on to these funds, λ̃ − 1. Another distributional term is present, due to dif-
ferential inflation across households, captured by the presence of −c(z) · dp. This term
drops out if households have homogenous preferences over consumption goods, since
then they all experience the same inflation rate. On the other hand, the change in wages
induces a change in labor supply, which impacts the planner’s revenue through the non-
linear income tax, τ(z)n(z)εu(z)dw(z). The tax should equal the sum of the distributional
and effiency effects.

The first formula generalizes the formula found in the political economy of trade liter-
ature initiated by Grossman and Helpman (1994). The key difference between the class of
problems that we consider and those in this literature is that we allow for endogenous la-
bor supply and nonlinear income taxation. Redistribution is possible without distortions,
such as trade protection, but not costless due to elastic labor supply.

Turning to the second formula, there is now only one term on the right-hand side,
rather than two, reflecting the fact that the variation behind this formula is engineered
to ensure that labor is unchanged. The remaining term on the right-hand side is purely
distributional, evaluating winners and losers. Although the expression is simple, who
wins and who loses, is no longer mechanical, but incorporates the adjustment in the tax
schedule required to keep labor unchanged. This adjustment is shaped by the change
in relative wages, as captured by dω, explaining its role. The formula shows that only
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changes in relative wages matter and proportional changes in all wages have no effect.
The changes in relative wages captured by dω are weighted by distributional concerns
summarized in ψ(z).

Intuitively, only relative wages matter for incentives explaining the central role played
by ω. To see this more formally, consider the incentive compatibility constraint

u(C(z), n(z)) ≥ u(C(z′), n(z′)w(z′)
w(z) )

where C(z) is the optimized level for v(c(z)) given expenditures w(z)n(z)− T(w(z)n(z)).
The presence of w(z′)

w(z) reflects the fact that a household of type z that earns the same
amount as one of type z′ must work n̂(z, z′) where w(z)n̂(z, z′) = w(z′)n(z′). Indeed,
the first order condition for z′ evaluated at z′ = z gives

uCC′(z) + un(z)w(z)
(
n′(z) + n(z)ω(z)

)
= 0.

For a given n(z) and C(0) one can use this differential equation to solve for C(z) and
back out the implied tax schedule T. This highlights the role of ω(z). Adjusting C(0) to
maintain resource feasibility, one sees that changes in ω(z) dictate changes in C(z) and,
thus, in household utility (recall, labor is unchanged). The distributional consequences of
the implied change in utility are dictated by the change in ω.

Interestingly, the elasticity of labor does not enter the formula. The intuition for this is
that labor is kept fixed, so the degree to which labor is elastic never enters the picture. In
this sense, the adjustment in the tax schedule undoes the change in wages. On the other
hand, both of the first two formulas require information on the welfare weights, λ̃.

Turning to the third formula, we first note the absence of any welfare weight terms.
This is due to the fact that the variation behind this formula ensures that the distribution
of utility is unchanged. Thus, only efficiency considerations are involved, captured by the
labor fiscal externality, so that only the last term from the lemma remains. The relative
simplicity of the fiscal externality term is also remarkable. Tedious calculations in the
appendix surprisingly turn up a simple expression for the change in labor supply, given
by ε(z)

ε(z)+1
1

ω(z)dω(z).
For purposes of implementation, the fact that social welfare evaluations are absent in

the formula should be extremely welcome. It implies that an empirical evaluation is, in
principle, feasible. In contrast, the first two formulas requires coming up with a welfare
criterion, with all the subjectivity that this entails. In some cases one might imagine a
benevolent planner, with some set social welfare function. Or simply wish to evaluate
social welfare from the perspective of one’s own private social welfare function. In these
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cases, the first two formulas can be easily implemented. In most cases, in reality, social
welfare weights are often best interpreted as a proxy for a social and political negotiation
or struggle.

How is it possible that distributional issues from relative wage changes are naturally
to be at the center of the issue, yet social welfare weights do not make an appearance in
this formula? No welfare criterion is required because the formula effectively detects the
presence or not of a first-order dominant improvement in the distribution of utilities (i.e. a
Pareto improvement in the one dimensional case). Unless the formula holds an improve-
ment can be easily constructed.10 This is true whether or not the original equilibrium and
taxes are efficient.

The existing nonlinear income tax plays a crucial role, as evidenced by the presence
of the marginal tax rates τ(z) in the formula. All other things the same, higher marginal
taxes τ(z) potentiate fiscal externalities and demand larger t∗i . To take an extreme case, if
marginal taxes were zero, τ(z), then the formula says that t∗i = 0. This makes sense. The
welfare theorems hold, so the absence of taxation leads to a Pareto optimum that cannot
be improved upon.

As mentioned earlier, the formula does not require the nonlinear tax T to be optimized
conditional on t∗. However, if it is not optimized, and the planner has some given welfare
function, then we may be in a situation where the formula may not detect a Pareto im-
provement, yet the planner can improve the social welfare function by a change in t∗. For
example, suppose the extreme case with τ(z) = 0 together with a planner with a strong
preference for equality, such as a Rawlsian criterion. Clearly τ(z) = 0 is not optimal for
such a planner. In this case, the planner enjoys many ways of improving welfare. The
planner could change the nonlinear tax schedule only, or it could also entertain changes
in the linear tax t∗, evaluating them along the lines of the first or second formula, for in-
stance. More generally, when the planner is not optimizing, there is no reason for the three
formulas to coincide since each represents a different variation that could be performed.

Conversely, if the nonlinear tax schedule is optimized given t∗i then all three formulas
should coincide. This suggests that in this case one can intuitively interpret the absence
of welfare weights in the last formula as reflecting a revealed preference on the part of the
planner, with τ(z) somehow revealing λ̃(z). Intuitively, the underlying preferences of
the government for the utility of different groups of agents get revealed by the marginal
tax rate τ(θ) that they face after controlling for the distortionary cost of redistribution, as

10It should also be noted that the information required to implement the change in the tax schedule
under this variation is relatively low: only the change in the wage schedule is required, and no information
on preferences comes into play.
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measured by the labor supply elasticity ε(θ).11While useful and perhaps reassuring, this
interpretation falls short and does no do full justice to the origin of the formula, nor to the
fact that it holds even when the nonlinear tax is not optimal.

4.3 Quantitative Implications

How large should taxes on robots or trade be? The key input into the formulas in Proposi-
tion 2 is the elasticity of relative wages with respect to the number of machines. We now
discuss, using two examples, how estimates of this key elasticity can be obtained from
existing empirical work, as well as the policy implications.

Robot Example: Acemoglu and Restrepo (2017). Our first example focuses on robots.
Using a difference-in-difference strategy, Acemoglu and Restrepo (2017) have estimated
the effect of industrial robots, defined as “an automatically controlled, reprogrammable,
and multipurpose [machine]” on different quantiles of the wage distribution between
1990 and 2007 across US commuting zones. Using our notation, their estimates can be
interpreted as the semi-elasticity of wages with respect to robots, ηAR(θ) =

d ln w(θ)
d|ym| , where

|ym| is expressed as number of robots per thousand workers. The elasticity that we are
interested in can then be approximated by

d ln ω(θ)

d ln |ym|
' |ym|

∆ ln w(θ)
× ∆ηAR(θ),

where ∆z(θ) denotes the change between a given variable z(θ) between two consecutive
quantiles of the wage distribution. Figure 1a reports the local elasticity of relative wages
(solid line) using |ym| ' 1.2 as the number of robots per thousand workers in the United
States in 2007.

We first implement our formula abstracting away from any heterogeneity in labor
supply and relative wage elasticities, ε(θ) = ε and d ln ω(θ)

d ln |ym| = d ln ω
d ln |ym| .

12 In this case, we
can further simplify the formula of Proposition (2) into

t∗m =

´
x(θ)dF(θ)
p∗m|ym|

ε

ε + 1
d ln ω

d ln |ym|
τ̄,

where τ̄ ≡
´

τ(θ) x(θ)´
x(θ′)dF(θ′)dF(θ) denotes the average marginal income tax rates. In

11This is the idea behind Werning’s (2007) test of whether an income tax schedule is Pareto optimal.
Namely, it is if the inferred Pareto weights are all positive.

12In the next subsection, we provide micro-foundations on preferences and technology such that both
elasticities are indeed constant across agents of different types.
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(a) Robots (Acemoglu and Restrepo, 2017) (b) Chinese Imports (Chetverikov, Larsen and Palmer, 2016)

Figure 1: Elasticity of relative wages, d ln ω(θ)
d ln ym

, across quantiles of US wage distribution.

Figure 1a, the average of the local elasticity, d ln ω
d ln |ym| , across deciles (dashed line) is around

0.5. Graetz and Michaels (2018) estimate that the share of robot services in total capital
services is around 0.64%, which leads to a ratio of total labor earnings to spending on
robots around 245, whereas Guner, Kaygusuz and Ventura (2014) point toward an average
marginal income tax rate around 0.1 for the United States. For a labor supply elasticity of
ε = 0.1, in the low range of the micro-estimates reviewed in Chetty (2012), we therefore
obtain an optimal tax on robots equal to t∗m = 99%. For higher labor supply elasticities of
ε = 0.3 or ε = 0.5, the previous tax goes up to t∗m = 269% and t∗m = 410%, respectively.

More generally, in order to take into account the heterogeneity in relative wage elas-
ticities reported in Figure 1a when implementing the formula of 2, one would need data
on the share of robots employed with workers of a particular type, ym(θ)

|ym| . Since we do
not have access to such data, we instead compute the bounds on t∗m associated with the
minimum and maximum values of ε(θ)

ε(θ)+1
d ln ω(θ)
d ln |ym| . For a constant labor supply elasticity

equal to ε = 0.1, this leads to a lower-bound on the tax on robots equal to 104% and 117%,
respectively.

Trade Example. Our second example focuses on Chinese imports. Using the same
difference-in-difference strategy as in Autor, Dorn and Hanson (2013), Chetverikov, Larsen
and Palmer (2016) have estimated the effect on log wages of a $1,000 increase in Chi-
nese imports per worker at different percentiles of the wage distribution. Following the
same approach as in the case of robots, we can transform the previous semi-elasticity
into an elasticity. Figure 1b reports the local elasticity of relative wages (solid line) using
|ym| ' 2.2 as the value of Chinese imports, in thousands of US dollars, per worker for the
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United States in 2007.
The average value of the relative wage elasticity, d ln ω

d ln |ym| , is of the same order of mag-
nitude as the one implied by the estimates of Acemoglu and Restrepo (2017), around 0.5
(dashed line in Figure 1b). Compared to the robot example, however, the ratio of total la-
bor earnings to total Chinese imports in 2007 is only 26.4, an order of magnitude smaller
than the ratio to total spending on robots. Implementing again the formula of Proposi-
tion (2) in the absence of heterogeneity in labor supply and relative wage elasticities, we
obtain a much smaller tariff: t∗m = 15% for ε = 0.1, 42% for ε = 0.3, and 65% for ε = 0.5.

Another key difference between the two examples is that the relative wage elasticity,
d ln ω(θ)
d ln |ym| , is much more heterogeneous across quantiles in the trade case, as can be seen in
Figure 1. This leads to much broader bounds on the efficient tariffs when that heterogene-
ity is taken into account. For a constant labor supply elasticity ε = 0.1, the lower-bound
on the optimal tariff now is equal to 2%, whereas the upper-bound is equal to 7%.

5 Comparative Statics

To provide further intuition about the forces that shape optimal taxes, we turn to a special
case of the economic environment presented in Section 2. There is one final good, indexed
by f , and one intermediate good, indexed by m, which could be either robots that are
produced domestically or machines that are imported from abroad. The question that we
are interested in is: If robots or traded goods were to become cheaper, and exacerbate
inequality further, should taxes be raised further as well?

5.1 A Parametric Example

Agents have quasi-linear preferences,

U(θ) = C(θ)− (n(θ))1+1/ε

1 + 1/ε
, (5)

with C(θ) the consumption of the unique final good, which we use as our numeraire,
q f = p f = p∗f = 1, and ε the constant labor supply elasticity. Old technology firms
produce the final good, y f ≥ 0, using workers, n ≡ {n(θ)}, and machines, ym ≤ 0, as an
input. Their production set is given by

G(y f , ym, n) = y− max
{ỹm(θ)}

{
ˆ

g(ỹm(θ), n(θ); θ)dF(θ)|
ˆ

ỹm(θ)dF(θ) ≤ −ym}, (6)
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with g(ỹm(θ), n(θ); θ) a Cobb-Douglas production function,

g(ỹm(θ), n(θ); θ) = exp(α(θ)) · ( ỹm(θ)

β(θ)
)β(θ)(

n(θ)
1− β(θ)

)1−β(θ), (7)

where ỹm(θ) represents the number of machines combined with workers of type θ to
produce the final good, α(θ) ≡ α ln(1−θ)

β ln(1−θ)−1 , and β(θ) ≡ β ln(1−θ)
β ln(1−θ)−1 , with α, β > 0. Like in

the examples of Section 2.2, new technology firms produce machines, y∗m ≥ 0, using the
final good, y∗f ≤ 0,

G∗(y∗f , y∗m) = φy∗f + y∗m, (8)

where φ measures the productivity of machine producers.
Let pm and p∗m denote the price of robots faced by old and new technology firms. Profit

maximization by new technology firms implies

p∗m = 1/φ,

whereas profit maximization by old technology firms implies

w(pm; θ) = (1− θ)−1/γ(pm),

with γ(pm) ≡ 1/(α− β ln pm). Under the restriction that γ(pm) > 0, which we maintain
throughout, wages are increasing in θ and Pareto distributed with shape parameter equal
to γ(pm) and lower bound equal to 1. By construction, more skilled workers tend to use
machines relatively more; β(θ) is increasing in θ. So an increase in the price of machines
tends to lower their wages relatively more and decrease inequality,

d ln ω(θ)

d ln pm
= −d ln γ(pm)

d ln pm
= −βγ(pm) < 0.

Here, because of additive separability in production, machines directly affect inequal-
ity by affecting relative marginal products of labor, but not indirectly through further
changes in relative labor supply.13

5.2 The Rawlsian Tax Is Decreasing

We propose to study how t∗m varies with φ in the case of a government with Rawlsian
preferences.

13This second effect is the focus of the analysis of optimal income taxes in Stiglitz (1982).
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For comparative static purposes, a limitation of the formula in Proposition (2) is that
it involves the entire schedule of optimal marginal tax rates {τ(θ)}. These are them-
selves endogenous objects that will respond to productivity shocks. In Appendix D.2,
we demonstrate how to substitute for those by combining the first-order conditions with
respect to U(θ) and n(θ). This leads to

t∗m
1 + t∗m

=

ε
ε+1

d ln ω
d ln |ym|τ

∗

1− ε
ε+1

d ln ω
d ln |ym|τ

∗
1− sm

sm
, (9)

where the elasticity of relative wages, d ln ω
d ln |ym| ≡ −βγ(pm)

∂ ln pm
∂ ln |ym(pm,n)| , is now constant

across agents; τ∗ ≡ ε+1
ε+1+εγ(pm)

corresponds to the optimal marginal tax rate that would
be imposed in the absence of a tax on machines, as in Diamond (1998), Saez (2001), and
Scheuer and Werning (2017); and sm ≡ pm|ym|´

x(θ)dF(θ)+pm|ym| measures the share of machines

in gross output. After expressing the three previous statistics, d ln ω
d ln |ym| , τ∗, and sm, as func-

tions of t∗m and φ, we can apply the Implicit Function Theorem to determine the mono-
tonicity of the optimal tax, as we do in Appendix D.2. This leads to our final proposition.

Proposition 3. Suppose that equations (5)-(7) hold. Then the optimal Rawlsian tax, t∗m, decreases
with the productivity of machine makers, φ.

In this economy, more machines always increase inequality, d ln ω
d ln |ym| > 0, but for com-

parative static purposes, the relevant question is whether this effect gets exacerbated as
the new technology improves. Here, one can check that ∂

∂φ
d ln ω

d ln |ym| < 0 both because rela-

tive wages are becoming less responsive to the price of machines, ∂
∂φ |

d ln ω
d ln |pm| | < 0, and be-

cause the demand for machines is becoming more elastic, ∂
∂φ |

∂ ln pm
∂ ln |ym(pm,n)| | < 0, due to the

increase in the labor supply of high-skilled workers whose demand for machines is more
elastic. One can also check that these two effects dominate the increase in the marginal
tax rate, ∂τ∗

∂φ > 0, in response to greater inequality. For a given share of machines sm, this
implies that the total fiscal externality associated with new machines decreases. Since the
share of machines increase with improvements in the new technology, ∂sm

∂φ > 0, the fiscal
externality per machine a fortiori decreases and so does the tax on machines.

As this example illustrates, cheaper robots may lead to a higher share of robots in the
economy, more inequality, but a lower optimal tax on robots. Likewise, more imports
and more inequality, in spite of the government having extreme distributional concerns
and imports causing inequality, may be optimally met with less trade protection. This
does not occur because redistribution is becoming more costly as the economy gets more
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open.14 Here, the elasticity of labor supply is fixed and τ∗ increases with φ. This also
does not occur because redistribution through income taxation is becoming more attrac-
tive. Everything else being equal, an increase in τ∗ raises the tax on imports. Rather the
decrease in the tax on imports captures a standard Pigouvian intuition: as φ increases,
the total fiscal externality associated with imports increases, but the externality per unit
of imports does not, leading to a lower value for the optimal tax.

6 Conclusion

Our paper has focused on two broad sets of issues. The first one is related to the evalu-
ation of new technologies. In spite of tax instruments being limited and the government
having concerns for redistribution, we have shown that productivity shocks can be eval-
uated using a simple envelope argument, like in first best environments. Our finding
stands in sharp contrast with the existing results of a large literature concerned with dis-
tortions and welfare. Our envelope result implies that firms developing new technologies
should not be taxed or subsidized. It also implies that the welfare gains from trade or the
welfare gains from the introduction of robots can still be computed by integrating below
the demand curves for foreign goods and robots, respectively. Distributional concerns
and various distortions may affect how much we trade or how much we use robots, but
not the welfare implications from changes in the demand for those.

The second set of issues is related to the management of new technologies. We have
asked: should we tax or subsidize firms using new technologies? And to the extent that
taxes should be imposed, what are the sufficient statistics that can guide the optimal tax-
ation of new technology firms in practice? In second best environments—where income
taxation is available, but taxes on specific factors are not—we have shown that there is
a case for taxing new technology firms, if taxes on old technology firms are unavailable.
We have derived multiple optimal tax formulas and demonstrated how these can be im-
plemented with existing reduced-form evidence to compute optimal taxes on robots or
trade.

Finally, we provided an illustrative comparative static showing that more robots or
more trade may go hand in hand with more inequality and lower taxes, despite robots
or trade being responsible for the rise in inequality, and governments having extreme
preferences for redistribution.

14This is the point emphasized by Itskhoki (2008) and Antras, de Gortari and Itskhoki (2017) in an econ-
omy where entrepreneurs can decide whether to export or not. This makes labor supply decisions more
elastic in an open economy, which may reduce redistribution at the optimum.
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A Section 2

A.1 Competitive Equilibrium with Taxes

We first provide a formal definition of a competitive equilibrium with taxes.

Demand. Households maximize utility taking prices p and the income tax schedule T as given.

Since preferences are weakly separable, the demand of any household θ is given by the solution

to the following two-step problem

c(θ) ∈ argmaxc̃(θ){v(c̃(θ))|p · c̃(θ) ≤ w(θ)n(θ)− T(w(θ)n(θ))}, (A.1)

n(θ) ∈ argmaxñ(θ){u(C(p, w(θ)ñ(θ)− T(w(θ)ñ(θ))), ñ(θ))}, (A.2)

where C(p, r(θ)) ≡ maxc̃(θ){v(c̃(θ))|p · c̃(θ) ≤ r(θ)} denotes the indirect utility function associ-

ated with the lower stage given prices p and post-tax earnings r(θ) = w(θ)n(θ)− T(w(θ)n(θ)).

Supply. Firms maximize profits taking prices p and p∗ as given,

y, n ∈ argmaxỹ,ñ{p · ỹ−
ˆ

w(θ)ñ(θ)dF(θ)|G(ỹ, ñ) ≤ 0}, (A.3)

y∗ ∈ argmaxỹ∗{p∗ · ỹ∗|G∗(ỹ∗; φ) ≤ 0}. (A.4)

Market Clearing. Demand equals supply for all goods,

ˆ
ci(θ)dF(θ) = yi + y∗i , for all i. (A.5)

Non-Arbitrage. Prices faced by old and new technology firms satisfy

pi = (1 + t∗i )p∗i , for all i. (A.6)

Equilibrium. A competitive equilibrium with taxes (T, t∗) corresponds to an allocation—,

c ≡ {c(θ)}, n ≡ {n(θ)}, y ≡ {yi}, and y∗ ≡ {y∗i }—and a system of prices and wages—p ≡ {pi},
p∗ ≡ {p∗i }, and w ≡ {w(θ)}—such that:

i. households maximize their utility, condition (A.1) and (A.2);

ii. firms maximize their profits, conditions (A.3) and (A.4);

iii. good markets clear, condition (A.5);

iv. prices satisfy the non-arbitrage condition (A.6);.
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A.2 Planning Problem

The government problem is

max
T,t∗,c,n,y,y∗,p,p∗,w

W̄(c, n) (A.7)

subject to (A.1), (A.2), (A.3), (A.4), (A.5), and (A.6).

B Section 3

B.1 Envelope Result

Let us define the feasible set Z such that

Z = {(c, n, y)|∃(T, p, w) such that (c, n, y) satisfy (A.1), (A.2), and (A.3)}

The government problem (A.7) can then be rearranged as

max
(c,n,y)∈Z

W̄(c, n) (B.1a)

G∗(
ˆ

c(θ)dF(θ)− y; φ) ≤ 0. (B.1b)

For any solution to (B.1), there exists (T, p, w) such that (A.1), (A.2), and (A.3) hold. One can then

construct y∗such that (A.5) holds,

y∗i =

ˆ
ci(θ)dF(θ)− yi for all i;

p∗such that (A.4) holds,

p∗i = G∗y∗i (y
∗)/G∗y∗1 (y

∗) for all i;

and t∗ such that (A.6) holds,

t∗i = pi/p∗i − 1 for all i.

B.2 Valuation of New Technologies

Starting from equation (4), the equivalent variation, EV(φ0, φ1), associated with a productivity

shock from φ0 to φ1 can be computed as the unique solution to the differential equation

dEV(φ, φ1)

dφ
=

∂G∗(y∗(φ, EV(φ, φ1)); φ)

∂φ
, with initial condition EV(φ1, φ1) = 0, (B.2)
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evaluated at φ = φ0. Likewise, the compensating variation, CV(φ0, φ1), can be computed as the

unique solution to

dCV(φ0, φ)

dφ
=

∂G∗(y∗(φ,−CV(φ0, φ)); φ)

∂φ
, with initial condition CV(φ0, φ0) = 0, (B.3)

evaluated at φ = φ1. In equations (B.2) and (B.3), y∗(φ, EV(φ, φ1)) and y∗(φ,−CV(φ0, φ)) are

the counterparts to the compensated Hicksian demand functions in standard consumer theory,

evaluated at the final and the initial utility level, respectively.

C Section (4)

C.1 Lemma (1)

Consider a variation around the initial competitive equilibrium with taxes (t∗, T). Formally, the

new tax schedule is given by

t∗i (ε) = t∗i + εt̄∗i ,

T(x; ε) = T(x) + εT̄(x) for all x ≥ 0,

for some arbitrary vector new technology taxes, t̄∗, income tax schedule, T̄, and ε ∈ R.

Let {c(θ, ε)}, {n(θ, ε)}, {yi(ε)}, and {y∗i (ε)} denote the associated equilibrium allocation; let

{pi(ε)}, {p∗i (ε)} and {w(θ, ε)} denote the associated prices and wages; and let {U(θ, ε)} denote

the associated utility levels. They satisfy

U(θ, ε) = maxñ(θ)u(C({pi(ε)}, R(w(θ, ε)ñ(θ), ε), ñ(θ))

w(θ, ε)Rx(w(θ, ε)n(θ, ε), ε) = − un(C({pi(ε)}, R(w(θ, ε)n(θ, ε), ε), n(θ, ε))

uC(C({pi(ε)}, R(w(θ, ε)n(θ, ε), ε), n(θ, ε))CR({pi(ε)}, R(w(θ, ε)n(θ, ε), ε)

c(θ, ε) = c({pi(ε)}, C({pi(ε)}, R(w(θ, ε)n(θ, ε), ε))

yi(ε) = yi({pi(ε)}, {n(θ, ε)})

y∗i (ε) =

ˆ
c(θ, ε)dF(θ)− yi(ε)

p∗i (ε) = G∗yi
({y∗j (ε)})/G∗y1

({y∗j (ε)})

pi(ε) = (1 + t∗i (ε))p∗i (ε)

w(θ, ε) = w({pi(ε)}, {n(θ′, ε)}; θ)

G∗(y∗(ε)) = 0

where R(x; ε) ≡ x−T(x, ε) denotes the retention function associated with the income tax schedule
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and y(p, n) denotes the solution to (A.3) given labor supply n.

Given our restriction on W, social welfare as a function of ε can be expressed as

W̃(ε) =

ˆ
λ(z)Ũ(z, ε)dz

where Ũ(z, ε) denote the utility level associated with the quantile z of the earning distribution,

i.e.,

z =

ˆ
U(θ,ε)≤Ũ(z,ε)

dF(θ)

Reynold’s Theorem implies

dŨ(z, ε)

dε
=

ˆ
dU(θ, ε)

dε
f (θ|U(θ, ε) = Ũ(z, ε))dθ.

By the Envelope Theorem,

dU(θ, ε)

dε
= uC(θ, ε)CR(θ, ε)[Rx(w(θ, ε)n(θ, ε), ε)n(θ, ε)wε(θ, ε)− c(θ, ε) · pε(ε)+Rε(w(θ, ε)n(θ, ε), ε)]

Note that all households θ with the same utility, U(θ, ε) = Ũ(z, ε), must also have the same wage,

the same labor supply, the same vector of consumption, and the same marginal utility of income,

w(θ, ε) = w̄(z, ε) for all θ such that U(θ, ε) = Ũ(z, ε);

n(θ, ε) = n̄(z, ε) for all such θ that U(θ, ε) = Ũ(z, ε);

c(θ, ε) = c̄(z, ε) for all such θ that U(θ, ε) = Ũ(z, ε);

uC(θ, ε)CR(θ, ε) = ζ(z, ε) for all θ such that U(θ, ε) = Ũ(z, ε).

Let us define the average wage response at quantile z as

w̄ε(z, ε) =

ˆ
wε(θ, ε) f (θ|U(θ, ε) = Ũ(z, ε))dθ

We therefore get

dŨ(z, ε)

dε
=

ˆ
ζ(z, ε)[(1− τ(z))n̄(z, ε)w̄ε(z, ε)− c̄(z, ε) · pε(ε) + Rε(x̄(z), ε)]dz

where x̄(z) = w̄(z, ε)n̄(z, ε) denotes earnings at quantile z and τ(z) = 1− Rx(x̄(z), ε). In turn, we

have

dW̃(ε)

dε
=

ˆ
λ(z)ζ(z, ε)[(1− τ(z))n̄(z, ε)w̄ε(z, ε)− c̄(z, ε) · pε(ε) + Rε(x̄(z), ε)]dz. (C.1)
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Now consider the change in the cost of resources used by the new technology,

dG∗(y∗(ε))
dε

=∇G∗(y∗(ε)) · y∗ε(ε)

=G∗y1
(y∗(ε)){[p∗(ε)− p(ε)] · y∗ε(ε) + p · y∗ε(ε)}

=G∗y1
(y∗(ε)){[p∗(ε)− p(ε)] · y∗ε(ε) + p(ε) ·

ˆ
cε(θ, ε)dF(θ)− p(ε) · yε(ε)}

=G∗y1
(y∗(ε)){[p∗(ε)− p(ε)] · y∗ε(ε) + p(ε) ·

ˆ
cε(θ, ε)dF(θ)−

ˆ
w(θ, ε)nε(θ, ε)dF(θ)}

=G∗y1
(y∗(ε)){[p∗(ε)− p(ε)] · y∗ε(ε)

+

ˆ
(Rε(w(θ, ε)n(θ, ε), ε) + (1− τ(θ))n(θ, ε)wε(θ, ε) + c(θ, ε) · pε(ε)− τ(θ)w(θ, ε)nε(θ, ε)) dF(θ)}

Let us define the average labor supply response at quantile z as

n̄ε(z, ε) =

ˆ
nε(θ, ε) f (θ|U(θ, ε) = Ũ(z, ε))dθ.

Using this notation, we can rearrange the previous expression as

dG∗(y∗(ε))
dε

=G∗y1
(y∗(ε)){[p∗(ε)− p(ε)] · y∗ε(ε) (C.2)

+

ˆ
[Rε(x̄(z), ε) + (1− τ(z))n̄(z, ε)w̄ε(z, ε)− c̄(z, ε) · pε(ε)]dz

−
ˆ

τ(z, ε)w(z, ε)nε(z, ε)]dz}

Let γ > 0 represents the marginal value of resources in the hand of the government. A necessary

condition for a feasible variation not to improve welfare is that

dW̃(ε)

dε

∣∣∣∣
ε=0
− γ

dG∗(y∗(ε))
dε

∣∣∣∣
ε=0

= 0.

By equations C.1 and (C.2),

(p− p∗) · δy∗ −
ˆ

τ(z)w(z)δn(z) dz

=

ˆ
λ̃(z)((1− τ(z))n(z) δw(z)− c(z) · δp− δT(x(z))) dz.

.

C.2 Proposition 2

All variations consist of a change in t∗ and an associated change in p∗, potentially accompanied

by a change in the income tax schedule T, such that dy1, dy∗i 6= 0 and dy∗j = 0 for all j.
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Variation δT = 0 From Lemma 1, if δT = 0, then

(p− p∗) · δy∗ −
ˆ

τ(z)w(z)δn(z) dz =

ˆ
(λ̃(z)− 1)((1− τ(z))n(z) δw(z)− c(z) · δp) dz

Expressing δn(z) as a function of the change in the wage and the labor supply elasticity, we get

for a variation such that dy1, dy∗i 6= 0 and dy∗j = 0 for all j,

pi− p∗i = t∗i p∗i =

ˆ (
(λ̃(z)− 1)(1− τ(z)) + τ(z) εu(z)

)
n(z)

dw(z)
dy∗i

|δT=0 dz−
ˆ
(λ̃(z)− 1)c(z) · dp

dy
|δT=0 dz

Variation δn = 0 Define

R̂(x, ε) = C(R(x, ε), q(ε))

We have

V(R̂, n) = u(R̂, n)

MRS(R̂, n) = − un(R̂, n)
uC(R̂, n)

FOC for labor:

MRS(R̂, n) = wR̂x

Differentiating leads to:

MRSR̂R̂ε + MRSR̂R̂xnwε + MRSnnε = R̂xxwxε + R̂xεw + R̂xwε

In order to get nε = 0, we need R̂ε to solve:

MRSR̂R̂ε + MRSR̂R̂xnwε = R̂xxwxε + R̂xεw + R̂xwε

ie

R̂xε −
MRSR̂

w
R̂ε = −

wε

w
R̂x[1 +

R̂xxwn
R̂x

] +
MRSR̂

w
R̂xnwε

Let

ρ(v) =
MRSR̂

w
(v)

g(v) = −wε

w
R̂x[1 +

R̂xxwn
R̂x

] + ρR̂xnwε

The previous ODE becomes:

R̂xε − ρR̂ε = g
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Solving we get:

R̂ε(x(θ), ε) =

ˆ θ

0
exp[
ˆ θ

z
ρ(v)dx(v)]g(z)dx(z) + exp[

ˆ θ

0
ρ(v)dx(v)]R̂ε(x(0), ε)

Let us find R̂ε(0, ε) such that resource constraint holds. Using Lemma 1, we know that:

0 = (p∗ − q)
ˆ

cεdF(θ) + (p− p∗)yε +

ˆ
(Rε + (1− τ)nwε + cqε − τwnε) dF(θ)

which can be rearranged (using Roy’s identity) as

0 = (p∗ − q)
ˆ

cεdF(θ) + (p− p∗)yε +

ˆ (
R̂ε + R̂xnwε − CRτwnε

) 1
CR

dF(θ)

With nε = 0, this leads to

0 = (p− p∗)yε + (p∗ − q)
ˆ

cεdF(θ)

+

ˆ (ˆ θ

0
exp[
ˆ θ

z
ρ(v)dx(v)]g(z)dx(z) + exp[

ˆ θ

0
ρ(v)dx(v)]R̂ε(x(0), ε) + R̂xnwε

)
1

CR
dF(θ)

In turn,

Rε(0, ε) =
(p∗ − p) · yε − (p∗ − q)

´
cεdF(θ)−

´
{[
´ θ

0 exp[
´ θ

z ρ(v)dx(v)]g(z)dx(z)] + R̂xnwε} 1
CR

dF(θ)´
exp[
´ θ

0 ρ(v)dx(v)] 1
CR

dF(θ)

At the optimum we need: ˆ
[R̂ε + R̂xwεn]dΛ̃(θ) = 0

where Λ̃ corresponds to the distribution of Pareto weights adjusted by marginal utility of aggre-

gate consumption

λ̃(θ) = λ(θ)uC

Let F̃ corresponds to the distribution of Pareto weights adjusted by marginal value of aggre-

gate consumption:

f̃ (θ) =
1

CR
f (θ)
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Substituting for R̂ε, this leads to

ˆ
[

ˆ θ

0
exp[
ˆ θ

z
ρ(v)dx(v)]g(z)dx(z)]dΛ̃(θ)

+R̂ε(x(0), ε)

ˆ
exp[
ˆ θ

0
ρ(v)dx(v)]dΛ̃(θ)

+

ˆ
R̂xwεndΛ̃(θ) = 0

ˆ
[

ˆ θ

0
exp[
ˆ θ

z
ρ(v)dx(v)]g(z)dx(z)]dΛ̃(θ)

+R̂ε(x(0), ε){
ˆ

exp[
ˆ θ

0
ρ(v)dx(v)]dF̃(θ)}

´
exp[
´ θ

0 ρ(v)dx(v)]dΛ̃(θ)´
exp[
´ θ

0 ρ(v)dx(v)]dF̃(θ)

+

ˆ
R̂xwεndΛ̃(θ) = 0

ˆ
[

ˆ θ

0
exp[
ˆ θ

z
ρ(v)dx(v)]g(z)dx(z)]dΛ̃(θ)

+{(p∗ − p) · yε − (p∗ − q)
ˆ

cεdF(θ)−
ˆ
[

ˆ θ

0
exp[
ˆ θ

z
ρ(v)dx(v)]g(z)dx(z) + R̂xwεn]dF̃(θ)}

×
´

exp[
´ θ

0 ρ(v)dx(v)]dΛ̃(θ)´
exp[
´ θ

0 ρ(v)dx(v)]dF̃(θ)

+

ˆ
R̂xwεndΛ̃(θ) = 0

(p∗ − p) · yε − (p∗ − q)
ˆ

cεdF(θ) =−
´

exp[
´ θ

0 ρ(v)dx(v)]dF̃(θ)´
exp[
´ θ

0 ρ(v)dx(v)]dΛ̃(θ)

ˆ
[

ˆ θ

0
exp[
ˆ θ

z
ρ(v)dx(v)]g(z)dx(z)]dΛ̃(θ)

+

ˆ
[

ˆ θ

0
exp[
ˆ θ

z
ρ(v)dx(v)]g(z)dx(z)]dF̃(θ)

+

ˆ
[R̂xwεn]dF̃(θ)−

´
exp[
´ θ

0 ρ(v)dx(v)]dF̃(θ)´
exp[
´ θ

0 ρ(v)dx(v)]dΛ̃(θ)

ˆ
R̂xwεndΛ̃(θ)

Let Λ̄(θ) =
´

exp[
´ θ

0 ρ(v)dx(v)]dF̃(θ)´
exp[
´ θ

0 ρ(v)dx(v)]dΛ̃(θ)
Λ̃(θ). Then
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(p∗ − p) · yε − (p∗ − q)
ˆ

cεdF(θ) =
ˆ
{
ˆ θ

0
exp[
ˆ θ

z
ρ(v)dx(v)]g(z)dx(z)}d(F̃(θ)− Λ̄(θ))

+

ˆ
R̂xwεnd(F̃(θ)− Λ̄(θ))

=

ˆ
{
ˆ θ

0
exp[−

ˆ z

0
ρ(v)dx(v)]g(z)dx(z)} exp[

ˆ θ

0
ρ(v)dx(v)]d(F̃(θ)− Λ̄(θ))

+

ˆ
R̂xwεnd(F̃(θ)− Λ̄(θ))

Let

ξ(θ) =

ˆ θ

0
exp[
ˆ z

0
ρ(v)dx(v)]d(F̃(z)− Λ̄(z))

Integrating by parts,

(p∗ − p) · yε − (p∗ − q)
ˆ

cεdF(θ) = −
ˆ

ξ(θ) exp[−
ˆ θ

0
ρ(v)dx(v)]g(θ)x′(θ)dθ +

ˆ
R̂xwεnd(F̃(θ)− Λ̄(θ))

(C.3)

Let us use the fact

ξ(θ̄) =

ˆ θ̄

0
exp[
ˆ θ

0
ρ(v)dx(v)]d(F̃(θ)− Λ̄(θ))

=

ˆ θ̄

0
exp[
ˆ θ

0
ρ(v)dx(v)]dF̃(θ)

−
´

exp[
´ θ

0 ρ(v)dx(v)]dF̃(θ)´
exp[
´ θ

0 ρ(v)dx(v)]dΛ̃(θ)

ˆ θ̄

0
exp[
ˆ θ

0
ρ(v)dx(v)]dΛ̃(θ)

= 0

This leads to:

ξ(θ) =

ˆ θ

0
exp[
ˆ z

0
ρ(v)dx(v)]d(F̃(z)− Λ̄(z))

−
ˆ θ̄

0
exp[
ˆ z

0
ρ(v)dx(v)]d(F̃(z)− Λ̄(z))

=−
ˆ θ̄

θ
exp[
ˆ z

0
ρ(v)dx(v)]d(F̃(z)− Λ̄(z))

=− exp[
ˆ θ

0
ρ(v)dx(v)]

ˆ θ̄

θ
exp[
ˆ z

θ
ρ(v)dx(v)]d(F̃(z)− Λ̄(z))

Now let

ψ(θ) =

ˆ θ̄

θ
exp[
ˆ z

θ
ρ(v)dx(v)]d(F̃(z)− Λ̄(z))
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We can therefore rearrange C.3 as

(p∗ − p) · yε − (p∗ − q)
ˆ

cεdF(θ) =
ˆ

ψ(θ)g(θ)x′(θ)dθ +

ˆ
R̂xwεnd(F̃(θ)− Λ̄(θ))

=

ˆ
ψ(θ)g(θ)x′(θ)dθ

+

ˆ
exp[−

ˆ θ

0
ρ(v)dx(v)]R̂xwεn exp[

ˆ θ

0
ρ(v)dx(v)]d(F̃(θ)− Λ̄(θ))

So integrating the second term by parts again,

(p∗ − p) · yε − (p∗ − q)
ˆ

cεdF(θ) =
ˆ

ψ(θ)g(θ)x′(θ)dθ

+

ˆ
ψ(θ){R̂xxx′(θ)wεn + R̂xwεθn + R̂xwεnθ}dθ

−
ˆ

ψ(θ)ρ(θ)x′(θ)R̂xwεndθ

Note that:

x′(θ){−wε

w
}+ wεθn + wεnθ = [wθn + wnθ ][−

wε

w
] + wεθn + wεnθ

= wθn[−wε

w
] + wεθn

= wn[
wwεθ − wθwε

w2 ]

= wn
d
dε

d ln w
dθ

= (wn)ωε

This leads to

(p∗ − p) · yε − (p∗ − q)
ˆ

cεdF(θ) =
ˆ

ψ(θ)R̂xwnωεdθ.

For p = q, we get

(p− p∗) · y∗ε =

ˆ
ψ(θ)R̂xwnωεdθ.

Variation dU=0 From Lemma 1, we know that if δU(z) = 0 for all z. Then

(p− p∗) · δy∗ =
ˆ

τ(z)w(z)δn(z) dz (C.4)

Let us now compute δn(z). We have

Rε(y(z, ε), ε) + Ry(y(z, ε), ε)wε(z, ε)n(z, ε) = 0
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MRS(R(y(z, ε), ε), n(z, ε)) = Ry(y(z, ε), ε)w(z, ε)

y(z, ε) = n(z, ε)w(z, ε)

Differentiating

(
Rεy + Ryywεn

)
yz + Rywεzn + Rywεnz = 0(

Rεy + Ryywεn
)

yε + Rεε + Ryεwεn + Rywεεn + Rywεne = 0

MRScRyyz + MRSnnz = Ryywyz + Rywz

MRSc(Ryyε + Rε) + MRSnnε = Ryywyε + Ryεw + Rywε

yz = nzw + nwz

yε = nεw + nwε

But using that Rε + Rywεn = 0 the forth equation is equivalent to

MRScRywnε + MRSnnε = Ryywyε + Ryεw + Rywε

Knowns: w(z, ε) hence wε, wεz, wεε and Ry, Ryy and h′′

Unknowns: nz, nε, yz,yε,Ryε,Rεε.

Substituting out yz and yε, we get a system of 4x4,

(
Rεy + Ryywεn

)
(nzw + nwz) + Rywεzn + Rywεnz = 0(

Rεy + Ryywεn
)
(nεw + nwε) + Rεε + Ryεwεn + Rywεεn + Rywεnε = 0

MRScRy (nzw + nwz) + MRSnnz = Ryyw (nzw + nwz) + Rywz

MRScRynεw + MRSnnε = Ryyw (nεw + nwε) + Ryεw + Rywε

Solving the third equation and rearranging the forth gives,

nz =
Ryywn + Ry −MRScRyn

MRScRyw + MRSn − Ryyw2 wz

(
MRScRyw + MRSn − Ryyw2) nε = (Ryywn + Ry)wε + Ryεw
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Substituting nz into the first equation

(
Rεy + Ryywεn

) ( Ryywn + Ry −MRScRyn
MRScRyw + MRSn − Ryyw2 wzw + nwz

)
+ Rywεzn + Rywε

(
Ryywn + Ry −MRScRyn

MRScRyw + MRSn − Ryyw2 wz

)
= 0

Multiplying through by MRScRyw + MRSn − Ryyw2 gives

(
Rεy + Ryywεn

) ((
Ryywn + Ry −MRScRyn

)
wzw +

(
MRScRyw + MRSn − Ryyw2) nwz

)
+
(

MRScRyw + MRSn − Ryyw2) Rywεzn + Rywε

(
Ryywn + Ry −MRScRyn

)
wz = 0

Cancelling

(
Rεy + Ryywεn

) (
Ryw + MRSnn

)
wz

+
(

MRScRyw + MRSn − Ryyw2) Rywεzn + Rywε

(
Ryywn + Ry −MRScRyn

)
wz = 0

and solving (using MRS = Ryw)

⇒ Rεy =− Ryywεn−
MRScRyw + MRSn − Ryyw2

Ryw + MRSnn
Ry

wεz

wz
n

− Rywε
Ryywn + Ry −MRScRyn

Ryw + MRSnn

=− Ryynwε −
MRScRyw + MRSn − Ryyw2

1 + MRSn
MRS n

wεz

wzw
n−

Ryywn + Ry −MRScRyn

1 + MRSn
MRS n

wε

w

Substituting into the forth equation gives

(
MRScRyw + MRSn − Ryyw2) nε = (Ryywn + Ry)wε

− Ryywnwε −
MRScRyw + MRSn − Ryyw2

1 + MRSn
MRS n

wεz

wz
n−

Ryywn + Ry −MRScRyn

1 + MRSn
MRS n

wε

=
MRSn
MRS n

1 + MRSn
MRS n

(Ryywn + Ry −MRScRyn)wε − Ryywnwε −
MRScRyw + MRSn − Ryyw2

1 + MRSn
MRS n

wεz

wz
n

+ MRScRynwe

Also note that
1
wz
w

∂

∂ε

(wz

w

)
=

1
wz
w

(wzε

w
− wzwε

w2

)
=

wzε

wz
− wε

w
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So that

(
MRScRyw + MRSn − Ryyw2) nε =

MRSn
MRS n

1 + MRSn
MRS n

(Ryywn + Ry −MRScRyn)wε

− Ryywnwε −
MRScRyw + MRSn − Ryyw2

1 + MRSn
MRS n

(
1
wz
w

∂

∂ε

(wz

w

)
+

wε

w

)
n

(
MRScRyw + MRSn − Ryyw2) nε =

MRSn
MRS n

1 + MRSn
MRS n

(Ry −MRScRyn)wε

−
MRScRyw + MRSn − Ryyw2

1 + MRSn
MRS n

n
1
wz
w

∂

∂ε

(wz

w

)
−

MRScRyw + MRSn

1 + MRSn
MRS n

Ry
wε

MRS
n

(
MRScRyw + MRSn − Ryyw2) nε = −

MRSn
MRS n

1 + MRSn
MRS n

MRScRynwε −
1

1 + MRSn
MRS n

MRScRynwε

−
MRScRyw + MRSn − Ryyw2

1 + MRSn
MRS n

n
1
wz
w

∂

∂ε

(wz

w

)
+ MRScRynwe

Cancelling gives

nε = −
1

1 + MRSn
MRS n

n
1
wz
w

∂

∂ε

(wz

w

)
.

Substituting into C.4, we obtain

pi − p∗i = t∗i p∗i =

ˆ
τ(θ)w(z)n(z)

ε(z)
ε(z) + 1

1
ω(z)

dω(z)
dy∗i

|δU=0 dz.

D Section 5

D.1 Preliminary Results

Planning Problem Using the revelation principle, we rearrange the planning problem as fol-

lows

max
U,n,p,q

ˆ
U(θ)dΛ(θ) (D.1a)
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subject to

U′(θ) = −un(C(n(θ), U(θ)), n(θ))n(θ)ω(p, n; θ), (D.1b)

G∗(c(q, n, U)− y(p, n); φ) ≤ 0. (D.1c)

where we use the following notation. On the demand side, we let c(q, C(θ)) denote the solution

to (A.1) given consumer prices q and aggregate consumption C(θ); we let C(n(θ), U(θ)) denote

the aggregate consumption required to achieve utility U(θ) given labor supply n(θ), that is the

solution to u(C, n(θ)) = U(θ); and we let c(q, n, U) =
´

c(q, C(n(θ), U(θ)))dF(θ) denote the total

demand for goods conditional on prices, q, labor supply, n ≡ {n(θ)}, and utility levels, U ≡
{U(θ)}. Likewise, on the supply side, we let y(p, n) denote the solution to (A.3) given producer

prices p and labor demand n, and we let w(p, n; θ) denote the associated equilibrium wage for

each household θ,

w(p, n; θ) = Gn(θ)(y(p, n), n)× p · y(p, n)´
n(θ′)Gn(θ′)(y(p, n), n)dF(θ′)

,

obtained from the first-order condition with respect to n(θ), with Gn(θ) ≡ ∂G/∂n(θ).

First-order Conditions The Lagrangian associated with the planner’s problem (D.1) is given

by

L =

ˆ
U(θ)dΛ(θ) +

ˆ
µ(θ)

(
U′(θ) + un(C(n(θ), U(θ)), n(θ))n(θ)ω({pi}, {n(θ)})

)
dθ

− γG∗({cj({qi}, {n(θ)}, {U(θ)})− yj({pi}, {n(θ)})}; φ).

Integrating by parts, we get

L =

ˆ
U(θ)dΛ(θ)−

ˆ
µ′(θ)U(θ)dθ + U(θ̄)µ(θ̄)−U(θ)µ(θ)

+

ˆ
µ(θ)un(C(n(θ), U(θ)), n(θ))n(θ)ω({pi}, {n(θ)})dθ

− γG∗({cj({qi}, {n(θ)}, {U(θ)})− yj({pi}, {n(θ)})}; φ).

Since U(θ̄) and U(θ) are free we must have

µ(θ) = µ(θ̄) = 0.

With Respect to U(θ) The first-order condition with respect to U(θ) leads to

λ(θ)− µ′(θ) + µ(θ)unC(θ)CU(θ)(θ)n(θ)ω(θ)− γ∇y∗G∗ · cU(θ) f (θ) = 0,

41



where λ denotes the density associated with Λ. From condition (A.4) and the normalization p∗1 =

1, we know that p∗i = G∗yi
/G∗y1

for all i. From the fact that Dqc · (p∗ − q) = 0 at the optimum, as

argued in the main text, and the normalization q1 = 1, we also know that p∗i = qi for all i. Using

these two observations, we get

µ′(θ)− µ(θ)unC(θ)CU(θ)(θ)n(θ)ω(θ) = λ(θ)− γG∗y1
ζ(θ) f (θ),

with ζ(θ) ≡ ∑ p∗j
dcj({qi},C(n(θ),U(θ)))

dU(θ)
. Let ũ(C, x, θ) ≡ u(C, x/w(θ)), ũθ ≡ ∂ũ

∂θ , and ũθC ≡ ∂2ũ
∂θ∂C . By

definition, we have

ũθ(θ) = −un(θ)n(θ)ω(θ)

and

ũθC(θ) = −unC(θ)n(θ)ω(θ)

Using the previous notation and using the fact that CU(θ) = 1/uC(θ) = 1/ũC(θ), we can rearrange

the above first-order condition as

µ′(θ)ũC(θ) + µ(θ)ũθC(θ) = ũC(θ)(λ(θ)− γG∗y1
ζ(θ) f (θ)). (D.2)

Let µ̃(θ) ≡ µ(θ)ũC(θ). By definition, we also have

µ̃′(θ) = µ′(θ)ũC(θ) + µ(θ)ũ′C(θ)

with

ũ′C(θ) = ũθC(θ) + ũCC(θ)C′(θ) + ũCx(θ)x′(θ),

which can be rearranged as

ũ′C(θ) = ũθC(θ) + x′(θ)[ũCC(θ)
dC
dx

+ ũCx(θ)]. (D.3)

From agent θ’s budget constraint, e(q, C) = R(x), we know that

dC
dx

=
R′(x)

eC
,

and from the first-order condition associated with (A.2), we know that

R′(x)
eC

= − ũx

ũC
.
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Combining the three previous equations, we obtain

ũ′C(θ) = ũθC(θ) + ũC(θ)x′(θ)ρ(θ), (D.4)

where ρ(θ) ≡ ∂(ũx/ũC)
∂C = ũCx

ũC
− ũCC

ũx
ũ2

C
denotes the partial derivative, with respect to aggregate

consumption, of the marginal rate of substitution between earnings and consumption. In turn,

equations (D.2), (D.3), and (D.4) imply

µ̃′(θ)− µ̃(θ)
dx
dθ

ρ(θ) = ũC[λ(θ)− γG∗y1
ζ(θ) f (θ)].

Solving forward and using the fact that µ̃(θ̄) = 0, we get

µ̃(θ) =−
ˆ θ̄

θ
exp[−

ˆ z

θ
ρ(v)dx(v)]ũC(z)dΛ(z)

+ γ

ˆ θ̄

θ
exp[−

ˆ z

θ
ρ(v)dx(v)]ũC(z)G∗y1

ζ(z)dF(z).

Since µ̃(θ) = 0, we must also have

γ =

´ θ̄
θ exp[−

´ z
θ ρ(v)dx(v)]ũC(z)dΛ(z)´ θ̄

θ exp[−
´ z

θ ρ(v)dx(v)]ũC(z)G∗y1
ζ(z)dF(z)

,

which implies

µ̃(θ)

γG∗y1

=

ˆ θ̄

θ
exp[−

ˆ z

θ
ρ(v)dx(v)]ũC(z)ζ(z)dF(z)

−
´ θ̄

θ exp[−
´ z

θ ρ(v)dx(v)]ũC(z)dΛ(z)´ θ̄
θ exp[−

´ z
θ ρ(v)dx(v)]ũC(z)dΛ(z)

·
ˆ θ̄

θ
exp[−

ˆ z

θ
ρ(v)dx(v)]ũC(z)ζ(z)dF(z).

With Respect to n(θ) The first-order condition with respect to n(θ) is given by

γφ[y f ,n(θ)(pm, n)− h′(n(θ)) +
1
φ

ym,n(θ)(pm, n}] f (θ) (D.5)

= µ(θ)[h′′(n(θ))n(θ) + h′(n(θ))]ω(pm; θ).

Since old technology firms choose their labor demand to maximize profits and agents choose their

labor supply to maximize utility, we also know that

y f ,n(θ)(pm, n) + pmym,n(θ)(pm, n) = w(θ),

h′(n(θ)) = w(θ)(1− τ(θ)).
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Thus, using the fact that p∗m = 1/φ, we can rearrange equation (D.5) into

γφ[w(θ)τ(θ) + (p∗m − pm)ym,n(θ)] f (θ) = µ(θ)h′(n(θ))[
ε(θ) + 1

ε(θ)
]ω(pm; θ), (D.6)

where ε(θ) ≡ d ln(n(θ))
d ln h′(n(θ))) ≥ 0 denotes the labor supply elasticity and ym,n(θ) ≡

dym(pm,n)
dn(θ) .

With Respect to pm The first-order condition with respect to pm is given by

γφ(p∗m − pm)ym,pm =

ˆ
µ(θ)h′(n(θ))n(θ)ωpm(pm; θ)dθ, (D.7)

with ym,pm ≡
dym(pm,n)

dpm
. Using equation D.6 to substitute for µ(θ)h′(n(θ))/γ in equation (D.7) and

noting that d ln ym(pm, n(θ); θ)/d ln n(θ) = 1,15 we obtain

pm − p∗m =

´ ε(θ)
ε(θ)+1 ·

d ln ω(θ)
d ln |ym| · τ(θ) · x(θ)dF(θ)

|ym|[1−
´ ε(θ)

ε(θ)+1 ·
d ln ω(θ)
d ln |ym| ·

ym(θ)
|ym| dF(θ)]

, (D.8)

where d ln ω(θ)
d ln |ym| corresponds to the local elasticity of relative wages with respect to the total number

of machines used by old technology firms, holding workers’ labor supply fixed,

d ln ω(θ)

d ln |ym|
=

∂ ln pm

∂ ln |ym(pm, n)|
d ln ω(pm; θ)

d ln pm
.

Since households do not consume machines, the previous price gap can be implemented

equivalently with a negative tax on old technology firms, a positive tax on new technology firms,

or a combination of both. For expositional purposes, we focus in the rest of this section on the case

where the tax on old technology firms has been set to zero and refer to t∗m = pm/p∗m − 1 as the tax

on machines. Given this normalization, equation (D.8) leads to

t∗m =

´ ε(θ)
ε(θ)+1

d ln ω(θ)
d ln |ym| τ(θ)x(θ)dF(θ)

p∗m|ym|[1−
´ ε(θ)

ε(θ)+1
d ln ω(θ)
d ln |ym|

ym(θ)
|ym| dF(θ)]

. (D.9)

D.2 Section 5.2

Equation ((9)). Under the assumption that upper-level preferences are quasilinear, we have

µ(θ)

γφ
= Λ(θ)− F(θ).

15Recall that ym(pm, n(θ); θ) is implicitly defined as the solution to pm = dg(ym(θ), n(θ); θ)/dym(θ).
Since g(·, ·; θ) is homogeneous of degree one, this is equivalent to pm = dg(ym(θ)/n(θ), 1; θ)/dym(θ). Dif-
ferentiating, we therefore get d ln ym(pm, n(θ); θ)/d ln n(θ) = 1.
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Together with equation (D.6), we therefore get

[w(θ)τ(θ) + (p∗m − pm)ym,n(θ)] =
[Λ(θ)− F(θ)]

f (θ)
h′(n(θ))[

ε(θ) + 1
ε(θ)

]ω(pm; θ).

Using again the fact that d ln ym(pm, n(θ); θ)/d ln n(θ) = 1 and h′(n(θ)) = w(θ)(1− τ(θ)), from

the first-order condition of the agent’s utility maximization problem, this leads to

τ(θ) = τ∗(θ)− pm − p∗m
pm

pmym(θ)

x(θ)
(1− τ∗(θ)), (D.10)

with

τ∗(θ) ≡ 1

1 + ε(θ)
ε(θ)+1 ·

f (θ)
(Λ(θ)−F(θ))ω(pm;θ)

.

Combining the previous expression with equation D.9, we obtain

t∗m
1 + t∗m

=

´ ε(θ)
ε(θ)+1 ·

d ln ω(θ)
d ln |ym| · τ

∗(θ) · x(θ)dF(θ)

pm|ym|[1−
´ ε(θ)

ε(θ)+1 ·
d ln ω(θ)
d ln |ym| · τ

∗(θ) · ym(θ)
|ym| dF(θ)]

(D.11)

In the parametric example of Section 5.2, we have assumed

ε(θ) = ε for all θ, (D.12)

Λ(θ) = 1 for all θ, (D.13)

f (θ) = 1 for all θ, (D.14)

F(θ) = θ for all θ. (D.15)

We therefore immediately get

τ∗(θ, pm) =
1

1 + ε
ε+1 ·

1
(1−θ)ω(pm;θ)

. (D.16)

In Section 5.2, we have also established that

w(pm; θ) = (1− θ)−1/γ(pm),

which implies

ω(pm; θ) =
1

γ(pm)
· 1

1− θ
.

Substituting into equation (D.16), we therefore get

τ∗(θ) =
1

1 + ε
ε+1 γ(pm)

≡ τ∗. (D.17)
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In Section 5.2, we have also established that

d ln ω(pm; θ)

d ln pm
= −βγ(pm),

which implies
d ln ω(θ)

d ln |ym|
= −βγ(pm)

d ln pm

d ln |ym(pm, n)| ≡
d ln ω

d ln |ym|
. (D.18)

Combining equations (D.11), ((D.12)), (D.17) and (D.18), we obtain

t∗m
1 + t∗m

=

ε
ε+1

d ln ω
d ln |ym|τ

∗

1− ε
ε+1

d ln ω
d ln |ym|τ

∗(θ, pm)

´
x(θ)dF(θ)
pm|ym|

, (D.19)

Letting sm ≡ pm|ym|´
x(θ)dF(θ)+pm|ym| , this leads to equation ((9)).

Proposition 3. From equation ((9)), we know that

t∗m
1 + t∗m

=

ε
ε+1

d ln ω
d ln |ym|τ

∗

1− ε
ε+1

d ln ω
d ln |ym|τ

∗
1− sm

sm

with

d ln ω

d ln |ym|
= −βγ(pm)

d ln pm

d ln |ym(pm, n)| ,

τ∗ =
1

1 + ε
ε+1 γ(pm)

,

sm =
pm|ym|´

x(θ)dF(θ) + pm|ym|
,

This expression can be rearranged as

t∗m
1 + t∗m

=
Φ

ρ−Φ
1− sm

sm
(D.20)

with

Φ = − εβγ(pm)

(ε + 1) + εγ(pm)
, (D.21)

ρ =
∂ ln |ym(pm, n)|

∂ ln pm
.

We first demonstrate that Φ, sm, and ρ can be expressed as functions of t∗m and φ.
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Using the fact that pm = (1 + t∗m)/φ, we can immediately rearrange equation (D.21) as

Φ = − εβγ((1 + t∗m)/φ)

(ε + 1) + εγ((1 + t∗m)/φ)
≡ Φ(t∗m, φ). (D.22)

To express sm and ρ as a function of t∗m and φ, we further need to solve for the optimal labor supply

of each agent, n(θ), which itself depends on the marginal income tax rates, τ(θ). Together with

equations (D.12)-(D.15), equation (D.10) implies

τ(θ) =
ε + 1− t∗m

1+t∗m
pmym(θ)

x(θ) γ(pm)

ε + 1 + εγ(pm)
.

From the first-order condition of the old technology firms, we know that

pmym(θ)

x(θ)
= −β(θ) ln(1− θ), (D.23)

which leads to

τ(θ) =
ε + 1 + t∗m

1+t∗m
βγ(pm) ln(1− θ)

ε + 1 + εγ(pm)
. (D.24)

The optimal labor supply is given by the agent’s first-order condition

n(θ) = ((1− τ(θ))w(θ))ε. (D.25)

Combining equations (D.24) and (D.25) with the fact that w(pm; θ) = (1− θ)−1/γ(pm), we get

n(θ) = (
γ(pm)

ε + 1 + εγ(pm)
)ε(ε− t∗m

1 + t∗m
β ln(1− θ))ε(1− θ)−ε/γ(pm),

and in turn,

ˆ
w(θ)n(θ)dθ = (

γ(pm)

ε + 1 + εγ(pm)
)ε

ˆ
(ε− t∗m

1 + t∗m
β ln(1− θ))εθ

− 1+ε
γ(pm) dθ

Using equation (D.23), we further get

pmym(pm, n(θ); θ) = −β ln(1− θ)(
γ(pm)

ε + 1 + εγ(pm)
)ε(ε− t∗m

1 + t∗m
β ln(1− θ))ε(1− θ)

− 1+ε
γ(pm) ,

(D.26)

and in turn,

pm|y(pm, n)| = −β(
γ(pm)

ε + 1 + εγ(pm)
)ε

ˆ
ln(1− θ)(ε− t∗m

1 + t∗m
β ln(1− θ))ε(1− θ)

− 1+ε
γ(pm) dθ. (D.27)
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The aggregate share of robots is therefore given by

sm =

´
β ln(1− θ)(ε− t∗m

1+t∗m
β ln(1− θ))ε(1− θ)

− 1+ε
γ((1+t∗m)/φ) dθ

´
(β ln(1− θ)− 1)(ε− t∗m

1+t∗m
β ln(1− θ))ε(1− θ)

− 1+ε
γ((1+t∗m)/φ) dθ

≡ sm(t∗m, φ), (D.28)

where we have again used pm = (1+ t∗m)/φ. The elasticity ρ can be computed in a similar manner.

From equation (D.23) and the fact that w(pm; θ) = (1− θ)−1/γ(pm), we get

pmy(pm, n(θ); θ) = −β ln(1− θ)n(θ)(1− θ)−1/γ(pm).

Using the previous expression with the definition of ρ ≡ ∂ ln |ym(pm,n)|
∂ ln pm

, we get

ρ =

ˆ
y(pm, n(θ); θ)

|ym(pm, n)|
d ln w(pm; θ)

d ln pm
dθ − 1.

Combining the previous expressions with equations (D.26), (D.27), and using the fact that d ln w(pm;θ)
d ln pm

=

−β ln(1− θ) and pm = (1 + t∗m)/φ, we get

ρ =

´
(β ln(1− θ)− 1) ln(1− θ)(ε− t∗m

1+t∗m
β ln(1− θ))ε(1− θ)

− 1+ε
γ((1+t∗m)/φ) dθ

´
ln(1− θ)(ε− t∗m

1+t∗m
β ln(1− θ))ε(1− θ)

− 1+ε
γ((1+t∗m)/φ) dθ

≡ ρ(t∗m, φ). (D.29)

At this point, we have established that the three statistics in equation (D.20) can be expressed

as Φ(t∗m, φ), ρ(t∗m, φ), and sm(t∗m, φ). We can therefore rearrange equation (D.20) as

H(t∗m, Φ(t∗m, φ), ρ(t∗m, φ), sm(t∗m, φ)) = 0,

with

H(t∗m, Φ, ρ, sr) ≡
Φ

ρ−Φ
· 1− sm

sm
− t∗m

1 + t∗m
.

By the Implicit Function Theorem, we have

dt∗m
dφ

= − dH/dφ

dH/dt∗m
. (D.30)

Since the tax on robots is chosen to maximize welfare, the second derivative of the government’s

value function, expressed as a function of t∗m only, must be negative. Noting that H corresponds

to its first derivative—which is equal to zero at the optimal tax—we therefore obtain

dH/dt∗m < 0. (D.31)
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Since γ(·) is a strictly increasing function, equation (D.22) implies

∂Φ(t∗m, φ)

∂φ
> 0. (D.32)

To establish the monotonicity of sm and ρ with respect to φ, it is convenient to introduce the fol-

lowing function:

d(t∗m, φ, ζ; θ) = (ε− β
t∗m

1 + t∗m
ln(1− θ))ε(1− θ)

− 1+ε
γ((1+t∗m)/φ) (ln(1− θ))−ζ .

By construction, d is log-supermodular in (φ, ζ, θ). Since log-supermodularity is preserved by

integration, the following function,

D(φ, ζ) =

ˆ
d(t∗m, φ, ζ; θ)dθ,

is also log-supermodular. It follows that

D(φ, ζ = 0)
D(φ, ζ = −1)

=

´
(ε− β t∗m

1+t∗m
ln(1− θ))ε(1− θ)

− 1+ε
γ((1+t∗m)/φ) dθ

´
(ln(1− θ))(ε− β t∗r

1+t∗r
ln(1− θ))ε(1− θ)

− 1+ε
γ((1+t∗m)/φ) dθ

is increasing in φ,

D(φ, ζ = −2)
D(φ, ζ = −1)

=

´
(ln(1− θ))2(ε− β t∗m

1+t∗m
ln(1− θ))ε(1− θ)

− 1+ε
γ((1+t∗m)/φ) dθ

´
(ln(1− θ))(ε− β t∗r

1+t∗m
ln(1− θ))ε(1− θ)

− 1+ε
γ((1+t∗m)/φ) dθ

is decreasing in φ.

Noting that

sm =
1

1− 1
β

D(φ,ζ=0)
D(φ,ζ=−1)

,

ρ = β
D(φ, ζ = −2)
D(φ, ζ = −1)

− 1,

we obtain that

∂sm(t∗m, φ)

∂φ
> 0, (D.33)

∂ρ(t∗m, φ)

∂φ
< 0. (D.34)

Since ∂H
∂Φ < 0, ∂H

∂sm
< 0, and ∂H

∂ρ > 0, inequalities (D.32)-(D.34) imply

dH
dφ

=
∂H
∂Φ

∂Φ
∂φ

+
∂H
∂sm

∂sm

∂φ
+

∂H
∂ρ

∂ρ

∂φ
< 0.

Combining this observation with equation (D.30) and (D.31), we conclude that dt∗m/dφ > 0.
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