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Abstract

We estimate models of consumption growth that allow for long-run risks and

disasters using data for a series of countries over a time span of 200 years. Our

estimates indicate that a model with small and frequent disasters that arrive at a

mean-reverting rate best fits international consumption data. The implied posterior

disaster intensity in such a model predicts equity returns without compromising

the unpredictability of consumption growth. It also generates time-varying excess

stock volatility, empirically validating key economic mechanisms often assumed in

consumption-based asset pricing models.
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1 Introduction

Some of the most successful asset pricing models explain asset pricing anomalies by pos-

tulating specific dynamics for aggregate consumption. Many times, the dynamics of con-

sumption growth are not directly estimated from consumption data. Instead, they are

calibrated to match asset pricing behavior. Such calibrations may be problematic if the

target moments are not carefully chosen and if the model of consumption growth is mis-

specified. The formal estimation of consumption models with currently available methods

is challenging due to the presence of latent factors and the low frequency nature of con-

sumption data.1

In this paper, we estimate from consumption data for a series of countries models

of aggregate consumption which nest long-run risk and disaster formulations that are

popular in the literature. We accomplish this goal by exploiting the recently developed

methodology of Guay and Schwenkler (2018) that enables maximum likelihood estima-

tion, hypothesis testing, and comparative analysis of consumption models in the presence

of latent factors and disasters. Our estimates deliver strong evidence in support of mod-

els that allow for time variation in the disaster rate as in the model of Wachter (2013).

Such a specification is favored by the data over random walk formulations as in Camp-

bell and Cochrane (1999), long-run risk formulations as in Bansal and Yaron (2004), or

time-invariant disaster formulations as in Barro (2006). These results have important

implications for the design of consumption-based asset pricing models.

We consider a continuous-time model in which the expected growth rate and the

instantaneous volatility of consumption are driven by mean-reverting latent factors as in

the long-run risk model of Bansal and Yaron (2004). At any point of time, consumption

1The consumption-based asset pricing literature recognizes these challenges. For example, Cochrane

(2017) states: “There is some hope in formally testing models – do their moment conditions and cross-

equation restrictions hold? – and in checking models’ additional assumptions – do conditional moments

vary as much and in the way that long-run risk or rare disaster models specify?” Similarly, Ludvigson

(2013) claims: “Although an important first step, a complete assessment of leading consumption-based

theories requires moving beyond calibration, to formal econometric estimation, hypothesis testing, and

model comparison. Formal estimation, testing, and model comparison present some significant challenges,

to which researchers have only recently turned.”
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can fall unexpectedly due to the arrival of a disaster as in the model of Barro (2006).

The magnitude of a disaster is uncertain and the rate with with which disasters arrive

varies over time in a mean-reverting way as in the model of Wachter (2013). We estimate

our model using annual data on real per capita consumer expenditures for each of the

countries of Australia, Germany, Japan, and the United States going back to 1834. We also

estimate several nested submodels. The simplest model posits consumption as a random

walk. It does not control for long-run risks or disasters. An intermediate model allows for

persistent and transitory long-run risk components but not for disasters. Two additional

models neglect long-run risks and instead control for disaster. The simpler disaster model

only allows for a time-invariant disaster rate. The richer disaster model also allows for

time variation in the disaster rate.

We pursue likelihood inference, which is feasible thanks to the novel methodology

of Guay and Schwenkler (2018). With the methodology of Guay and Schwenkler (2018),

we can compute parameter estimators that are consistent, asymptotically normal, and

asymptotically efficient. This enables the use of standard t-tests to assess the significance

of model parameters, as well as likelihood ratio tests for goodness-of-fit evaluations. The

methodology of Guay and Schwenkler (2018) also delivers unbiased and computationally

efficient estimators of posterior means and model-implied marginal distributions, which

we use to assess the performance of our models. An alternative Bayesian approach is

recently undertaken by Schorfheide et al. (2018) for the analysis of long-run risk models.

We go beyond Schorfheide et al. (2018) by also controlling for disasters when evaluating

long-run risk models. Furthermore, our likelihood-based approach makes it possible for

us to perform a comparative analysis of the different nested models.

Our estimates indicate that time variation in the disaster rate is a predominant

feature of international consumption data. Across countries, the average disaster rate, the

disaster rate volatility, and the disaster rate persistence is estimated to be significantly

large. Shocks to the disaster rate are estimated to be similarly persistent as in Wachter

(2013). However, unlike Barro (2006), Barro and Jin (2011), Barro and Ursúa (2017),

Wachter (2013) and others who find that disasters are extremely severe and extremely

rare, we estimate that disasters are small and frequent: A disaster of a median size of
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−0.75% arrives once every 10 months in the United States. We find similar estimates

for Australia, Germany, and Japan. Our estimates of the frequency and magnitude of

disasters are similar to those of Backus et al. (2011), who calibrate time-invariant disaster

models to equity options data.

Our results show that the data favors a specification of consumption growth that

allows for time-variation in the disaster rate. Likelihood ratio tests highlight that the

introduction of time variation in the rate of disaster arrival always yields a significant

improvement in the goodness-of-fit of a model. An analysis of the model-implied moments

and marginal distributions of consumption growth across countries indicates that models

that neglect the time variation of the disaster rate tend to overstate the center of the

consumption growth distribution. Such overstatements can yield imprecise estimates of

model parameters. For example, when we consider the nested model that only allows for

persistent and transient long-run risk shocks, our parameter estimates are similar to those

reported in the long-run risk literature by Bansal et al. (2012), Schorfheide et al. (2018),

and others. However, when we consider the full model that also controls for time-varying

disaster arrival, the estimates of the sensitivity of consumption growth to persistent and

transitory long-run risk shocks are insignificant. These results suggest that the role of

long-run risk shocks may be overstated in a model that does not control for time-varying

disaster arrival. Similarly, we find that a model that only allows for time-invariant disaster

arrival tends to understate the frequency of disasters. All in one, our results indicate that

it is critical to control for time variation in the disaster rate to obtain accurate estimates

of the parameters of consumption growth models.

We evaluate the implications of our results for macroeconomic and asset pricing mod-

eling. The model-implied posterior sample paths of the expected consumption growth rate

and the conditional consumption volatility are strongly time-varying and persistent due to

the time-varying nature of the disaster rate. However, the persistent time variation of the

expected consumption growth rate does not translate to consumption growth being pre-

dictable in the data because disasters are completely unpredictable events. These findings

explain the seemingly contradictory results of Hansen et al. (2008), who uncovers evi-

dence of persistent latent components in consumption growth by analyzing the long-run
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trade-off between risk and return, and those of Beeler and Campbell (2012), who cannot

find any evidence of consumption growth predictability in U.S. data. The posterior disas-

ter rate predicts the risk premium on the S&P 500 and is negatively associated with the

3-month Treasury Bill yield. Furthermore, the posterior disaster rate is positively related

to the volatility of the S&P 500 but unrelated to the volatility of the 3-month Treasury

Bill. These findings empirically validate key economic mechanisms in Wachter (2013) that

explain important asset pricing phenomena.

The rest of this paper is organized as follows. Section 2 introduces our models. Sec-

tion 3 summarizes our data and econometric approach. Section 4 presents our empirical

results estimates. We analyze the implications of the time-varying disaster model in Sec-

tion 5. Section 6 concludes. There are several technical appendices that summarize the

methodology of Guay and Schwenkler (2018) and indicate how we apply it our setting.

2 A model of consumption growth

We posit a state-space model for consumption growth. In our model, the instantaneous

growth rate of consumption fluctuates around its expected value due to the presence of

several sources of risk. One natural source of risk is diffusive risk that would prevail if con-

sumption growth behaved as a random walk. However, Schorfheide et al. (2018) recently

reject the null hypothesis that consumption evolves as a random walk. We therefore allow

for additional sources of risks that differentiate our model from the random walk model.

Inspired by the long-run risk model of Bansal and Yaron (2004), we allow the expected

consumption growth rate and the instantaneous consumption volatility to be dynamic

and time-varying. Furthermore, we allow for the occurrence of unexpected drops in con-

sumption as in the disaster literature (Barro (2006), Wachter (2013), and others). Overall,

our model of consumption growth will feature four distinct sources of risk: diffusive risk,

stochastic volatility, time-varying growth rate, and disastrous jumps.

We choose to work in continuous time when modeling consumption growth. We do

so to exploit the recently developed methodology of Guay and Schwenkler (2018) for

the exact and efficient estimation of multivariate continuous-time models with jumps via
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maximum likelihood. The availability of likelihood inference tools allows us to carry out

a formal statistical analysis of the different sources of risk driving consumption growth

in the data. If we were to model consumption growth in discrete time, the evaluation of

the likelihood would be difficult. It would involve several approximations that may yield

inefficient or biased parameter estimates.2

We lay out our model for consumption growth. Let a unit of time be one year and

∆ be the frequency of the observation of consumption data (i.e., ∆ = 1 for annual data).

We assume that X1,t is a stochastic process that measures log-consumption and evolves

according to the stochastic differential equation

dX1,t = (µ+ gt) dt+ σvtdW1,t + dJt, X1,0 = 0 (1)

for scalars µ ∈ R and σ > 0. Here, W1 is a standard Brownian motion, and

Jt = −
∑
n≥1

ζEn1{Tn≤t}

is a pure-jump process with jump times (Tn)n≥1 and stochastic intensity λt.

The factors gt, vt, and λt introduce time variation in the expected growth rate, the

spot volatility, and the jump frequency of consumption. We specify the dynamics of these

factors in the following sections.

2.1 Long-run risks

With vt we model transitory long-run volatility shocks as in Bansal and Yaron (2004). The

presence of vt introduces stochastic volatility in consumption growth. We take vt = evX3,t

for a process X3 that solves the stochastic differential equation

dX3,t = −κ3X3,t + dW3,t. (2)

with non-negative scalars v and κ3. Here, W3 is an independent standard Brownian mo-

tion, and X3,0 = 0 is fixed for simplicity.3 The factor vt scales the spot volatility of

consumption growth up and down over time around the baseline value of σ.

2See Detemple et al. (2006), Giesecke and Schwenkler (2018), and Giesecke and Schwenkler (2017) for

theoretical and numerical evidence on this issue.
3We have experiment with randomized initial value X3,0 and found no major changes in the results.
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The scalar κ3 gives an inverse measure of the persistence of the stochastic volatility

factor: We could rewrite (2) as an AR(1) model, in which case e−κ3∆ would be the autore-

gressive coefficient. The scalar v, on the other hand, measures how sensitive consumption

growth is to transitory long-run volatility shocks. When v = 0, the factor vt = 1 almost

surely for all t ≥ 0 and consumption growth volatility is constant. In that case, there are

no transitory long-run volatility shocks.

The factor gt drives the expected growth rate of consumption. With this factor we

model persistent long-run risk shocks as in Bansal and Yaron (2004). We assume that

gt = φX2,t for a stochastic process X2,t that solves the stochastic differential equation

dX2,t = −κ2X2,t + vtdW2,t, (3)

where W2 independent standard Brownian motion and X2,0 = 0.4 The persistent long-run

risk factor is centered around zero: E[gt] = 0 for all t ≥ 0.5 Because of this, the scalar µ

in (1) measures the average consumption growth rate and φ measures the sensitivity of

the expected consumption growth rate to long-run risk shocks. When φ = 0, there are no

persistent long-run risk shocks to the expected growth rate of consumption. When φ > 0,

the scalar κ2 gives an inverse measure of the persistence of a long-run growth risk shock.

Equation (3) can also be rewritten as an AR(1) model with e−κ2∆ as the autoregressive

coefficient.

2.2 Disasters

The jump process J in (1) introduces disasters as in the model of Barro (2006). Note

that Jt = Js almost surely for any 0 ≤ s < t < ∞ unless a jump occurs at some point

between times s and t. If a jump occurs at time Tn, then the process J jumps down,

pulling log-consumption down with it: ∆X1,Tn = ∆JTn = −ζEn. Here, we assume that En

is an independent sample of a standard exponentially distributed random variable and ζ

is a non-negative scalar. The realization of −ζEn can be interpreted as a disaster in the

sense of Barro (2006).

4Alternative fixed or random choices of X2,0 have little impact on our results.
5However, the factor g does not have Gaussian conditional distributions due to the presence of the

stochastic volatility factor vt in Equation (3).
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Disasters in our model arrive at the stochastic intensity λt that measures the condi-

tional rate of disaster arrival. We assume that

λt = `0 exp (`1X4,t)

for non-negative scalars `0 and `1. Here, X4 is a stochastic process that satisfies

dX4,t = −κ4X4,tdt+ dW4,t. (4)

for an independent standard Brownian motionW4, a non-negative scalar κ4, andX4,0 = 0.6

Because X4 satisfies Ornstein-Uhlenbeck dynamics, its conditional law is Gaussian with

finite variance. This implies that E[
∫ ∆

0
λsds] <∞ so that the process J does not explode.

The process X4 introduces time-variation in the arrival rate of disasters if `1 > 0.

In that case, the time-varying disaster intensity is mean-reverting, similarly as in the

model of Wachter (2013). The arrival rate of disasters is time-invariant whenever `1 = 0.

The scalar κ4 inversely measures the persistence of disaster intensity shocks: In an AR(1)

formulation of (4), e−κ4∆ would be the autoregressive coefficient. The scalar `1 captures

how strongly the disaster intensity varies over time around the baseline disaster intensity

`0. In contrast, the scalar ζ measures the average magnitude of a disaster. There are no

disasters whenever ζ = 0 and `0 = 0.

2.3 Nested models

In addition to the model specified in (1)–(4), we also analyze several models nested in

our specification. We summarize the nested models in Table 1. A model that restricts

φ = v = ζ = 0 has no long-run risk and no disasters. Such a model posits log-consumption

as a random walk as in the model of Campbell and Cochrane (1999). We will estimate its

free parameters µ and σ. An additional model we will analyze allows for persistent and

transitory long-run risk shocks in the spirit of Bansal and Yaron (2004). Such a model

restricts ζ = `1 = 0 and otherwise has 6 free parameters: µ, σ, φ, κ2, v, and κ3.7 We

also consider two types of disaster models. The simpler model assumes that the disaster

6Randomized choices of X4,0 have no major influence on our results.
7An analogous model in discrete time is studied by Schorfheide et al. (2018).
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intensity is constant as in Barro (2006). Such model restricts v = φ = `1 = 0 and has 4

free parameters: µ, σ, ζ, and `0. A more complex disaster model allows for a stochastic and

mean-reverting disaster intensity as in Wachter (2013). This model has 6 free parameters

(µ, σ, ζ, `0, `1, κ4) and restricts φ = v = 0.

3 Data & estimation approach

Our goal is to estimate the vector θ = (µ, σ, φ, κ2, v, κ3, ζ, `0, `1, κ4) of parameters govern-

ing the dynamics of realized consumption growth, expected consumption growth, stochas-

tic volatility, and disasters in (1)–(4). Each one of these parameters drives a different

feature of the conditional distribution of consumption growth. We summarize the role

played by each parameter in Table 2.

We use data on log-consumption to estimate the parameter vector θ via maximum

likelihood. We construct time series of log-consumption from annual observations of real

per capita consumer expenditure for a cross section of countries as recorded in the Barro-

Ursúa data set.8 We select the following countries for our analysis:

• Australia (available data: 1901-2009, 109 observations)

• Germany (available data: 1851-2009, 159 observations)

• Japan (available data: 1874-2009, 136 observations)

• United States (available data: 1834-2009, 176 observations)

For the U.S., we expand the Barro-Ursúa data by including data on real per capita

consumer expenditure for the years 2010 through 2016, which we obtain from the Federal

Reserve Bank of St. Louis FRED website. This gives us a total of 183 annual consumption

observations for the United States. Table 3 provide summary statistics of our data.

Formally, we assume that the data is observed every ∆ units of time and there are

m+ 1 data points available for inference. The total data available for inference is

Dm = {X1,0, X1,∆, . . . , X1,m∆}.
8This data set can be downloaded from https://scholar.harvard.edu/barro/publications/

barro-ursua-macroeconomic-data.
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There is no data on the expected consumption growth factor gt, the stochastic volatility

factor vt, and the disaster intensity factor λt. These processes are latent.

Because of the presence of latent factors, the likelihood is the projection of the

complete-data likelihood ratio on the incomplete data space:9

Lm(θ) = Eθ∗
[

m∏
i=1

p∆

(
X(i−1)∆, Xi∆; θ

)
p∆

(
X(i−1)∆, Xi∆; θ∗

) ∣∣∣∣∣ Dm

]
. (5)

Here, θ∗ is the true data-generating parameter, Eθ denotes the expectation operator under

the measure P when the underlying parameter vector is θ, X = (X1, X2, X3, X4) is the

joint process defined in (1)–(4), and p∆ is the transition density of the process X. A

maximum likelihood estimator (MLE) θ̂m is an almost sure maximizer of the likelihood

(5). We consider only MLE that satisfy the first order condition ∇Lm(θ̂m) = 0.

The likelihood (5) poses a filter that is difficult to evaluate using standard filtering

methods. We avoid these difficulties by using the recently developed simulation-based

methodology of Guay and Schwenkler (2018). The methodology is computationally effi-

cient and delivers accurate estimates of the likelihood Lm(θ) and of MLE θ̂m with small

computational costs. The resulting parameter estimators are consistent, asymptotically

normal, and asymptotically efficient as the sample size m grows large. We provide details

of the methodology and the asymptotic behavior of the estimators in Appendix A.

4 Model estimates

In this section, we present our model estimates and carry out a comparative analysis for

the nested models. We show that a model that allows for time-varying disaster arrival is

most supported by international consumption data.

4.1 Full model

Table 4 reports the parameter estimates of the full model for the different countries in our

data sample. We see that the average growth rate and the average volatility parameters

9See Dembo and Zeitouni (1986) and Giesecke and Schwenkler (2018) for a formal derivation of the

likelihood in incomplete data settings.
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are significant across countries. We also see that the disaster intensity is estimated to be

significantly positive, time-varying, and persistent in all countries. The disaster magnitude

is significantly large in Australia and Germany. The parameters φ and v are not found to

be significantly large in any country in our sample.

Across the board, we find that disasters are smaller and more frequent than cali-

brated in the disaster literature by Barro (2006), Barro and Jin (2011), and Barro and

Ursúa (2017), among others. For example, Barro and Jin (2011) estimate that a disaster

of median size of −19% arrives once every 26 years in the United States. In contrast,

we estimate that in the U.S. a disaster of median size of −1.30% arrives once every 10

months.10 Our estimates of the disaster magnitude and frequency for the U.S. are com-

parable to the estimates of Backus et al. (2011). Using options data, Backus et al. (2011)

estimate that a disaster of median size −0.74% arrives once every 9 months.

Differences between our estimates and those of Barro (2006), Barro and Jin (2011),

and Barro and Ursúa (2017) can be explained by differences in our econometric ap-

proaches. While we consider the whole distribution of consumption growth to estimate

the disaster parameters in our likelihood-based approach, it is common in the disaster

literature to calibrate these parameters to match the left-tail of realized consumption

growth.11 Such a constrained approach naturally leads to conservative disaster estimates.

For example, if we were to calibrate the disaster parameters to match the left tail of U.S.

consumption growth in our data set, we would find that a disaster of average size of −10%

occurs once every 91 years. The left-tail-focused approach implies more severe disasters

than those implied by the maximum likelihood estimates of Table 4.

We find that the disaster intensity is strongly time-varying and persistent in all

countries in our data. These findings provide strong support for the time-varying disaster

model of Wachter (2013). In the model of Wachter (2013), disasters arrive at an intensity

that evolves as a Cox-Ingersoll-Ross process. In contrast, the disaster intensity in our

model evolves as an exponential Ornstein-Uhlenbeck process. In spite of these differences,

10The long-run mean of the time-varying intensity in our model is `0 exp( 1
2
`21

2κ4
) due to the Ornstein-

Uhlenbeck dynamics of X4 in (4).
11Typically, the disaster literature calibrates to match the distribution of realized consumption growth

rates that exceed −10% in any given year.
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our estimates of the persistence of disaster intensity shocks in the U.S. is similar to that

estimated by Wachter (2013): Our estimate of κ4 for the U.S. is 0.07 and the corresponding

estimate of Wachter (2013) is 0.08. In contrast to Wachter (2013), however, our estimate

of the baseline U.S. disaster intensity is much larger. Wachter (2013) estimates that a

disaster occurs in the U.S. on average every 28 years while we find that a disaster occurs

every 10 months. The differences between our disaster frequency estimate and that of

Wachter (2013) can again be explained by differences in our econometric approaches.

Wachter (2013) follows the standard approach in the disaster literature and calibrates

the disaster frequency to match the left tail of consumption data. We instead follow a

maximum likelihood approach that considers the whole distribution of consumption when

estimating the disaster frequency.

Our estimates of the parameters φ and v are miniscule, which suggests that the

latent factors gt and vt that model persistent and transitory long-run risk shocks in our

model do not vary strongly over time. These findings lie in contrast to estimates by

Bansal et al. (2012) and Schorfheide et al. (2018), who uncover significant latent process

driving persistent and transitory long-run risk shocks using models that are nested in our

specification. Unlike Bansal et al. (2012) and Schorfheide et al. (2018), we control for the

occurrence of disasters when assessing the significance of the long-run risk parameters φ

and v. As our analysis of the nested models in Section 4.2 shows, this difference between

our approach and those of Bansal et al. (2012) and Schorfheide et al. (2018) explains the

differences in our estimates.

4.2 Nested models

Tables 5 through 8 report the parameter estimates for the nested models fitted to Aus-

tralian, German, Japanese, and U.S. consumption data. We see that the models that

allow for time-invariant disasters (Model “DIS”) cannot identify significant disasters in

any country. Those models also understate the frequency of disaster arrival.

We identify significant disasters in Australia and Germany only when allowing for

time-variation in the disaster intensity (Model “TVDIS”). For those countries, the pa-

rameter estimates for the average disaster magnitude ζ, the baseline disaster rate `0, the
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volatility `1 of the disaster intensity, and the speed of reversion κ4 of the disaster intensity

are significantly large and similar to the estimates reported for the full models in Table

4. We cannot find the average disaster magnitude ζ to be significantly large in Japan and

the U.S., even though our estimates of the baseline disaster rate `0, the disaster intensity

volatility `1, and the intensity speed of reversion κ4 are found to be significantly large

and similar to the the full model estimates of Table 4. For the U.S., our estimates for

Model “TVDIS” suggest that a disaster of a median size of −0.75% arrives once every 10

months, almost precisely as often and severe as the disasters estimated by Backus et al.

(2011) from options data. Overall, these results provide further support in favor of the

time-varying disaster model of Wachter (2013), albeit with small and frequent disasters

as in Backus et al. (2011).

The parameters φ and v of the model that allows for long-run risk shocks (Model

“LRR”) are estimated to be significantly large in Japan and the United States. In the

U.S. in particular, our estimates are similar to the estimates of Bansal et al. (2012) and

Schorfheide et al. (2018), who study discrete-time models analogous of Model “LRR”.

Bansal et al. (2012) calibrate their model to annual U.S. consumption and asset pricing

data and estimate φ to be 0.0009, similar to our estimate of φ of 0.001. Schorfheide

et al. (2018) estimate their model parameters via a Bayesian methodology using U.S.

consumption data. Their findings imply the following 90% credible bands for our model

parameters: [0.001, 0.010] for φ, [0.026, 0.055] for v, and [0.012, 0.552] for κ3. Our estimates

of 0.001 for φ, 0.037 for v, and 0.017 for κ3 lie inside of the credible bands implied by

the results of Schorfheide et al. (2018).12 All in one, when we consider a restricted model

that allows for persistent and transitory long-run risk shocks but not for disasters, our

estimates for the long-run risk parameters are comparable to those in the long-run risk

literature. However, when we also control for the occurrence of disasters at a time-varying

rate as in the full model, then the long-run risk parameters become small and insignificant

(see Table 4). Our results suggest that models that do not control for time-varying disaster

12Our estimate of κ2 for the U.S. is smaller that the estimates implied by the results of Bansal et al.

(2012) and Schorfheide et al. (2018). We therefore estimate persistent long-run risk shocks in Model

“LRR” to be more persistent than Bansal et al. (2012) and Schorfheide et al. (2018).
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arrival may overstate the influence of long-run risk shocks. These findings explain why our

estimates for the parameters φ and v in the full model differ from the estimates Bansal

et al. (2012) and Schorfheide et al. (2018) (see Section 4.1).

4.3 Likelihood ratio tests

Next, we run a comparative analysis of the nested models and the full model. We turn

to likelihood ratio tests for this task.13 Table 9 reports the likelihood ratio statistics for

different model pairs. We see that the models that include long-run risk shocks (“LRR”)

or time-varying disasters (“TVDIS”) are preferred over the simple random walk model

(“RW”) for all countries in our data. These results strongly reject the random walk hy-

pothesis for consumption growth for a series of countries, complementing similar findings

by Schorfheide et al. (2018) for the United States. The likelihood ratio tests do not pro-

vide support in favor of the time-invariant disaster model (“DIS”). Instead, they provide

strong support in favor of the time-varying disaster model (“TVDIS”). We conclude that

a formulation of disasters that arrive at a time-varying and mean-reverting rate as in

Wachter (2013) is favored by the data over a time-invarying disaster formulation as in

Barro (2006), Barro and Jin (2011), and Barro and Ursúa (2017).

The likelihood ratio tests of Table 9 also show that introducing time-varying disasters

in a model that allows for long-run risk shocks (Models “FULL” vs “LRR”) always leads to

a significant increase in the goodness-of-fit of the model. In contrast, the inclusion of long-

run risk shocks in a model with time-varying disasters (Models “FULL” vs. “TVDIS”)

does not lead to a significant increase in the fit to international consumption data. The

estimates of the full and nested models reported in Tables 4–8 show that when we move

from a restricted long-run risk model (Model “LRR”) to the unrestricted full model, the

estimates of the long-run risk parameters φ and v shrink and become insignificant. These

findings indicate that it is necessary to control for disasters that arrive at a time-varying

rate when assessing the importance of long-run risk shocks. Ignoring the time-varying

disaster channel may yield overstated estimates of long-run risk parameters.

13Likelihood ratio tests measure whether the better fit obtained by relaxing restricted parameters in a

nested model is justified in light of the increased model complexity. We provide details in Appendix B.
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All in one, the results of the likelihood ratio tests suggest that time-varying dis-

asters are a prominent feature of consumption data in the countries we consider. Our

results strongly favor models of consumption growth that allow for time-varying arrival

of disasters as in Wachter (2013).

4.4 Implied moments and distributions

The model estimates of Tables 4–8 and the likelihood ratio tests of Table 9 indicate that

models of consumption growth that do not control for time-varying disasters may overstate

certain model components. To assess the impact of such overstatements, in Table 10 we

report model-implied moments for the full and nested models for the countries in our

data sample and compare to the realized moments in the data. We see that the models

that control for long-run risks but not for disasters perform well at matching low-order

and symmetric moments, such as the mean and the variance of consumption growth.

In contrast, the models that control for disasters but not for long-run risks match the

skewness and the left tail of the empirical consumption growth distribution. Consistent

with the results of the likelihood ratio tests, we find that the model that controls for

time-varying disasters (Model “TVDIS”) performs best as it has the smallest moment-

matching error is all countries. The full model performs worse than the model that ignores

long-run risk shocks, suggesting that the full model is overparametrized.

We reach similar conclusions when looking at the model-implied marginal distribu-

tions of consumption growth displayed in Figures 1–4. Visually, the model that controls

for time-varying disasters provides the best fit to the observed distribution of consumption

growth in all countries. The models that neglect the time-varying disaster channel (Models

“RW” and “LRR”) tend to overstate the center of the empirical distribution. The model

that controls both for long-run risks and time-varying disasters (Model “FULL”) is over-

parametrized and fits the data less well than the model that only controls for time-varying

disasters (Model “TVDIS”).

Consistent with the results of the likelihood ratio test, our analysis of the model-

implied moments and marginal distributions indicate that the time-varying disaster model

best reflects the distribution of consumption growth in the data. A model that neglects
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the time-varying disaster channel will tend to overstate moments related to the center

of the distribution. A model that incorporates sources of risks in excess of time-varying

disasters will tend to be overparametrized, reducing its ability to fit the data.

5 Model implications

Our empirical results strongly support a model of consumption growth that allows for

small disasters that arrive at a time-varying and mean-reverting rate. In this section,

we study the macroeconomic and asset pricing implications of the time-varying disaster

model specified in Table 1 (Model “TVDIS”). We focus on the United States as a sample.

A key role will be played by the posterior sample path of the disaster intensity, Et[λt],

which is plotted in Figure 5. At any point of time, the posterior mean gives the best guess

of the size of disaster intensity conditional on the available data at that time. We see in

Figure 5 that the posterior mean of the disaster intensity fluctuates over time. There are

periods of times in which the disaster intensity is close to zero and other times in which

it reaches values of close to two disaster per year. The disaster intensity peaks especially

high during the early 1900’s, the First World War, and the Great Depression. Shocks to

the disaster intensity are persistent, with a first-order autocorrelation coefficient of 0.57.

5.1 Conditional mean and variance of consumption growth

The time-varying disaster model posits that gt = vt = 0 almost surely for all t ≥ 0 so

that there are no transitory or persistent long-run risk shocks in the spirit of Bansal and

Yaron (2004). Still, the fact that the disaster intensity fluctuates over time introduces

time variation in the conditionally expected consumption growth rate and the conditional

variance of consumption growth. Indeed, we have that the conditional expectation of the

instantaneous growth rate of consumption is µ − ζEt[λt], where the last term accounts

for the fact that the expected consumption growth rate will be low if many disasters are

expected to arrive.14 Similarly, the conditional variance of the instantaneous consumption

growth rate is σ2 + ζ2Et[λt], where the term ζ2Et[λt] accounts for the uncertainty in the

14More formally, the last term compensates for the jumps in (1).
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magnitude and the frequency of disasters. Both the conditional expectation and the vari-

ance of the instantaneous consumption growth rate vary over time because the posterior

mean of the disaster intensity (Et[λt]) varies over time (see Figure 5).

We plot the time series of the model-implied conditionally expected consumption

growth rate and the conditional consumption growth volatility in Figure 6. We see that

the model-implied conditional expectation and variance of consumption growth in the

U.S. vary strongly over time, consistent with the empirical findings of Bansal et al. (2012).

There were severely negative expected consumption growth rates during the early 1900’s

and the Great Depression. These periods were also associated with high consumption

growth uncertainty. In Table 11 we regress the conditionally expected growth rate and

the conditional volatility of consumption growth on several macroeconomic variables.15

We see that periods of high expected consumption and low consumption volatility are

associated with high inflation. We also see that the conditional sample paths of expected

consumption growth and conditional consumption volatility are strongly autoregressive.

5.2 Long-run risks revisited

Figure 6 and the regression estimates of Table 11 highlight that the conditional expecta-

tion and volatility of consumption growth are persistent. In Table 13 we perform AR(1)

regressions of expected consumption growth and conditional consumption volatility, and

we estimate the autoregressive coefficients to be 0.570 and 0.587, respectively. The esti-

mates of Table 13 imply monthly AR(1) coefficients of 0.954 for the expected consumption

growth rate and 0.957 for the conditional consumption volatility. These monthly AR(1)

coefficients are slightly smaller than those estimated by Schorfheide et al. (2018), which

are 0.979 for expected consumption growth and 0.987 for the conditional volatility.

The results of Table 13 confirm that U.S. consumption data features persistent com-

ponents in the expected consumption growth rate and the conditional consumption volatil-

ity, similarly as has been documented by Bansal and Yaron (2004), Bansal et al. (2010),

Schorfheide et al. (2018), and others. Unlike the aforementioned papers, however, these

dynamics arise in our model due to the persistent nature of disaster intensity shocks rather

15We provide summary statistics of the macroeconomic factors in Table 12.
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than the presence of persistent latent factors in the mean and variance of consumption

growth. These findings have important implications for the predictability of consumption.

If there were persistent latent factors in the mean and the variance of consumption growth,

then consumption growth itself would be predictable. However, consumption growth in

our model is unpredictable because disasters are completely unanticipated events even

when the disaster rate is predictable. In Table 14, we regress the realized consumption

growth rate on lagged values of itself and of the expected consumption growth rate and

the conditional consumption volatility. Consistent with the above discussion, we see that

realized consumption growth rate is not predicted by the expected consumption growth

rate or the conditional consumption volatility (or by itself).

The results of this section reconcile seemingly contradictory evidence by Hansen et al.

(2008) and Beeler and Campbell (2012). By analyzing the long-run trade-off between risk

and return of different asset classes, Hansen et al. (2008) uncovers evidence in support

of the presence of persistent components in consumption growth. In contrast, Beeler and

Campbell (2012) carry out a univariate statistical analysis of consumption growth in

the U.S. and determine that there is little predictability in the data. These findinsg can

coexist after recognizing that it is the time-varying nature of disaster arrival that introduce

persistent components in the conditional mean and variance of consumption growth.

5.3 Asset pricing implications

The long-run risk model of Bansal and Yaron (2004) requires three components to match

asset pricing data. First, there is a persistent latent component in the expected con-

sumption growth rate. Second, the conditional consumption volatility exhibits persistent

time-variation. Third, investors have recursive Epstein and Zin (1989) preferences. Several

studies have highlighted the long-run risk model’s ability to explain asset pricing phenom-

ena; see Bansal et al. (2009), Bansal et al. (2010), and Hansen et al. (2008), among others.

Given that our model features persistent expected growth rate and volatility components

similar to those posited by the long-run risk literature, we conjecture that our time-varying

disaster model should also be able to match asset pricing behavior as well as a long-run

risk model.
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To evaluate our conjecture, we check whether the expected consumption growth rate

and the conditional consumption volatility of Figure 6 predict equity returns in the United

States. For this, we regress the equity risk premium on the S&P 500 on lagged values of

the expected consumption growth rate, the conditional consumption volatility, as well as

several macroeconomic and financial factors that should drive risk premia. The results of

these regressions can be found in Table 15. We see that a part of the equity risk premium

on the S&P 500 is attributed to the the conditional volatility of consumption growth, even

after controlling for the influence of volatility and macroeconomic factors. The regression

results of Table 15 indicarte that shocks to the conditional consumption growth volatility

carry a positive risk premium as in the model of Bansal and Yaron (2004).

Wachter (2013) integrates a time-varying disaster model similar to ours in an equi-

librium model in which investors have recursive Epstein and Zin (1989) preferences. In

the model of Wachter (2013), a key mechanism through which the time-varying disaster

intensity has asset pricing implications is a precautionary savings effect: When the disas-

ter intensity is high, the likelihood of large consumption drops is high so that investors

have high desire to save. This implies that the risk-free rate should be low when the dis-

aster intensity is high and vice versa. We test whether our time-varying disaster model

implies similar dynamics for the risk-free rate. For this, in Table 16 we regress the yield

of the 3-month Treasury Bill onto the posterior disaster intensity of Figure 5 and several

macroeconomic and financial factors. We find that the coefficient on the posterior disaster

intensity is significant and negative even when controlling for relevant explanatory factors.

Our findings the precautionary savings mechanism of Wachter (2013) by showing that the

3-month Treasury Bill yield is indeed low when the posterior disaster intensity is large.

Wachter (2013) also posits that the volatility of stocks increases as the conditional

volatility of consumption increases while the volatility of the risk-free rate remains un-

changed. This mechanism of Wachter (2013) is important as it generates excess volatility

that is reflected in equity prices but not in the risk-free rate, thus affecting risk premia.

We verify that our model captures the positive association between stock and consump-

tion volatility, and disassociation between risk-free rate and consumption volatility. In

Table 17, we regress the annual realized volatility of the S&P 500 and the annual realized
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volatility of the 3-month Treasury bill yield on the posterior mean of the disaster intensity

in Figure 5 and on several controls. We find that the volatility of the S&P 500 is high

when the conditional volatility of consumption is high. We cannot find an association

between the volatility of consumption growth and the volatility of the 3-month Treasury

bill. These results empirically validate the mechanism posited by Wachter (2013).

All in one, our time-varying disaster model captures several mechanisms that are

typically hardwired in general equilibrium consumption-based asset pricing models to

match the data. Our model exhibits persistent fluctuations in the expected consumption

growth rate and the conditional consumption volatility as in the model of Bansal and

Yaron (2004). In the data, the aggregate volatility of stocks reacts positively to changes

in our model-implied posterior mean of the disaster intensity, while the volatility of the

risk-free rate is insensitive to changes in the posterior disaster intensity. Furthermore, the

risk-free rate is negatively associated with the posterior mean of our disaster intensity.

These results are consistent with mechanisms in Wachter (2013). Finally, the exposure to

time-varying disaster risk is priced and carries a positive risk premium. In spite of our

different formulation in which we assume no transitory and persistent long-run risk shocks

and only allow for small disasters that arrive at a time-varying rate, the results of this

section suggest that the model-implied posterior factors of our model match asset pricing

behavior as well as the models of Bansal and Yaron (2004) and Wachter (2013).

6 Conclusion

In this paper, we estimate models of consumption growth that allow for time-varying

arrival of disasters as well as persistent and transitory shocks in the the conditional

mean and variance of consumption growth. Our model nests several formulations that are

popular in the asset pricing literature, including the long-run risk model of Bansal and

Yaron (2004), the disaster model of Barro (2006), and the time-varying disaster model of

Wachter (2013). Our estimates strongly favor models of consumption that allow for small

disasters that arrive at a time-varying and mean-reverting rate. The implied posterior

means of the disaster intensity, the conditional expected growth rate, and the conditional
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consumption volatility in our model vary strongly over time in a persistent fashion, and

explain asset pricing behavior. The results of this paper have important implications for

the design of consumption-based asset pricing models.

A Likelihood estimation

We exploit the approach of Guay and Schwenkler (2018) for estimating the likelihood (5)

and evaluating maximum likelihood estimators. There are two key challenges hindering the

evaluation of the likelihood. First, the evaluation of the transition density p∆ is challenging

because the model specified in (1)-(4) is non-affine. Second, the likelihood (5) involves a

conditional expectation that is evaluated with respect to the conditional distribution of the

latent factors given the observed factor data. Such conditional expectations are difficult to

evaluate for multivariate jump-diffusion model specified in (1)–(4). Guay and Schwenkler

(2018) resolve the filtering problem by evaluating the likelihood under the null hypothesis

that the true law generating the data is not Pθ∗ but rather an equivalent measure P∗

under which the latent factors have simple dynamics and are independent of X1. Indeed,

Guay and Schwenkler (2018) show that

Lm(θ) ∝ E∗
[

m∏
i=1

p∆(X(i−1)∆, Xi∆; θ)

φ∗l (Xl,(i−1)∆, Xl,i∆)

∣∣∣∣∣ Dm

]
, (6)

where E∗ denotes the expectation operator under the measure P∗ and φ∗l is the P∗-

transition density of the latent factors Xl = (X2, X3, X4).

Guay and Schwenkler (2018) also derive a simulation-based estimator of the transition

density p∆. The estimator can be written as p̂∆(v, w; θ) = P (v, w; θ,R) for an analytical

function R that is known in algorithmic form and a vector R of F0-measurable random

variables that do not depend upon the arguments (v, w; θ) of the density. The vector

R contains simple random variables, such as standard uniforms, standard normals, and

standard exponentials. Because of this, the density estimator has finite variance and can be

computed in finite time. We can therefore replace the true density p∆ with the simulated

density p̂∆ without affecting the equality in (6).

All in one, Guay and Schwenkler (2018) evaluate an estimator of the likelihood (5)

21



through the following steps:

(1) Generate samples (R(k))k=1,...,K of the vector R of random varianbles,

(2) For i = 0, . . . ,m, generate samples (X
(k)
l,i )k=1,...,K of the latent factor Xl,i∆ under the

measure P∗,

(3) Evaluate the Monte-Carlo estimator of (6) as

L̂Km(θ) =
1

K

K∑
k=1

m∏
i=1

P
((
X1,(i−1)∆,X

(k)
l,i−1

)
,
(
X1,i∆,X

(k)
l,i

)
; θ,R(k)

)
φ∗l

(
X

(k)
l,i−1,X

(k)
l,i

) . (7)

Guay and Schwenkler (2018) show that the parameter θ̂Km that maximizes the simulated

likelihood (7) is consistent, asymptotically normal, and asymptotically efficient as m→∞

if m
K
→ 0. A consistent estimator of the asymptotic variance-covariance matrix of θ̂Km is(

1

m

m∑
i=0

∇ log
L̂Ki (θ̂Km)

L̂Ki−1(θ̂Km)

>

∇ log
L̂Ki (θ̂Km)

L̂Ki−1(θ̂Km)

)−1

.

We specify the auxiliary measure P∗ under which we evaluate the estimators of Guay

and Schwenkler (2018). We assume that under P∗:

• The sample paths (X2,i∆)0≤i≤m, (X3,i∆)0≤i≤m, and (X4,i∆)0≤i≤m of the latent factors

are realizations of random walks that are independent of each other and of X1, and

• The realizations (X1,i∆ −X1,(i−1)∆)1≤i≤m of consumption growth are i.i.d. normally

distributed with mean µ∗ and standard deviation σ∗.

These choices specify an equivalent measure given that P∗ is nested in the family Pθ by

setting µ = µ∗, σ = σ∗, and φ = v = ζ = κ2 = κ3 = κ4 = 0. For each country, we compute

approximate likelihood estimators by maximizing the likelihood (7) with K = 20, 000 and

the measure P∗ specified subject to the necessary parameter restrictions.

B Likelihood ratio tests

We use likelihood ratio tests to evaluate the incremental fit obtained by relaxing the re-

strictions of a nested model. Suppose that θ̂Km,R and θ̂Km,U are the parameter estimates
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computed with the methodology of Appendix A for a restricted model R and and unre-

stricted model U , respectively. The unrestricted model naturally achieves a better fit to

the data than the restricted model because it has more parameters to match moments

of the data. A fair evaluation of the incremental fit achieved by the more complex unre-

stricted model therefore needs to take into account the number of additional parameters

used to achieve the better fit. An unrestricted model that achieves a significantly better

fit with few additional parameters should be preferred over an unrestricted model that

only achieves a marginally better fit but that has many additional parameters. Likeli-

hood ratio tests provide a quantitative approach to evaluate the trade-off between better

goodness-of-it and higher model complexity. Letting L̂Km denote the estimator (7) of the

likelihood, standard econometric theory states that the likelihood ratio statistic implied

by our methodology,

LR(U,R) = 2
(

log L̂Km

(
θ̂Km,U

)
− log L̂Km

(
θ̂Km,R

))
, (8)

has a chi-squared asymptotic distribution as m,K → ∞ and m
K
→ 0.16 The degrees of

freedom of the asymptotic chi-squared distribution is equal to the number of additional

parameters in the unrestricted model. The availability of likelihood ratio test empowers

us with tools to perform a formal comparative analysys of the full and nested models.

C Model-implied moments and distributions

Guay and Schwenkler (2018) derive estimators of model-implied moments and marginal

distributions. Corollary 7.2. of Guay and Schwenkler (2018) shows that an unbiased esti-

mator of the moment Em(θ; f, θ′) = Eθ [f(Xt1 , . . . , Xtm ; θ′)] is given by

f
(
(Xo,1,Xl,1), . . . , (Xo,m,Xl,m); θ′

) m∏
i=1

P∆

(
(Xo,i−1,Xl,i−1), (Xo,i,Xl,i); θ

∣∣R)
φ∗o (Xo,i−1,Xo,i)φ∗l (Xl,i−1,Xl,i)

,

where P∆ is the density estimator of Guay and Schwenkler (2018) introduced in Appendix

A, (Xo,i)i=1,...,m is a P∗-sample of the observable factor sample path (Xo,i∆)i=1,...,m, and

16This result follows from the fact that the approximate parameter estimator θ̂Km is consistent, asymp-

totically normal, and asymptotically efficient as m→∞ if m
K → 0; see Guay and Schwenkler (2018).
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(Xl,i)i=1,...,m is a P∗-sample of the latent factor sample path (Xl,i∆)i=1,...,m. Here, P∗ is an

equivalent measure under which the latent and observable factors have simple dynamics

and are independent of each other. A Monte Carlo estimator of the moment Em(θ; f, θ′)

can therefore be constructed as follows:

(1) Generate samples (R(k))k=1,...,K of the vector R of random varianbles,

(2) For i = 0, . . . ,m, generate samples (X
(k)
l,i )k=1,...,K of the latent factor Xl,i∆ under the

measure P∗,

(3) For i = 0, . . . ,m, generate samples (X
(k)
o,i )k=1,...,K of the observable factor Xo,i∆ under

the measure P∗,

(4) Compute the Monte Carlo estimator:

1

K

K∑
k=1

f
((

X
(k)
o,1 ,X

(k)
l,1

)
, . . . ,

(
X(k)
o,m,X

(k)
l,m

)
; θ′
) m∏
i=1

P∆

((
X

(k)
o,i−1,X

(k)
l,i−1

)
,
(
X

(k)
o,i ,X

(k)
l,i

)
; θ
∣∣∣ R)

φ∗o

(
X

(k)
o,i−1,X

(k)
o,i

)
φ∗l

(
X

(k)
l,i−1,X

(k)
l,i

) . (9)

The Monte Carlo estimator (9) is unbiased, computationally efficient, and converges to

the true moment at square-root rate.

Similarly, Corollary 7.1 of Guay and Schwenkler (2018) shows that an unbiased esti-

mator of the marginal density po,∆(x, u; θ) of the observable factor Xo,∆ is given by

P∆

(
(x,Xl,0), (u,Xl,1); θ |R

)
φ∗l (Xl,0,Xl,1)

.

We can therefore construct a Monte Carlo estimator of the marginal density po,∆(x, u; θ)

as follows:

(1) Generate samples (R(k))k=1,...,K of the vector R of random varianbles,

(2) For i ∈ {0, 1}, generate samples (X
(k)
l,i )k=1,...,K of the latent factor Xl,i∆ under the

measure P∗,

(3) Compute the Monte Carlo estimator:

1

K

K∑
k=1

P∆

(
(x,X

(k)
l,0 ), (u,X

(k)
l,1 ); θ |R

)
φ∗l

(
X

(k)
l,0 ,X

(k)
l,1

) . (10)
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The Monte Carlo estimator (10) of the marginal density is also unbiased and computa-

tionally efficient. It converges to the true marginal density at square-root rate.

We specify our choice for the measure P∗ under which we evaluate the moment and

marginal density estimators of Guay and Schwenkler (2018). We assume that under P∗:

• The sample path (Xj,i∆)0≤i≤m of the latent factor Xj for j ∈ {2, 3, 4} is a realization

of an Ornstein-Uhlenbeck processes initialized at 0 with speed of reversion κj, long-

term mean 0, and unit volatility,

• The latent factors X2, X3, and X4 are independent of each other and of X1, and

• The realizations (X1,i∆ −X1,(i−1)∆)1≤i≤m of consumption growth are i.i.d. normally

distributed with mean µ and standard deviation σ.

These choices again specify an equivalent measure given that the measure P∗ is nested in

the family Pθ by setting θ for which φ = v = ζ = 0. We evaluate the moment estimator (9)

and the marginal density estimator (10) in Section 4.4 with K = 106 and the measure P∗

defined above. We specify the function f necessary to evaluate the Monte Carlo estimator

(9) for the different moments in Section 4.4 as follows:

• For the mean, we set m = 1 and f((xo,1, xl,1); θ′) = xo,1 −Xo,0.

• For the variance, we set m = 1 and f((xo,1, xl,1); θ′) = (xo,1 −Xo,0 − µ̂)2, where µ̂ is

the estimator of the mean.

• For the skewness, we set m = 1 and f((xo,1, xl,1); θ′) =
(
xo,1−Xo,0−µ̂

σ̂

)3

, where µ̂ is

the estimator of the mean and σ̂2 is the estimator of the variance.

• For the kurtosis, we set m = 1 and f((xo,1, xl,1); θ′) =
(
xo,1−Xo,0−µ̂

σ̂

)4

, where µ̂ is the

estimator of the mean and σ̂2 is the estimator of the variance.

• For the probability that the growth rate is less than x for x ∈ R, we set m = 1 and

f((xo,1, xl,1); θ′) = 1{xo,1−Xo,0≤x}.

• For the first-order autocorrelation coefficient, we set m = 2 and f((xo,1, xl,1), (xo,2,

xl,2); θ′) = (xo,1−Xo,0−µ̂)(xo,2−xo,1−µ̂)

σ̂2 , µ̂ is the estimator of the mean and σ̂2 is the

estimator of the variance.
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AU DE JP US

µ ** 0.0194 *** 0.0245 *** 0.0307 *** 0.0129
(0.0066) (0.0057) (0.0035) (0.0013)

σ *** 0.0525 *** 0.0572 *** 0.0755 *** 0.0356
(0.0048) (0.0036) (0.0038) (0.0013)

φ 3× 10−10 1× 10−9 9× 10−6 8× 10−10

(0.0022) (0.0015) (0.0012) (0.0005)
κ2 0.0477 * 0.0470 ** 0.0622 * 0.0097

(0.0272) (0.0250) (0.0221) (0.0048)
v 0.0008 0.0036 3× 10−8 6× 10−10

(0.0088) (0.0057) (0.0047) (0.0049)
κ3 0.0123 0.0082 0.0036 0.0099

(0.0107) (0.0080) (0.0084) (0.0062)
ζ * 0.0466 *** 0.0157 0.0393 0.0433

(0.0209) (0.0036) (0.0484) (0.0407)
`0 *** 1.7759 *** 0.7593 *** 0.8865 *** 0.3546

(0.2687) (0.1134) (0.1658) (0.0508)
`1 *** 0.5637 *** 0.4487 *** 0.4217 *** 0.4932

(0.1028) (0.0456) (0.0561) (0.0313)
κ4 * 0.0867 ** 0.0918 ** 0.0844 ** 0.0703

(0.0395) (0.0342) (0.0286) (0.0249)
Log-likelihood 352.72 487.00 372.89 627.40

Table 4: Parameter estimates of the full model for Australia (“AU”), Germany (“DE”),
Japan (“JP”), and the United States (“US”). We compute these estimates by maximizing
the simulated likelihood of Appendix A. We use the Nelder-Mead algorithm in R to
compute the maximizer of the simulated likelihood. Given in parenthesis are asymptotic
standard errors. All estimates are measured in annual terms. *** indicates significance at
the 99.9% confidence level, ** indicates significance at the 99% confidence level, and *
indicates significance at the 95% confidence level.
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AU
RW LRR DIS TVDIS

µ *** 0.013 *** 0.016 *** 0.013 *** 0.020
(0.002) (0.004) (0.002) (0.005)

σ *** 0.050 *** 0.041 *** 0.050 *** 0.052
(0.002) (0.003) (0.002) (0.002)

φ 4× 10−10

(0.001)
κ2 0.004

(0.007)
v *** 0.051

(0.006)
κ3

· 0.017
(0.010)

ζ 0.035 * 0.012
(2435921) (0.006)

`0 0.000 *** 1.757
(0.096) (0.265)

`1 *** 0.564
(0.090)

κ4 * 0.084
(0.039)

Log-likelihood 275.19 285.67 275.19 349.94

Table 5: Parameter estimates of the nested models for Australia (“AU”). We compute
these estimates by maximizing the simulated likelihood of Appendix A subject to the re-
strictions in Table 1. We use the Nelder-Mead algorithm in R to compute the maximizer
of the simulated likelihood. Given in parenthesis are asymptotic standard errors. All es-
timates are measured in annual terms. *** indicates significance at the 99.9% confidence
level, ** indicates significance at the 99% confidence level, * indicates significance at the
95% confidence level, and · indicates significance at the 90% confidence level.
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DE
RW LRR DIS TVDIS

µ *** 0.021 *** 0.017 *** 0.021 *** 0.024
(0.003) (0.002) (0.003) (0.004)

σ *** 0.052 *** 0.037 *** 0.052 *** 0.055
(0.002) (0.001) (0.002) (0.002)

φ 3× 10−4

(3× 10−4)
κ2 *** 0.023

(0.006)
v *** 0.126

(0.009)
κ3 ** 0.054

(0.016)
ζ 0.010 ** 0.038

(554993) (0.011)
`0 0.000 *** 0.758

(0.080) (0.096)
`1 *** 0.448

(0.038)
κ4 ** 0.092

(0.035)

Log-likelihood 395.99 422.98 395.99 484.35

Table 6: Parameter estimates of the nested models for Germany (“DE”). We compute these
estimates by maximizing the simulated likelihood of Appendix A subject to the restrictions
in Table 1. We use the Nelder-Mead algorithm in R to compute the maximizer of the
simulated likelihood. Given in parenthesis are asymptotic standard errors. All estimates
are measured in annual terms. *** indicates significance at the 99.9% confidence level,
** indicates significance at the 99% confidence level, * indicates significance at the 95%
confidence level, and · indicates significance at the 90% confidence level.
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JP
RW LRR DIS TVDIS

µ *** 0.023 *** 0.019 *** 0.025 *** 0.032
(0.006) (0.003) (0.006) (0.003)

σ *** 0.075 *** 0.039 *** 0.075 *** 0.076
(0.002) (0.001) (0.002) (0.001)

φ * 0.001
(0.000)

κ2 * 0.015
(0.011)

v *** 0.138
(0.006)

κ3 ** 0.058
(0.024)

ζ 0.000 0.001
(19278322) (0.021)

`0 0.000 *** 0.891
(0.086) (0.179)

`1 *** 0.421
(0.061)

κ4 ** 0.084
(0.029)

Log-likelihood 299.53 336.44 299.49 369.76

Table 7: Parameter estimates of the nested models for Japan (“JP”). We compute these
estimates by maximizing the simulated likelihood of Appendix A subject to the restrictions
in Table 1. We use the Nelder-Mead algorithm in R to compute the maximizer of the
simulated likelihood. Given in parenthesis are asymptotic standard errors. All estimates
are measured in annual terms. *** indicates significance at the 99.9% confidence level,
** indicates significance at the 99% confidence level, * indicates significance at the 95%
confidence level, and · indicates significance at the 90% confidence level.
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US
RW LRR DIS TVDIS

µ *** 0.015 *** 0.012 *** 0.015 *** 0.013
(0.001) (0.001) (0.001) (0.001)

σ *** 0.038 *** 0.034 *** 0.038 *** 0.036
(0.002) (0.002) (0.002) (0.001)

φ ** 0.001
(0.000)

κ2 0.005
(0.009)

v *** 0.037
(0.005)

κ3 *** 0.017
(0.004)

ζ 0.294 0.025
(14131627) (0.058)

`0 3× 10−8 *** 0.356
(0.074) (0.049)

`1 *** 0.491
(0.029)

κ4 ** 0.071
(0.025)

Log-likelihood 554.02 562.18 554.02 626.60

Table 8: Parameter estimates of the nested models for the United States (“US”). We com-
pute these estimates by maximizing the simulated likelihood of Appendix A subject to the
restrictions in Table 1. We use the Nelder-Mead algorithm in R to compute the maximizer
of the simulated likelihood. Given in parenthesis are asymptotic standard errors. All es-
timates are measured in annual terms. *** indicates significance at the 99.9% confidence
level, ** indicates significance at the 99% confidence level, * indicates significance at the
95% confidence level, and · indicates significance at the 90% confidence level.
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Models AU DE JP US

LRR vs. RW
Statistic *** 20.96 *** 54.60 *** 73.94 *** 16.68

Degrees of freedom 4 4 4 4
p-value 0.000 0.000 0.000 0.076

TVDIS vs. RW
Statistic *** 149.50 *** 176.74 *** 139.64 *** 145.16

Degrees of freedom 4 4 4 4
p-value 0.000 0.000 0.000 0.000

FULL vs. TVDIS
Statistic 5.56 5.28 6.34 1.60

Degrees of freedom 4 4 4 4
p-value 0.235 0.260 0.175 0.809

FULL vs. LRR
Statistic *** 134.10 *** 127.42 *** 72.04 *** 130.08

Degrees of freedom 4 4 4 4
p-value 00.00 0.000 0.000 0.000

Table 9: Likelihood ratio tests of the null hypothesis that a constrained model fits the data
as well as an unconstrained model. The test statistic is given by two-times the logarithm
of the ratio between the maximum likelihood of the unconstrained and the constrained
models. The asymptotic distribution of the test statistic is chi-square distribution with
degrees of freedom equal to the number of parameters that the unconstrained model
has in excess of the constrained model. We provide details in Appendix B. *** indicates
significance at the 99.9% confidence level.
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AU
Data RW LRR TVDIS FULL

Mean 0.014 0.013 0.016 −0.005 −0.028
Standard deviation 0.050 0.055 0.045 0.050 0.071
Skewness −0.982 0.022 0.022 0.435 −0.131
Kurtosis 7.910 3.000 2.914 3.535 2.937
Probability of a decline of more than 5% 0.074 0.129 0.070 0.164 0.377
Probability of a decline of more than 10% 0.028 0.020 0.005 0.018 0.144
Relative RMSE 0.639 0.640 0.577 0.634

DE
Data RW LRR TVDIS FULL

Mean 0.017 0.020 0.017 0.004 0.013
Standard deviation 0.053 0.058 0.041 0.070 0.064
Skewness −0.550 0.022 −0.012 −0.225 0.084
Kurtosis 7.264 3.000 2.931 3.006 2.832
Probability of a decline of more than 5% 0.057 0.115 0.055 0.211 0.167
Probability of a decline of more than 10% 0.038 0.021 0.001 0.075 0.030
Relative RMSE 0.600 0.597 0.587 0.615

JP
Data RW LRR TVDIS FULL

Mean 0.022 0.023 0.019 0.029 0.009
Standard deviation 0.069 0.084 0.044 0.078 0.087
Skewness −1.509 0.006 0.018 0.124 0.038
Kurtosis 19.887 2.960 2.961 3.214 2.939
Probability of a decline of more than 5% 0.059 0.190 0.060 0.142 0.244
Probability of a decline of more than 10% 0.022 0.073 0.002 0.048 0.103
Relative RMSE 0.852 0.852 0.840 0.853

US
Data RW LRR TVDIS FULL

Mean 0.015 0.015 0.011 0.007 0.003
Standard deviation 0.038 0.038 0.037 0.042 0.048
Skewness −0.071 0.000 0.003 −0.211 −0.695
Kurtosis 3.528 3.000 2.913 3.358 4.056
Probability of a decline of more than 5% 0.038 0.044 0.051 0.084 0.115
Probability of a decline of more than 10% 0.005 0.001 0.001 0.011 0.038
Relative RMSE 0.151 0.175 0.064 0.233

Table 10: Model-implied moments for the full and nested models. We compute model-
implied moments using the methodology of Guay and Schwenkler (2018); details are given
in Appendix C. We compare the model-implied moments to the corresponding moments
in the data. All moments are measured in annual terms. The relative RMSE is the ratio
of the root mean squared error across all moments for a given country over the Euclidean
norm of the moments in the data for that country.
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Expected growth rate Conditional standard deviation

Constant −0.001 *** 0.019
(0.003) (0.004)

Real GDP growth −0.007 0.002
(0.019) (0.006)

Inflation rate * 0.053 * −0.015
(0.022) (0.006)

S&P 500 return 0.028 −0.007
(0.055) (0.016)

S&P 500 realized volatility −0.004 0.001
(0.033) (0.010)

Recession indicator 0.000 0.000
(0.003) (0.001)

Geopolitical risk 0.000 0.000
(0.000) (0.000)

Lagged value *** 0.508 *** 0.527
(0.095) (0.094)

Adjusted R2 0.35 0.37
Number of observations 86 86
Time span 1930–2016 1930–2016

Table 11: Ordinary least-squares regressions of the conditionally expected consumption
growth rate (µ− ζEt[λt], Column “Expected growth rate”) and the conditional consump-
tion standard deviation (

√
σ2 + ζ2Et[λt], Column “Conditional standard deviation”) on

several macroeconomic factors and their lagged values. Here, we use the sample paths in
Figure 6 for the expected growth rate and the conditional standard deviation of consump-
tion growth. We provide summary statistics of the regressors in Table 12. The sampling
interval is annual. For factors that are sampled at monthly frequencies, we aggregate
to annual frequencies by taking annual averages. *** indicates significance at the 99.9%
confidence level and * indicates significance at the 95% confidence level.
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Recession indicator Real GDP growth Inflation
Mean 0.296 0.033 0.033
Standard deviation 0.456 0.049 0.050
Skewness 0.896 0.011 0.551
Kurtosis −1.197 3.155 2.944
Median 0 0.033 0.027
Minimum 0 −0.129 −0.158
Maximum 1 0.189 0.237
Number of observations 1957 87 1236
Time span Dec 1854–Dec 2016 1930–2016 Jan 1914–Dec 2016
Sampling frequency Monthly Annual Monthly

S&P 500 return S&P 500 volatility 3M T-Bill Yield
Mean 0.006 0.046 0.035
Standard deviation 0.054 0.028 0.032
Skewness 0.290 2.971 1.031
Kurtosis 9.564 3.155 1.072
Median 0.009 0.040 0.030
Minimum −0.299 0.011 0.0001
Maximum 0.422 0.223 0.163
Number of observations 1091 1069 996
Time span Feb 1926–Dec 2016 Dec 1926–Dec 2016 Jan 1934–Dec 2016
Sampling frequency Monthly Monthly Monthly

3M T-Bill volatility Geopolitical risk Equity risk premium
Mean 0.002 78.061 0.049
Standard deviation 0.003 68.824 0.130
Skewness 3.619 2.513 −0.610
Kurtosis 15.714 8.957 0.676
Median 0.001 55.415 0.063
Minimum 0 4.950 −0.338
Maximum 0.020 622.330 0.373
Number of observations 984 1416 90
Time span Jan 1935–Dec 2016 Jan 1899–Dec 2016 1927–2016
Sampling frequency Monthly Monthly Annual

Table 12: Summary statistics of our control variables. We compute a recession indicator
using the NBER recession dates. Data on real GDP growth, inflation, the S&P 500 index,
and the 3-month Treasury bill are obtained from the Federal Reserve Bank of St. Louis
FRED website. Here, inflation is measured as the percentage change from a year ago in the
non seasonally adjusted CPI for all urban consumers. We compute the realized volatility
of the S&P 500 as the trailing volatility over the past 12 monthly returns. The volatility of
the 3-month Treasury bill is computed as the trailing volatility of the past 12 increments
of the yield. S&P returns and volatility, as well as the T-Bill volatility are measured on a
monthly scale. We obtain a geopolitical risk indicator from Dario Caldara and Matteo Ia-
coviello website (https://www2.bc.edu/matteo-iacoviello/gpr.htm#overview). This
is a sentiment-based index the measures how often words related to geopolitical threats
are mentioned in the New York Times, Chicago Tribune, and the Washington Post. We
measure the equity risk premium as the unlevered aggregate equity risk premium on the
S&P 500 by taking the difference between the real return on the S&P 500 index and the
real return on the 3-month T-Bill, divided by 1.5 to account for leverage.
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Expected growth rate Conditional standard deviation

Constant * −0.001 *** 0.017
(0.001) (0.002)

AR(1) *** 0.570 *** 0.587
(0.061) (0.060)

Adjusted R2 0.32 0.34
Number of observations 182 182
Time span 1835− 2016 1835− 2016

Table 13: AR(1) regressions of the conditionally expected consumption growth rate
(µ − ζEt[λt], Column “Expected growth rate”) and the conditional consumption stan-
dard deviation (

√
σ2 + ζ2Et[λt], Column “Conditional standard deviation”). We use the

sample paths in Figure 6 for the expected growth rate and the conditional volatility of
consumption growth. The sampling frequency of the data is annual. *** indicates signif-
icance at the 99.9% confidence level, and ** indicates significance at the 99% confidence
level.
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T-Bill T-Bill

Constant *** 0.050 *** 0.036
(0.002) (0.002)

Posterior disaster intensity *** −0.024 *** −0.017
(0.003) (0.003)

Inflation *** 0.396
(0.026)

Real GDP growth *** −0.077
(0.021)

S&P 500 return 0.004
(0.019)

Geopolitical risk 0.000
(0.000)

Adjusted R2 0.06 0.25
Number of observations 997 997
Time span Jan 1934–Dec 2016 Jan 1934–Dec 2016

Table 16: Regressions of the 3-Month Treasury Bill yield on the posterior mean of the
disaster intensity and several control factors. All data is sampled at a monthly frequency,
and the regressors are contemporaneous. The posterior disaster intensity is the sample
path of Et[λt] displayed in Figure 5. *** indicates significance at the 99.9% confidence
level.
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Figure 1: Model-implied marginal distributions for Australia. This figure shows in red the
implied marginal distributions of consumption growth in Australia for different models. It
also shows histograms of realized consumption growth in black. The marginal distributions
are computed using the methodology of Guay and Schwenkler (2018) with the parameter
estimates from Tables 4 and 5. We provide details in Appendix C.
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Figure 2: Model-implied marginal distributions for Germany. This figure shows in red the
implied marginal distributions of consumption growth in Germany for different models. It
also shows histograms of realized consumption growth in black. The marginal distributions
are computed using the methodology of Guay and Schwenkler (2018) with the parameter
estimates from Tables 4 and 6. We provide details in Appendix C.
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Figure 3: Model-implied marginal distributions for Japan. This figure shows in red the
implied marginal distributions of consumption growth in Japan for different models. It
also shows histograms of realized consumption growth in black. The marginal distributions
are computed using the methodology of Guay and Schwenkler (2018) with the parameter
estimates from Tables 4 and 7. We provide details in Appendix C.
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Figure 4: Model-implied marginal distributions for the United States. This figure shows
in red the implied marginal distributions of consumption growth in the U.S. for different
models. It also shows histograms of realized consumption growth in black. The marginal
distributions are computed using the methodology of Guay and Schwenkler (2018) with
the parameter estimates from Tables 4 and 8. We provide details in Appendix C.
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Figure 5: Posterior sample path of the disaster intensity (Et[λt]) for the United States
(solid black line). We evaluate the posterior sample paths using the methodology of Guay
and Schwenkler (2018) and the parameter estimates for the model “TVDIS” from Table
8. We also show NBER recessions as grey bars.
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Figure 6: Posterior sample paths of the conditionally expected consumption growth rate
(µ − ζEt[λt]) and the conditional standard deviation of the instantaneous consumption
growth rate (

√
σ2 + ζ2Et[λt]) for the United States. We use the posterior disaster intensity

plotted in Figure 5 to compute these sample paths. We also show NBER recessions as
grey bars. The top figure shows the realized annual consumption growth rates in the data.
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