The Slaughter of the Bison and Reversal of Fortunes on the Great Plains

Donna Feir Department of Economics University of Victoria dfeir@uvic.ca Rob Gillezeau Department of Economics University of Victoria gillezr@uvic.ca

Maggie E.C. Jones Department of Economics Queen's University maggie.ec.jones@gmail.com

July 21, 2018

Abstract

In the late 19th century, the North American bison was brought to the brink of extinction in just over a decade. We show that the bison's slaughter led to a reversal of fortunes for the Native Americans who relied on them. Once the tallest people in the world, the generations of bison-reliant people born after the slaughter were among the shortest. Today, formerly bison-reliant societies have between 20-40% less income per capita than the average Native American nation. We argue that federal restrictions limiting the mobility and employment opportunities of Native Americans hampered their ability to adjust in the long-run.

Keywords: North American Bison, Buffalo, Extinction, Economic History, Development, Displacement, Native Americans, Indigenous, Income Shock, Intergenerational Mobility

JEL classification: I15, J15, J24, N31, N32

Acknowledgments. We would like to thank Christian Dippel, Nathan Nunn, and Rick Steckel for their willingness to share data. We would also like to thank Randy Akee, Terry Anderson, Mauricio Drelichman, David Green, Price Fishback, Nicole Fortin, Matthew Gregg, Joe Kalt, Bryan Leonard, Frank Lewis, Ian Keay, Taylor Jaworski, Ian McKay, Nathan Nunn, Kevin Milligan, Dominic Parker, Krishna Pendakur, and all seminar participants who contributed their comments to this work. Any errors or omissions are ours alone. "But when the buffalo went away the hearts of my people fell to the ground, and they could not lift them up again." (Crow Plenty-Coups quoted in Lindermann (1930, p. 169))

The changes of the late 19th century brought with them the near-extinction of the North American bison and, consequently, the elimination of a way of life for the Native Americans of the Great Plains, the Northwest, and the Rocky Mountains. Although Native Americans' reliance on the bison was not static or uniform across tribes, the bison had been a primary source of livelihood for over 10,000 years prior to its near-extinction (Frison, 1991; Gilmore, Tate, Tenant, Clark, McBride, and Wood, 1999; O'Shea and Meadows, 2009; Zedeño, Ballenger, and Murray, 2014). For many tribes, the bison was used in almost every facet of life, not only as a source of food, but also skin for clothing, lodging, and blankets, and bones for tools. This array of uses for the bison was facilitated by generations of specialized human capital, which was accumulated partly in response to the plentiful and reliable nature of the animal (Daschuk, Hackett, and MacNeil, 2006). Historical and anthropometric evidence suggests that these bisonreliant societies were once the richest in North America, with living standards comparable to or better than their average European contemporaries (Carlos and Lewis, 2010; Prince and Steckel, 2003; Steckel, 2010; Steckel and Prince, 2001). When the bison were eliminated, however, the resource that underpinned these societies vanished in an historical blink of the eye. We show that the loss of the North American bison had substantial and persistent negative effects on the Native Americans who depended on them.¹ These effects are visible immediately after the bison's decline, 50 years after it disappeared, and over a century later.

In some regions, the bison was principally eliminated through a mass slaughter that occurred within a period of just over ten years. The slaughter was, at least in part, spurred by a drastic improvement in European tanning technology that allowed bison hides to be transformed into commercially viable leather, thereby increasing the demand for bison hides internationally (Taylor, 2011). However, in other regions of North America, the decline of the bison was a gradual process, beginning with the introduction of the horse and the arrival of European settlers. Our empirical strategy exploits regional variation in the speed at which the bison

¹We use the term Native American to broadly refer to the original inhabitants of North America but acknowledge that this term is imprecise and is not without controversy (Corntassel and Witmer, 2008). We use it here because of its generality and common acceptance.

disappeared as well as tribal variation in bison-reliance to determine the impact of the loss of the bison on the Native American societies that relied on them.

We establish the contemporaneous impact of the elimination of the bison on Native American height using a number of historical sources. Our primary measures of bison-reliance are constructed from overlaying maps of the historic bison range and the timing of the bison's destruction (Hornaday, 1889) with maps of tribal ancestral territories (Gerlach, 1970; Sturtevant, 1981). This allows us to calculate the proportion of a nation's ancestral territory covered by the historic bison range during the slow and rapid periods of the bison's decline, which we merge with data on the height, gender, and age of over 15,000 Native American peoples collected between 1889 and 1919 by physical anthropologist Franz Boas (Jantz, 1995).² We begin by showing that bison-reliant peoples had a significant height advantage over their non-bisonreliant counterparts, paralleling the results of Steckel and Prince (2001) and Prince and Steckel (2003). The tribe-age structure of Boas' data allows us to compare age-height trends between societies that were affected by different stages of the bison's depletion. We find that nations that lost the bison most quickly suffered a 5 to 9 cm decline in height relative to those that lost the bison slowly. This relative change in the heights of bison-reliant societies is indicative of a large degree of morbidity within these nations and our estimates are almost certainly lower bounds on the height differential. To this end, we provide additional evidence that bison-reliant peoples experienced non-trivial declines in cohort size after the bison's depletion.³ These findings provide the first empirical support for the contention of Steckel and Prince (2001) and Prince and Steckel (2003) that the people of the Great Plains derived their height advantage, at least in part, due to their access to the bison.

Although we generally expect individuals and regions to adjust to large economic shocks over time, the unique legal structures of Indian reservations and the institutional restrictions placed on Native Americans during the 19th century may have limited Native Americans' ability to adjust in the long-run. Out-migration from regions that no longer provided economic

 $^{^{2}}$ We supplement our primary measure of bison-reliance with an anthropological index derived from historical accounts of bison-reliance, the share of a tribe's traditional territory that is covered by short grasses, and a measure of cattle carrying capacity based on the 2012 U.S. Census of Agriculture.

³We also demonstrate that the age distribution of bison-reliant nations has less mass in the left tail. This finding is consistent with high levels of infant and youth mortality after the bison de-population. Thus, any estimates of the decline in height among bison-reliant nations after the bison depopulation will be biased towards zero.

opportunities was not possible for many Native Americans who did not have the right to freedom of movement until 1924 (Marks, 1998), nearly two generations after the bison's decline.⁴ In addition to the early mobility restrictions placed on Native Americans, they did not have equal protection under law, could not access credit, and only gained limited political autonomy in the late 1960s (Marks, 1998). In the early twentieth century a natural alternative use of the land may have been cattle ranching; however, as suggested by Trosper (1978), limited access to capital markets as late as the 1960s prevented Native American ranchers from producing the same level of output as non-Native ranchers. Using data on tribal affiliation and occupational rank from the 1910 and 1930 American census, we show that people belonging to bison-reliant nations that lost the bison rapidly had significantly lower occupational rank relative to other Native Americans 20 and 50 years after the slaughter of the bison.

In accordance with other research that has found long-term persistence of historical events (e.g., Nunn (2008); Voigtländer and Voth (2012)) we investigate whether the negative economic effects of the loss of the bison can be seen in the present, and if so, what factors mediated this persistence.⁵ We use data from the Census Fact Finder compiled by Dippel (2014) to show that per capita income on reservations comprised of previously bison-reliant societies was approximately 30% lower in 2000, compared with reservations comprised of non-bison-reliant societies.⁶. Further, we find that reservations whose members belonged to societies that lost the bison gradually had approximately 20% less income on average, while those whose members belonged to societies that lost the bison rapidly had roughly 40% lower incomes on average. The contrast in persistence among those belonging to "rapid-loss" and "gradual-loss" bison-societies highlights the margins along which Native Americans were able to adjust to the loss of the bison, with those losing the bison over a longer time horizon being better equipped, in the long-run, to adjust to life without the bison.

Alternative explanations as to why bison-reliant nations are systematically less wealthy compared to non-bison-reliant nations are that the pre-contact, colonial, and post-colonial experiences of bison-reliant nations may have been in some way different from those of non-bison-

⁴Freedom of mobility has been shown as an important channel for economic adjustment during other large economic shocks such as the American Dust Bowl Hornbeck (2012).

 $^{^{5}}$ We view this as building on the literature on the colonial and historical origins of economic development. See for example Acemoglu, Johnson, and Robinson (2001, 2002), Nunn (2008, 2009); Nunn and Puga (2012); Nunn and Qian (2011), Dell (2010), and Dippel (2014).

⁶This result is even larger among Indigenous communities in Canada

reliant nations. We implement four strategies to address these concerns. First, we restrict our sample to include only bison-reliant nations. In doing so, unobservable characteristics that are consistent across bison-reliant nations are held constant, while identifying variation comes from the speed at which the bison disappeared from each nations traditional territory. Second, we include an extensive set of covariates: cultural controls, like historical centralization, forced coexistence, and experience with agriculture, capture the pre-contact characteristics of tribal groups; colonial controls, like the timing and quality of treaties, involvement in the fur trade, and the expansion of the railway into tribal territories, account for tribes interactions with European settlers; and modern controls, like social mobility and soil quality, are meant to capture other contemporary factors that may differ across reservations. Our third strategy uses the methodology in Oster (2017) to compute estimates of our treatment effect under the assumption that selection on unobservables is proportional to that on observables. Finally, we construct a set of instrumental variables that leverage the cost-adjusted distance between tribes traditional territories and cities that were historically important for the trade in bison robes.⁷ Each of these strategies yield estimates that are remarkably similar in magnitude to the OLS estimates.

Our primary classification of communities as bison-reliant and non-bison-reliant depends entirely on a tribe's traditional territory; however, some nations whose traditional territories were rich in bison were not completely reliant on the bison. To understand the mechanisms underlying our findings, we exploit variation in societies' historical experience with agriculture to show that bison-reliant communities with some level of economic diversification prior to the bison's slaughter have suffered far less than communities with few or no alternatives after the destruction of the bison. Agriculture was one of the few occupational sectors available to Native Americans that was promoted, permitted, and supported by the Bureau of Indian Affairs during the 19th and 20th centuries (Daschuk, 2013; Iverson, 1997). This suggests that societies that had acquired human capital in other sectors were better able to adjust to the economic shock under the restrictive conditions placed on Native Americans by federal Indian policy at the time.

 $^{^{7}}$ The intuition behind this strategy is that tribes whose territories were close to cities involved in the trade of bison robes would have been affected by the gradual depletion of bison hides, while tribes whose territories were close to cities that played a significant role in the export of bison hides to Europe would have been affected by the rapid slaughter.

The years after the migration restrictions were lifted coincided with a period of federal supports designed to incentivize Native Americans to relocate to urban centres (Gundlach and Roberts, 1978; Sorkin, 1969). We document a convergence in occupational rank among bison-reliant communities after the mobility restrictions were removed. We also show that the penalty for belonging to a previously bison-reliant nation is smaller outside of native homelands than within, which suggests that bison-reliant people who left their traditional homelands, and would have had more opportunities to participate in the mainstream economy, experienced modest economic convergence on average.

Overall, our results present a clear picture: the rapid extermination of the American bison on the Great Plains led to an immediate, dramatic decline in the heights of the Native Americans whose livelihoods depended on them. The decline in heights was followed by a lower average occupational rank in the middle of the twentieth century, and persistently worse per capita income and light density on reservations over a century later. Our results contribute to the understanding of the relative underdevelopment of some Native American communities today,⁸ and they provide an explanation for the geographic clustering of poverty among Indigenous communities in North America.⁹ One way to understand the effects of the decline of the bison is as one of the most dramatic devaluations of human capital in North American history. In this sense, our research is related to the literature on the intergenerational effects of income shocks and shows that when individuals are restricted in their ability to respond to such shocks, adverse effects can persist across multiple generations (Oreopoulos, Page, and Stevens, 2008; Solon, 1999; Stevens, 1997).

Our findings are also connected to the work of economic historians who have examined the overuse and depletion of renewable resources in a colonial context (e.g., Allen and Keay (2004) and Carlos and Lewis (1993, 1999)). Taylor (2011), Hanner (1981), and Benson (2006)

⁸The literature on Native American economic development has emphasized the role of institutions in shaping economic development (Akee, 2009; Akee, Jorgensen, and Sunde, 2015; Akee, Spilde, and Taylor, 2015; Anderson and Parker, 2008, 2009; Aragón, 2015; Cornell and Kalt, 2000; Dippel, 2014; Gregg, 2018), and on the role of modern natural resource development on modern outcomes (Anderson and Parker, 2008, 2009; Aragón, 2015; Aragón and Rud, 2013; Dell, 2010; Leonard and Parker, 2016). Our work deviates from past studies by focusing on the loss of a natural resource that was central to the lives of many Native Americans and the potential intergenerational effects of that loss. To our knowledge, this is a novel channel to focus on with respect to Native American economic development.

⁹In the United States, the poorest Native American communities are the previously bison-reliant communities of the Great Plains, Northwest, and Rocky Mountain regions (Anderson and Parker, 2009; Hurst, 1997), while in Canada, the poorest Native American communities are found in Alberta, Saskatchewan and Manitoba and were also historically reliant on the bison (AANDC, 2015).

all examine the nature and causes of the bison's near extinction. We add to this literature by examining the effect of the loss of the bison on those communities that depended on it, instead of on the depletion of the resource itself.

We also add to the literature on how institutional conditions shape the responses to economic shocks (Robinson and Torvik, 2013). In particular we offer insight into how economies that rely on a single resource respond when that resource is depleted over a short period of time and are governed by institutions that limit responsiveness. The case we study coincides with federal policy that restricted mobility and, thus, the ability of Native Americans to invest in education or occupation-related skill acquisition. These conditions may be thought to parallel those that exist in relatively isolated nations today where individuals face barriers to international mobility or economies are based on a single resource. In this sense, our work also contributes to the literature on the natural resource curse (Jacobsen and Parker, 2016; Michaels, 2011).

Finally, and perhaps most importantly, we offer a counter-narrative about the colonization of North America. The existing literature proposes that North America's wealth is a function of Europeans' choice to settle, which brought human capital and technology and led to the development of institutions that promoted growth (Acemoglu et al., 2001; Easterly and Levine, 2016; Nunn, 2014). However, Europeans were not importing their institutions or bringing their human capital to a blank slate; Indigenous institutions and human capital were affected in the process. In the case we study, the core institutions of bison societies were eliminated and their human capital devalued in the process, which we show had lasting implications for their growth and prosperity. In other words, the Acemoglu et al. (2001) claim that settler colonies are good for economic development would seem dubious from the perspective of the Indigenous populations of North America.

The paper proceeds as follows. In the next section, we review the historical dependence of Native Americans on the bison, how the relationship has evolved over time, the decline and eventual slaughter of the bison, and the policies enacted by the United States government that limited the ability of Native Americans to use transferable human capital associated with bison hunting. In Section II, we discuss the data generation and matching processes we used to construct the datasets used in our empirical analysis. Section III outlines our methodological framework for both the short and long-term impacts of the decline of the bison. We then present the results in Section IV, followed by an analysis of the mechanisms through which the effect of the bison's decline has persisted in the long-run. Section V concludes with a discussion of the main findings and suggestions for future work.

I Background on Bison-Reliance and the Bison's Near-Extinction

Anthropological evidence suggests that Indigenous peoples in the Subarctic, Plains, Great Basin, and Rocky Mountain regions of North America hunted the bison for at least 10,000 years (Frison, 1991; Gilmore et al., 1999; O'Shea and Meadows, 2009; Zedeño et al., 2014). While estimates differ substantially, the number of bison that existed historically in North America has been estimated to be as high as 30 million to as few at 10 million (Taylor, 2011). Historically, the Plains bison roamed the territory between the Rocky Mountains in the west to the Appalachian Mountains in the east, and extending from as far south as the Mexican states of Chihuahua and Coahuila to as far north as the Canadian Northwest Territories (Hornaday, 1889).

Originally, the bison were hunted on foot, often assisted by domesticated dogs, initially with spears and later using the bow and arrow (Isenberg, 2000; Kornfeld et al., 2010). Pedestrian bison hunting was large-scale and highly specialized with strategies that evolved over time. Perhaps the most iconic method of the pedestrian hunt was the "buffalo jump", where hunters would set fire to grasses to force herds of bison over a cliff. These sorts of dramatic hunts were often conducted in conjunction with several nations, and entire communities participated to fully employ the extent of hunt. As an example of an alternative method, hunters would separate a portion of the herd, leading them into a pen of branches and blankets by lighting fires or using dogs. Following the hunt, the large animals were generally skinned and disassembled on-site in order to make the carcasses manageable. Women were primarily responsible for this task and would make use of nearly every part of the animal. They tanned and softened hides for clothing, blankets, and lodging, using the brains as grease. Bones were used to make tools, while the marrow was consumed for its nutritional content, and stomachs were converted into bags or vessels. Bison meat was often preserved by drying, or it was mixed with processed berries and bison fat to produce a mixture called permican. Enclosed in a bag made from the bison's stomach, pemmican could be stored for years and, as a result, during times of game shortages or crop failures, bison-reliant nations could sustain their peoples.

Archaeological records indicate that many bison-reliant peoples did not seek diversification in their economic activity, even though other resources were present, suggesting that the bison provided a reliable source of food and wealth (Daschuk et al., 2006; Zedeño et al., 2014). Due in part to the plentiful nature of the bison and the ability to store bison food products for years, the people of the Great Plains were arguably the wealthiest in North America and at least as well off as their average European counterparts (Carlos and Lewis, 2010; Prince and Steckel, 2003; Steckel and Prince, 2001). Early anthropologists often characterized bison hunting societies as egalitarian and lacking organizational complexity; however, the killing and processing of the bison was an endeavor of industrial proportions (Kehoe, 1967). Recent work by anthropologists suggests that bison-reliant societies evolved to have well-defined systems of ownership over hunting grounds, permanent sites of residence, complex kinship networks, and economic power relationships designed to secure the best bison herds (Zedeño et al., 2014). They were also involved in cultivating the lands by burning long grasses to encourage the growth of short grasses that were preferred by the bison (Isenberg, 2000; Zedeño et al., 2014).

While methods of hunting and employing the bison changed over time, the most dramatic change was driven by the introduction of the horse to North America. With the colonization of South America, horses spread from Spanish controlled territory in the south as far north as Canada, likely through pre-existing trade routes (Hämäläinen, 2003). By the 1650s, colonists had become aware of mounted Indians after encountering the riders of the Apache tribe. The introduction of the horse dramatically decreased the costs associated with hunting bison, leading some societies to shift from agriculture towards bison hunting as their main source of economic activity (Gwynne, 2010); however, it also brought the first waves of European diseases, infecting the people of the plains through their contact with native horse traders who had been exposed to Europeans (Daschuk, 2013). The extent to which Plains peoples were depopulated by European diseases has been intensely debated (Cameron, Kelton, and Swedlund, 2015). Early estimates suggest that, between 1774 and 1839, depopulation among Plains Natives was in the realm of 50%-60% (Decker, 1991), but later estimates suggest that this figure may be closer to 20%(Carlos and Lewis, 2012). Some historians have suggested that depopulation among the peoples of the Great Plains did not occur until after the extermination of the bison, when bison-reliant societies were on the brink of starvation and vulnerable to disease from malnutrition (Cameron et al., 2015; Daschuk, 2013; Daschuk et al., 2006). The earliest contact bison-reliant societies had with the English and French was through the fur trade, although this trade was typically indirect. Bison robes and permican were traded, but neither commodity was as lucrative as the furs being sought for resale in Europe. Bison-reliant peoples had been tanning hides for centuries, but the process was labour intensive and unprocessed leather from bison hides was not commercially valuable from a European perspective (Taylor, 2011).

With the end of the American Revolution and the westward expansion of the United States, settlers moving westward along the Oregon trail in the early 1800s effectively split the existing bison herd of the Great Plains and plateau region into a northern and southern herd (Taylor, 2011). As settlement continued, the bison were hunted at higher rates, which when combined with years of drought and competition for food sources from settler cattle, slowly began depleting the bison populations east of the Mississippi (Isenberg, 2000). The pace of the bison's extermination drastically increased with the construction of the Pacific Railroad between 1863 and 1869. Upon completion of the railway, settlers had access to the herds of the interior in an unprecedented manner (Hanner, 1981; Hornaday, 1889). Even so, the historical accounts suggest that settlers and native communities did not anticipate the bison's rapid extermination (Daschuk, 2013; Hanner, 1981). In fact, the construction of the railway through the Great Plains was made possible because of a series of treaties the United States negotiated during the late 1860s with the Apaches, Cheyenne, Kiowas, and the Comanche in the south, and North-Western Sioux and Northern Cheyenne—specifically the Teton Sioux, known as the Lakota—in the north.¹⁰ Through these treaties, Natives exchanged large tracts of their ancestral territories for public goods, annuities, and protection of their exclusive right to hunt the bison herds. Moreover, the treaties included clauses that protected the bison from being hunted by settlers, which had resulted in a gradual decline of the herds in other areas of the country (Gwynne, 2010).

The fate of the bison changed unmistakably in 1871 when tanners in England and Germany developed a method for tanning buffalo hides so that they could be commercially viable (Taylor, 2011).¹¹ In response, hide hunters flooded to the plains. Figure A1 compiles estimates of bison

 $^{^{10}}$ These treaties include, but were not limited to, the Medicine Chest Treaties of 1867 in the South and the Fort Laramie Treaty of 1868 in the North.

¹¹The sudden access to the bison from the newly constructed railways may have spurred European innovators to try and find a use for them, but without the commercial demand for the tougher bison leather, the incentive

hide exports from Taylor (2011) between 1865 and 1889. This figure shows the large spike in bison hide exports that occurred after the innovation in European tanning technology. Taylor (2011) estimates that in 1875, 1 million bison hides were shipped from the United States to France and England alone. The hide men initially focused on the more accessible southern herd,¹² and by the spring of 1874, the herds on the middle plains had been decimated. A country once "black and brown with bison was left white by bones bleaching in the sun" (Gwynne (2010), p.260-261). By 1879, the southern herd was completely eliminated (Hornaday, 1889). Gwynne (2010) provides a moving account of a group of Comanche men who left the reservation for a traditional bison hunt in the spring of 1878:

"They rode west from Fort Sill towards the high plains, full of dreams and nostalgia. They understood that the hide hunters had taken a terrible toll on the buffalo. But they had never doubted that there were herds left to hunt. What they found shocked them. There were no buffalo anywhere, no living ones anyway, only vast numbers of stinking, decaying corpses or bones bleached white by the sun. The idea of traveling a hundred miles and not seeing a buffalo was unimaginable. It had not been true at the time of their surrender. (p. 294)

The slaughter of the northern herd did not occur until 1881, and, according to estimates of hide exports compiled by Taylor (2011), they were one tenth of those of the earlier southern slaughter. Taylor (2011), among others, attributes the delayed elimination to the "hostile Sioux" and other Native groups who were not part of the reservation system. However, to fully attribute the timing of the northern slaughter to hostile northern nations would be to over-simplify the historical context.

Reservations had already been established for the Northern Cheyenne, Northern Arapaho, and the Sioux by the Treaty of Fort Laramie in 1851 and later in 1868. Thus, they were equally a part of the reservation system as many of the southern communities in the same time period. Second, violence on the southern plains was also common and some authors suggest it may even have been provoked after the signing of the treaties by the slaughter of the bison (Smits, 1994). Once Native groups in the south realized the extent of the bison slaughter, they

for commercial hunters to rush to the plains and slaughter the animal would not have existed. The European innovators likely did not see the treaties as a significant barrier to bison access.

¹²The railway at that point stopped at Dodge City, Kanas.

retaliated against hide hunters with violence, so the danger was not limited to the northern plains. The Sioux's reaction was in response to the violation of treaty terms when white men entered their territories. Even though the hide hunters did not slaughter the bison on the Lakota territory until the early 1880s, the Northern Herd was eliminated from the lands surrounding their traditional territories that had been under protection by the Treaty of Fort Laramie. This slaughter necessarily reduced the potential density of the bison within their lands. Hornaday (1889) suggests that the bison were exterminated in northern Montana and Saskatchewan by 1878, in Wyoming and Alberta by 1880, and that the last bison in the remaining territory was gone by 1883. The last bison hunt by the Sioux was in 1882 (Ostler, 2001). A well-established argument advanced by many scholars suggests that the United States government deliberately promoted the destruction of the northern herd to force the nations to give up their treaty rights (Hornaday, 1889; Smits, 1994). MacInnes (1930) argues that American soldiers drove bison herds south into the region of the hide hunters.

Several scholars have argued that the slaughter of the bison would not have happened in an environment with well-defined property rights (Benson, 2006; Hanner, 1981; Lueck, 2002; Taylor, 2011). As far as the Native nations were concerned, property rights existed, though they were clearly not enforced. One reason for this was political. General Phil Sheridan, then Commander of the Military Division of the Missouri stated in 1875:

"These men [hunters] have done in the last two years and will do more in the next year to settle the vexed Indian question, than the entire regular army has done in the last thirty years. They are destroying the Indians' commissary. Send them powder and lead if you will; for the sake of the lasting peace, let them kill, skin and sell until the buffalos are exterminated." – quoted from Gwynne (2010), p.262

Army Generals actively encouraged their troops to kill the bison for food, sport, or "practice". Many military commanders believed that Native people would not be truly settled onto reservations until the bison were exterminated (Smits, 1994). Despite promises made to the northern nations in 1868, in 1874, the government dispatched the Custer Expedition into Sioux territory and discovered gold in the Black Hills. The Lakota were alarmed at this treaty-violation, as miners began to trespass on their territories. Initially, the government expelled miners that entered, but pressure built to secure the Black Hills from the Lakota, which in 1874 had not yet suffered the loss of the bison to the same extent as the southern nations.¹³

Within less than two decades, the economic and social core of the great bison nations was gone. By the early 1880s, there were no bison, little game, and inadequate and at times non-existent government food supplies. Records from trading posts, native leaders, Indian Affairs officials and media outlets reported widespread malnutrition and hunger among the native populations (Cameron et al., 2015). Communities resorted to eating horses, mules, soiled food, and old clothing to prevent starvation (Daschuk, 2013; Gwynne, 2010). The resource that underpinned centuries of human capital acquisition was eliminated with few alternative options. Some communities resorted to collecting the bison bones that littered the plains after the slaughter and selling them for fertilizer (Ostler, 2001).

Economic activity and mobility were severely constrained during this time period and arguably left few dimensions upon which Native Americans could adjust. Specifically in both Canada and the United States Native Americans could only leave their reservations with the permission of government officials on reservations, known as Indian Agents, until close to the 1930s (Marks, 1998). Cattle ranching, a plausible alternative use of skills for many bison peoples, was either activity prevented by Indian Agents or subject to serious credit constraints until the 1940s (Iverson, 1997; Trosper, 1978).^{14,15} Agriculture was effectively the only economic activity supported or promoted by North American governments. However, agriculture was abhorred by many in the former bison-reliant nations and few individuals had experience in the area (Gwynne, 2010; Iverson, 1997; Ostler, 2001). That being said, several nations had varying degrees of agricultural reliance prior to the bison's decline, which we show may have provided them with an economic alternative to help mitigate the negative consequences resulting from the loss of the bison (Iverson, 1997).

In the next two sections, we outline the approach we take to empirically evaluate how the

¹³At this point, the Northern Pacific Railway was not yet complete, reaching Fargo, Dakota Territory early in June 1872. A severe stock market crash and financial collapse after 1873 led by the Credit Mobilier scandal and the Union Pacific railroad fraud stopped further rail line from being built for 12 years. This halting of the railway may have delayed the destruction of the northern herd.

¹⁴Although some notable native leaders did manage to convince Indian Agents to come to food sharing and cattle ranching agreements, these were not a generally accessible forms of employment and only benefited a few members (Gwynne, 2010; Iverson, 1997).

¹⁵Using a sample of ranchers from the Northern Cheyenne Reservation in Montana, Trosper (1978) analyzes differences between Native and non-Native ranching and suggests that Native ranchers were as efficient, if not more efficient, than white ranchers, but due to limited access to capital, they produced less output than their non-Native counterparts.

loss of the bison altered the historical trajectory for the societies that depended on them.

II Data on Bison-Reliance, Historical and Modern Context and Well-being

We draw on a number of newly digitized and existing data sources in order to determine the short- and long-run impacts of the elimination of the bison on Native American outcomes. These data sources include GIS mappings of the geographic expanse of the bison over time and ancestral tribal territories, 19th and early 20th century Native American heights, as well as income, nighttime lights, and occupational rank for several time periods in the 20th century. We construct a number of additional variables related to regional variation in geography, colonial experiences, and cultural and demographic characteristics.

A Measures of Bison-Reliance and Timing of Bison-Loss

The elimination of the North American bison was recorded by William Temple Hornaday, who, at the time, was the chief taxidermist of the Smithsonian Institute. Towards the end of the 19th century, Hornaday was commissioned by the institution to construct as detailed an account as possible of the bison's range at various points in time, in order to preserve its history. As part of an extensive monograph, Hornaday published maps of the original bison range and of the timing and geographic nature of the bison's extinction. Figure 1 is a digital reproduction of Hornaday's map.¹⁶ The lightest region is the bison range as of 1730, the middle region is the bison range as of 1870, and the final black regions are the remaining herds as of 1889 with their corresponding sizes. The 1889 ranges were in ranched captivity. The original map of Hornaday (1889) can be found in Figure A2 of the appendix.

To generate a measure of bison-reliance, we overlay the digitized version of Hornaday's map with maps of traditional ancestral territories of Native American groups. The outline of the ancestral territories in the continental US are also present in Figure A2. For the United States, we use ancestral territories from the Map of Early Indian Tribes in the National Atlas of the United States (Gerlach, 1970), combined with the ancestral territory maps from the Smithsonian

¹⁶The maps were digitized with at least 24 points of support.

Figure 1: This is a digitized version of the map generated by Hornaday (1889), illustrating the original range of the North American bison and the timing of its decline. The lightest region is the range as of 1730, the middle region is the bison range as of 1870, and the final black regions are the remaining herds as of 1889 and their sizes. The 1889 ranges were in ranched captivity. Tribal territory boundaries are also displayed for the continental U.S.

Handbook of North American Indians (Sturtevant, 1981) following Dippel (2014).¹⁷ This overlay gives us a measure of the proportion of ancestral territories that were covered by the bison as of 1730, 1870, and 1889.^{18,19} Our measures give a reasonable approximation as to whether societies experienced a high degree of bison-reliance and the speed at which communities experienced the extermination of the bison. The first variable we construct is a measure of initial bison-reliance. To do this, we measure the proportion of territory that was covered by the bison as of 1730. In our empirical analysis, all bison-related variables are continuous; however, to display descriptive statistics, we separate nations as bison-reliant or non-bison-reliant, where we classify nations as bison-reliant if 60% of their traditional territory overlapped with the historic bison range in

¹⁷The National Atlas map can be found in Figure A7.

¹⁸Note that in 1889, the only bison were found in captivity, so that the value of this variable is 0 for all tribes. ¹⁹While there may be some concern as to the precision of Hornaday's borders, we do not expect this will impact the empirical analysis, given that the maps of ancestral territories are themselves rough approximations of the traditional territories of many semi-nomadic or nomadic societies.

Figure 2: These histograms show the share of ancestral lands overlapping the original bison range (left) and the bison range as of 1870 (right).

1730.

The next two variables we construct measure the timing of bison loss. The first timingrelated variable is the proportion of territory that was covered by bison as of 1730 minus the proportion that was covered as of 1870. The second is the proportion of territory that was covered by bison as of 1870 minus the proportion that was covered in 1889. A large value of the first measure means that the region lost the bison gradually, as discussed in Section I, over a 140 year period. A large value of the second measure implies that the territory lost the bison rapidly, as a result of over-hunting in response to European demand for bison hides. Figure 2 displays histograms of the share of ancestral lands overlapping the original and 1870 ranges. From these plots, we can see that many nations' ancestral lands overlapped with the original bison range; however, by 1870 the number of nations whose ancestral lands were covered by 90% or more of the bison range had dropped from over 60 to approximately 10.

The drawback of the above measures is that they are entirely based on geography. In some instances, however, the degree of bison-reliance among Native Americans–even in areas that were densely populated by bison–varied notably. For example, the Mandan peoples lived in the bison-dense territory of what is now North Dakota, yet they relied predominantly on agriculture and traded for bison meat and other supplies (Fenn, 2014). Our geographic measures would identify

the Mandan as bison-reliant and among those that lost the bison rapidly. Thus we supplement our original measures of bison-reliance with anthropological accounts of bison-reliance taken from Waldman (2009). Using the accounts in Waldman (2009), we construct a scale from 0 to 1 in 0.1 increments that range from no contact with the bison to their calories being almost completely based on bison products. A full explanation for the coding of this variable and additional sources can be found in Tables A12, A13, A14, A15, and A16. For those nations that were not included in Waldman (2009), or whose tribal names in the data sources described below are too broad for reasonable classification of the anthropological measure, we use our original measures of bison-reliance. In all data sets, this represents a relatively small fraction of communities, and the correlation between the anthropological measure and the geographical measure is roughly 0.8.

To verify the robustness of our results, we generate two other proxies for bison-reliance. The bison range identified in the map of Hornaday (1889) does not take into account other factors that may have affected the density of bison, like the gradient of mountains, the presence of wetlands or lakes, and the diversity of vegetation. So while the bison may have roamed the area outlined in Hornaday (1889) in varying densities, the geographic measures constructed above assume a uniform density. To alleviate concerns regarding measurement error in this context, we construct a measure of carrying capacity that relies on the presence of modern-day cattle farming in tribes' traditional territories. Both cows and bison belong to the Bovinae subfamily, and although there are certainly differences in habitat use, forage use, and behavior between cattle and bison, much of the land once suitable for bison was replaced by domestic cattle after the bison's near extinction (Kohl, Krausman, Kunkel, and Williams, 2013). We use county level data from the 2012 United States Census of Agriculture to generate a measure of the number of cattle per kilometre squared in each tribe's traditional territory.

Next, we employ the World Wildlife Fund's World Grassland Types (Dixon, Faber-Langendoen, Josse, Morrison, and Louckn, 2014) dataset as an alternative mapping of the bison's expanse. This strategy should be effective as the bison is well adapted to grassland biomes. The WWF's GIS data provides a complete, global mapping of grassland types with a grassland being defined "as a non-wetland type with at least 10% vegetation cover, dominated or co-dominated by graminoid and forb growth forms, and where the trees form a single layer canopy with either less than 10% cover and 5m height (temperate) or less than 40% cover and 8m height (tropical)," (Dixon, Faber-Langendoen, Josse, Morrison, and Louckn, 2014). The data includes a total of 49 grassland divisions. Native traditional territories overlap with four grassland formations: cool semi-desert scrub and grassland, Mediterranean scrub, grassland and forb meadow, temperate grassland, meadow, and shrubland, and warm semi-desert scrub and grassland. We employ these measures in various combinations as robustness checks with a particular emphasis on temperate grassland, meadow and shrubland.

B Biological Measures of Standard of Living: 1888-1903

Given the lack of comprehensive income and occupational data for Native Americans pre-1900, we instead turn to the anthropometric literature for evidence, making use of childhood and adult height as biological indicators of well-being (Steckel, 1995, 2008). Through the undertaking of physical anthropologist Franz Boas, we have access to anthropometric data on approximately 15,000 Native Americans and Siberians. With funding from the Committee for the British Association for the Advancement of Science, the Bureau of American Ethology, the World's Columbian Exposition, the Jesup North Pacific Expedition, and the Huntington California Expedition, Boas directed a team of anthropologists to collect the data between 1888 and 1903. Boas was intent on sampling nearly all areas of North America where Native Americans could be found and focused on measures of height, sex, age, tribal membership and "racial purity" (Jantz, 1995). While there have been questions regarding the representative nature of Boas' sample (Komlos and Carlson, 2014), and of height data more generally (Guinnane, Bodenhorn, and Mroz, 2014), recent work comparing the Cherokee in Boas' sample to the Cherokee census suggests that Boas sample is representative on average, though it may overrepresent the upper and lower classes (Miller, 2016). What is important for our empirical strategy is that, conditional on our set of covariates, over- or under-representation does not vary between age groups or between bison-reliant and non-reliant nations. We match the tribal associations in Boas' sample to our ancestral territory data.

Women are significantly under-represented in Boas' data and, consistent with prior literature, we focus on men (Prince and Steckel, 2003; Steckel and Prince, 2001). The male sample consists of 8,821 individuals after restricting the sample to those under the age of 60. We have matched 5,204 observations based on the exact tribal names given in Boas' data and with the tribal names provided in the American Atlas ancestral territories map. The remaining matches are based off both tribal and band names given in the Boas data. Some of the tribal names given are too broad for an exact match²⁰ and, in these cases, we construct bison-dependency as a geographically weighted average of all sub-tribal groups. The results are robust to limiting our analysis to our exact matches, but we present the results for the full sample in this paper.

Table 1 presents summary statistics from Boas' data for bison-reliant and non-bison-reliant nations. For the purpose of this exercise and those that follow, we classify a nation as bisonreliant if 60 percent of its ancestral territory overlapped with the historic bison range. In our empirical specifications, we use the proportion of share lost at various time periods as our primary variable of interest. Formerly bison-reliant nations were approximately 6 cm taller than non-bison-reliant nations and slightly less likely to have some non-Native American ancestry. They are also slightly older on average. Figure A3 shows that the differences in mean height in Table 1 are due to a uniform left shift in the height distribution, suggesting that the difference is not driven by differences in the tails of the distribution. On average, bison-reliant nations had operational railways established at a later date. Since railways proxy for timing of contact and pace of settlement of non-Indigenous peoples, we control for the date of operation in a number of specifications. As described in the historical section, settlement on reservations occurred for bison-reliant peoples largely before the loss of the bison and the introduction of the railway. However, the date of local railway operation will proxy for relative timing of these factors as well.

To further investigate the differences in mean age, we plot the age distribution of bisonreliant and non-bison-reliant nations in Figure A4. The results are striking. The age density is skewed towards older ages, with the largest differences occurring for those under the age of 20. There are notably fewer young people in the bison-reliant nations during the period in which they were sampled–after the bison were driven to near extinction. There are a number of plausible explanations for this pattern; however, one argument is that it is consistent with increased mortality rates at at younger ages, possibly due to the decimation of the bison. If the shortest (weakest) children are the ones who suffer higher rates of mortality, any empirical

²⁰For example, an observation may be labeled Apache, rather than Tonto Apache or White Mountain Apache.

	Not bison-reliant-Reliant	Bison-Reliant	Diff
Standing Height in cm	156.92	162.33	-5.41
	(20.05)	(16.84)	
Year Community was Sampled	1892.56	1891.72	0.85
	(2.11)	(1.18)	
Year of Birth	1864.72	1863.42	1.30
	(19.27)	(18.74)	
Age	27.85	28.30	-0.45
	(19.26)	(18.59)	
Canada	0.23	0.15	0.08
	(0.42)	(0.36)	
# Yrs Since Rail	-2.15	4.74	-6.88
	(32.46)	(26.90)	
Born After Rail	0.39	0.37	0.02
	(0.49)	(0.48)	
# Yrs Born After Rail	8.34	6.48	1.86
	(13.91)	(11.95)	
Born During War	0.03	0.09	-0.06
	(0.16)	(0.28)	
Only Native American Ancestors	0.81	0.79	0.02
	(0.39)	(0.41)	
Observations	5390	3882	9272

Table 1: Summary Statistics from Boas Data

Notes: The data above is from Franz Boas' data expedition between 1888 and 1899. Means are reported with the standard deviations in parentheses. Difference-in-means tests are reported in the last column. Tribes are classified as "bison-reliant" if 60 percent or more of their ancestral territory overlaps with the historic bison range. "Full blood" is the proportion of people indicated to have no white ancestry. "Years since rail" is the number of rails between an individual's year of birth and the date the first railway went thorough their nation's traditional territory. "Born after rail" is the proportion of the sample that was born after rail went through their traditional territory. "Years born after rail" are the average years of age of someone born after the railway was introduced.

analysis of the heights of bison-reliant and non-reliant societies will likely *underestimate* the effects of the loss of the bison on height. We return to this data in the analysis that follows.

C Income, Nighttime Light Density, and Occupational Rank: 1910 to 2010

Biological measures are our only source of outcome data in the late 19th century, however beginning in the early 20th century explicit data on material well-being is available. To show the immediate and longer term impact of the loss of the bison include data on occupational rank from the American Census and American Community Survey (ACS) to study effects of the loss of the bison on intermediate and long-run outcomes. This data is available publicly through the Integrated Public Use Microdata Series (IPUMS) (Ruggles, Genadek, Goeken, Grover, and Sobek, 2015). The occupational rank measure is constructed using the IPUMS occupational income score. This income score ranks occupations using the median incomes for each occupation from data published in the Census Bureau's 1956 special report on occupational characteristics. Apart from minor variations in post-1950 years, which required recoding post-1950 occupational classifications into the 1950 system, the measure of occupational rank is largely invariant across censuses. Unfortunately data is only available on occupational rank and tribal affiliation in 1910, 1930, 1990, 2000, and later in the ACS. We require detailed information on the tribal membership of Native Americans in order to determine ancestral dependence on the bison.

Measuring the long-run effects of the loss of the bison in a way that is strictly comparable to 1910 and 1930 is made difficult, as tribal membership in 1990 and 2000 is reported at a higher level of aggregation than in 1910 and 1930. This has implications for our ability to estimate the effects of the loss of the bison. For example, in 1990, the reported tribal membership may be "Apache"; however, the Apache can hardly be thought of as one unified cultural group, let alone homogeneous in bison-reliance or in the timing of bison loss. Nevertheless, to gain a sense of whether the effects of the loss of the bison have changed over time for the peoples that depended on them, as would be expected from a simple income shock, we aggregate tribal groups by year and compare the effects of bison-reliance and loss over this time period.

In Table A2, we show that the occupational status of bison-reliant nations is slightly higher than non-bison-reliant nations without accounting for state-level differences. Bison nations are somewhat older, which may be indicative of excess child mortality. For this exercise we focus on male occupational rank. The sample size is much smaller in 1910 and 1930 than in later years, accounting for only 1,101 observations of the total 66,786. To deal with the lack of detailed tribal information and measurement error in ancestral bison-reliance in the later censuses, we focus only on individuals who live on specified "Native homelands" or reservations, and assume that the individuals on reservations are the descendants of the nations for whom the reservations were designated.²¹

²¹Given restrictive tribal membership laws and rates of intermarriage this is a reasonable assumption.

Given the limitations of tribal information in IPUMS data, we turn to modern, reservationlevel data. The most complete information for reservation-level per capita income data is available through the 2000 American Census Fact Finder. While data back to 1970 is available, the number of included communities rapidly declines. For this reason, we focus on the 2000 data and show that our results are robust to the inclusion of these other data sets. In order to make our work comparable to recent work on Native American economic development, we use the tribal/reservation sample of Dippel (2014). This allows us to consistently include factors that have been shown to have large effects on economic development on reservations such as forced and historic co-existence with other Native cultural groups, and the presence of casinos. We merge these tribal groupings with our measures of tribal-level bison-reliance.

As an additional measure of long-run outcomes, we use nighttime lights data from the National Centres for Environmental Information.²² The nighttime lights data are gathered from satellites that measure light density at night at 30 arc second grids, which is equivalent to an area of approximately 1 square kilometre at the equator (Pinkovskiy and Sala-I-Martin, 2016). They are available globally for every year between 1992 and 2013, and serve as a reasonable proxy for economic activity in the absence of standard national statistics under the assumption that lighting is a normal good (Donaldson and Storeygard, 2016).²³ In Figure A9 we show that our measure of light density and GDP per capita move in tandem, which supports this assumption.

Each pixel is assigned a value between 0 and 63. For the purpose of our analysis, we use the log of mean light density of all pixels within a reservation's borders. Figure 3 displays the geographic distribution of light density overlaid with the 2013 boundaries of Native American homelands or reservations in the United States.²⁴ The advantage of using the nighttime lights data for our reservation-level analysis is that we can compute the mean light density for all state and federal reservations in the United States, whereas GDP per capita data exists only

²²The data can be downloaded online from https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html

²³The nighttime lights data have been used extensively in recent economic literature and have been shown to be good proxies for economic activity at various levels of aggregation: countries (Pinkovskiy and Sala-I-Martin, 2016), ethnic homelands (Alesina, Michalopoulos, and Papaioannou, 2016; Michalopoulos and Papaioannou, 2013), suband supranational regions (Henderson, Storeygard, and Weil, 2012), and even at the pixel level (Bleakley and Lin, 2012).

²⁴The boundaries displayed in Figure 3 include federal reservations, off-reservation trust land areas, staterecognized American Indian reservations, Oklahoma tribal statistical areas, tribal designated statistical areas, and state designated tribal statistical areas. Only the reservation boundaries (federal and state) are used in the light analysis, as statistical areas can include non-Native cities.

Figure 3: The distribution of nighttime lights in 2000 overlaid with Native American homelands or reservation boundaries in 2013.

for a sample of the reservations that meet certain reporting criteria. This expands our sample from 197 reservation-tribe observations to 313. All of our specifications that use the nighttime lights data control for the population of the territory using the Gridded Population of the World database from NASA's Socioeconomic Data and Applications Centre. The gridded population data is available at 5 year intervals from 2000-2015.²⁵

D Pre-contact, Colonial Period, and Modern Control Variables

Formerly bison-reliant societies are not strictly comparable to non-bison-reliant societies, as the outcomes of the descendants of these societies and the governance structures on reservations may differ for other reasons. As such, in specifications that compare bison-reliant nations to non-bison-reliant nations, we control for pre-contact differences in geography and culture, their experiences with settlers, and other modern variables. For example, it is important to control for whether tribes experienced disproportionate levels of depopulation during first contact, war, treaty signing, forced co-existence on reservations, and relocation. We also want to control for economic activity of the reservations and surrounding areas, and access to other financial resources such as casinos.²⁶ We acquire economic information from Dippel (2014), as well as information on ruggedness, forced co-existence, displacement from traditional territory, and historic co-existence. We expand upon the pre-contact cultural measures used by Dippel (2014)

²⁵This data is available for download online from http://sedac.ciesin.columbia.edu/data/collection/ gpw-v4

 $^{^{26}}$ Dippel (2014) acquires casino data from Taylor and Kalt (2005).

from the Ethnographic Atlas Database of Murdock (1967) on the cultures of North America and include measures of calories from agriculture, calories from hunting, wealth distinctions, and the complexity of the location of each community. We add the average absolute mobility of counties within a 50 kilometre buffer surrounding each reservation using the absolute mobility index calculated in Chetty et al. (2014).²⁷

We also control for treaty-making and violent encounters in war using information from Spirling (2011). We match signatories of treaties using the location of treaty signing in relation to the traditional territories of nations in our data. Those nations involved in one of the 23 major "Indian Wars" from Spirling (2011) are matched by name in each data set. To account for the possible effects of differential depopulation from early exposure to European disease, we use gridded population data from the HYDE 3.1 database (Goldewijk, Beusen, and Janssen, 2010). We use the population size in 1600 for each ancestral territory as a control in the model.²⁸ One could imagine population to proxy for wealth, as in Acemoglu, Johnson, and Robinson (2001); however, we remain agnostic on its precise meaning, given that nomadic or semi-nomadic societies could hold large territories relative to their population as a sign of their wealth.

As controls for the timing of settlement, ease of access for settlers, exposure to disease, and pace and extent of economic development, we introduce a series of railway controls from Atack (2016). We overlay these railway mappings with historical tribal homelands and generate the date of railway operation in the tribal territory. There is a concern that since the railways are likely highly correlated with a loss of traditional resources, like the bison, we will absorb some variation in outcomes through this channel. However, since there are a number of contributing factors to the bison's decline—as discussed in the historical background—we do not expect the railway controls to absorb all of the effect of the rapid loss of the bison.²⁹

 $^{^{27}}$ Chetty et al. (2014) calculate two measures of intergenerational mobility. We use absolute upward mobility, which represents the expected income rank of children whose parents are at the 25th percentile of the national income distribution.

²⁸The HYDE database uses a number of historical sources to compile comparable estimates of global population density at a 5 minute resolution, including Denevan (1992), Maddison (2001), Lahmeyer (2004), Livi-Bacci (2007), and McEvedy and Jones (1978). While it is likely that the HYDE database is measured with considerable noise, and especially so for Indigenous populations in the 17th and 18th centuries, it is arguably the most reliable source for population data that is both consistent over time and across regions.

 $^{^{29}}$ As alternative measures of timing and speed of European settlement and potential contact with disease, we calculate the state that overlaps with the majority of a tribe's ancestral territory and control for the date in which it was admitted to the union. We also compute the maximum population growth of each of these states prior to 1910. We do not present the results using these controls since they are similar to those that condition

 Table 2: Summary Statistics: Dippel's (2014) Census Tract Sample by Tribe-Reservation in 2000 and Additional Colonial Variables

	Not Bison-Reliant	Bison-Reliant	Diff
Per Capita Income	10837.46	8629.64	2207.82
	(5120.06)	(4005.72)	
Nighttime Light Intensity	10.23	4.31	5.92
	(11.85)	(9.27)	
Percent Bison Coverage 1870	0.00	0.23	-0.23
	(0.00)	(0.38)	
# Cattle per sq km	7.39	12.56	-5.17
	(7.91)	(9.38)	
Nearby $\#$ Cattle per sq km	8.06	44.43	-36.36
	(8.93)	(213.45)	
Indian War	0.49	0.63	-0.14
	(0.50)	(0.49)	
Distance Displaced	11.74	11.97	-0.23
	(1.02)	(0.95)	
Historic Centralization	0.20	0.14	0.06
	(0.40)	(0.35)	
EA Calories Agriculture	1.59	2.61	-1.02
	(2.01)	(3.06)	
EA Sedentary	3.00	3.21	-0.21
	(1.65)	(2.13)	
Jurisdictional Hierarchy	2.75	2.31	0.45
	(0.43)	(0.46)	
Wealth Distinctions	1.32	1.03	0.29
	(0.76)	(0.17)	
Population in 1600	1947.04	1966.37	-19.32
	(3445.03)	(3244.10)	
Log Ruggedness	-1.28	-1.64	0.36
	(1.36)	(0.87)	
Forced Co-existence	0.66	0.65	0.01
	(0.47)	(0.48)	
Nearby Income Per Capita	18448.98	17438.36	1010.62
	(2939.09)	(2874.21)	
Observations	125	72	197

Notes: Means are reported with the standard deviations in parenthesis. Distance displaced is the distance in km from the centroid of a nation's traditional territory and the centroid of the current reservation. "bison-reliant" is 60 percent of a tribe's ancestral territory overlapping the historic bison range.

One concern with comparing bison-reliant to non-bison-reliant nations is that there may be differences in the quality of reservation land allotted to each tribe that may have impacted their long-run development through their ability to cultivate the land. To address this concern, we construct indicators of soil quality for crop production on each reservation using data from the Harmonized World Soil Database v 1.2 (HWSD) from the Food and Agriculture Organization of the United Nations (Fischer, van Velthuizen, Shah, and Nachtergaele, 2008). The HWSD is a 30 arc-second raster database, containing soil quality along a number of dimensions and each pixel is coded on a scale from 1-7 regarding the suitability of the land for agriculture along the

on our railway controls and we believe they account for the same variation in outcome variables.

given dimension. This measure is categorical, with 1 representing "no or slight constraints", up to 7 representing "water bodies". We calculate the fraction of non-water pixels in each tribe's reservation that are classified as having "no or slight constraints" for 7 dominant soil quality measures: the nutrient availability of the soil, the nutrient retention capacity, rooting conditions, oxygen availability to roots, excess salts, toxicity, and workability of the soil. Table A17 provides a more detailed description of what each of the soil quality indices captures. We include these as controls in certain specifications.

Table 2 presents the summary statistics for the reservation/tribal sample taken from Dippel (2014) that we merge with data sources on historical bison-reliance, measures of the timing and the speed of settlement into traditional territories, and cultural controls. On average, bisonreliant nations earn about \$2,200 less per capita in 2000, and their light density is 5.92 points lower than non-bison-reliant reservations. We also see that of the bison-reliant nations, only 23% of their traditional territories were covered by bison in 1870. Figure A5 shows the share of ancestral lands overlapping the original bison range and the bison range as of 1870 for this restricted sample. As of 1870, roughly 18 nations' ancestral territories were still covered by the bison range. The data in Table 2 show that bison-reliant nations were equally as likely as non-bison-reliant nations to engage in warfare, be displaced from their ancestral territories, be historically centralized, experience forced coexistence, be sedentary, be located in areas with similar levels of absolute mobility, have the same population density in 1600, and have similar levels of settler population growth; however, there are also notable differences. For example, bison-reliant nations are located in states that were admitted to the union later, they consume fewer calories from agriculture, have less wealth and political distinctions, are located on less rugged terrain, and are located next to slightly poorer counties.

III Methodology

Our empirical strategy uses two primary specifications depending on whether we are analyzing the immediate or long-term effects of the bison's decline. The structure of Boas' height data allows us to use a difference-in-differences estimation strategy based on a person's year of birth and the bison-reliance of their tribe, in order to identify the effect of loss of the bison on childhood and adult height. Let i denote the individual, n the Native nation, t the cohort, and H_{int} the height of the individual in centimeters. Then our estimating equation for the immediate effects of the decline of the bison can be written as:

$$\mathbf{H}_{int} = \beta_0 + \beta_1 \mathbf{B}_n + \beta_2 \mathbf{1}_i (\text{BornNoBison}) + \beta_3 \mathbf{1}_i (\text{BornNoBison}) \times \mathbf{B}_n + \text{age}_t + \mathbf{X}_{int} \boldsymbol{\theta} + \varepsilon_{int}, \quad (1)$$

where bison-reliance is given by B_n , one of our continuous measures of bison-reliance or loss, and 1_i (BornNoBison) is an indicator for the individual being born after the bison were eliminated. The coefficient of interest is β_3 which is the coefficient on the interaction of bison-reliance and the indicator for being born after the bison were eliminated. Each specification includes a full set of age fixed effects to control for trends in height, denoted by age_t . We also include a matrix of controls, X_{int} , for whether the individual is full blood, from Canada, and the expansion of the railway into traditional territories. Standard errors are clustered at the tribal-age level.

The key identifying assumption in the difference-in differences methodology is that of parallel trends in the absence of treatment. In our context, we must assume that the height-trends of bison-reliant nations would have been the same as those of non-bison-reliant nations, were it not for the loss of the bison. This is a plausible assumption, but we also run a more restrictive specification where we compare those that lost the bison quickly (over a 10-20 year period) to those that lost the bison relatively slowly (over a hundred-year period). Restricting the comparison to within bison nations allows us to compare across nations with similar unobservable characteristics, as they would have been subject to similar government policies and had similar cultural backgrounds. In our most stringent specifications, we restrict the sample to those between the ages of 5 and 35.

Our main specification compares trends in the heights of bison-reliant societies to trends in the heights of non-bison-reliant societies, before and after the decline of the bison. We consider those born after 1870 as being affected by the bison's decline. In our specifications that compare trends in the heights of those that lost the bison rapidly to those that lost the bison slowly, we use the date of 1886 as the cut-off for being born after the extinction of the bison. We use this year since the Sioux's last bison hunt was in 1882 and permican can last for nearly 3 years (Ostler, 2001), so that cohorts born after 1886 were almost surely born into a time without bison. Varying this date slightly has no qualitative effect on the results.

We also present results using a more flexible event study design, which shows height differ-

entials between bison- and non-bison-reliant nations in two-year age cohorts before and after the rapid slaughter began:

$$\mathbf{H}_{int} = \gamma + \sum_{t=-20, t \neq 0}^{20} \delta_t \mathbf{B}_n \times \operatorname{cohort}_t + \zeta \mathbf{B}_n + \operatorname{age}_t + \mathbf{X}_{int} \boldsymbol{\theta} + \varepsilon_{int},$$
(2)

where, the interaction of bison-reliance and the indicator for being born after the bison's decimation is replaced by a set of interaction terms, $\sum_{t=-20,t\neq0}^{20} \delta_t B_n \times \text{cohort}_t$, that measure the differential change in heights between bison-reliant and non-bison-reliant cohorts for a twentyyear window surrounding the beginning of the slaughter. We leave out cohorts born in t = 0, so that all coefficients are measured relative to the year in which the slaughter began. The event study specification is useful to assess which cohorts were most affected by the bison's decimation and also allows us to assess whether the parallel trends assumption is likely to hold. We estimate additional event study specifications to infer the impact of the loss of the bison on mortality by using data from the 1900 and 1910 IPUMS Historical Census Over-sample and use the available information on tribe and birth year to construct population sizes before and after the slaughter of the bison.

In order to determine how the loss of the bison affected income, occupational rank, and light density over the long run, we estimate both reservation-level and individual-level specifications. First, we use the 2000 American census data compiled by Dippel (2014), where we focus on either income per capita or mean light density as the outcome variable. All of these specifications are run at the reservation-tribe level. Note that this use of "reservation-tribe" as the unit of observation follows Dippel (2014), since tribal nations that may vary in historic bison-reliance may also share a reservation.

Second, we use individual-level data from the 1910, 1930, 1990 and 2000 American censuses that contain the most detailed tribal information. These specifications are run at the individuallevel, with occupational rank as the outcome variable and we run separate regressions for each wave of data. In these specifications we collapse the tribal groups in 1910 and 1930 into the more coarsely measured tribal affiliations from the 1990 and 2000 American censuses, in order to use a comparable sample over time. Denote i as an individual or reservation-tribe, depending on the specification, and N as a nation, then the estimating equation is given as:

$$O_{in} = \alpha_0 + \alpha_1 B_n + X_i \theta + Z_n \Psi + \varepsilon_{in}, \qquad (3)$$

where O_{in} is our outcome, either occupational rank, income, or log mean light density. We control for individual-level characteristics, X_i , such as age and current location of residence in the regressions using occupational rank, and reservation-level characteristics, such as the ruggedness of reservation terrain, surrounding counties' economic characteristics, in the regressions using income per capita. Cultural controls, such as whether the society was traditionally nomadic, the proportion of their calories derived from agriculture, whether the society exhibited observable wealth distinctions, or whether the society had an aristocracy, are included in Z_n and vary at the level of the tribe. Finally, Z_n also includes colonial controls–whether the average society experienced forced co-existence (Dippel, 2014), the speed and timing of settlement in a society's ancestral territories, and whether the nation was displaced from their traditional territory which are discussed in Section II–as they vary at the level of the tribe.

We examine the long-run impact of the bison's decline in two ways. We begin by using our full sample and differentiating between tribes whose traditional territories experienced the rapid or gradual loss of the bison. For these specifications we include two measures of bison-reliance: the reduction in a nation's traditional territory's bison-coverage as of 1870, "Share lost as of 1870", and the reduction as of 1889, "Share lost as of 1889". Our second and most stringent specification restricts the sample to those whose traditional territories overlap with the original range by more than 60%. These specifications allow us to compare the outcomes of bison-reliance interpretation of our results relies on the speed of loss being conditionally uncorrelated with other unobservable differences between these societies. This is an assumption we push further in the sections that follow. It is additionally important to note that in these geographical measures of bison-reliance, the timing of bison depletion is likely correlated with bison density and thus with economic diversification of the Native nations.³¹ This is much less of a problem for our

 $^{^{30}}$ Using the terms "rapidly" or "quickly" and "slowly" or "gradually" may be a slight misuse since given a time horizon of previous bison reliance of 10,000 years, both of the time horizons of bison-loss are short.

³¹For example, we would be considering bison in the woodlands and bison in the high plains as equivalent. However, bison herds in the woodlands were less dense and, given the relative scarcity of the woodlands bison, other game such as deer, or hare were often hunted.

alternative measures of bison-reliance discussion in II.

IV Results

Our results are divided into four subsections: the effects of the bison's decline on 19th century heights and cohort sizes, the intermediate effects of the bison's decline on occupational rank, the effects of the bison's decline on more modern outcomes, like income and light density, and an analysis of the possible mechanisms through which historically bison-reliant peoples may still be adversely affected by the loss of the bison today.

A Immediate Effects

Figure 4 displays the results of the event study design of the bison's decline on heights. We use the full sample and compare bison-reliant to non-bison-reliant individuals, where bison-reliance is defined by whether the tribe obtained most of its calories from bison at least during part of the year.³² The coefficients of interest, δ_t , display changes in the relationship between bison-reliance and standing height across event-cohorts relative to 1870, the year before the slaughter began. The coefficients for $t = 1850, \ldots, 1870$ act as a placebo test for whether the parallel trends assumption holds. Each of these coefficients is both small in magnitude and not statistically different from 0 (with the exception of 1856), suggesting that prior to the disappearance of the bison, there were no differential trends in height between those who were bison-reliant and those who were not. After 1870, the difference in the heights of bison-reliant and non-bison-reliant nations increases steadily in successive cohorts. The largest differences are found among those born roughly twenty years after the slaughter began.

Comparing those that lost the bison slowly to those that lost the bison quickly yields a similar pattern, although these effects are estimated with substantially less precision in later years because of smaller sample sizes. Thus we collapse these later years and estimate equation 1. Table 3 presents the results of estimating equation 1. All columns include a linear trend in birth year to account for potential trends in heights over this time period. The first column shows that those nations that lost the bison gradually, as measured by a large value of "Share

 $^{^{32}}$ Similar patterns are observed if one uses the original share of territory covered by the bison range as the measure of bison reliance. These results can be seen in Figure A8.

Figure 4: Coefficients on indicators for each two-year of birth before and after the slaughter interacted with whether the tribe obtained most of its calories from bison at least during part of the year. The dependent variable is height in cm and conditions on age fixed effects, a dummy for "full blood", the tribe being located in Canada, whether a railway entered the traditional territory of the tribe and the number of years since your year of birth the railway had been present, and for whether the respondent had been born during a period of war. Data is from Franz Boas' 1889 to 1903 sample, N=7,321 (males).

lost as of 1870", were about 2 cm taller than all other Native nations, on average, but lost this height advantage after $1870.^{33}$ In column (2), we restrict our specification to only include nations that had at least 60 percent of their original ancestral territory overlapping the 1730 bison range. This allows us to look within bison-reliant nations and compare those communities that were affected by the gradual decline to those who were affected by the rapid slaughter. On average, nations that lost the bison quickly were slightly taller than other bison-reliant peoples, but after 1886 more than their entire height advantage was eliminated, with declines in height of up to 5 cm.³⁴ These findings are consistent across specifications with additional controls, those that focus on individuals aged 5 to 35 years, and those focusing only on Native Americans in the United States.³⁵

The most dramatic estimates suggest that among those born into bison-reliant nations that lost the bison as part of the rapid slaughter, heights declined by 9 cm relative to those that lost

³³Recall that each of our bison-reliance measures are continuous variables $\in [0, 1]$, so that a one unit change in "share lost as of 1870", for example, can be thought of as moving from the scenario where there is no reduction in bison-coverage in a tribal territory by 1870 to that where the reduction in bison-coverage in a tribal territory is 100%.

³⁴The exact coding of the Sioux and Ojibway sub-tribal groups turns out to be important for the precise magnitude of the reversal of fortunes when focusing solely on the former bison-reliant societies. We have taken the approach that uses an average of bison-dependency among the Sioux and Ojibway when the exact tribal grouping is ambiguous here, however, any reasonable coding of these groups yields the result that the loss of the bison at very least eliminated the height advantage of formerly bison-reliant peoples.

³⁵Different age restrictions can be used with similar results.

	(1)	(2)	(3)	(4)	(5)	(6)
I(Born After 1870)X Shr lost as of 1870	-2.115			-1.825		
	(0.913)			(1.072)		
I(Born After 1886)X Shr lost as of 1889		-5.304	-9.764		-7.582	-5.668
		(2.572)	(2.544)		(2.905)	(4.414)
Shr lost as of 1870	2.139			1.429		
	(1.025)			(1.103)		
I(Born After 1870)	1.559			1.245		
	(0.765)			(0.853)		
Shr lost as of 1889	· · · ·	1.699	1.662	. ,	1.497	1.164
		(0.806)	(0.771)		(1.249)	(1.227)
I(Born After 1886)		4.143	6.178		2.195	3.394
		(1.316)	(1.437)		(1.463)	(1.955)
Canada	-0.891	0.804	0.794	0	0	0
	(0.751)	(0.535)	(0.551)	(.)	(.)	(.)
Only Native American Ancestors	-1.204	-1.128	-1.266	-0.925	-1.373	-1.398
	(0.293)	(0.391)	(0.377)	(0.352)	(0.465)	(0.491)
Year of Birth	-0.154	-0.170	-2.065	-0.135	-0.180	-2.050
	(0.035)	(0.002)	(0.054)	(0.041)	(0.011)	(0.060)
Year Sampled	-0.103	-0.172	1.479	-0.0496	0.145	1.818
	(0.165)	(0.183)	(0.213)	(0.193)	(0.215)	(0.243)
# Yrs Since Rail				-0.0181	0.0137	0.0228
				(0.019)	(0.012)	(0.022)
Born After Rail				1.432	-0.305	-0.630
				(0.722)	(0.709)	(0.818)
# Yrs Born After Rail				-0.0273	-0.0335	-0.0426
				(0.028)	(0.030)	(0.042)
Born During War				2.114	1.979	1.619
				(0.444)	(0.495)	(0.471)
Constant	572.9	724.1	1210.8	436.2	145.1	542.3
	(306.328)	(346.049)	(414.565)	(359.805)	(395.720)	(434.257)
Observations	9272	3882	2626	7452	3303	2238
Adjusted R^2	0.869	0.854	0.865	0.866	0.850	0.865

Table 3: The Impact of the Loss of the Bison on Male Native American Height

Notes: Clustered standard errors at the tribe level in parentheses. There are 133 clusters at most and 48 clusters at least. The columns (2), (3), (5) and (6) are for only bison-reliant nations (i.e. only includes only those tribes whose traditional territories overlap with the historic bison range by at least 60%). Columns (3) and (6) restrict the age of the sample to be between 5 and 35 and the last three columns are for American tribes only.

the bison gradually.³⁶ We replicate Table 3 for female Native Americans in Table A4. In the most restrictive specification, the results for females support a similar narrative. Females are notably under-represented in Boas' sample and we believe the results should be treated with caution.

Komlos and Carlson (2014) note a decline in the height of Plains Indian scouts in the U.S. Army after the Civil War; however, they do not connect this to the loss of the bison, nor do

 $^{^{36}}$ Table A3 shows results when using our alternative measure of bison-reliance constructed from anthropological accounts. A similar pattern is observed and the results are of a comparable magnitude when we interact our anthropological measure with an indicator that tribal territories still had 80 percent of their territory covered by bison at the time of the slaughter.

they explicitly examine trends in heights by the age or bison-reliance of the individual. Our results present an explanation for their findings. It is important to note that it is unlikely that settlement on reservations are able to offer a reasonable alternative explanation for our findings for two reasons. First, there was a lack of a sharp change in reservation policy after this time period. Second, Steckel (2010) shows that the number of years on a reservation if anything is positively correlated with height. That being said, there may be a concern that our results are driven by differential penetration of the railway and thus European settlement over this time period. Hence, in columns (3) to (6), we control for the number of years since the railway first entered an individual's tribal territory and whether an individual was born after the first railway entered their traditional territory. Although we see that for every year after someone was born after the introduction of the railway to their territory they are approximately 0.5 cm shorter, this does not significantly diminish the effect of the loss of the bison.

Given the suggestive results on the age distribution regarding higher levels of youth mortality, we examine whether there is further evidence of a population decline after the rapid extinction of the bison. Unfortunately, to the best of our knowledge complete population accounting of Native American nations was sparse at best before 1910 and the Boas sample was not designed to give by age, representative sample sizes of the Indigenous population of North America. Thus we infer the impact of the loss of the bison on mortality by using data from the 1900 and 1910 IPUMS Historical Census Over-Sample and use the available information on tribe and birth year to construct population sizes of cohorts born before and after the slaughter of the bison. While this data is likely imperfect, to our knowledge, it is the most complete available. Given that some tribe-birth year combinations have no observations, we impute a population size of zero.³⁷ Given that the Census weights are constructed to provide a representative sample of the population, this exercise is plausibly informative of differential changes in births and deaths among the bison peoples after bison's decline.

Figure 5 displays the estimates of cohort size relative to those born in the year 1870 by whether the society was bison reliant. Panel 5(a) displays the results using the full sample, comparing bison-reliant to non-bison-reliant individuals. Panel 5(b) restricts the sample to only those whose societies were at one point bison-reliant and compares those who lost the

³⁷Similar conclusions are be reached without this imputation, although they are smaller in magnitude.

Figure 5: Coefficients on indicators for each two-year of birth before and after the slaughter interacted with whether the tribe obtained most of its calories from bison at least during part of the year. The dependent variable is the weighted number of people observed in that cohort and conditions on age fixed effects. Data is from the IPUMS 1900 and 1910 Census Over-sample. Given that some tribe-birth year combinations have no observations, we impute a population size of zero.

bison gradually to those who lost the bison rapidly. The results are dramatic. The cohorts born after the slaughter are substantially smaller for those nations that were still bison-reliant before the slaughter began. It is important to keep in mind that this data is from 1900 and 1910, before Native Americans were citizens of the United States and before there was freedom of mobility from reservations, suggesting that the smaller population sizes were not due to primarily from out-migration. These results are consistent with higher mortality, and the possibility of our estimates of the effect on height being a lower bound on the actual consequences of the loss of the bison.

We also compile the available statistics from the Historical Statistics of the United States on the population counts of American Indians by tribe (Carter, Gartner, Haines, Olmstead, Sutch, Wright, and Snipp, 2006).³⁸ There is a large gap in data availability between 1780 and 1907, with population counts from 1845 available only for a small selection of tribes, thus we focus on 65 tribes for which we have consistent data in 1780 and 1907. Nations that were bison-reliant had a population that was much larger than non-bison-reliant tribes in 1780, and we find that by 1907 their population size statistically converges to that of the non-bison-reliant tribes. Further, bison-reliant nations lost nearly 70 percent of their population over this period. The sample of tribes contained in the Historical Statistics does not allow us to compare the rapid loss of the bison to the gradual loss. While we view these statistics as substantially less

 $^{^{38} \}rm We$ use the tables Ag392-433, Ag265-330, Ag17-129, and Ag130-264.

clean than our other results, they offer additional evidence in support of the finding that the loss of the bison had large effects on the people that depended on them. These results can be found in Table A5.

B Intermediate Effects

Next, given the limited scope for economic adjustment available to Native American communities, we examine whether the effects of the loss of the bison persist 20 years and 50 years after the slaughter. Standard indicators of well-being, like income per capita, are uncommon in the early twentieth century, so we use information on occupational rank from the American Census in 1910 and 1930 to examine whether the loss of the bison is correlated with outcomes in the medium-run. Table 4 presents the results of our findings. In all specifications we include a set of nine regional fixed effects.³⁹

Column (1) and column (2) present the results for the full sample in 1910 and 1930, respectively. In columns (3) and (4) we limit the sample to individuals who belong to tribes whose ancestral territory overlapped with the historic bison range by at least 60 percent. Focusing on within bison-reliant tribes allows us to hold constant unobservable factors that may differ between bison-reliant and non-bison-reliant tribes, without explicitly controlling for them in the model.⁴⁰ We find that the share of territory lost as of 1889 is highly correlated with occupational rank. The effect becomes larger when we restrict the sample to only those tribes who had at one point had some reliance on the bison, suggesting that 20 and 50 years after the bison's slaughter, Native Americans who had faced the most substantial economic shock had yet to recover.

C Contemporary Outcomes

C.1 OLS Estimates of the Bison's Decline on GDP Per Capita

Finally, we examine whether the bison's decline has led to long-run differences in well-being between bison-reliant and non-bison-reliant nations. Table 5 presents the average differences

 $^{^{39}}$ These results hold with a full set of state and place of birth fixed effects. The most substantial difference in the estimates with these more demanding fixed effects is in column (1) which is estimated with substantially more noise.

⁴⁰The detailed controls we have for our reservation-level (long-run) results would be nearly co-linear with a tribal fixed effect in this data because of the limited number of tribes in the sample.

	1010	1030	1010	1030	
	<u>1910</u>	1950	1310	1300	
	Full S	Full Sample		Only Bison-reliant	
Share lost as of 1870	0.0431	0.126			
	(0.191)	(0.118)			
Share lost as of 1889	-0.582	-0.474	-0.604	-0.720	
	(0.211)	(0.155)	(0.201)	(0.164)	
Age	0.111	0.0726	0.100	0.100	
	(0.026)	(0.031)	(0.046)	(0.052)	
Age-Squared	-0.001	-0.001	-0.001	-0.001	
	(0.000)	(0.000)	(0.001)	(0.001)	
Constant	-2.234	-1.195	-1.825	-1.962	
	(0.418)	(0.628)	(0.920)	(1.121)	
Observations	463	620	225	296	
Adjusted R^2	0.067	0.086	0.038	0.125	

Table 4: Correlation between Standardized Occupational Rank and Tribe Historic bison-reliance in1910 and 1930

Notes: Clustered standard errors at the tribe level in parentheses. All columns include regional fixed effects (Census regions as defined by IPUMS: the New England Division, Middle Atlantic Division, East North Central Division, West North Central, South Atlantic Division Division, East South Central Division, West South Central Division, Mountain Division, and the Pacific Division). Occupational rank has been standardized to a mean of zero and a standard deviation of one. "Bison-reliant' is defined as at least 60 percent of a tribes' ancestral territory being covered by the original historic bison range.

in per capita income on reservations based on bison-reliance and the speed of bison loss. In column (1), we look at the average difference in income per capita of moving from having the original share of the bison range not overlapping the tribes' ancestral territory, to overlapping it by 100%. This income difference is roughly 2,500 compared to an average income per capita of only 11,000. In columns (2), (3), and (4), we look at the correlation between losing 100% of the share pre-1870 or losing it post-1870 relative to never having been bison-reliant. Across these specifications, losing the bison as part of the slaughter is associated with a larger negative effect on income: nearly 4,000 (or 38%) less is earned by those that lost the bison during the slaughter relative to a non-bison-reliant nation. The final column focuses within bison-reliant nations and shows that those that lost the bison rapidly have roughly 30% less income in 2000 compared to those who lost the bison slowly. Strikingly similar results are shown for Canada in Table A6 where we condition on a number of controls that are similar to those used with the American data.⁴¹

⁴¹For the Canadian regressions we focus on the relationship between the share of traditional territory covered by the bison's original range and long-run outcomes. We do not find large differences between bison-reliant nations who lost the bison gradually compared to those that lost the bison quickly. Presumably this is because
	(1)	(2)	(3)	(4)	(5)
Original Share	-2588.3				
	(823.913)				
Share lost as of 1870		-1632.6		-2015.0	
		(894.083)		(892.423)	
Share lost as of 1889			-3918.5	-4380.3	-2556.2
			(590.392)	(671.006)	(616.157)
Constant	11074.9	10553.0	10355.2	11038.3	9213.4
	(618.927)	(599.328)	(441.578)	(624.817)	(500.193)
Observations	197	197	197	197	72
Adjusted \mathbb{R}^2	0.053	0.014	0.037	0.060	0.045

 Table 5: Correlation between the Share of Bison Covering Traditional Territory and Income Per Capita

 by Reservation in 2000

Notes: Clustered standard errors at the tribe level in parentheses. The last column only includes tribes for whom at least 60% of their original territory was covered by bison.

In the descriptive statistics of Section D, we show that formerly bison-reliant nations are systematically different than non-bison-reliant nations, thus Table 6 reports the results of the exercise above for columns (4) and (5), but conditional on a set of cultural, geographic, colonial, and modern economic factors. Systematically, we find that formerly bison-reliant nations make less on average, even after conditioning on the income per capita of nearby counties. Those that lost the bison as part of the mass slaughter in 1870 (columns (4)-(6)) make less than those that had time to adjust to the bison's gradual elimination from their territory. The results become less precisely estimated in our most restrictive specifications, but the point estimate remains large and negative.

C.2 Social Conflict, Population Size, and Nighttime Light Density

Admittedly, using income per capita as an outcome only captures one dimension of development. In Table 7, we complement the regressions of GDP per capita on bison-reliance by estimating the same specifications using three alternative outcomes: the frequency with which a reservation name has been in the news for social conflict or corruption within the community, the log of population on the reservation, and the log of mean light density. Column (1) of Table 7 displays the coefficients from a regression of per capita income on the share of traditional territory lost by 1870 and 1889 for comparison.

there is not sufficient variation between those that lost the bison slowly and those that lost the bison gradually, as evident in Figure 1. Table A19 reports the sources used to construct the Canadian data set.

	(1)	(2)	(3)	(4)	(5)	(6)
Share lost as of 1870	-1449.3	-1863.2	-1721.3			
	(815.493)	(775.640)	(829.519)			
Share lost as of 1889	-4813.4	-3845.4	-3134.9	-2684.8	-1627.4	-1354.2
	(820.761)	(905.124)	(920.421)	(912.440)	(1120.595)	(928.096)
Historic Centralization	1969.6	3628.6	3516.5	664.9	2240.5	2124.0
	(1006.533)	(1013.379)	(956.761)	(640.271)	(1164.175)	(1053.450)
EA Calories Agriculture	-102.0	-167.8	-110.8	-308.4	133.8	194.1
	(296.148)	(198.276)	(184.399)	(345.249)	(424.263)	(421.256)
EA Sedentary	-166.6	-204.5	-298.7	613.5	-524.3	-717.7
	(310.750)	(308.386)	(290.931)	(488.434)	(690.147)	(687.466)
Jurisdictional Hierarchy	-107.0	-662.4	-504.0	-893.5	-1033.3	-1123.5
	(969.866)	(727.207)	(747.352)	(574.677)	(844.388)	(1067.697)
Wealth Distinctions	-313.5	585.1	455.6	2386.6	3952.5	4145.2
	(954.534)	(618.650)	(619.317)	(846.462)	(1312.723)	(1376.627)
Log Ruggedness	396.5	229.9	142.7	-376.6	-751.3	-597.9
	(395.714)	(304.299)	(306.944)	(588.526)	(600.748)	(501.940)
Population in 1600	0.0164	0.00976	0.0475	-0.0517	0.217	0.238
	(0.087)	(0.090)	(0.083)	(0.121)	(0.184)	(0.192)
Forced Co-existence		-5030.6	-4616.8		-7093.4	-6268.5
		(852.942)	(868.501)		(3639.297)	(3221.233)
Indian War		-969.8	-264.2		586.0	904.3
		(741.623)	(821.244)		(1424.492)	(1475.355)
Distance Displaced		710.2	546.4		867.1	854.5
		(328.398)	(294.814)		(996.512)	(882.388)
Nearby Income Per Cap.			0.340			0.380
			(0.129)			(0.238)
Observations	197	197	197	72	72	72
Adjusted R^2	0.058	0.279	0.308	-0.032	0.226	0.267

Table 6: Correlation between the Speed of Bison Loss and Income Per Capita by Reservation in 2000

Notes: Clustered standard errors at the tribe level in parentheses. The last three columns only include tribes for whom at least 60% of their original territory was covered by bison.

In column (2) we use the frequency with which a reservation name has been in the news for social conflict as an outcome. These data were also collected by Dippel (2014). In addition to our baseline controls, we condition on per capita income on a reservation in order to estimate the effect of the bison's decline on social conflict beyond its possible direct effect on income. We find that nations that lost the bison most quickly have a higher incidence of social conflict and corruption, even after conditioning on pre-contact, colonial, and other economic controls. This is suggestive that loss of the bison may have had additional long run social consequences.

The third column evaluates whether the loss of the bison affected population in the long-run. The positive coefficient estimates suggest that nations who were affected by the bison's decline tend to be larger in the present day. In fact, if bison were eliminated from 100% of a tribe's traditional territory in 1889, the tribe is, on average, 178% larger today. Although this result may seem counterintuitive compared to the effects on income and social conflict, they should be

interpreted with caution since our unit of observation is the reservation level. If bison-reliant tribes had less opportunity for migrating off reservations, or were less able to as a result of their situation after the bison's loss, then we should expect reservation population to be larger in present day.

The last outcome we examine is the log mean light density in the year 2013-the most recent year for which light data is available-for an expanded set of reservations.⁴² We exclude reservations that contain multiple tribes that cannot be clearly mapped to our controls-in particular, the Ethnographic Atlas-and we add a control for the reservation's population to account for the fact that reservations with a larger population might mechanically have a higher light density. We also include a dummy variable for whether the reservation was formed at the federal or state level.⁴³ Column (1) shows this baseline regression with the cultural controls from the Ethnographic Atlas, the ruggedness of reservation terrain, and the pre-contact population estimate. Here, we compare both tribes that experienced the gradual elimination of the bison and those that experienced the rapid elimination of the bison to non-bison-reliant tribes. Those that lost 100% of their bison territory in the gradual decline have on average 35% lower light density today, while those that lost 100% of their bison territory in the rapid decline have approximately 71% lower light density today compared to non-bison-reliant tribes.

The last four columns of Table 7 restrict the sample to only tribes who were at one point bison-reliant, and repeat the analysis for the new outcomes. Once we compare within bisonreliant nations the coefficient estimates on all outcomes become slightly smaller in magnitude, but remain qualitatively consistent.

C.3 Alternative Measures of Bison-Reliance

Our classification of tribal reliance on bison could be confounded by unobservable geographic factors. We therefore, report our results using a number of alternative classifications of bisonreliance. As discussed previously, we use an anthropological measure that classifies tribes' bison-reliance based on anthropological accounts; we also use the share of a tribe's traditional

 $^{^{42}}$ Table A18 lists the additional sources we used in order to include the full set of covariates in our regressions. We do not include the measure of forced coexistence from (Dippel, 2014) in the full set of reservations; however, in Figure A10 in the appendix we show using the set of communities that match to the data from (Dippel, 2014) that our results do not change when we add the full set of controls from this dataset, including forced coexistence.

⁴³In the regressions of GDP per capita, our sample only includes federal reservations.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	PC Inc	News Stories	Log Pop	Log Lights	PC Inc	News Stories	Log Pop	Log Lights
Share lost by 1870	-1721.3	104.7	0.486	-0.353				
	(829.519)	(85.866)	(0.223)	(0.207)				
Share lost by 1889	-3134.9	812.1	1.775	-0.711	-1354.2	600.9	1.001	-0.460
	(920.421)	(340.517)	(0.233)	(0.204)	(928.096)	(253.976)	(0.292)	(0.272)
Constant	2800.9	366.8	5.796	2.752	-6012.0	1472.5	9.869	3.769
	(4453.867)	(412.562)	(1.194)	(0.578)	(12310.700)	(2478.129)	(2.969)	(1.099)
Main Controls	Х	Х	Х	Х	Х	Х	Х	Х
Lights Controls				Х				Х
Per Capita Income		Х	Х			Х	Х	
Observations	197	197	197	340	72	72	72	109
Adjusted \mathbb{R}^2	0.308	0.142	0.397	0.372	0.267	0.171	0.429	0.380

Table 7: Correlation between Share of Bison Territory Lost and Alternative Outcomes

Notes: Clustered standard errors at the tribe level in parentheses. The last four columns only include tribes for whom at least 60% of their original territory was covered by bison. "Main Controls" include the full set of controls in Table 6. "Lights Controls" include mean light density in the counties surrounding the reservation in replace of mean per capita income in nearby counties and whether the reservation is federal or state. "Per Capita Income" is included as a control regressions where news story is the dependent variable to obtain the effect of the bison's loss on news stories beyond the income effect that may lead to social unrest.

territory that is covered by short grasses, the bison's primary food source; and finally, we use the number of present-day cattle per kilometre squared in each tribe's traditional territory, as a proxy for carrying capacity of the land.

Table 8 displays these results. The first column repeats the results from column (1) of Table 5, column (1) for comparison. Column (2) displays the results using the anthropological measure, where the interaction of the anthropological measure and "rapid loss" computes the differential effect of the bison's decline for tribes whose traditional territories were located in the region that experienced the rapid decline of the bison. Column (3) performs the same exercise using the grasslands measure, and column (4) does so with the cattle measure. While the coefficient estimates vary slightly in magnitude compared with the main results, the qualitative conclusions are upheld. Specifically, tribes who traditionally relied on the bison have lower GDP per capita on reservations today, in comparison to those who did not rely on the bison. Further, tribes who were located in the region of rapid decline fare even worse in the long run.

C.4 Accounting for European Settlement and Differences in Modern Reservation Environments

In Table 9, we strengthen the selection on observables assumption underlying our identification strategy by including a number of additional controls. First, we include regional fixed effects in all columns. Next, we consider the fact that the bison-reliant nations may have encountered

	(1)	(2)	(3)	(4)
Original Share	-2097.8			
	(769.481)			
Anthro Bison Measure		-1606.3		
		(1071.193)		
Anthro Bison Measure X Rapid Loss		-1865.5		
		(1035.755)		
Grassland Share			-148.4	
			(1311.140)	
Grassland Share X Rapid Loss			-1836.1	
			(1095.845)	
Cattle Density				-202.3
				(473.913)
Cattle Density X Rapid Loss				-924.7
				(380.473)
Observations	197	197	197	197
Adjusted R^2	0.308	0.304	0.285	0.292

 Table 8: Correlation between Alternative Bison Measures and Income Per Capita by Reservation in 2000

Notes: Clustered standard errors at the tribe level in parentheses. "Anthro Bison" is a measure from 0 to 1 of the degree of bison-reliance collected from Waldman (2009). "Rapid loss" is an indicator for whether a tribe's territory was still covered by at least 60% of the bison range as of 1870, indicating that a nation still potentially relied on the bison at the time of the slaughter. "Grassland share" is the share of ancestral territory that overlaps with temperate grassland ecosystems which was generated by data from the World wildlife foundation. "Cattle Density" number of cattle in 2012 taken from the Census of Agriculture in counties in nation's traditional territory. All columns controls for the full set of controls in Table 6.

a later and more rapid period of settlement than other Native Americans. This may influence modern development, either through later exposure to disease or through less time for economic assimilation. In the historical section, we argued that bison-reliant nations were likely first exposed to European diseases indirectly through trade, as early as many of the coastal nations, but we view the current exercise as relevant for alleviating any concern that this is not true. To account for the speed and timing of settlement, we condition on the presence and timing of the railway entering a nation's ancestral territory. The results of this exercise can be seen in the first column of Table 9. In column (2) we show that our results are robust to controlling for the date the last treaty was signed with each Native American nation. We use this information, which comes from Spirling (2011), as an additional proxy for settlement and federal policy towards Native Americans.⁴⁴ It is important to note that over two thirds of the lands ceded by both bison-reliant and non-bison-reliant peoples were done so prior to 1870, as shown in Table A1,

⁴⁴Spirling (2011) shows that the time period in which treaties were signed is a strong predictor of treaty quality.

Table 9: Correlation between the Share of Bison Covering Traditional Territory and Income Per Capitaby Reservation in 2000: Robustness Checks

	(1)	(2)	(3)	(4)	(5)
Share lost as of 1870	-2468.5	-2490.0	-3371.7	-2163.2	-2395.0
	(981.148)	(970.742)	(1059.954)	(1140.959)	(1100.153)
Share lost as of 1889	-4118.7	-4805.6	-5473.4	-3143.7	-2949.6
	(1689.165)	(1702.899)	(1783.954)	(1721.465)	(1736.317)
Cultural & Colonial Controls	Х	Х	Х	Х	Х
Railway Indicators	Х	Х	Х	Х	Х
Treaty Indicators		Х	Х	Х	Х
Beaver Share			Х	Х	Х
Extended Modern Controls				Х	Х
Soil Quality Indicators					Х
Observations	197	197	197	197	197
Adjusted R^2	0.314	0.309	0.312	0.409	0.419

Notes: Clustered standard errors at the tribe level in parentheses. All columns includes cultural region fixed effects which include: California, the Great Basin, the Northeast, the Northwest, the Plains, the Plateau, the Southeast and the Southwest. Railway indicators include dummy variables for never having a rail line in your territory, the first developed in 1840-1850, 1851-1860, 1861-1870, 1871-1880, 1881-1890, and after 1890. The treaty controls include dummy variables for signing post-1880, between 1861-1870, 1871-1880, 1881-1890, and after 1890. The omitted treaty category is 1870-1880, and omitted railway category is 1830-1840. The extended modern controls include log reservation kilometers squared, nearby GDP per capita, nearby absolute mobility, log distance to nearest city, log population, presence of a casino, log of land ruggedness on each reservation, and the adult population share. Soil quality controls include share of reservation land without constraints from excess salts, nutrient availability, nutrient retention, rooting conditions, oxygen availability, toxicity, and workability. The cultural and colonial controls are the same as in 6. For all estimated coefficients, please see Table A7.

which was before the bison were eliminated.⁴⁵ This suggests that the slaughter did not force the signing of treaties, a narrative that has been advanced by some scholars.

In column (3) of Table 9, we attempt to control for the early exposure to European trading using a proxy for the degree of involvement in the fur trade: the proportion of traditional territory that was covered by the historical range of the beaver.⁴⁶ Beaver pelts were lucrative commodities that were frequently traded between natives and Europeans and could have likely resulted in earlier initial contact. The beaver was also depleted, but it was not a traditional food source or primary resource for the communities that traded it (Carlos and Lewis, 1993; Innis, 1999).⁴⁷ Once again, conditioning on this measure has little impact on our results. Interestingly, the portion of territory covered by the beaver range is positively correlated with income today.

In column (4), we add our contemporary controls and the size of the reservation in 2000.

 $^{^{45}}$ These data were taken from digitized maps of the total lands ceded to the United States by Native Americans between 1784 and 1972 from Hilliard (1972). The original version of this map can be found in Figure A6.

⁴⁶We digitize a map of the traditional beaver range from the Canadian Geographic: https://www.canadiangeographic.ca/article/rethinking-beaver.

⁴⁷Reliance on the beaver as a source of livelihood may be more of a concern for Indigenous groups in Canada, as declining fur prices towards the end of the nineteenth century affected the demand for treaties, as well as conditions for Indigenous peoples in the north of the country (Miller, 2009).

	(1)	(2)	(3)	
	OLS	Oster	IV: With Montreal	IV: No Montreal
Share Lost as of 1889	-1354.2	-1616.1	-1931.6	-1911.2
	(928.096)		(1062.637)	(1062.773)
Constant	-6012.0		-5783.2	-5791.2
	(12310.700)	•	(11033.423)	(11037.134)
Observations	72		72	72
R^2	0.391		0.389	0.389
<i>F</i> -Statistic on excluded instruments	•		18.50	21.43
<i>p</i> -value for overidentification	•		0.596	0.539
<i>p</i> -value for endogeneity			0.342	0.517

Table 10: Robustness: Accounting for Selection

Notes: Clustered standard errors at the tribe level in parentheses. All specifications restrict the sample to tribes whose traditional territory was at least 60 percent overlapping with the bison range. Each regression includes the full set of controls from Table 6. The F-statistic on the excluded instruments is the Kleibergen-Paap Wald rk F statistic; the overidentification test is the Hansen J statistic.

This attempts to account for the fact that Native American lands were differentially allotted to settlers, with most losing a substantial share of their land base. Once again, our results are unchanged. In column (5), we control for differences in soil quality across reservations using the indicators we construct from the HWSD. We control for the degree to which excess salts, nutrient availability, nutrient retention capacity, rooting conditions, oxygen availability, soil toxicity, and soil workability may affect crop productivity on reservations. A higher value of any of these variables indicates better average soil quality along this dimension. While soil quality is likely endogenous to factors like irrigation, again, our findings still hold that bison-reliant nations who lost the bison rapidly have lower incomes than other nations. For all estimated coefficients, please see Table A7.

C.5 Further Considerations Regarding Selection on Unobservables

Although Table 9 presents the main results conditional a number of additional controls, including cultural differences, the expansion of the railway into traditional territories, tribal experiences with treaty making, historical trapping, and our extended set of modern controls–there may still be concern that some remaining unobservable factor that is both correlated with the loss of the bison as well as income per capita, may bias our findings. As a final test of the unbiasedness of our parameter estimates, we use two separate methodologies to account for the remaining selection on unobservables, the results of which can be found in Table 10.

We present these results using our most restrictive specifications: we begin by limiting the

sample to only those nations who were historically bison-reliant-that is, at least 60% of their ancestral territory overlapped with the bison's original range. This restriction allows us to compare tribes who lost the bison quickly to those who lost the bison gradually, effectively balancing the unobservables that are common across all bison-reliant nations. The OLS coefficient from this exercise, repeated from column (6) of Table 6, is reported in column (1) for comparison.

We then use the methodology of Oster (2017), which provides a framework to compute the implied bias under two assumptions: (i) the degree of selection on unobservables in relation to selection on observables; and (ii) a value of the R-squared that should be expected from a hypothetical regression of the outcome on treatment and all observed and unobserved controls. Following the recommendation in Oster (2017) we rely on a proportional selection hypothesis and set our maximum R-squared to be equal to 1.3 times the R-squared using our standard controls.⁴⁸ Column (2) presents the results that take into account the implied bias. The coefficient on the share lost by 1889 increases slightly in magnitude from the OLS estimate of -1354.2 to -1616.12, suggesting that under the aforementioned assumptions, selection on unobservables results in a slight underestimation of the magnitude of the effect of the bison's decline. Since the implied bias provides an adjustment to the coefficient estimate, there is no standard error to report from this exercise.

Next, we turn to an IV specification that leverages the cost of travelling between tribes' ancestral homelands and historical cities that were important for the trade in bison robes. Identification here is grounded in the idea that these costs would be correlated with the speed at which bison were removed from traditional homelands, but uncorrelated with outcomes over 100 years later, other than through their effect on the loss of the bison. Since it is possible that proximity to important historical cities may be correlated with other forms of colonial contact or pre-contact conditions, we include our standard set of controls in all regressions. These are the same controls as can be found in Table 6.

The historical accounts suggest that a number of cities may have been important either as transit points or destination points for the trade in bison hides. At the beginning of the nineteenth century many buffalo hides made their way along the Missouri river to St. Louis to be traded (Taylor, 2011). Fort Leavenworth, Kansas was also an important transit point for

 $^{^{48}}$ This recommendation is based on a threshold value for the maximum R-squared for which 90% of a sample of randomized results from leading economics journals would survive.

hides being collected from the interior (Taylor, 2011), while the cities of New York, Chicago, and Montreal were involved in the sale of bison robes (Hornaday, 1889). By the time of the slaughter, the ports of New York and Baltimore were most involved in shipping the bison robes overseas to be treated in the tanneries in Germany, France, and the United Kingdom (Taylor, 2011).

To compute the cost to transport goods between a tribe's traditional territory and each city that was important for the trade of bison robes, we use the transportation costs constructed in Donaldson and Hornbeck (2016).⁴⁹ Our instruments are the cost of shipping freight between the county in which the centroid of a tribe's traditional territory is located and the counties containing the cities of St. Louis, Fort Leavenworth, New York, Chicago, and Baltimore. We include the cost of transporting goods to St. Louis, Fort Leavenworth, New York, and Chicago in 1870, as these were the primary cities involved in trading bison robes at this point in time. We also include the cost of transporting goods to New York and Baltimore in 1890, since these cities were the exit points for hides being shipped overseas. To compute the transportation cost between each tribal territory and Montreal in 1870, we use the cost of transportation to Buffalo, New York from Donaldson and Hornbeck (2016), and then rely on the estimates of transportation costs between Buffalo and Montreal, Canada, from Inwood and Keay (2013, 2015). Since the estimates in Inwood and Keay (2013, 2015) differ slightly from those in Donaldson and Hornbeck (2016), we also include estimates without the cost to Montreal.⁵⁰

The coefficient estimates from the IV specification are displayed in column (3), including Montreal, and in column (4), excluding Montreal.⁵¹ The IV estimate in column (3) is again slightly larger in magnitude than the OLS estimate in column (1).⁵² It indicates that tribes whose territory lost 100% of bison during the rapid slaughter have an average of \$1931.6 less

⁴⁹The transportation cost in Donaldson and Hornbeck (2016) is computed by calculating the combination of railway, wagon, and waterway routes between counties and assigning each route a cost based on the per ton-mile cost of shipping goods by each means.

 $^{^{50}}$ Inwood and Keay (2013, 2015) focus on the cost of shipping pig iron (CAD/Net Ton), while Donaldson and Hornbeck (2016) focus on the cost of transporting grain and meat (USD/Net Ton). We assume an exchange rate of 1 CAD = 1.51375 USD in 1870 (Historical Statistics of the United States, Table EE618).

⁵¹The first stage and reduced form results can be found in Tables A9 and A10.

 $^{^{52}}$ We have also estimated the IV specification using a set of instruments containing the "as the crow flies" distance between the centroid of each tribe's ancestral territory and St. Louis, Fort Leavenworth, New York, Chicago, Montreal, and Baltimore to instrument for whether the tribe was subject to the rapid slaughter. It is unclear as to whether these instruments are particularly meaningful, given that transport routes were rarely a straight line between two points; however, these results also suggest that the OLS estimate understates the true magnitude of the effect of the bison's loss, and are available on request.

per capita income today. Excluding Montreal does not alter this finding. The OLS estimates are further supported by the endogeneity test: the p-value for the test of the null hypothesis that the share of territory lost by 1889 can actually be treated as exogenous is 0.342 in column (3) and 0.517 in column (4).

Overall, the results from using the bias correction from Oster (2017) and the IV strategy provides further support for our hypothesis that the rapid disappearance of the bison from nations' traditional homelands had devastating economic consequences that persisted into the future.

D Mechanisms: Margins of Adjustment

In this section, we consider the mechanisms that might explain the persistently lower economic well-being of bison-reliant nations into the present. Our main objective is to determine the margins along which individuals and societies were able to adjust to the loss of the bison and along which margins they were not. In some ways, this question relates to asking whether the long-run effects of the loss of the bison are the result of an income shock that persisted due to imperfect intergenerational mobility, or if the effects are attributable to institutional idiosyncrasies that developed between bison-reliant and non-bison-reliant Native American nations. We investigate several channels through which bison-reliant individuals and societies may have been prevented from adjusting economically after the decline of the bison.

The income measures at the reservation-level are informative regarding the long-run correlation between bison-reliance and income per capita; however, we wish to understand how a shock in the late 19th century is still correlated with well-being over 100 years later. Our first exercise is to compile a consistent indicator of well-being over this time period. Given that income data is not available until the late 20th century at the reservation-level, we return to the occupational rank data from the American Census in 1910, 1930, 1990, 2000, and the 5-year average ACS in 2010.⁵³ We focus on within bison-reliant nations to compare those that lost the bison as part of the rapid slaughter to those that lost the bison gradually. Our objective is to check whether the effect of the slaughter has diminished over time and to investigate whether the effect of the bison's loss differs between those who live outside traditional homelands and

⁵³Occupational rank has been standardized to have a mean of zero and a variance one.

	1910	1930	1990	2000	2010
Share lost as of 1889	-0.604	-0.720	-0.167	-0.263	-0.122
	(0.201)	(0.164)	(0.079)	(0.073)	(0.065)
Age	0.100	0.100	0.0948	0.0710	0.0804
	(0.046)	(0.052)	(0.009)	(0.005)	(0.006)
Age-Squared	-0.001	-0.0001	-0.001	-0.001	-0.0001
	(0.001)	(0.001)	(0.000)	(0.000)	(0.000)
Constant	-1.825	-1.962	-1.326	-0.975	-1.120
	(0.920)	(1.121)	(0.144)	(0.170)	(0.136)
Observations	225	296	11123	9850	9251
Adjusted \mathbb{R}^2	0.038	0.125	0.046	0.039	0.033

 Table 11: Correlation between Standardized Occupational Rank and Tribe Historic bison-reliance for

 bison-reliant Native Americans

Notes: Clustered standard errors at the tribe level in parentheses. All columns include regional fixed effects (Census regions as defined by IPUMS: the New England Division, Middle Atlantic Division, East North Central Division, West North Central, South Atlantic Division Division, East South Central Division, West South Central Division, and the Pacific Division). All specifications restrict the sample to tribes whose traditional territory was at least 60 percent overlapping with the bison range.

those who live in traditional homelands.

Table 11 presents the results of our findings regarding whether the effect of the slaughter has diminished over time. The first column reports the results for 1910 and the second for 1930, which repeat columns (3) and (4) from Table 4 for comparison. The last three columns present results for 1990, 2000 and 2010, respectively. All specifications include region fixed effects.⁵⁴ Individuals who were members of nations that still depended on the bison at the time of the slaughter have systematically lower occupational rank scores, with these effects economically larger in 1910 and 1930. Table A11 tests whether these differences are statistically significant. In general, the point estimates suggest that the slaughter of the bison diminishes over time.⁵⁵ The modest convergence in occupational rank is consistent with the narrative that the decline of the bison was akin to an income shock that persisted intergenerationally, since a shock of this nature should dissipate over time. However, the fact that we observe a strong correlation between income and bison-reliance for the reservation-level sample suggests that there may also be an institutional component to the persistence of the shock.

⁵⁴All results are unchanged if we include place of birth fixed effects, state fixed effects, or both.

 $^{^{55}}$ While ethnic out-migration from the tribe after 1930 may be a plausible channel for the observed decline in persistence for those that live outside native reservations, there is no evidence that ethnic mobility is greater among previously bison-reliant nations. From the Historical Statistics from the United States used earlier, we can see that while it is not statistically significant, if anything the population size of the bison nations grew slightly more between 1930 and 2000 than the non-bison nations. These results are available upon request.

 Table 12: Correlation between Log Total Income and Tribe Historic bison-reliance: Individuals In and Outside Homelands in the 2000 Census

	Pooled 1	Outside Homelands	In Homelands	Pooled 2
Share lost as of 1889	-0.424	-0.347	-0.505	-0.352
	(0.117)	(0.140)	(0.198)	(0.139)
Homeland X Share lost as of 1889				-0.146
				(0.240)
Homeland				Х
Age & Age-Squared	Х	Х	Х	Х
Region of residence fixed effects	Х	Х	Х	Х
State of birth fixed effects	Х	Х	Х	Х
Observations	19101	7407	11694	19101
Adjusted R^2	0.077	0.060	0.082	0.080

Notes: Clustered standard errors at the tribe level in parentheses. All columns include region and place of birth fixed effects. Results are statistically equivalent if state fixed effects are used instead of region fixed effects. Log real wages with a base year of 99 are the dependent variable. These only include tribes whose share of territory was at least 60 percent covered by the historic bison range as of 1730. The last column includes interaction of homeland with the other covariates in specifications 1 and 2.

To examine whether the effect of the bison's decline is different for those living on Native homelands and those living outside of homelands, we use information available in the 2000 Census and 2010 ACS 5 year sample, which report an individual's tribal association and whether they were living within native homelands.⁵⁶ Since the average income per capita is much lower on homelands than off homelands, using the level of income per capita could mechanically generate smaller coefficients on bison-reliance for the sample living on Native homelands. Thus to assess the relative differences in income per capita we regress the logarithm of individual total income on our measure of bison-reliance. Table 12 presents the results of this exercise. We see that the correlation between income and our measure of bison-reliance is significant, large, and negative in the full sample in column (1). By dividing the sample between those that live on Native homelands and those that live outside Native homelands, we see that the negative correlation between income and bison-reliance is qualitatively larger for those living on reservations in column (3). Column (4) presents the estimates from a pooled regression to test whether the difference between the on-reservation and off-reservation samples is statistically

⁵⁶According to IPUMS documentation, Native homelands can include federal American Indian reservations and off-reservation trust land areas, the tribal subdivisions that can divide these entities, state reservations, Alaska Native Regional Corporations, Hawaiian homelands, Alaska Native village statistical areas, Oklahoma tribal statistical areas, tribal designated statistical areas, and state designated American Indian statistical areas. Ideally we would compare the population living on American Indian reservations to those not living on Indian reservations; however, unfortunately, we cannot differentiate between any of these Native homelands and therefore can only split our sample between those living on homelands or off homelands.

 Table 13: Correlation between Share of Bison Covering Traditional Territory and Income Per Capita

 Adjusted for Experience with Agriculture

	(1)	(2)	(3)
Share lost as of 1870	-3884.2	-2294.6	-1098.5
	(1494.426)	(1210.170)	(1217.349)
Share lost as of 1870 X AG Cal	941.4	26.41	-341.3
	(344.777)	(341.150)	(394.416)
Share lost as of 1889	-2998.7	-4370.0	-4866.3
	(1390.663)	(1499.165)	(1580.858)
Share lost as of 1889 X AG Cal	1490.4	2836.9	4290.2
	(922.949)	(1129.248)	(1345.322)
Cultural Controls	Х	Х	Х
Soil Quality Controls	Х	Х	Х
Colonial Controls		Х	Х
Contemporary Controls			Х
Observations	197	197	197
Adjusted R^2	0.113	0.292	0.420

Notes: Clustered standard errors at the tribe level in parentheses. "Cultural controls" include calories from agriculture, historic centralization, measures of nomadism, jurisdictional hierarchy, wealth distinctions, log ruggedness and population in 1600. "Colonial controls" include being involved in an Indian war, a measure of forced coexistence, and distance displaced from traditional territory. "Contemporary controls" include nearby income per capita, log distance to the nearest city, presence of a casino. "Soil Quality controls" include share of reservation land without constraints from excess salts, nutrient availability, nutrient retention, rooting conditions, oxygen availability, toxicity, and workability.

significant; although this coefficient is not statistically significant, it is negative which suggests that a substantial component of modern persistence is due to institutional or cultural structures on the reservations of the formerly bison-reliant nations. It should be noted that these specifications also include place of birth fixed effects in order to capture the initial conditions faced by individuals currently living outside native homelands and those living within.

We attempt to understand whether nations that had some additional ability to adjust to the loss of the bison have better outcomes today. Specifically, we hypothesize that bison-reliant communities that had more traditional experience with agriculture would be more likely to have their human capital maintain value, especially since the agriculture sector was promoted by the Bureau of Indian Affairs. Table 13 shows the results of interacting bison-dependency with a measure of tribal reliance on agriculture. This measure is an index of calories coming from agriculture that we take from Murdock's Ethnographic Database. For those nations that lost the bison rapidly, a larger share of calories from agriculture mitigates up to 90% of the negative effect of the bison's loss. These results suggest that bison-reliant tribes that had some degree of economic diversification prior to the bison's elimination were partially able to mitigate the negative effects of the bison's decline.

V Conclusion

At the beginning of the 19th century, the North American bison roamed the Great Plains in the tens of millions, but by 1880, the bison were nearly extinct from a mass slaughter that occurred within as little as 10 years. To our knowledge, we are the first to quantify the longrun effects of the slaughter on the Native Americans who relied on the bison for over 10,000 years prior to its extinction. We compile historical, anthropological, ecological, geographic, and modern economic data to show that the elimination of the bison affected the well-being of the Indigenous peoples who relied on them, both immediately after the bison's decline, and up to 130 years later. We argue that the loss of the bison resulted in a dramatic reversal of fortunes: historically, bison-reliant societies were among the richest in the world and now they are among the poorest.

Using a difference-in-differences estimation strategy and taking advantage of the fact that the speed of the destruction of the bison varied across traditional tribal territories due to an exogenous change in European tanning technology, we demonstrate that the previous height advantage of formerly bison-reliant peoples was completely eliminated within a generation. These effects are likely a lower bound on the effects on height since the demographic distribution of bison-reliant peoples after the decline of the bison is consistent with non-trivial increases in youth mortality.

After establishing that bison-reliant societies were adversely affected by the decline of the bison contemporaneously, we turn to the long-run effects of the elimination of the bison. We document a robust negative relationship between historic bison-dependency and income on American Indian reservations today using data from the Census Fact Finder compiled by Dippel (2014). In 2000, unconditionally, formerly bison-reliant nations had approximately 30% less income per capita today. Nations that lost the bison slowly had approximately 20% less income on average, whereas those that lost the bison rapidly had approximately 40% less income. Using nighttime light density as a proxy for economic activity leads to the same conclusion. This negative impact of rapid bison loss is robust to conditioning on a rich set of cultural,

colonial, and modern economic factors. We show that this same pattern holds for bison-reliant Indigenous groups in Canada, as well.

Finally, we attempt to gain an understanding of why there has been such a persistence in the low standard of living of bison-reliant nations. We test whether the relatively lower incomes of bison-reliant nations today are isolated to reservations or if they hold for all members of nations that belong to historically bison-reliant tribes. The available data for this exercise is coarse, given the tribal affiliation data available in modern Census and American Community Survey data. Nevertheless, we demonstrate that incomes of members of historically bisonreliant tribes that lost the bison rapidly are lower today, even for those members who do not live on their traditional homelands. We integrate data from the 1910 and 1930 Census and demonstrate that nations that lost the bison rapidly compared to those that lost the bison slowly had significantly lower occupational rank; however, by the 1990s those nations that rapidly started to converge to the occupational rank of those that lost the bison slowly. This finding suggests that the rapid loss of the bison acted as an immediate shock to well-being and that this shock was transmitted intergenerationally. Similarly, we show that societies that had some level of economic diversification prior to the bison's extermination were substantially less adversely affected by its loss.

The long run effects of the loss of the bison may have been magnified by the policies and economic context that prevented bison-reliant nations from transferring their human capital to other sources, causing a social disruption that had implications for the governance structures in these communities. We are unable to fully account for how government policy amplifies or mitigates the loss of the bison after the initial extinction, but we suggest that the reservation system and government restrictions on the freedoms of Native Americans had consequences for how the loss of the bison resource played out. Finally, we recognize that we are only able to examine the effect of the bison's decline on a small number of measurable outcomes. The spiritual, cultural, and long-run health consequences of the loss of the bison are not addressed here and are meaningful in the broader narrative for Native American communities.

In September 2014, a cross-boarder treaty was signed by several formerly bison-reliant Native American nations to restore the bison to traditional Indian territory with the added goals of co-managing and preserving the animal (ICMN, 2014). Although the economic environments and institutional structures have changed significantly since the bison was first exterminated, the restoration of this symbolic icon has great political and cultural significance for formerly bison-reliant nations. It remains to be seen whether the re-introduction of the bison will reverse the negative economic effects that resulted from the bison's extermination, but we view this initiative as a significant step towards improving the standard of living of those who were once decimated by the bison's extinction.

References

- AANDC (2015). The Community Well-Being Index: Well-being in First Nations Communities, 1981-2011. Aboriginal Affairs and Northern Development Canada, Ottawa.
- Acemoglu, D., S. Johnson, and J. A. Robinson (2001). The colonial origins of comparative development: An empirical investigation. *American Economic Review* 91(5), 1369–1401.
- Acemoglu, D., S. Johnson, and J. A. Robinson (2002). Reversal of fortune: Geography and institutions in the making of the modern world income distribution. *The Quarterly Journal* of Economics 117(4), 1231–1294.
- Akee, R. (2009). Checkerboards and coase: The effect of property institutions on efficiency in housing markets. Journal of Law and Economics 52(2), 395–410.
- Akee, R., M. Jorgensen, and U. Sunde (2015). Critical junctures and economic development – Evidence from the adoption of constitutions among American Indian nations. *Journal of Comparative Economics* 43, 844–861.
- Akee, R., K. Spilde, and J. Taylor (2015). The Indian Gaming Regulatory Act and its effects on American Indian economic development. *Journal of Economic Perspectives* 29(3), 185–208.
- Alesina, A., S. Michalopoulos, and E. Papaioannou (2016). Ethnic inequality. Journal of Political Economy 124 (2), 428–488.
- Allen, R. C. and I. Keay (2004). Saving the whales: Lessons from the extinction of the eastern Arctic bowhead. The Journal of Economic History 64, 400–432.
- Anderson, T. L. and D. P. Parker (2008). Sovereignty, credible commitments, and economic prosperity on American Indian reservations. *Journal of Law and Economics* 51(4), 641–666.
- Anderson, T. L. and D. P. Parker (2009). Economic development lessons from and for North American Indian economies. Australian Journal of Agricultural and Resource Economics 53(1), 105–127.
- Aragón, F. M. (2015). Do better property rights improve local income?: Evidence from First Nations' treaties. Journal of Development Economics 116, 43–56.
- Aragón, F. M. and J. P. Rud (2013). Natural resources and local communities: Evidence from a Peruvian gold mine. *American Economic Journal: Economic Policy* 5(2), 1–25.
- Atack, J. (2016). Historical geographic information systems (GIS) database of U.S. railroads.

- Benson, B. L. (2006). *Self Determination: The Other Path for Native Americans*, Chapter Property Rights and the Buffalo Economy of the Great Plains. Standord University press.
- Bleakley, H. and J. Lin (2012). Portage and path dependence. The Quarterly Journal of Economics 127(2), 587–644.
- Cameron, C., P. Kelton, and A. Swedlund (2015). *Beyond Germs: Native Depopulation in North America*. Amerind Studies in Archaeology. University of Arizona Press.
- Carlos, A. M. and F. D. Lewis (1993). Indians, the beaver, and the Bay: The economics of depletion in the lands of the Hudson's Bay Company, 1700-1763. The Journal of Economic History 53(3), 465–494.
- Carlos, A. M. and F. D. Lewis (1999). Property rights, competition, and depletion in the eighteenth-century Canadian fur trade: The role of the European market. *Canadian Journal* of Economics 32(3), 705–728.
- Carlos, A. M. and F. D. Lewis (2010). Property rights, standards of living and economic growth: Western Canadian Cree. *QED Working Paper No. 1232*.
- Carlos, A. M. and F. D. Lewis (2012). Smallpox and Native American mortality: The 1780s epidemic in the Hudson Bay region. *Explorations in Economic History* 49(3), 227–290.
- Carter, S. B., S. S. Gartner, M. R. Haines, A. L. Olmstead, R. Sutch, G. Wright, and M. C. Snipp (Eds.) (2006). *Historical Statistics of the United States Millennial Edition Online*. http://hsus.cambridge.org/SeriesAg1-492: Cambridge University Press.
- Chetty, R., N. Hendren, P. Kline, and E. Saez (2014). Where is the land of opportunity? The geography of intergenerational mobility in the United States. *The Quarterly Journal of Economics* 129(4), 1553–1623.
- Cornell, S. and J. P. Kalt (2000). Where's the glue? Institutional and cultural foundations of American Indian economic development. *The Journal of Socio-Economics* 29(5), 443–470.
- Corntassel, J. and R. C. Witmer (2008). Forced federalism: Contemporary challenges to indigenous nationhood, Volume 3. University of Oklahoma Press.
- Daschuk, J. (2013). Clearing the Plains: Disease, Politics of Starvation, and the Loss of Aboriginal Life. The University of Regina Press.
- Daschuk, J. W., P. Hackett, and S. MacNeil (2006). Treaties and tuberculosis: First Nations people in the late 19th century western Canada. *Canadian Bulletin of Medical History 23*(2), 307–330.
- Decker, J. F. (1991). Depopulation of the Northern Plains natives. Social Science and Medicine 33(4), 381–393.
- Dell, M. (2010). The persistent effects of Peru's mining mita. *Econometrica* 78(6), 1863–1903.
- Denevan, W. (1992). The pristine myth: The landscape of the Americas in 1492. Annals of the Association of American Geographers 82, 369–385.
- Dippel, C. (2014). Forced coexistence and economic development: Evidence from Native American reservations. *Econometrica* 82(6), 2131–2165.

- Dixon, A., D. Faber-Langendoen, C. Josse, J. Morrison, and C. Louckn (2014). Distribution mapping of world grassland types2. *Journal of Biogeography* 41, 2003–2019.
- Donaldson, D. and R. Hornbeck (2016). Railroads and american economic growth: A "market access" approach. *The Quarterly Journal of Economics* 131(2), 799–858.
- Donaldson, D. and A. Storeygard (2016). The view from above: Applications of satellite data in economics. *Journal of Economic Perspectives* 30(4), 171–198.
- Easterly, W. and R. Levine (2016). The european origins of economic development. *Journal of Economic Growth* 21(3), 225–257.
- Fenn, E. A. (2014). Encounters at the heart of the world: A history of the mandan people. Hill and Wang.
- Fischer, G., H. van Velthuizen, M. Shah, and F. Nachtergaele (2008). Global agro-ecological zones assessment for agriculture (gaez 2008).
- Frison, G. (1991). Prehistoric hunters of the High Plains. Academic Press.
- Gerlach, A. C. (1970). The National Atlas of the United States of America.
- Gilmore, K. P., M. Tate, M. L. Tenant, B. Clark, T. McBride, and M. Wood (1999). Colorado Prehistory: A Context fot the Platte River Basin. Colorado Council of Professional Archaeologists.
- Goldewijk, K. K., A. Beusen, and P. Janssen (2010). Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. *The Holocene* 20(4), 565–573.
- Gregg, M. T. (2018). The long-term effects of American Indian boarding schools. Journal of Development Economics 130, 17–32.
- Guinnane, T. W., H. Bodenhorn, and T. A. Mroz (2014). Sample selection in the historical heights literature. *Working Paper*.
- Gundlach, J. H. and A. E. Roberts (1978). Native american indian migration and relocation: Success or failure. *Pacific Sociological Review* 21(1), 117–128.
- Gwynne, S. C. (2010). Empire of the Summer Moon: Quanah Parker and the Rise and Fall of the Comanches, the Most Powerful Indian Tribe in American History. Simon and Schuster.
- Hämäläinen, P. (2003). The rise and fall of Plains Indian horse cultures. Journal of American History 90(3), 833–862.
- Hanner, J. (1981). Government response to the buffalo hide trade, 1871-1883. The Journal of Law and Economics 24(2), 239–271.
- Henderson, J. V., A. Storeygard, and D. N. Weil (2012). Measuring economic growth from outer space. *American Economic Review* 102(2), 994–1028.
- Hilliard, S. B. (1972). Map supplement number sixteen Indian land cessions. Annals of the Association of American Geographers 62(2), 374.
- Hornaday, W. T. (1889). The Extermination of the American Bison. Vol. 1. Library of Alexandria.

- Hornbeck, R. (2012). The enduring impact of the American Dust Bowl: Short- and long-run adjustments to environmental catastrophe. *The American Economic Review* 104(4), 1477–1507.
- Hurst, M. (1997). The determinants of earnings differentials for Indigenous Americans: Human capital, location, or discrimination? The Quarterly Review of Economics and Finance 47(4), 787–807.
- ICMN, S. (2014, September). Bringing back the bison: Tribes and First Nations sign historic treaty. [Online; posted 25-September-2014].
- Innis, H. A. (1999). The Fur Trade in Canada: An Introduction to Canadian Economic History. University of Toronto Press.
- Inwood, K. and I. Keay (2013). Trade policy and industrial development: Iron and steel in a small open economy, 1870-1913. *Canadian Journal of Economics* 46(4), 1265–1294.
- Inwood, K. and I. Keay (2015). Transport costs and trade volumes: Evidence from the Trans-Atlantic iron trade. *Journal of Economic History* 75(1), 95–124.
- Isenberg, A. C. (2000). The Destruction of the Bison: An Environmental History, 1750-1920. Cambridge University Press.
- Iverson, P. (1997). When Indians Became Cowboys: Native Peoples and Cattle Ranching in the American West. University of Oklahoma Press.
- Jacobsen, G. D. and D. P. Parker (2016). The economic aftermath of resource booms: Evidence from boomtowns in the American west. *The Economic Journal* 126(593), 1092–1128.
- Jantz, R. L. (1995). Franz Boas and Native American biological variability. Human Biology 67(3), 345–353.
- Kehoe, T. F. (1967). Memoir 4: The boarding school bison drive site. Plains Anthropologist 12(35), 1–165.
- Kohl, M. T., P. R. Krausman, K. Kunkel, and D. M. Williams (2013). Bison versus cattle: Are they ecologically synonymous? *Rangeland Ecology & Management 66*(6), 721–731.
- Komlos, J. and L. Carlson (2014). The anthropometric history of Native Americans, c. 1820-1890. Research in Economic History 30, 135–162.
- Kornfeld, M., G. Frison, and M. L. Larson (2010). Prehistoric Hunter-Gatherers of the High Plains and the Rockies. Left Coast Press.
- Lahmeyer, J. (2004). Populstat database. Growth of the population per country in a historical perspective, including their administrative divisions and principal towns.
- Leonard, B. and D. P. Parker (2016). Creating anticommons: Historical land privatization and modern natural resource use. *Working Paper*.
- Lindermann, F. B. (1930). Plenty Coups: Chief of the Crows. University of Nebraska Press.
- Livi-Bacci, M. (2007). A Concise History of World Population (4 ed.). Oxford: Blackwell Publishing.

- Lueck, D. (2002). The extermination and conservation of the American bison. *Journal of Legal Studies XXXI*(2), 609–652.
- MacInnes, C. M. (1930). In the Shadow of the Rockies. Rivingtons.
- Maddison, A. (2001). The World Economy: A Millenial Perspective. Paris: OECD.
- Marks, P. (1998). In a Barren Land : American Indian Dispossession and Survival. William Morrow.
- McEvedy, C. and R. Jones (1978). World Atlas of Population History. Hammondsworth: Penguin Books Ltd.
- Michaels, G. (2011). The long term consequences of resource-based specialisation. *The Economic Journal* 121(551), 31–57.
- Michalopoulos, S. and E. Papaioannou (2013). Pre-colonial ethnic institutions and contemporary African development. *Econometrica* 81(1), 113–152.
- Miller, J. R. (2009). Compact, Contract, Covenant: Aboriginal Treaty-Making in Canada. University of Toronto Press.
- Miller, M. (2016). Selection and historical height data: Evidence from the 1892 Boas sample of the Cherokee Nation. *Explorations in Economic History* 61, 119–123.
- Murdock, G. P. (1967). Ethnographic Atlas. University of Pittsburgh Press.
- Nunn, N. (2008). The long term effects of Africa's slave trades. The Quarterly Journal of Economics 123(1), 139–176.
- Nunn, N. (2009). The importance of history for economic development. Annual Review of Economics 1, 65–92.
- Nunn, N. (2014). Historical development. In *Handbook of economic growth*, Volume 2, pp. 347–402. Elsevier.
- Nunn, N. and D. Puga (2012). Ruggedness: The blessing of bad geography in Africa. The Review of Economics and Statistics 94(1), 20–36.
- Nunn, N. and N. Qian (2011). The potato's contribution to population and urbanization: Evidence from a historical experiment. *The Quarterly Journal of Economics* 126(2), 593–650.
- Oreopoulos, P., M. Page, and A. H. Stevens (2008). The intergenerational effects of worker displacement. *Journal of Labor Economics* 26(3), 455–483.
- O'Shea, J. and G. Meadows (2009). Evidence for early hunters beneath the Great Lakes. Proceedings of the National Academy of Sciences 106(25), 10120–10123.
- Oster, E. (2017). Unobservable selection and coefficient stability: Theory and evidence. Journal of Business & Economic Statistics 0(0), 1–18.
- Ostler, J. (2001). The last buffalo hunt and beyond: Plains Sioux economic strategies in the early reservation period. *Great Plains Quarterly* 21(2229), 115–130.

- Pinkovskiy, M. and X. Sala-I-Martin (2016). Lights, camera... income! Illuminating the national accounts-household surveys debate. *The Quarterly Journal of Economics* 131(2), 579–631.
- Prince, J. M. and R. H. Steckel (2003). Nutritional success on the Great Plains: Nineteenthcentury equestrian nomads. *Journal of Interdisciplinary History* 33(3), 353–384.
- Robinson, I. A. and R. Torvik (2013). Institutional comparative statics. In Advances in Economics and Econometrics: Tenth World Congress, Volume 2, pp. 97. Cambridge University Press.
- Ruggles, S., K. Genadek, R. Goeken, J. Grover, and M. Sobek (2015). Integrated Public Use Microdata Series: Version 6.0 [dataset]. http://doi.org/10.18128/D010.V6.0.: Minneapolis: University of Minnesota.
- Smits, D. D. (1994). The frontier army and the destruction of the buffalo: 1865-1883. Western Historical Quarterly 25(2), 313-338.
- Solon, G. (1999). Intergenerational mobility in the labor market. Handbook of Labor Economics 3, 1761–1800.
- Sorkin, A. L. (1969). Some aspects of american indian migration. Social Forces 48(2), 243–250.
- Spirling, A. (2011). U.S. treaty making with American Indians: Institutional change and relative power, 1784-1911. American Journal of Political Science 56(1), 84–97.
- Steckel, R. H. (1995). Stature and the standard of living. *Journal of Economic Literature* 33(4), 1903–1940.
- Steckel, R. H. (2008). Biological measures of the standard of living. The Journal of Economic Perspectives 22(1), 129–152.
- Steckel, R. H. (2010). Inequality amidst nutritional abundance: Native Americans on the Great Plains. Journal of Economic History 70, 265–286.
- Steckel, R. H. and J. M. Prince (2001). Tallest in the world: Native Americans of the Great Plains in the nineteenth century. *American Economic Review* 91(1), 287–294.
- Stevens, A. H. (1997). Persistent effects of job displacement: The importance of multiple job losses. Journal of Labor Economics 15(1), 165–188.
- Sturtevant, W. C. (Ed.) (1981). Handbook of the North American Indian. The Smithsonian Institute.
- Taylor, J. B. and J. P. Kalt (2005). American Indians on Reservations: A Databook of Socioeconomic Change Between the 1990 and 2000 Censuses. Harvard Project on American Indian Economic Development, Malcolm Wiener Center for Social Policy, John F. Kennedy School of Government, Harvard University.
- Taylor, S. M. (2011). Buffalo hunt: International trade and the virtual extinction of the North American bison. *The American Economic Review* 101(7), 3162–3195.
- Trosper, R. L. (1978). American Indian relative ranching efficiency. The American Economic Review 68(4), 503–516.

Voigtländer, N. and H.-J. Voth (2012). Persecution perpetuated: The medieval origins of antisemetic violence in Nazi Germany. *The Quarterly Journal of Economics* 127(3), 1339–1392.

Waldman, C. (2009). Atlas of the North American Indian (3rd ed.). Facts on File, Inc.

Zedeño, M. N., J. A. M. Ballenger, and J. R. Murray (2014). Landscape engineering and organizational complexity among late prehistoric bison hunters of the northwestern Plains. *Current Anthropology* 55(1), 23–58. Online Appendix: "The Slaughter of the Bison and Reversal of Fortunes on the Great Plains" by Donna Feir, Rob Gillezeau, and Maggie Jones

A Additional Tables

	$\leq 60\%$ Bison	$\geq 60\%$ Bison	Difference
Ceded Share 1784-1840	0.05	0.05	-0.00
	(0.17)	(0.13)	
Ceded Share 1840-1860	0.43	0.34	0.09
	(0.42)	(0.37)	
Ceded Share 1860-1870	0.16	0.32	-0.16
	(0.33)	(0.33)	
Ceded Share 1870-1880	0.09	0.15	-0.06
	(0.24)	(0.29)	
Ceded Share 1880 to Present	0.18	0.25	-0.07
	(0.36)	(0.37)	
Observations	125	72	197

 Table A1: Share of Lands Ceded Over Time by bison-reliance

Notes: Mean values are reported with the standard deviations in parenthesis. Source: Hilliard (1972).

	Not bison-reliant	bison-reliant	Diff
Occupational income score	21.84	23.40	-1.46
	(12.51)	(12.18)	
Bison Share in 1870	0.01	0.16	-0.16
	(0.02)	(0.31)	0.20
Vear	1999 58	1998 17	1 39
	(13.49)	(12.74)	1.00
Arro	28.26	38.08	0.63
Age	(12.51)	(12.44)	-0.05
Observations	$28,\!\overline{285}$	$29,\!\overline{067}$	66, 786

Table A2: Summary Statistics: Occupational Rank from American Census 1910, 1930, 1990, 2000 and
the ACS 2010

Notes: Means are reported with the standard deviations in parentheses. The minimum occupational score is 0 with a maximum of 80. "bison-reliant" is 60 percent of a tribe's ancestral territory overlapping the historic bison range.

Table A3:	The Loss	s of t	the	Bison	on	Male	Native	American	Height:	Alternative	Bison-Depende	ncy
	Measure											

(1)	(2)	(3)
2.924	0.204	0.907
(0.741)	(3.953)	(3.719)
-1.843	-3.431	-4.314
(3.765)	(4.478)	(4.462)
1.715	2.306	3.311
(0.861)	(2.022)	(2.211)
2.689	5.081	5.697
(4.251)	(5.425)	(5.389)
-2.662	-4.752	-5.053
(1.682)	(2.628)	(2.650)
-1.418	-1.679	-1.692
(0.343)	(0.045)	(0.048)
1.228	1.320	1.516
(0.339)	(0.158)	(0.118)
-0.988	0.0182	-0.0641
(0.785)	(0.501)	(0.610)
-1.107	-0.591	-0.518
(0.324)	(0.416)	(0.411)
		0.00642
		(0.012)
		0.0811
		(0.627)
		-0.177
		(0.057)
8821	2863	2863
0.877	0.863	0.865
	$\begin{array}{c} (1)\\ 2.924\\ (0.741)\\ -1.843\\ (3.765)\\ 1.715\\ (0.861)\\ 2.689\\ (4.251)\\ -2.662\\ (1.682)\\ -1.418\\ (0.343)\\ 1.228\\ (0.339)\\ -0.988\\ (0.785)\\ -1.107\\ (0.324)\\ \end{array}$	$\begin{array}{c cccc} (1) & (2) \\ \hline 2.924 & 0.204 \\ (0.741) & (3.953) \\ -1.843 & -3.431 \\ (3.765) & (4.478) \\ 1.715 & 2.306 \\ (0.861) & (2.022) \\ 2.689 & 5.081 \\ (4.251) & (5.425) \\ -2.662 & -4.752 \\ (1.682) & (2.628) \\ -1.418 & -1.679 \\ (0.343) & (0.045) \\ 1.228 & 1.320 \\ (0.339) & (0.158) \\ -0.988 & 0.0182 \\ (0.785) & (0.501) \\ -1.107 & -0.591 \\ (0.324) & (0.416) \\ \end{array}$

Notes: Clustered standard errors at the tribe level in parentheses. There are 133 clusters at most and 48 clusters at least. The columns (2), (3), are for only bison-reliant nations (i.e. our measure of bison-reliance is greater than 0.4 which indicates that a significant portion of calories obtained from bison).

	(1)	(2)	(3)	(4)	(5)	(6)
I(Born After 1870)X Shr lost as of 1870	-0.498			-0.577		
	(0.745)			(0.994)		
I(Born After 1886)X Shr lost as of 1889		1.366	-10.60		-0.799	-8.801
× ,		(2.140)	(4.541)		(1.984)	(3.929)
Shr lost as of 1870	1.265	× /	× /	0.845		× ,
	(1.003)			(1.154)		
I(Born After 1870)	-0.276			-1.369		
· · · · · · · · · · · · · · · · · · ·	(0.853)			(1.241)		
Shr lost as of 1889	· · · ·	1.503	1.611	· · · ·	0.977	0.873
		(0.925)	(1.040)		(1.166)	(1.260)
I(Born After 1886)		-2.245	-1.689		-3.286	-4.068
(),		(3.500)	(3.827)		(3.072)	(3.094)
Year of Birth	-0.816	-0.604	-1.640	-0.822	-0.623	-1.607
	(0.030)	(0.038)	(0.062)	(0.020)	(0.034)	(0.075)
Year Sampled	0.617	0.277	1.437	0.615	0.605	1.745
-	(0.091)	(0.205)	(0.261)	(0.112)	(0.160)	(0.200)
Canada	-0.623	0.472	0.487	0	0	0
	(0.538)	(0.742)	(0.799)	(.)	(.)	(.)
Only Native American Ancestors	-0.420	0.0699	-0.00445	-0.216	-0.147	0.00397
`	(0.276)	(0.452)	(0.388)	(0.304)	(0.456)	(0.452)
# Yrs Since Rail	· · · ·	× /	× /	-0.0116	0.0293	0.0451
				(0.017)	(0.012)	(0.024)
Born After Rail				1.106	0.221	0.0815
				(0.633)	(0.699)	(0.785)
# Yrs Born After Rail				-0.0382	-0.0926	-0.108
				(0.028)	(0.023)	(0.032)
Born During War				1.768	1.471	1.396
				(0.567)	(0.605)	(0.561)
_cons	442.9	706.9	487.3	457.5	124.4	-155.8
	(162.276)	(428.944)	(534.465)	(219.998)	(331.030)	(362.183)
Observations	5408	2023	1514	4240	1680	1259
Adjusted R^2	0.858	0.838	0.831	0.852	0.830	0.831

Table A4: The Impact of the Loss of the Bison on Female Native American Height

Notes: Clustered standard errors at the tribe level in parentheses. There are 123 clusters at most and 45 clusters at least. The columns (2), (3), (5) and (6) are for only bison-reliant nations (i.e. only includes only those tribes whose traditional territories overlap with the historic bison range by at least 60%). Columns (3) and (6) restrict the age of the sample to be between 5 and 35 and the last three columns are for American tribes only.

	Ν	Pop 1907	Pop 1780	Pop Change
Non-bison-reliant	45	224.42	1137.78	-913.36
		(40.20)	(112.80)	(121.75)
Bison-reliant	20	1199.00	4592.25	-3393.25
		(262.94)	(990.77)	(890.58)
Difference	65	974.58	3454.47	-2479.894
		(59.10)	(222.18)	(199.97)

Table A5: Summary Statistics from Historical Statistics Population Data

Notes: Bison-reliant communities are those whose traditional territories overlapped with the original bison range by more than 60%. Non-bison-reliant communities are those whose territories overlapped with the original range by less than 60%. Means are reported with standard deviations in parenthesis.

	(1)	(2)	(3)	(4)
Original Share	-5400.4	-3951.2	-4290.4	-2964.6
	(417.02)	(1154.54)	(1089.23)	(1120.23)
Geographic Controls		Х	Х	Х
Historic Controls			Х	Х
Modern Controls				Х
Constant	12632.5	29537.6	23088.5	33779.6
	(317.19)	(5215.69)	(5084.07)	(6678.65)
Observations	341	341	341	341
Adjusted \mathbb{R}^2	0.270	0.547	0.572	0.632

 Table A6: Correlation between Share of Bison Covering Traditional Territory and GDP per capita by Reserve in Canada in 2001 (CAD)

Notes: Robust standard errors at the tribe level in parentheses. Geographic controls are fixed effects for the province in which the census subdivision (csd) is currently located, and the latitude and longitude of the csd. The historic controls include the share of the traditional territory covered by the primary beaver range, the share of traditional territory covered by the secondary beaver range, the historic population at the nearest trading post, the log of distance to the closest trading post, the log of distance to the closest trading post, the log of distance to the closest trading nearest, and levels of jurisdictional hierarchy. Modern controls include the log of distance to the closest city and population.

Table A7: Correlation between the Share of Bison Covering Traditional Territory and Income Per
Capita by Reservation in 2000: Full Result Robustness Checks

Share lost as of 1870	(1) -2468.5	(2) -2490.0	(3) -3371.7	(4) -2163.2	(5) -2395.0
Share lost as of 1889	(981.148) -4118.7	(970.742) -4805.6	(1059.954) -5473.4	(1140.959) -3143.7	(1100.153) -2949.6
Historic Controlization	(1689.165)	(1702.899) 2062 1	(1783.954) 2510.2	(1721.465) 1475.7	(1736.317) 1025.8
EA Coloria Anio k	(1100.754)	(1224.196)	(1238.094)	(1081.826)	(1122.693)
EA Calories Agriculture	(270.260)	(276.906)	(267.710)	(267.767)	(247.565)
EA Sedentary	-561.8 (213.162)	-414.4 (213.520)	-396.6 (215.866)	-385.9 (306.565)	-344.3 (287.036)
Jurisdictional Hierarchy	-329.5 (881.878)	-410.3 (924.173)	-356.8 (908.524)	75.30 (707.736)	37.74 (673.773)
Wealth Distinctions	1244.3 (535.050)	1203.2 (596.448)	1282.5 (611.224)	638.2 (641.603)	757.4 (636.380)
Log Ruggedness	471.3	378.8	370.4	533.2	494.3
Population in 1600	-0.0806	-0.0557	-0.0397	0.0138	0.00597
Forced Co-existence	-5507.6	-5612.0	-5700.9	-4442.4	-4488.4
Indian War	(996.160) -1016.3	(1007.423) -625.5	(1029.140) -858.4	(911.035) -931.7	(909.186) -877.0
Distance Displaced	(616.175) 195.5	(724.681) 252.3	(723.926) 132.0	(731.908) 119.8	(747.708) -63.22
Never Rail	(333.474) -7549.4	(338.512) -6712.3	$(355.933) \\ -6497.9$	(367.833) -2699.3	(398.370) -1980.4
Bail b/w 1840-1850	(2613.976) -4954 1	(2752.130) -4798 7	(2798.844) -4546 6	(3150.653) -1962.9	(2998.026) -244.5
Bail b/w 1850-1860	(1712.595)	(1833.299) -2762 5	(1829.296) -1945 2	(2098.292)	(2017.606)
Doil b/w 1860 1870	(2450.396)	(2815.033)	(2911.326)	(3057.192)	(3167.513)
Rall D/w 1800-1870	(2083.722)	(2370.921)	(2404.966)	(2594.974)	(2541.539)
Rail b/w 1870-1880	-3535.8 (2782.255)	-2661.8 (2898.804)	-2358.0 (2900.028)	-1416.3 (3035.568)	-306.9 (2958.690)
Rail b/w 1880-1890	-6417.0 (2595.903)	-5622.6 (2691.090)	-5210.4 (2724.307)	-3554.6 (3076.456)	-2341.0 (2979.227)
Rail later than 1890	-6963.1 (2613.985)	-6522.8 (2679.823)	-6011.3 (2680.904)	-4099.0 (3092.987)	-3190.9 (3012.344)
Treaty Signed post-1880		-1758.3 (933.190)	-1716.3 (919.257)	-708.3 (853.052)	-618.2 (854.100)
Treaty Signed 1860-1870		-165.9 (875.227)	132.0 (893.014)	591.0 (908.445)	580.1 (905,498)
Treaty Signed 1850-1860		-1462.4	-1567.5	-1175.8 (1239-461)	-989.4 (1145-502)
Treaty Signed pre-1850		(10021000) -1037.0 (1332.257)	-382.1	(12001101) 841.2 (1186 541)	(1179.7) (1224.027)
Beaver Share of Territory		(1002.201)	(1203.412) 2181.2 (1272, 115)	2463.4	(1224.021) 2201.9 (1220.222)
Log Reservation Square KM			(12/0.110)	-286.7	-413.9
Nearby Income Per Capita				0.253	0.274
Nearby Absolute Mobility				-30.46	-17.59
Log Distance to Nearest City				(96.416) -501.4	(84.574) -328.4
Presence of a Casino				$(381.572) \\ 2909.9$	$(367.138) \\ 3007.8$
Log population				$(1440.720) \\ -109.2$	$(1510.970) \\ 6.879$
Adult Population Share				$(281.668) \\ 72.49$	(262.888) 91.89
Excess salts				(51.162)	(51.533) 2991.1
Nutrient avail					(760.792) -76.97
Nutrient retention					$(963.233) \\ 2117.9$
Booting conditions					(1259.453) 956 0
Oxygen availability					(1398.227)
Toxicity					(1467.071)
Workability					(1724.797)
Caractert	10074.0	16517 0	17077.0	0505 0	(1283.961)
Constant	(4816.286)	(5010.388)	(5100.956)	8585.0 (8797.698)	4391.6 (8276.864)
Adjusted R^2	197 0.314	0.309	$197 \\ 0.312$	$197 \\ 0.409$	$197 \\ 0.419$

Notes: Clustered standard errors at the tribe level in parentheses. All columns includes cultural region fixed effects which include: California, the Great Basin, the Northeast, the Northwest, the Plains, the Plateau, the Southeast and the Southwest. Omitted treaty category is 1870-1880, and omitted railway category is 1830-1840.

(1) (2) (3) (4) (5) (6) Share lost by 1870 -0.488 -0.673 -0.535 -0.535 -0.350 -0.350 Share lost by 1889 1.233 1.1346 -1000 -0.774 -0.505 Share lost by 1880 -0.000368 -0.00060 0.00000 0.00015 0.00035 Popalation in 2013 (in 1000s) -0.00355 -0.664 -0.612 -0.715 -0.326 -0.231 Popalation in 2013 (in 2005 -0.0055 -0.0151 -0.0331 -0.161 -0.182 Start lost by 1870 -0.055 -0.0151 -0.0331 -0.161 -0.185 Start lost by 1870 -0.0152 -0.163 -0.334 -0.161 -0.0321 Caloris Agriculture -0.031 -0.015 -0.0865 0.0342 0.0332 Scdentary -0.115 -0.117 -0.0886 0.0343 0.0142 Jarisdictional Hierarchy -0.115 -0.118 0.1160 0.135 0.0142 Jarisdictional 1600 (in 1000s) <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
Canase of Parts Control	Share lost by 1870	(1)	(2)	(3)	(4)	(5)	(6)
	Share 1050 by 1010	(0.194)	(0.212)	(0.235)	(0.235)	(0.259)	(0.258)
(0.221) (0.221) (0.246) (0.272) (0.250) (0.030) Population in 2013 (in 1008) -0.00680 0.00060 0.00060 0.00060 0.00018 0.0032 Federal Reservation -0.895 -0.654 -0.612 (0.133) (0.323) (0.231) Historic Centralization -0.00565 -0.313 -0.334 -0.0161 Calorise Agriculture 0.0221 (0.163) (0.170) (0.166) Calorise Agriculture -0.0315 -0.0331 -0.0324 -0.0332 Sedentary -0.0311 -0.0167 (0.050) (0.049) (0.55) Sedentary -0.117 -0.0385 (0.128) (0.128) (0.128) (0.128) Jurisdictional Hierarchy -0.115 -0.117 -0.0381 -0.0312 Population in 1600 (in 1008) -0.016 -0.0082 -0.0131 -0.0173 Population in 1600 (in 1008) -0.116 -0.0281 -0.0281 -0.0281 Rail by 1830-1840 - - 1.176 1.579	Share lost by 1889	-1.233	-1.316	-1.090	-1.117	-0.774	-0.653
Propulsion in 2013 (in 1000s) -0.006380 -0.006060 0.000610 0.000650 (0.0065) (0.0065) (0.0065) (0.0065) (0.0065) (0.0065) (0.0065) (0.0050) (0.007) Federal Reservation -0.8055 -0.315 -0.313 -0.314 -0.161 -0.373 Istoric Centralization (0.162) (0.163) (0.177) (0.166) (0.163) Calories Agriculture (0.062) (0.017) (0.055) (0.043) (0.035) Sedentary (0.018) (0.118) (0.117) -0.0796 (0.043) (0.043) Sedentary (0.128) (0.144) (0.153) (0.128) (0.119) (0.117) -0.0133 Sedentary (0.180) (0.118) (0.119) (0.017) (0.0133) (0.0133) Jurisdictional Hierarchy (0.118) (0.118) (0.119) (0.019) (0.011) (0.009) Nearch Alinto 1600 (in 1000s) (0.0160) (0.0110) (0.0011) (0.0013) (0.023) Rail by 1830-1840	-	(0.221)	(0.225)	(0.246)	(0.272)	(0.250)	(0.243)
(0.005) (0.005) (0.005) (0.004) (0.004) Pederal Reservation 0.0565 -0.654 -0.612 0.715 -0.334 -0.161 Historic Centralization -0.0565 -0.313 (0.170) (0.168) (0.170) (0.168) Calories Agriculture 0.0244 0.117 0.077 -0.0324 -0.0331 Sedentary -0.031 -0.057 (0.059) (0.049) (0.059) (0.043) Jurisdictional Hierarchy -0.135 -0.117 -0.0384 -0.0331 Vealth Distinctions -0.0666 0.110 0.0762 -0.171 -0.135 Population in 1600 (in 1000s) -0.0681 (0.108) (0.118) (0.119) (0.079) (0.073) Never Railroad - - -0.0692 -0.0133 -0.0150 -0.060 Rail b/w 1830-1840 - - 0.016 -0.00021 -0.0034 -0.0041 Rail b/w 1830-1860 - - 0.733 1.045 0.195 0.240 <	Population in 2013 (in $1000s$)	-0.000368	-0.000600	0.000600	0.000418	0.00165	0.000922
Federal Reservation -0.855 -0.612 -0.715 -0.326 -0.273 Historic Centralization (0.287) (0.288) (0.313) (0.305) (0.289) (0.313) (0.305) (0.289) Calories Agriculture (0.062) (0.163) (0.170) (0.166) (0.167) (0.056) (0.0324) -0.0332 Sedentary (0.031) (0.016) (0.056) (0.0324) (0.035) (0.035) (0.035) Jurisdictional Hierarchy (0.118) (0.117) (0.088) (0.128) (0.114) (0.079) (0.013) Vealth Distinctions (0.018) (0.118) (0.113) (0.135) (0.128) Vealth Distinctions (0.010) (0.011) (0.009) (0.019) (0.011) (0.019) Newer Railroad - (0.128) (0.128) (0.283) (0.283) (0.283) (0.283) Rail b/w 1830-1840 - 0.733 1.045 0.195 0.240 Rail b/w 1850-1860 - 0.733 1.045 <		(0.005)	(0.005)	(0.005)	(0.005)	(0.004)	(0.003)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Federal Reservation	-0.895	-0.654	-0.612	-0.715	-0.326	-0.273
Historic Centralization -0.00505 -0.131 -0.134 -0.101 -0.108 Calories Agriculture 0.0162) 0.0163) (0.170) (0.166) (0.0163) Calories Agriculture 0.00311 (0.049) (0.059) (0.056) (0.055) Sedentary -0.0331 -0.105 -0.0866 0.0342 -0.0331 Jurisdictional Hierarchy -0.115 -0.117 -0.0986 0.120 -0.0811 Vealth Distinctions (0.162) (0.114) (0.153) (0.128) (0.117) -0.1032 Vealth Distinctions (0.000) (0.011) (0.007) (0.007) (0.007) (0.007) Vear Railroad -0.166 -0.160 0.215 (0.280) (0.341) (0.331) (0.334) (0.334) (0.334) (0.334) (0.334) (0.348) (0.417) (0.285) (0.265) (0.265) (0.260) (0.248) (0.417) (0.283) (0.211) (0.283) (0.213) (0.314) (0.314) (0.314) (0.314) (0.314) <td></td> <td>(0.263)</td> <td>(0.297)</td> <td>(0.268)</td> <td>(0.313)</td> <td>(0.305)</td> <td>(0.291)</td>		(0.263)	(0.297)	(0.268)	(0.313)	(0.305)	(0.291)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Historic Centralization		-0.00505	-0.315	-0.334	-0.161	-0.187
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Calories Agriculture		(0.102) 0.0924	(0.103) 0.117	0.0797	-0.0324	-0.0332
Sedentary -0.0331 -0.105 -0.0865 0.0342 0.0380 Jurisdictional Hierarchy (0.050) (0.057) (0.059) (0.043) (0.042) Jurisdictional Hierarchy (0.128) (0.114) (0.153) (0.128) Wealth Distinctions (0.128) (0.118) (0.119) (0.076) (0.017) Population in 1600 (in 1000s) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) Never Railroad (0.0007) (0.255) (0.265) (0.265) (0.265) Rail b/w 1830-1840 1.770 1.579 0.348 0.350 Rail b/w 1840-1850 1.156 1.066 0.353 0.0283 Rail b/w 1850-1860 0.733 1.045 0.135 0.138 Rail b/w 1850-1860 0.711 0.774 0.328 (0.248) Rail b/w 1880-1870 0.560 0.533 0.368 0.321 Rail b/w 1880-1870 0.560 0.533 0.368 0.3251 Rail b/w 1880-1870 0.0215	Calories Agriculture		(0.051)	(0.049)	(0.059)	(0.056)	(0.055)
(0.050) (0.057) (0.058) (0.043) (0.042) Jurisdictional Hierarchy -0.115 -0.117 -0.0381 (0.128) (0.144) (0.153) (0.136) (0.137) Wealth Distinctions -0.0696 0.110 0.0762 -0.117 -0.135 Population in 1600 (in 1000s) 0.0116 -0.00302 -0.0349 0.00133 0.00146 Never Raliroad 0.0160 0.0116 -0.00902 -0.0349 0.00133 0.00146 Rail b/w 1830-1840 1.770 1.770 1.770 1.770 1.770 0.348 0.350 Rail b/w 1830-1840 1.156 1.066 0.351 0.248 0.248 0.248 Rail b/w 1840-1850 0.733 1.045 0.137 0.138 0.248 0.248 0.248 0.248 0.248 0.248 0.249 0.248 0.249 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.249 0.248 0.2118 <td>Sedentary</td> <td></td> <td>-0.0331</td> <td>-0.105</td> <td>-0.0865</td> <td>0.0342</td> <td>0.0380</td>	Sedentary		-0.0331	-0.105	-0.0865	0.0342	0.0380
Jurisdictional Hierarchy -0.115 -0.117 -0.0983 -0.120 -0.0081 Wealth Distinctions -0.0696 0.110 0.0752 -0.117 -0.135 Population in 1600 (in 1000s) (0.118) (0.118) (0.119) (0.0779) -0.0349 0.00130 0.00146 Population in 1600 (in 1000s) 0.0116 -0.0092 -0.0349 0.00133 0.00146 Never Railroad -0.157 (0.280) (0.285) (0.286) (0.286) (0.286) (0.488) (0.488) (0.488) (0.411) (0.484) Rail b/w 1850-1840 1.156 1.096 0.350 0.384 (0.314) (0.319) Rail b/w 1850-1880 0.751 0.774 0.327 (0.238) (0.246) (0.283) Rail b/w 1850-1880 0.550 0.533 0.368 (0.271) (0.488) (0.283) (0.216) (0.217) Rail b/w 1850-1880 0.550 0.533 0.368 (0.235) (0.216) (0.217) Rail b/w 1850-1880 0.560 0.5			(0.050)	(0.057)	(0.059)	(0.043)	(0.042)
	Jurisdictional Hierarchy		-0.115	-0.117	-0.0988	-0.120	-0.0831
Weath Distinctions -0.0696 0.110 0.0772 -0.117 -0.135 Population in 1600 (in 1000s) 0.0116 -0.00902 -0.0349 0.00133 0.00146 Never Railroad -0.169 -0.160 0.215 0.2260 Rail b/w 1830-1840 1.770 1.579 0.348 0.350 Rail b/w 1830-1840 (0.480) (0.488) (0.471) (0.484) Rail b/w 1830-1850 1.156 1.096 0.354 (0.354) (0.314) (0.314) Rail b/w 1850-1860 0.3733 1.045 0.197 0.248 (0.243) Rail b/w 1860-1870 0.364 0.3571 0.3384 (0.237) (0.238) (0.248) Rail b/w 1870-1880 0.5610 0.533 0.368 (0.277) (0.238) (0.248) Rail b/w 1880-1890 0.5600 0.533 0.368 (0.327) (0.234) (0.314) (0.313) Indian War -0.0271 -0.0231 -0.0214 -0.0211 -0.0021 -0.0021 -0.0011			(0.128)	(0.144)	(0.153)	(0.135)	(0.128)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Wealth Distinctions		-0.0696	0.110	0.0762	-0.117	-0.135
ropmaton in 1000 (in 1000s) 0.0110 -0.00902 -0.009349 0.00139 0.00190 Never Railroad -0.169 -0.160 0.215 0.280 Rail b/w 1830-1840 1.570 0.285 (0.263) 0.285 Rail b/w 1830-1840 1.570 0.579 0.348 0.350 0.384 Rail b/w 1840-1850 1.156 1.096 0.350 0.384 Rail b/w 1850-1860 0.363 1.045 0.135 0.243 Rail b/w 1860-1870 0.414 0.367 0.137 0.138 Rail b/w 1870-1880 0.751 0.774 0.328 (0.223) Rail b/w 1870-1880 0.560 0.533 0.364 (0.251) Rail b/w 1880-1890 0.560 0.533 0.368 0.326 Indian War -0.257 -0.339 0.0014 0.0038 Indian War -0.0231 -0.00231 -0.00231 -0.00231 Indian War -0.176 -0.0621 -0.0041 -0.00404 Intrime Availability (0.272) (0.240) (0.297) Nutrient Availability (0.373)	Depulation := 1600 (: 1000)		(0.108)	(0.118)	(0.119)	(0.079)	(0.078)
Never Railroad (0.001) (0.011) (0.021) (0.280) (0.280) Rail b/w 1830-1840 1.579 0.348 0.350 Rail b/w 1830-1840 1.579 0.348 0.350 Rail b/w 1830-1840 1.570 0.485 0.441 0.484) Rail b/w 1850-1860 1.156 1.096 0.350 0.348 Rail b/w 1860-1870 0.131 0.0369 (0.448) 0.240 Rail b/w 1860-1870 0.151 0.773 0.137 0.138 Rail b/w 1870-1880 0.751 0.774 0.327 0.328 Rail b/w 1880-1890 0.560 0.533 0.368 0.321 Indian War -0.227 0.233 0.0104 0.0308 1b/w 1880-1890 0.560 0.533 0.368 0.322 1b/w 1880-1890 0.00101 0.00101 0.00011 0.00011 1ctscss Salts 0.0271 0.0233 0.0104 0.0308 0.1414 0.137 0.138 0.327 0.00014 0.00014 1ctscss Salts 0.0176 0.0297 0.0297 0.021	Population in 1600 (in 1000s)		(0.0116)	-0.00902	-0.00349 (0.011)	0.00133	0.00146 (0.000)
Number 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.0269 Rail b/w 1830-1840 1.770 1.579 0.348 0.350 0.384 Rail b/w 1850-1860 0.351 1.045 0.1065 0.240 Rail b/w 1850-1860 0.351 1.045 0.1367 0.331 Rail b/w 1850-1860 0.361 0.1367 0.138 0.248) Rail b/w 1850-1870 0.414 0.367 0.138 0.248) Rail b/w 1850-1880 0.751 0.774 0.327 0.326 Rail b/w 1880-1890 0.560 0.533 0.0384 0.0351 Rail b/w 1880-1890 0.560 0.533 0.0104 0.00040 Stance Displaced 0.0227 0.0234 (0.210) (0.213) Indian War -0.257 -0.339 0.00114 0.000405 Excess Salts 0.0271 0.0235 -0.0011 -0.0041 Nutrient Availability	Never Bailroad		(0.007)	-0.169	-0.160	0.215	0.280
Rail b/w 1830-1840 1.770 (1.579 (1.579 (0.380) (0.336) Rail b/w 1840-1850 1.156 1.096 0.338 (0.480) (0.483) (0.418) (0.314) (0.319) Rail b/w 1850-1860 0.733 1.045 0.195 0.248 0.283) Rail b/w 1860-1870 0.414 0.367 0.137 0.138 0.248) Rail b/w 1870-1880 0.751 0.774 0.328 (0.223) (0.233) 0.0368 0.352 Rail b/w 1870-1880 0.560 0.533 0.368 0.352 0.240) (0.213) Indian War -0.257 -0.339 0.00104 0.0308 0.0321 -0.0011 -0.00405 Jistance Displaced 0.0221 -0.0231 -0.0021 -0.0235 -0.0011 -0.00405 Nutrient Retention 0.564 0.3272 0.0294) (0.239) Nutrient Retention 1.029 1.034 0.0377 (0.328) Oxygen Availability -0.677 -1.186 -1.167 Varient Retention 0.0377 0.0377 0.0381				(0.271)	(0.285)	(0.265)	(0.269)
Rail b/w 1840-1850 (0.480) (0.483) (0.471) (0.484) Rail b/w 1850-1860 (0.53) (0.314) (0.319) (0.314) (0.317) Rail b/w 1860-1870 0.440 (0.367) (0.238) (0.238) (0.238) (0.238) (0.238) (0.248) (0.249) Rail b/w 1870-1880 0.771 0.774 0.327 (0.238) (0.248) (0.249) Rail b/w 1870-1880 0.550 (0.250) (0.246) (0.271) (0.272) (0.238) (0.261) Rail b/w 1880-1890 0.560 0.533 0.368 0.352 Indian War -0.257 -0.339 0.00104 (0.0308) Distance Displaced -0.00231 -0.00231 -0.0021 -0.0024 Nutrient Availability -0.176 -0.0621 -0.00074 Nutrient Retention 0.564 0.0372 0.0074 Nutrient Retention 0.267 0.177 0.184 Oxygen Availability -0.767 -1.186 -1.167 Oxygen Availability <td>Rail b/w 1830-1840</td> <td></td> <td></td> <td>1.770</td> <td>1.579</td> <td>0.348</td> <td>0.350</td>	Rail b/w 1830-1840			1.770	1.579	0.348	0.350
Rail b/w 1840-1850 1.156 1.096 0.334 0.0319 Rail b/w 1850-1860 0.733 1.045 0.195 0.240 Rail b/w 1860-1870 0.414 0.367 0.138 0.2483 Rail b/w 1860-1870 0.414 0.367 0.138 0.249 Rail b/w 1870-1880 0.751 0.774 0.327 0.328 Rail b/w 1880-1890 0.551 0.761 0.774 0.327 0.328 Rail b/w 1880-1890 0.552 0.260 0.533 0.368 0.352 Indian War -0.257 -0.339 0.00104 0.00305 Distance Displaced -0.00231 -0.00235 -0.0011 -0.00405 Kxcess Salts -0.176 -0.0621 -0.0021 0.00405 Nutrient Availability -0.272 (0.294) (0.297) Nutrient Retention 0.564 0.0372 0.00743 Oxygen Availability -0.276 0.177 0.184 Oxygen Availability -0.276 0.177 0.184 Oxygen Availability -0.276 0.177 0.184	-			(0.480)	(0.488)	(0.471)	(0.484)
Rail b/w 1850-1860 (0.354) (0.406) (0.314) (0.319) Rail b/w 1860-1870 (0.369) (0.408) (0.283) (0.283) Rail b/w 1870-1880 (0.237) (0.238) (0.249) Rail b/w 1870-1880 (0.737) (0.737) (0.238) (0.249) Rail b/w 1880-1890 0.751 0.774 0.327 0.326 Rail b/w 1880-1890 (0.57) (0.774) 0.327 0.328 Rail b/w 1880-1890 (0.57) (0.733) (0.210) (0.213) Indian War -0.257 -0.339 0.00104 (0.303) Distance Displaced (0.001) (0.001) (0.001) (0.001) Excess Salts -0.0231 -0.0235 -0.0010 -0.00405 Nutrient Availability (0.272) (0.294) (0.297) Nutrient Retention (0.372) (0.327) (0.329) Rooting Conditions (0.373) (0.372) (0.372) Oxygen Availability -0.276 0.177 0.164 Varient Actalability -0.276 0.177 0.164 Oxygen Availability -0.276 0.177 0.164 Varient Retention (0.372) (0.373) (0.327) Oxygen Availability -0.276 0.177 0.164 Varient Retention (0.373) (0.37) (0.373) Oxygen Availability -0.276 0.177 0.164 Varient Retention (0.371) (0.375) (0.375) Oxygen Availability <t< td=""><td>Rail b/w 1840-1850</td><td></td><td></td><td>1.156</td><td>1.096</td><td>0.350</td><td>0.384</td></t<>	Rail b/w 1840-1850			1.156	1.096	0.350	0.384
Hail b/w 1850-1860 0.733 1.045 0.195 0.240 (0.369) (0.408) (0.283) (0.283) (0.283) Rail b/w 1860-1870 0.414 0.367 0.137 0.138 Rail b/w 1870-1880 0.751 0.774 0.327 0.326 Rail b/w 1880-1890 0.560 0.533 0.368 0.352 Indian War -0.567 -0.339 0.0010 0.00101 0.000405 Indian War -0.2757 -0.339 0.00104 0.000405 Excess Salts -0.0231 -0.00231 -0.0011 -0.000405 Excess Salts -0.176 -0.0621 -0.0404 -0.166 Nutrient Availability -0.272 (0.294) (0.297) Nutrient Retention 0.564 0.0372 0.00073 Oxygen Availability -0.276 -0.176 -0.166 Nutrient Retention 1.029 1.034 0.997 Oxygen Availability -0.276 0.0271 (0.176) Oxygen Availability -0.276 0.177 0.164 Oygen Fre Capita 1.465 <td></td> <td></td> <td></td> <td>(0.354)</td> <td>(0.406)</td> <td>(0.314)</td> <td>(0.319)</td>				(0.354)	(0.406)	(0.314)	(0.319)
	Rail b/w 1850-1860			0.733	1.045	0.195	0.240
Rail b/w 1800-1870 0.414 0.307 0.137 0.138 0.137 0.138 Rail b/w 1870-1880 0.751 0.774 0.327 0.326 (0.237) (0.238) (0.246) (0.251) Rail b/w 1880-1890 0.560 0.533 0.368 0.352 (0.227) (0.233) (0.246) (0.213) Indian War -0.257 -0.339 0.00104 0.0308 (0.155) (0.163) (0.134) (0.131) Distance Displaced -0.0257 -0.339 0.00101 -0.00405 -0.00235 -0.0101 -0.00401 Excess Salts -0.176 -0.0223 -0.0211 -0.0404 -0.140 -0.156 Wutrient Availability -0.76 -0.176 0.0372 $0.0297)$ (0.284) Nutrient Retention (0.354) (0.372) (0.297) (0.318) Oxygen Availability -0.276 0.177 0.164 (0.170) Toxicity (0.468) (0.418) (0.416) (0.477) (0.357) Nearby Absolute Mobility -0.278 -0.278 -0.278 -0.278 Nearby Light Density (0.276) (0.543) (0.577) (0.173) (0.292) (0.281) Log Distance to City -0.276 0.271 (0.072) (0.071) (0.121) Log Distance to City -0.264 2.716 -1.177 -1.142 (0.276) (0.543) (0.567) (0.713) (5.225) (5.173) Observations 337 <td>Poil b / 1860 1870</td> <td></td> <td></td> <td>(0.369)</td> <td>(0.408)</td> <td>(0.283) 0.127</td> <td>(0.283)</td>	Poil b / 1860 1870			(0.369)	(0.408)	(0.283) 0.127	(0.283)
Rail b/w 1870-1880 (0.237) (0.327) (0.327) (0.327) (0.327) (0.327) (0.327) (0.327) (0.327) (0.327) (0.327) (0.327) (0.327) (0.327) (0.213) Rail b/w 1880-1890 0.560 0.533 0.0104 0.0308 (0.213) (0.227) (0.234) (0.213) Indian War -0.257 -0.339 0.00104 0.0308 (0.155) (0.163) (0.134) (0.131) Distance Displaced -0.00231 -0.00235 -0.00101 -0.000401 (0.001) (0.001) Excess Salts -0.176 -0.0621 -0.0401 -0.00241 -0.00231 -0.00231 -0.00241 Nutrient Availability -0.176 -0.6621 -0.0011 -0.000437 $0.292)$ (0.284) Nutrient Retention 0.564 0.0372 0.00743 (0.272) (0.292) (0.284) Nutrient Retention 0.564 0.0372 0.00743 (0.297) (0.318) Oxygen Availability -0.276 0.177 0.164 (0.267) (0.176) (0.170) Toxicity 0.0177 0.210 0.219 (0.219) (0.213) (0.213) Oxygen Availability -0.278 -0.282 (0.417) (0.357) (0.368) Oxygen Availability -0.677 -1.186 -1.167 -1.422 Uo for Kability -0.677 -1.186 -1.465 -1.422 Uo for Kability -0.278 -0.282 $(0$	1000-1070			(0.237)	(0.238)	(0.248)	(0.249)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Bail b/w 1870-1880			(0.251) 0.751	(0.230) 0.774	0.327	0.326
Rail b/w 1880-1890 $0.560'$ $0.533'$ $0.368'$ $0.352'$ Indian War $0.257'$ (0.234) (0.210) (0.213) Distance Displaced -0.0231 -0.0235 -0.0011 -0.000405 Excess Salts -0.00231 -0.0235 -0.0011 (0.001) (0.001) Excess Salts -0.176 -0.0231 -0.02325 -0.000405 Nutrient Availability -0.404 -0.140 -0.156 Nutrient Retention (0.272) (0.294) (0.297) Nutrient Retention 0.564 0.0327 (0.327) (0.327) (0.327) Rooting Conditions 1.029 1.034 0.997 (0.373) (0.297) (0.176) Toxicity 0.0177 0.164 0.0372 (0.373) (0.297) (0.313) Log of Ruggedness Index -0.278 -0.278 -0.278 -0.282 Log of Ruggedness Index -0.276 -0.77 -0.6677 -1.186 -1.67 Nearby Absolute Mobility 0.00437 0.000437 0.00				(0.235)	(0.260)	(0.246)	(0.251)
Indian War (0.227) (0.334) (0.210) (0.213) Indian War -0.257 -0.339 0.00104 0.0308 Distance Displaced -0.00231 -0.00235 -0.000405 (0.001) (0.001) (0.001) Excess Salts -0.176 -0.0621 -0.00401 (0.297) (0.294) (0.297) Nutrient Availability -0.404 -0.140 -0.156 (0.272) (0.292) (0.284) Nutrient Retention -0.564 0.0372 (0.327) (0.328) Rooting Conditions 1.029 1.034 (0.977) (0.318) Oxygen Availability - -0.276 0.177 0.164 Oxiget Availability - -0.276 0.177 0.164 Warkability - -0.276 0.177 0.164 Oxygen Availability - -0.276 0.177 0.164 Warkability - -0.276 0.177 0.164 Oxygen Availability - -0.278 -0.289 (0	Rail b/w 1880-1890			0.560	0.533	0.368	0.352
Indian War -0.257 -0.339 0.00104 0.0308 Distance Displaced (0.155) (0.163) (0.134) (0.131) Distance Displaced -0.00231 -0.00235 -0.000405 (0.001) (0.001) Excess Salts -0.0166 (0.021) (0.021) (0.021) (0.294) (0.297) Nutrient Availability - -0.404 -0.140 -0.156 Nutrient Retention 0.564 0.0322 0.00743 Rooting Conditions 1.029 10.329 (0.329) Rooting Conditions -0.404 -0.176 0.164 Oxygen Availability -0.564 0.0372 0.00743 Oxygen Availability -0.276 0.177 0.164 Oxiget Availability -0.276 0.177 0.164 Oxiget Availability -0.677 -1.186 -1.167 Toxicity 0.0177 0.210 0.219 Nearby GDP Per Capita -0.677 -1.186 -1.67 Nearby Absolute Mobility -0.678 -1.86 -0.428 Nearby Light Density -0.834 <				(0.227)	(0.234)	(0.210)	(0.213)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Indian War			-0.257	-0.339	0.00104	0.0308
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				(0.155)	(0.163)	(0.134)	(0.131)
Excess Salts (0.001) (0.001) (0.001) (0.001) Nutrient Availability -0.176 -0.0621 -0.0401 Nutrient Availability -0.404 -0.140 -0.156 Nutrient Retention 0.564 0.0372 0.00743 Rooting Conditions 1.029 1.034 0.997 Rooting Conditions 1.029 0.0373 (0.297) Nutrient Retention 0.564 0.0372 0.00743 Rooting Conditions 1.029 1.034 0.997 Rooting Conditions 0.0373 (0.297) (0.318) Oxygen Availability -0.276 0.177 0.164 Verkability -0.677 -1.186 -1.167 Verkability -0.677 -1.186 -1.167 Workability -0.677 -1.186 -1.167 Verkability 0.000437 0.00810 Nearby GDP Per Capita 1.465 1.442 Nearby Absolute Mobility 0.000437 0.00810 Verkability 0.614 0.494 (0.023) (0.024) (0.112) Log Distance to City -0.573 -0.278 Constant 2.834 2.982 2.604 2.716 Constant 2.834 2.982 2.604 2.716 (0.118) 0.090 0.107 0.146 0.168 Observations 337 337 337 337 Adjusted R^2 0.090 0.107 0.146 0.168 0.386	Distance Displaced			-0.00231	-0.00235	-0.00101	-0.000405
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Excess Salts			(0.001)	-0.176	-0.0621	-0.0401
Nutrient Availability -0.404 -0.140 -0.156 Nutrient Retention 0.564 0.0372 0.000743 Rooting Conditions 1.029 1.034 0.997 Rooting Conditions 0.373 (0.270) (0.327) (0.329) Oxygen Availability -0.276 0.177 0.164 Oxygen Availability -0.276 0.177 0.164 Oxygen Availability -0.2677 (0.176) (0.170) Toxicity 0.0177 0.210 0.219 Workability -0.677 -1.186 -1.167 Workability -0.0721 (0.070) (0.071) Nearby GDP Per Capita 1.465 1.442 (0.535) (0.527) Nearby Light Density 0.614 0.494 (0.014) (0.023)	Excess Daits				(0.272)	(0.294)	(0.297)
Nutrient Retention (0.272) (0.292) (0.292) (0.284) Nutrient Retention 0.564 0.0372 0.000743 Rooting Conditions 1.029 1.034 0.997 (0.373) (0.297) (0.318) Oxygen Availability -0.276 0.177 0.164 (0.267) (0.176) (0.170) Toxicity 0.0177 0.210 0.219 Workability -0.677 -1.186 -1.167 Workability -0.677 -1.186 -1.167 Workability 0.0418 (0.416) (0.416) Workability 0.677 -1.186 -1.167 Nearby GDP Per Capita 1.465 1.442 (0.072) (0.071) (0.023) Nearby Absolute Mobility 0.00437 0.00810 (0.023) (0.024) (0.023) Nearby Light Density 0.614 0.494 (0.012) (0.614) (0.619) (0.118) (0.118) (0.118) Constant 2.834 2.982 2.604 2.716 (0.276) (0.543) (0.567) (0.713) (5.225) (5.173) (0.543) (0.567) (0.713) (5.225) (5.173) (0.590) (0.107) 0.146 0.386 0.391	Nutrient Availability				-0.404	-0.140	-0.156
Nutrient Retention 0.564 0.0372 0.000743 Rooting Conditions 1.029 1.034 0.997 0.372 0.0372 0.329 Rooting Conditions 1.029 1.034 0.997 0.373 0.297 0.318 Oxygen Availability -0.276 0.177 0.164 0.0267 0.176 0.170 Toxicity 0.0177 0.210 0.219 Workability -0.677 -1.186 -1.167 Workability -0.677 -1.186 -1.167 Workability 0.0413 0.0416) 0.0416) Workability 0.677 -1.186 -1.167 Nearby GDP Per Capita 1.465 1.442 (0.673) (0.023) (0.024) Nearby Absolute Mobility 0.614 0.494 (0.069) (0.112) Nearby Light Density 0.614 0.494 (0.614) 0.494 Constant 2.834 2.982 2.604 2.716 -12.17 -11.42 0.0					(0.272)	(0.292)	(0.284)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Nutrient Retention				0.564	0.0372	0.000743
Rooting Conditions 1.029 1.034 0.997 (0.373) (0.297) (0.318) Oxygen Availability -0.276 0.177 0.164 (0.267) (0.176) (0.170) Toxicity 0.0177 0.210 0.219 Morkability -0.6677 -1.186 -1.167 Workability -0.677 -1.186 -1.167 More of Ruggedness Index -0.278 -0.278 -0.278 Log of Ruggedness Index -0.278 -0.278 -0.282 Nearby GDP Per Capita 1.465 1.442 (0.071) Nearby Absolute Mobility (0.527) (0.023) (0.024) Nearby Light Density 0.614 0.494 (0.178) Constant 2.834 2.982 2.604 2.716 -12.17 -11.42 (0.276) (0.543) (0.567) (0.713) (5.225) (5.173) Observations 337 337 337 337 337 337 337					(0.354)	(0.327)	(0.329)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Rooting Conditions				1.029	1.034	0.997
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					(0.373)	(0.297)	(0.318)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Oxygen Availability				-0.276	0.177 (0.176)	(0.164)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Toxicity				(0.207) 0.0177	0.210	0.170)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LONICIUY				(0.468)	(0.418)	(0.416)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Workability				-0.677	-1.186	-1.167
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e e				(0.417)	(0.357)	(0.368)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Log of Ruggedness Index					-0.278	-0.282
$ \begin{array}{ c c c c c } \mbox{Nearby GDP Per Capita} & 1.465 & 1.442 \\ (0.535) & (0.527) \\ \mbox{Nearby Absolute Mobility} & 0.000437 & 0.00810 \\ (0.023) & (0.024) \\ (0.023) & (0.024) \\ (0.024) \\ (0.024) \\ (0.069) & (0.112) \\ (0.069) & (0.112) \\ (0.076) & (0.543) & (0.567) & (0.713) & (5.225) & (5.173) \\ \mbox{Observations} & 337 & 337 & 337 & 337 & 337 & 337 \\ \mbox{Adjusted R^2} & 0.090 & 0.107 & 0.146 & 0.168 & 0.386 & 0.391 \\ \end{array} $						(0.072)	(0.071)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nearby GDP Per Capita					1.465	1.442
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						(0.535)	(0.527)
Nearby Light Density (0.023) (0.024) Nearby Light Density 0.614 0.494 Log Distance to City -0.193 Constant 2.834 2.982 2.604 2.716 -12.17 -11.42 (0.276) (0.543) (0.567) (0.713) (5.225) (5.173) Observations 337 337 337 337 337 337 337	nearby Absolute Mobility					(0.000437)	(0.00810)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Nearby Light Density					(0.023) 0.614	0.024)
Log Distance to City (0.503) (0.112) Constant 2.834 2.982 2.604 2.716 -12.17 -11.42 (0.276) (0.543) (0.567) (0.713) (5.225) (5.173) Observations 337 337 337 337 337 337 337 Adjusted R^2 0.090 0.107 0.146 0.168 0.386 0.391	meanby Light Density					(0.069)	(0.112)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Log Distance to City					(0.003)	-0.193
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							(0.118)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Constant	2.834	2.982	2.604	2.716	-12.17	-11.42
Observations 337		(0.276)	(0.543)	(0.567)	(0.713)	(5.225)	(5.173)
Adjusted R^2 0.090 0.107 0.146 0.168 0.386 0.391	Observations	337	337	337	337	337	337
	Adjusted R^2	0.090	0.107	0.146	0.168	0.386	0.391

 Table A8:
 Correlation between Share of Bison Territory Lost and Log Mean Light Density in 2013

Notes: Clustered standard errors at the tribe level in parentheses.

	(1)	(2)
Cost to Chicago in 1870	0.928	0.979
C	(0.395)	(0.217)
Cost to Fort Leavenworth in 1870	0.178	0.196
	(0.264)	(0.260)
Cost to New York in 1870	-0.399	-0.349
	(0.344)	(0.097)
Cost to St. Louis in 1870	-0.802	-0.833
	(0.499)	(0.494)
Cost to Montreal in 1870	0.0875	
	(0.615)	
Cost to Baltimore in 1890	6.375	6.368
	(2.546)	(2.500)
Cost to New York in 1890	-6.350	-6.343
	(2.546)	(2.500)
Historic Centralization	-0.145	-0.144
	(0.170)	(0.169)
EA Calories Agriculture	-0.0517	-0.0545
	(0.067)	(0.059)
EA Sedentary	0.0236	0.0270
	(0.078)	(0.073)
Jurisdictional Hierarchy	0.00859	0.0119
	(0.088)	(0.090)
Wealth Distinctions	-0.665	-0.650
	(0.470)	(0.444)
Log Ruggedness	0.0384	0.0366
	(0.034)	(0.031)
Population in 1600	-0.0000558	-0.0000562
	(0.000)	(0.000)
Forced Co-existence	-0.0533	-0.0485
	(0.075)	(0.077)
Indian War	-0.223	-0.214
	(0.187)	(0.211)
Distance Displaced	0.257	0.254
	(0.067)	(0.072)
Nearby Income Per Capita	0.0000168	0.0000172
~	(0.000)	(0.000)
Constant	2.615	3.179
	(3.774)	(1.918)
Observations	72	72
R^2	0.746	0.746

 Table A9:
 Robustness:
 IV First Stage

Notes: The dependent variable is the share lost as of 1889. Clustered standard errors at the tribe level in parentheses. All specifications restrict the sample to tribes whose traditional territory was at least 60 percent overlapping with the bison range.

	(1)	(2)
Cost to Chicago in 1870	4069.8	108.7
	(5310.573)	(2110.751)
Cost to Fort Leavenworth in 1870	817.3	-591.7
	(3324.874)	(2839.390)
Cost to New York in 1870	2178.9	-1727.2
	(5233.395)	(1625.977)
Cost to St. Louis in 1870	-251.8	2198.2
	(6222.282)	(5347.044)
Cost to Montreal in 1870	-6821.3	
	(8410.660)	
Cost to Baltimore in 1890	-1785.9	-1228.2
	(20352.596)	(20446.102)
Cost to New York in 1890	1795.5	1236.1
	(20325.374)	(20416.753)
Historic Centralization	1755.5	1637.2
	(1054.964)	(1036.658)
EA Calories Agriculture	116.5	329.5
	(825.056)	(767.306)
EA Sedentary	-764.1	-1033.8
	(1078.484)	(995.831)
Jurisdictional Hierarchy	-1019.6	-1280.6
	(1811.923)	(1820.926)
Wealth Distinctions	4456.6	3273.4
	(2656.315)	(2009.601)
Log Ruggedness	-128.7	14.28
	(544.915)	(504.469)
Population in 1600	-0.0581	-0.0217
	(0.257)	(0.243)
Forced Co-existence	-6502.5	-6877.5
	(4248.115)	(4038.498)
Indian War	1146.5	450.3
	(1696.580)	(1319.865)
Distance Displaced	95.37	283.4
	(1104.801)	(1082.603)
Nearby Income Per Capita	0.449	0.423
~	(0.278)	(0.271)
Constant	56028.9	12079.6
Observations	72	72
R^2	0.450	0.443

 Table A10:
 Robustness:
 IV Reduced Form

Notes: The dependent variable is per capita income. Clustered standard errors at the tribe level in parentheses. All specifications restrict the sample to tribes whose traditional territory was at least 60 percent overlapping with the bison range.

	1910 & 1930	1990,2000,& 2010	All Years
Share loss as of 1889	-0.679	-0.183	-0.376
	(0.132)	(0.056)	(0.136)
Age	0.103	0.0832	0.0855
	(0.035)	(0.005)	(0.006)
Age-Squared	-0.001	-0.001	-0.001
	(0.000)	(0.000)	(0.000)
Survey Year 1990			-0.283
			(0.044)
Survey Year 1990 X loss 1889			0.178
			(0.147)
Constant	-1.824	-1.152	-0.926
	(0.531)	(0.099)	(0.113)
Observations	521	30224	30745
Adjusted R^2	0.077	0.039	0.043

 Table A11: Correlation between Occupational Rank and Tribe Historic bison-reliance: Changes over time?

Notes: Clustered standard errors at the tribe level in parentheses. All columns include regional fixed effects (Census regions as defined by IPUMS: the New England Division, Middle Atlantic Division, East North Central Division, West North Central, South Atlantic Division Division, East South Central Division, West South Central Division, and the Pacific Division). All specifications restrict the sample to tribes whose traditional territory was at least 60 percent overlapping with the bison range.

B Additional Figures

Figure A1: Meaures of hide exports to England and France from Taylor (2011). See Taylor (2011) for details.

Figure A2: This map illustrates the timing and original range of the North American bison and is found in Hornaday 1889, Extermination of the North American Bison with a Sketch of its Discovery and Life History. In the Report of the National Museum under the direction of the Smithsonian Institution, pp. 367-548. Washington: Government.

Figure A3: This figure plots the density of standing height from Franz Boas' sample 1890 to 1901. N=9,075. Societies are classified as bison-reliant when more than 60% of their ancestral territory was covered by the historic bison range and non-bison-reliant if it was less than this. A similar pattern is visible if a threshold of 80% or 40% is used.

Figure A4: This data comes from Franz Boas' sample 1890 to 1901. These data are all for males and N=3,717 for bison-reliant societies and 5,104 for non-bison-reliant societies. Societies are classified as bison-reliant when more than 60% of their ancestral territory was covered by the historic bison range and non-bison-reliant if it was less than this. A similar pattern is visible if a threshold of 80% or 40% is used.

Figure A5: This figure focuses on the tribal sample of Dippel (2014) and displays histograms of the share of ancestral lands overlapping the original (left) bison range and the bison range as of 1870 (right). It is analogous to figure 2, which uses the full sample.

Figure A6: This map illustrates the timing of land succession and can be found as Map supplement number 16, Annals of the Association of American Geographers, Volume 62, Number 2, June 1972

Figure A7: This map illustrates the ancestral territories from the National Atlas of the United States 1970 (Gerlach, 1970).

Figure A8: Coefficients on indicators for each two-year of birth before and after the slaughter interacted with the original share of the territory covered by the historical bison range. The dependent variable is height in cm and conditions on age fixed effects, a dummy for "full blood", the tribe being located in Canada, whether a railway entered the traditional territory of the tribe and the number of years since your year of birth the railway had been present, and for whether the respondent had been born during a period of war. Data is from Franz Boas' 1889 to 1903 sample, N=7,321 (males).

Figure A9: Log of GDP per capita and log of mean light density at the reservation level (using the sample of reservations from (Dippel, 2014) and the nighttime lights satellite data from the NCES).

Figure A10: Coefficient estimates on "Share lost as of 1870" (black) and "Share lost as of 1889" (blue) using the log of mean light density as the dependent variable. The left panel does not include any controls, other than for population density, while the right panel includes the full set of controls and fixed effects.

C Additional Data Sources

 Table A12:
 bison-reliance
 Scale
 Generated
 from
 Anthropological
 Accounts

Code	Description
0	No contact at all with buffalo
0.1	Some contact with buffalo, though rare, through consumption or trade
0.2	Buffalo were occasionally hunted for food or skins
0.3	Buffalo were consumed as a non-essential food source in a diet centered around other foods
0.4	Buffalo played a small but significant part in the diet centered around other foods
0.5	Buffalo played a significant part in the diet however other food sources reduced dependence
0.6	Buffalo meat was consumed regularly but supplemented by a significant amount of agriculture
0.7	Buffalo were a seasonal staple and provided most of the calories for a significant part of the year
0.8	Buffalo were the primary source of meat and were supplemented by gathering or agriculture
0.9	Majority of calories came from buffalo meat, supplemented by small amounts of gathering or agriculture
1	Nearly all calories were derived from buffalo meat

Table A13: Sources for Anthrological Bison Index in Boas Tribal Data

Tribo Namo	Band	Sample Size	Sources in Addition to Waldman 2000
ALASKA	Dalid	5	Sources in Addition to Waldmain 2009 http://uw_native-language.org/alaska.htm
BANNOCK	A11	97	http://www.nauricolong.angulagu.com/tonic/Rannok-neonle: http://www.legendsofamerica.com/na-tribesummary-b.html
BILOXI		18	http://www.bigorrin.org/bloxi kis.htm
CADDO		62	http://archeology.uark.edu/indiansofarkansas/index.html?pageName=The%20Caddo%20Indians
CARRIER	All	35	http://www.thecanadianencyclopedia.ca/en/article/carrier/
CATAWBA		50	http://catawbaindian.net/about-us/early-history/
CAYUGA		12	http://www.cavuganation-nsn.gov/Culture/Rood
CAYUSE		22	http://ctuir.org/history-culture/first-foods
CHITIMACHA		31	http://www.chitimacha.gov/historv-culture/tribal-historv
CHOCTAW		501	http://www.aihd.ku.edu/foods/choctaw.html
COLUMBIA	All	5	https://www.britannica.com/topic/Plateau-Indian
CREEK		104	http://www.encyclopedia.com/history/united-states-and-canada/north-american-indigenous-peoples/creek
DELAWARE		28	http://www.lenapelifeways.org/lenape1.htm
HOOPA VALLEY		35	https://www.hoopa-nsn.gov/the-tribal-government
HURON		1	http://www.tolatsga.org/hur.html
KLAMATH		267	https://www.warpaths2peacepipes.com/indian-tribes/klamath-tribe.htm
KUTENAI	LOWER	54	http://www.thecanadianencyclopedia.ca/en/article/kootenay/
MENOMINI		274	https://www.mpm.edu/wirp/ICW-36.html
MODOC		1	https://www.warpaths2peacepipes.com/indian-tribes/modoc-tribe.htm
MOHAWK		95	http://www.thecanadianencyclopedia.ca/en/article/mohawk/
MOLALLA		6	http://dibblehouse.org/molala-life.html
OKANAGAN	All	101	Thomson, D. D. (1985). A history of the Okanagan: Indians and whites in the settlement era, 1860-1920 (T). 179-183. University of British Columbia.
ONEIDA	All	250	http://www.exploreoneida.com/culture-and-history/oneidas-way-of-life/
ONONDAGA		75	http://www.onondaganation.org/culture/food/
PUEBLO		43	http://native-american-indian-facts.com/Southwest-American-Indian-Facts/Pueblo-Indian-Facts.shtml
SENECA	All	114	https://sni.org/culture/
SHUSHWAP	All	477	http://www.landoftheshuswap.com/land.html
TENINO	All	138	Murdock, G. (1980). The Tenino Indians. Ethnology, 19(2), 129-149. doi:10.2307/3773268
THOMPSON		143	https://www.aadnc-aandc.gc.ca/DAM/DAM-INTER-BC/STAGING/texte-text/fnmp_1100100021018_eng.pdf
TUSCARORA		87	http://northcarolinahistory.org/encyclopedia/the-tuscarora/
UMATILLA		50	http://ctuir.org/history-culture/first-foods
UTE		10	http://www.legendsofamerica.com/na-ute.html
UTE	CAPOTE	21	http://www.legendsofamerica.com/na-ute.html
UTE	MOACHE	26	http://www.legendsofamerica.com/na-ute.html
UTE	UINTAH	50	http://www.legendsofamerica.com/na-ute.html
UTE	WEEMINUCHE	10	http://www.legendsofamerica.com/na-ute.html
WALLA WALLA		30	http://ctuir.org/history-culture/first-foods
WASHO		12	https://www.warpaths2peacepipes.com/indian-tribes/washoe-tribe.htm
WENATCHI		1	http://www.historylink.org/File/8634
YAKIMA		57	https://www.britannica.com/topic/Yakama
SPOKANE	All	18	http://www.aihd.ku.edu/foods/Spokanes.html
APACHE	COYOTERO	7	http://www.encyclopedia.com/humanities/encyclopedias-almanacs-transcripts-and-maps/western-apache
APACHE	SAN CARLOS	64	http://www.encyclopedia.com/humanities/encyclopedias-almanacs-transcripts-and-maps/western-apache
APACHE	TONTO	64	http://www.encyclopedia.com/humanities/encyclopedias-almanacs-transcripts-and-maps/western-apache
APACHE	WHITE MOUNTAIN	04	nttp://www.encyclopedia.com/numanities/encyclopedias-aimanacs-transcripts-and-maps/Western-apache
APACHE COEUD D'ALENE	WHITE MOUNTAIN@	1	http://www.encyclopedia.com/humanities/encyclopedias-almanacs-transcripts-and-maps/western-apache
COEUR D'ALENE		49	nttp://www.coatribe-nsn.gov/cultural/ancestral.aspx
CUEDOVEE		12	nttp://kalispeitribe.com/our-tribe/land-culture
CHEROKEE		099	ntp://www.colatsga.org/cherokeei.ntml
ELATUEAD		217	nttps://www.lom.edu/departments/special_collections/wc_nist/cnssav.pnp
WINNEBACO		101	ntop://www.iiatueauwatersmet.org/cuttufai_nistory/pend_satish.shtmi https://uurumew.adu/uiray/fuls_5 html
POTAWATOMI		30	http://www.nbmuicduwwiip/Jow Controlal-bistory geny
SAUK & FOX		10	https://discover research usiva edu/meskuki-culture-and-history
APACHE	MESCALEBO	37	https://dubicitiescala.downica.goodward.dubicitiescala.downica.goodward.dubicity
ARIKARA	BEE	2	http://hainbumantiisuu/opeo/haudu/popeo/haudu/opeo/haudu/opeo/http://hainbumantiisuu/opeo/haudu/opeo
MANDAN		1	http://www.ndstudies.org/resources/IndianStudies/threadfiliated/culture mandan3.html
MIAMI		2	https://miamination.com/node/11
QUAPAW		3	http://archeology.uark.edu/indiansofarkansas/index.html?pageName=The+Quapaw+Indians
BEAVER		1	http://www.thecanadianencyclopedia.ca/en/article/beaver-native-proup/
			1 ····································

Notes: For nations where different sources were used to construct bison-reliance they are listed. This is not a complete listing of nations.

 Table A14:
 Sources for Anthrological Bison Index in Boas Tribal Data

Tribe Name	Band	Sample Size	Sources in Addition to Waldman 2009
NEZ PERCE		132	https://www.critfc.org/member_tribes_overview/nez-perce-tribe/
OTOE		5	http://www.e-nebraskahistory.org/index.obp?title=Nebraska Historical Marker: Oto Indians
PAWNEE		88	http://www.nebraskastudies.org/0300/frameset_reset_html?http://www.nebraskastudies.org/0300/stories/0301_0107_html
KICKAPOO		5	ttp://www.tolatsga.org/kick.html
KUTENAI	UPPEB	43	http://www.thecanadianencyclopedia.ca/en/article/kootenav/
PONCA	011 110	83	http://www.encvclopedia.com/bistory/united-states-and-canada/north-american-indigenous-neonles/nonca
WICHITA	All	37	http://www.wichitatribe.com/history/people-of-the-grass-house-1750-1820.aspx
CHEYENNE		55	Grinnell G B (2008) The Chevenne Indians: Their History and Lifeways: Edited and Illustrated 95-99 World Wisdom Inc.
OMAHA		121	http://www.encyclopedia.com/history/united-states-and-canada/north-american-indigenous-peoples/omaha-indians
OSAGE		124	http://www.encyclopedia.com/history/united-states-and-canada/north-american-indigenous-peoples/osage
SAUK		33	https://www.britannica.com/topic/Sauk
CROW		607	http://www.encvclopedia.com/history/united-states-and-canada/north-american-indigenous-peoples/crow-people
GROS VENTRE		9	http://www.encvclopedia.com/history/united-states-and-canada/north-american-indigenous-peoples/gros-ventre
KIOWA		203	http://www.encyclopedia.com/history/united-states-and-canada/north-american-indigenous-peoples/kiowa
SIOUX		1022	http://native-american-indian-facts.com/Great-Plains-American-Indian-Facts/Sioux-Indian-Tribe-Facts.shtml
SIOUX	TETON	6	http://www.nebraskastudies.org/0300/stories/0301 0108.html
ASSINIBOIN		66	http://www.thecanadianencyclopedia.ca/en/article/assiniboine/
COMANCHE		193	http://www.encyclopedia.com/history/united-states-and-canada/north-american-indigenous-peoples/comanche
BLOOD		66	http://www.thecanadianencyclopedia.ca/en/article/blood-kainai/
PIEGAN		122	http://www.thecanadianencyclopedia.ca/en/article/piikuni-peigan-pikuni/
SARCI		21	http://www.thecanadianencyclopedia.ca/en/article/sarcee-tsuu-tina/
ARAPAHO		95	http://www.colorado.edu/csilw/arapahoproject/contemporary/history.htm
BLACKFOOT		29	http://www.aihd.ku.edu/foods/Blackfeet.html
TONKAWA		44	http://www.tonkawatribe.com/meals.html

Notes: For nations where different sources were used to construct bison-reliance they are listed. This is not a complete listing of nations.

Tribe Name	Band	Sample Size
APACHE CHIDDEWA (with as hard)	With no band	123
CREE	With no band	034 228
KUTENAI	with no band	16
SHAWNEE		24
AGUA CALIENTE		59
AMERICAN VALLEY		1
ANADARKO	CASSLOLA	2
APACHE	CHERACOW	1
APACHE	CHIRA	1
APACHE	CHIRICAHUA	2
APACHE	MOHAVE	2
B C		13
BENITOO		1
BIG MEADOW		9
BIG MEADOW	NAKUMA	1
BIG VALLEY BROTHERTOWN		1
CALIFORNIA		1
CHEROKEE	WESTERN	1
CHICO		1
CHILLUKUWEYUK		2
CHIPPEWA	CASCADES	о 8
CHIPPEWA	CASS LAKE	6
CHIPPEWA	GULL LAKE	3
CHIPPEWA	LAKE O WOODS	1
CHIPPEWA	LAKE SUPERIOR	1
CHIPPEWA	MISS	45 38
CHIPPEWA	OTTER TAIL	38
CHIPPEWA	PEMBINA	15
CHIPPEWA	PILLAGER	6
CHIPPEWA	RED LAKE	63
CHIPPEWA	SAULTEURS	14
CHIPPEWA	TURTLE MT.	1
CHIPPEWA	VIEUX DE DENT	1
CHIPPEWA	WINNEBEGOSHISH	1
CLACLASEQALA CLEAR LAKE		1
COLUMBIA RIVER		1
CONCOW		61
CONCOW	BIG BAND	1
CONCOW	BLOOMERHILL	1
COTTONWOOD	NEVODAS	1
COW		1
COW CREEK		7
COYOTERRA		1
HAI CREEK HAWKWELGETT		2
НОН		2
HUMPTULIPS		1
IROQUOIS	THIC RANY	1
JACOWE		1
KALISPEL LOWER		5 1
KATSEY		1
KITSAI		2
KITSOP		1
KLAMATH RIVER		1
KOGOALIK		1
KUTENAI	METIS	1
LIPAN		3
LONG TOM MALISOUI		1
MARIPOSA		1
MARYSVILLE		4
MARYVILLE		1
MATSQUI		2
MIKSOFDO		4
MIKSOFDO	LOW CREEK	1
MISSISSAGUA		291
MOKI (ORAIBE)		8
MODALI		1
MORAVIAN		13
MORAVIANTTOWN		1
MUCKLESHOT		1
MUNSEE		101
NAQONGYSLISALA		∠ 1
NATCHITOCHES		1
NESTUCCA		1

 Table A15: Sources for Anthropological Bison Index: Tribes Whose bison-reliance is Proxied by Geography in the Anthropological Measure

Notes: For Nations were different sources were used to construct bison-reliance they are listed. This is not a complete listing of nations.

NOROOCHIEJuneJuneOIBWA338OJIBWAGARDEN RIVEROJIBWAGARDEN RIVEROJIBWAOTHIPWEJIBWAOTHIPWEJIBWAOTHIPWEJIBWAOTHIPWEJIBWAOTHIPWEJIBWAOTHIPWEJIBWAIOJIBWAOTHIPWEJIBWAIOJIBWAIOJIBWAIOBACK2ORGONIPEND D'OREILLEI2PITT RIVERINDIAN VALLEYPORT MADISONIPORT MADISONIPORT BUDITEIQOMOVNEIQUMOYUTIROTOMAWALLIS IS.ROTOMAISAN JUAN7SAN UJAN7SAN UJAN1SCOTCHISCOTCHISINDATTCISKOATATCISKOATATCISKOATATCISKOATATCISKOATATCISKOATATCISANZESISKOATATCISKOATATCISKOATATCISKOATATCISKOATATCISKOATATCISKOATATCISKOATATCISKOATATCISKOATATCISKOATATCISKOATATCISKOATATCISKOATATCISKOATATCISKOATATC <td< th=""><th>Tribe Name</th><th>Band</th><th>Sample Size</th></td<>	Tribe Name	Band	Sample Size
NOGOOLI1OJIBWABATSHEWANA1OJIBWAGARDEN RIVER1OJIBWAOTHIPWE15OJIBWA (of CATLIN'S COMY)1OKA5OLOLOFA1OMACK2OREGON1PEND D'ORELLE21PITT RIVER11PORT MADISON1PORT MADISON1PORT MADISON1PORT MADISON1PORT MADISON1PORT MADISON1PORT MADISON1PORT MADISON1PORT MADISON1PORTEUR1PORTONA1QECTIC1QOTOMA1QOTOMA1ROTOMA1SAN TUAN7SAN LUIS REY15SAN TUAN7SAN LUIS REY15SCOCYAM1SCOCYAM1SCOCYAM1SCOCYAM1SKOATATCUPSIOWSISHALT3SKOATATC1SOFERS ID.1STOCKBRIDGE6TAAM1STOCKBRIDGE1TAAM1TAAM1TAAM1TAAM1TAAM1TAAM1TAAM1TAAM1TAAM1TAAM1TAAM1TAAM1TOOKGA1TAAM1 <td< td=""><td>NHYNOOTCHIE</td><td>Dana</td><td>1</td></td<>	NHYNOOTCHIE	Dana	1
OJIBWA338OJIBWAGARDEN RIVER1OJIBWAGARDEN RIVER1OJIBWAOTHIPWE15OJIBWA (of CATLIN'S COMY)1OKA1OKA1OKA1ORCOLOFA1OMACK2OREGON1PEND D'OREILLE12PITT RIVERINDIAN VALLEYPORT MADISON1PORT MADISON1PORT MADISON1PORT SVALEY1QUMOYUE1QUMOYUE1QUMOYUE1QUMOYUE1QUMOYUE1ROTOMA n. WALLIS IS.1ROTOMA n. WALLIS IS.1SAN LUSARY1SCOOYAM1SCOTCH1SCOTCH1SCOTCH1SCOTCH1SKOATATC1SKOATATC1SKOATATC1SNOYNALUNI1SQAEEN(23mi. ab. FT.SNOYNALUNI1SQAEEN1TARAHUMARA20TARAHUMARA1TARAHUMARA1TARAHUMARA1TARAHUMARA1THEEKS0THERSUS1THERSUS1THABAN1TARAHUMARA1TARAHUMARA1TARAHUMARA1TARAHUMARA1TARAHUMARA1TARAHUMARA1THOMSON1 <tr< td=""><td>NOGOOLI</td><td></td><td>1</td></tr<>	NOGOOLI		1
OJIBWABATSHEWANA1OJIBWAGRADEN RIVER1OJIBWA (of CATLIN'S COMY)1OKA5OLOLOFA1OMACK2OREGON1PEND D'OREILLE21PITT RIVERINDIAN VALLEYPORT MADISON1PORT MADISON1PORT MADISON1QUMOVINE1QUMOVINE1QUMOVINE1QUMOVINE1QUMOVINE1ROTOMA n. WALLIS IS.1ROTOMA N. WALLIS IS.1SAN JUAN7SAN JUAN1SCOCYAM1SCOCYAM1SCOCYAM1SCOCYAM1SCOCH1SIBLAIT3SIGOALMATER BAY2SIGOALMATER BAY2SIGOALMATER BAY3SOFERS ID.1SOFERS ID.1SOFERS ID.1SOFERS ID.1SOFERS ID.1SOFERS ID.1SOFERS ID.1TAR AHUMARA(RARAMUTCHY)TARAHUMARA1TARAHUMARA1TARAHUMARA1TARAHUMARA1TITESAUT1TITESAUT1TITESAUT1TARAHUMARA2TARAHUMARA1TARAHUMARA1TARAHUMARA1TURASIQULE1TURASIQULA1TURASIQULA1	OJIBWA		338
OJBWAOARDEN RUVEN1OJBWAOTHIPWE15OJBWAOTHIPWE15OIBWAS1ORA11OKA21OREGON11PEND D'OREILLE12PITT RIVERINDIAN VALLEY3PORT MADISON11PORT MEDICINE1PORT NADISON1PORT MEDICINE1PORT VALLEY1QUMOYUF1QUMOYUF1ROTUMA2SAN LUIS REY185SAN LUIS REY185SANTA CLARA11SCOYAM1SCOYAM1SCOYAM1SCOYAM1SCOYAM1SCOYAM1SKOATATC1SKOATATC1SNAKE1SNAKE1SNAKE1SOFERS ID.1SQAEEN2SINALWINI1SOFERS ID.1SAAAM2TACAMUMARA2TARAHUMARA2TARAHUMARA2TARAHUMARA2TARAHUMARA1THOMPSON11THESAUT1TITESAUT1TITESAUT1TITESAUT1TITESAUT1TITESAUT1TUASANQOLA1TUASANQOLA1TUASANQULA1TUASANQULA1TUASANQULA<	OJIBWA	BATSHEWANA	1
OTHER WASOTHER WASOTHER WASOKA5OKA5OKA1OREGON1PEND DORELLE12PEND DORELLE12PUTT RIVER11PORT MADISON1PORT MADISON1PORT WADENCINE1PORT WADENCINE1QOMOYNE1QOMOYNE1QOMOYNE1QUMOYUT1ROTUMA185SAN JUAN7SAN LUIS REY185SANTA CLARA11SCOOYAM1SCOOYAM1SCOOYAM1SCOOYAM1SKOATATC1SKOATATC1SNAKE1SNAKE1SNAKE1SNAKE1SNAKE1SOFERS ID.1SQAEEN(23mi. ab. FT.SOATATC1SOATATC1SOATATC1SOATATC1SOATATC1STOCKERIDGE86TAAM1TACAS1TACAS1TARAHUMARAGENTILTARAHUMARA1TITESAUT1TITESAUT1TITESAUT1TITASINGULA1TUASINGULA1TUASINGULA1TUASINGULA1TUASINGULA1TUASINGULA1TUASINGULA1TUASINGULA1	OJIBWA	GARDEN RIVER	1
OKA5OLOLOPA1OMACK2OREGON1PEDD D'OREILLE12PITT RIVERINDIAN VALLEYPITT RIVER1PORT MADISON1PORT MEDICINE1PORTEUR1PORTEUR1POTTS VALLEY1QOMOYNE1QUMOYUT1ROTUMA2SAN JUAN2SAN JUN1SAN JUN1SANTA CLARA11STOCCH1SCOTCH1 <td< td=""><td>OJIBWA (of CATLIN'S COMY)</td><td>OTHE WE</td><td>15</td></td<>	OJIBWA (of CATLIN'S COMY)	OTHE WE	15
OLOLOFA1OMACK2OREGON1PEND D'OREILLE12PITT RIVER12PITT RIVER1PORT MADISON1PORT MADISON1PORTEUR1PORTS VALLEY1QECTIC1QOMOYNE1QUMOYUT1ROTOMA n. WALLIS IS.1ROTOMA n. WALLIS IS.11SAN JUAN7SAN LIS REY185SANTA CLARA11SCOOYAM1SCOTCH6SHIPEK9SHOALWATER BAY2SKOATATCUPSIOWSKOATATC1SKOATATC1SNOVNALUNI1SOPERS ID.1SOPERS ID.1SOPERS ID.1STARABUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA1TEXELSDOUGLASTHEPENAUT1THESAUT1THASLASIQULA1TUASIASULE1TUASIASULE1TUASIASULUE1TUASIASULUE1TURGT1TURGT1TURGT1TURGT1TURAGT1TURAGT1TURAGT1TURAGT1	OKA		5
OMACK2OREGON1PEND D'ORELLE12PITT RIVERINDIAN VALLEYPITT RIVERINDIAN VALLEYPORT MEDICINE1PORT MEDICINE1PORTEUR1QECTIC1QUMOYNE1QUMOYUT1ROTUMA2SAN JUAN2SAN JUAN2SAN JUAN1SCOTCH1SAN JUAN2SAN JUAN1SCOTCH1SCOTCH1SCOTCH1SCOTCH1SCOTCH1SCOTCH1SCOTCH1SKOATATC1SKOATATC1SKOATATC1SNOVALUNI1SOFERS ID.1SNAKE1SNOVALUNI1SOFERS ID.1SOFERS ID.1SOFERS ID.1STARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAH	OLOLOFA		1
OREGON1PEND D'OREILLE12PITT RIVERINDIAN VALLEYPITT RIVERINDIAN VALLEYPORT MADISON1PORTEUR1PORTS VALLEY1QECTIC1QUMOYUT1ROTOMA n. WALLIS IS.1ROTOMA n. WALLIS IS.1ROTOMA n. WALLIS IS.1SAN JUAN7SAN LUIS REY185SANTA CLARA11SCOOYAM1SCOOYAM1SCOOYAM1SCOOYAM1SCOOYAM1SCOOYAM1SCOOYAM1SKATATC3SKOATATC3SKOATATC1SKOATATC1SNOVALUNI1SOPERS ID.1SNOVALUNI1SOPERS ID.1STAAR MUMARA(RARAMUTCHY)TARAHUMARA(RARAMUTCHY)TARAHUMARA1TARAHUMARA1TEXELSDOUGLASTHOPHSONAll bandsTTARAHUMARA1TUASLASIQULA1TLASLASIQULA1TUASLASIQULA1TUASLASIQULA1TUASLASIQULA1TUASLASIQULA1TUASLASIQULA1TUASLASIQULA1TUASLASIQULA1TUASLASIQULA1TUASLASIQULA1TUASLASIQULA1TUASLASIQULA1TUASINGT1UTAINGT <t< td=""><td>OMACK</td><td></td><td>2</td></t<>	OMACK		2
TITT RIVER12PITT RIVERINDIAN VALLEYPITT RIVERINDIAN VALLEYPORT MEDICINE1PORT MEDICINE1PORTEUR1PORTEUR1QECTC1QUMOYNE1QUMOYUT1ROTUMA2SAN JUAN2SAN JUAN2SAN JUAN1SCOTCH1SCOTCH1SCOTCH1SCOTCH1SEATTLE6SHIPEK9SHOALWATER BAY2SINSLAW1SKOATATCUPSIOWSMELKAMEEN1SNARE1SOFERS ID.1SQAEEN(23mi. ab. FT.SNARE1STOCKBRIDGE86TAAM1TARAHUMARA(RARAMUTCHY)TARAHUMARA1TEXELISDOUGLASTHOMPSONAll bandsTITESAUT1TIASLASQULA1TIASLASQULA1TIASLASQULA1TIASLASQULA1TUASA1TOOTOO DINA1TUTAMGT1TUTAMGT1UTEPACHEUTEUCHESNEUTEMACHUCAWALLES IS2WAPATOO LAKE2WAPATOO LAKE1WARNUCK1WARNUCK1WIKWEMKONG1WIKWEMKONG1YotalYotal <tr< td=""><td>DREGON</td><td></td><td>1</td></tr<>	DREGON		1
PITT RIVERINDIAN VALLEY3PORT MADISON1PORT MEDICINE1PORT MEDICINE1PORTER1POTTS VALLEY1QECTIC1QUMOYUT1QUMOYUT1ROTOMA n. WALLIS IS.1ROTOMA n. WALLIS IS.1SAN JUAN7SAN LUIS REY1SANTA CLARA1SCOOYAM1SCOOYAM1SCOOYAM1SCOOYAM1SCOOYAM1SKATATC1SKATATC1SKOATATC1SNAKE1SNAKE1SNAKE1SNAKE1SNAKE1SOFERS ID.1SQAEEN(23mi. ab. FT.STOCKBRIDGE1SAAHUMARA(RARAMUTCHY)TAAM1TAAM20TARAHUMARA20TARAHUMARA20TARAHUMARA1TEXELSDOUGLASTHEYSAUT1THEYSAUT1THEYSAUT1THONGA1TOOKGA1TOOKAOALA1TOOKAOALA1TUASLASIQULA1THAM4TUASLASIQULA1THAM4TUASLASIQULA1TUASLASIQULA1TUASLASIQULA1TUASLASIQULA1TUASLASIQULA1TUASLASIQULA1 <td>PITT RIVER</td> <td></td> <td>21</td>	PITT RIVER		21
PORT MADISON1PORT BEDICINE1PORTEUR1POTTS VALLEY1QECTIC1QOMOYNE1QUMOYUT1ROTOMA n. WALLIS IS.1ROTUMA2SAN JUAN7SAN LUIS REY185SANTA CLARA1SCOTCH1SCOOYAM1SCOTCH1SCOTCH1SCOTCH1SCOTCH1SCOTCH1SCOTCH1SKOATATC1SKOATATC1SKOATATC1SNELKAMEEN1SNELKAMEEN1SOFERS ID.1SOFERS ID.1STOCKBRIDGE86TAAM1TACS45TARAHUMARACRNTILTARAHUMARA1TARAHUMARA1TARAHUMARA1TARAHUMARA1TARAHUMARA1TARAHUMARA1TARAHUMARA1TITESAUT1TUESAUT1TUASANQOALA1TUASANQOALA1TUASANQOALA1TUASANQOALA1TUASANQOALA1TUASANQOALA1TUASANQOALA1TUASANQOALA1TUASANQOALA1TUASANQOALA1TUASANQOALA1TUASANQOALA1TUASANQOALA1TUASANQOALA1TUASANQ	PITT RIVER	INDIAN VALLEY	3
PORT MEDICINE 1 PORTEUR 1 PORTEUR 1 POTTS VALLEY 1 QUONDYNE 1 QUONDYNE 1 QUONDYNE 1 ROTUMA WALLIS IS. 1 SANTA CLARA 1 SCOOYAM	PORT MADISON		1
POTIS VALLEY POTIS VALLEY I QECTIC QECTIC QUMOYUT I I ROTOMA n. WALLIS IS. I ROTUMA VALLIS IS. I ROTUMA I SAN JUAN SAN LUIS REY I SAN JUAN SCOUTCH I SCOUTCH	PORT MEDICINE		1
QECTIC1QOMOYNE1QUMOYUT1ROTUMA1ROTUMA2SAN JUAN7SAN LUIS REY185SANTA CLARA11SATUS1SCOCCH1SCOTCH1SCOTCH1SCOTCH1SCOTCH1SCALTER9SHOALWATER BAY2SINSLAW1SKOATATC1SKOATATC1SNAKE1SNAKE1SNAKE1SNAKE1SOFERS ID.1SQAEEN(23mi. ab. FT.SQAEEN2TARAHUMARA(RARAMUTCHY)TARAHUMARAGENTILZTEXELSDOUGLASTHOMPSONAll bandsTTETSAUT1TIDEHUANAS1TIDEHUANAS1TIDEHUANAS1TITESAUT1TOO TOO DINA1TOOTOO DINA1TONGA1TOMAGA1TOMAGA4TSMISHIANGINNEHAUGUAKTSMISHIANASXATSMISHIANASKATSMISHIANASKATSMISHIANASKATSMISHIAN1TOATAGT1TOATAGT1TOMAGA1TOMAGA1TUASANQOLA1TUASANGUK1TUASANGUK1TUASANGUK1TIDAGA1<	PORTEUR POTTS VALLEY		1
QOMOYNE1ROTOMA n. WALLIS IS.1ROTUMA2SAN JUAN7SAN LUIS REY185SANTA CLARA1SCOOYAM1SCOOYAM1SCOOYAM1SCOOYAM1SCOOYAM1SCOOYAM1SCOOYAM1SCOOYAM1SCOOYAM1SCOOYAM1SCOOYAM1SCOOYAM1SCOOYAM1SCOATCH1SCOATTLE9SINSLAW1SINSLAW1SINSLAW1SKOATATCUPSIOWSNOYNALUMI1SOPERS ID.1SOPERS ID.1STOCKBRIDGE86TAAM1TAOS45TARAHUMARAGENTILTARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA21TEXELSDOUGLASTHOMPSONAll bandsTITYELIS1TITYELIS1TUASLASIQULA1TUASLASIQULA1TONCA1TOWACONIE1TONGA1TOWACONIE1TUBAR4TUNEMINANNISKAUNCOMPAGEE4UNCOMPAGEE2WAPATOO LAKE2WAPATOO LAKE1WALLIS IS.2WAPATOO LAKE1WALLIS IS.2 </td <td>QECTIC</td> <td></td> <td>1</td>	QECTIC		1
QUMOYUT1ROTOMA n. WALLIS IS.1ROTOMA n. WALLIS IS.1SAN JUAN2SAN LUIS REY185SANTA CLARA11SATUS1SCOTCH1SCOTCH1SCOTCH1SEATTLE6SHIPEK9SHOALWATER BAY2SINSLAW1SKOATATC1SKOATATC1SNAKE1SNAKE1SOFERS ID.1SQAEEN(23mi. ab. FT.SQAEEN20TARAHUMARAGENTIL20TARAHUMARATAOS45TARAHUMARAGENTILTEXELS1THOMPSONAll bandsTITESAUT1TITELIS1TITASIQULE1TUASANQOALA1TLASLASIQULE1TUASANQOALA1TUASANQOALA1TUASHIANNASXATSMISHIANGINNEHAUGUAKTSMISHIAN1TUAGT1TUAGT1TUAGT1UTAMGT1UTAMGT1UTAMGT1UTAMGT1WALLAPAI2WAPATOO LAKE2WAPATOO LAKE2WAPATOO LAKE1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK <t< td=""><td>QOMOYNE</td><td></td><td>1</td></t<>	QOMOYNE		1
ROTUMA1ROTUMA2SAN JUAN7SAN LUIS REY185SANTA CLARA11SATUS1SCOOYAM1SCOOTCH6SEATTLE6SHOALWATER BAY2SINSLAW1SKOATATC1SKOATATC1SNOYNALUNI1SOPERS ID.1SQAEEN(23mi. ab. FT.SQAEEN20TARAHUMARAGENTILSQAEEN20TARAHUMARAGENTILTARAHUMARA20TARAHUMARA1TARAHUMARA1TOOCGA1TEXELSDOUGLASTITETSAUT1TITETSAUT1TOO TOO DINA1TIASANQOALA1TILASLASIQULA1TILASLASIQULA1TITAMGINNEHAUGUAKTISSILIA1TOWACONIE1TRIAMGINNEHAUGUAKTSMISHIANNISKAUTAINGT1UTANGT1UTAINGT1UTAINGT1UTEDUCHESNEUTAINGT1UTEAPACHEUTAINGT1UTEWALAPAIWALLIS IS.2WAPATOO LAKE2WAPATOO LAKE2WAPATOO LAKE1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1 <td< td=""><td>QUMOYUT</td><td></td><td>1</td></td<>	QUMOYUT		1
NAN JUAN2SAN LUIS REY185SANTA CLARA1SANTA CLARA1SCOOYAM1SCOOYAM1SCOOYAM1SCOOYAM1SCOOYAM1SEATTLE6SHIPEK9SINSLAW1SINSLAW1SINSLAW1SKOATATCUPSIOWSKOATATC1SNAKE1SOFERS ID.1SQAEEN(23mi. ab. FT.SQAEEN20TARAHUMARARAMUTCHY)TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA1TOOCOLIAS1THOMPSONAll bandsTITPETUS1TITPETUS1TOO TOO DINA1TOOACONIE1TTAISANQOALA1TIASANQOALA1TOMACONIE1TSMISHIANNASXAYSMISHIANNASXAYSMISHIAN10TSXELIS4UNCOMPAGEE4UNCOMPAGEE4UTAMGT1UTEDUCHESNEUTAINGT1UTAINGT1UTAINGT1UTAINGT1UTAINGT1<	ROTOMA n. WALLIS IS.		1
SAN LUSEREY 185 SANTA CLARA 11 SATUS 11 SATUS 11 SCOTCH 11 SEATTLE 6 SHIPEK 6 SHOALWATER BAY 2 SINSLAW 1 SISHIALT 3 SKOATATC 12 SINSLAW 1 SISHIALT 3 SKOATATC 12 SKOATATC 14 SNAKE 1 SNAKE 1 SNOYNALUNI 1 SOFERS ID. 1 SOFERS ID. 1 SOFERS ID. 1 SOFERS ID. 1 SQAEEN (23mi. ab. FT. 1 SOFERS ID. 1 SQAEEN 2 TARAHUMARA 7 TARAHUMARA 7 TARAHUMARA 7 TARAHUMARA 7 TARAHUMARA 7 TARAHUMARA 7 TARAHUMARA 7 TETSELIS 1 TEXELIS 1 TEXELIS 1 TEXELIS 1 TIPENUANAS 1 TIPENUANAS 1 TIPENUANAS 1 TIVELIS 1 TALASLASIQULA 1 TLASLASIQULA 1 TLASLASIQULA 1 TLASLASIQULA 1 TLASLASIQULA 1 TLASLASIQULA 1 TLASLASIQULA 1 TLASLASIQULA 1 TLASLASIQULA 1 TLASLASIQULA 1 TUONGA 1 TOO TOO DINA 1 TOMACONIE 1 TIMENIN NISKA 10 TISXELIS 4 TUTAINGT 1 UTE APACIEN 4 WALNOG 1 UTE APACHE 2 WAPATOO LAKE 3 WALLA 4 WALNONG 1 WIKWEMIKONG 1 VIKWEMIKONG 1 VIKW	SAN JUAN		2
SATUA CLARA11SATUS1SCOOYAM1SCOOTCH1SCOOTCH1SEATTLE6SHUPEK9SHOALWATER BAY2SINSLAW1SINSLAW1SKOATATCUPSIOWSKOATATCUPSIOWSMELKAMEEN1SNOYNALUNI1SOFERS ID.1STOCKBRIDGE86TAAM1TAOS45TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA20TARAHUMARA1TOCKBRIDGE1TEEXELSDOUGLASTHETSAUT1TIPEHUANAS1TIVELIS1TIVELIS1TOOTOO DINA1TONGA1TONGA1TONGA1TONGA1TOWACONIE1TINISHIANNISKATSMISHIANNISKATSMISHIANNISKATSMISHIAN10TSSELIS4UUTAINGT1UTAINGT1UTAINGT1UTAINGT1UTAINGT1WALLAPAI2WAPATOO LAKE2WAPATOO LAKE1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARANUCK1WARNUCK <td>SAN LUIS REY</td> <td></td> <td>185</td>	SAN LUIS REY		185
SATUS1SCOOYAM1SCOOYAM1SCOOYAM1SEATTLE6SHIPEK9SHOALWATER BAY2SINSLAW1SINSLAW1SINSLAW1SKOATATCUPSIOWSKOATATC1SNAKE1SNAKE1SNAKE1SOFERS ID.1SQAEEN(23mi. ab. FT.SOFERS ID.1SQAEEN20TARAHUMARAGENTILTAOS45TARAHUMARAGENTILTEXELIS1TEXELIS1THOMPSON1AIL1TITASLASIQULA1TILASLASIQULA1TILASLASIQULA1TUASLASIQULA1TOO TOO DINA1TOWACONIE1TONGA1TUASUASULIA1TUASLASIQULA1TUASLASIQULA1TUASUASILIS4TUASUASILIS1TUASUASILIS1TUARA4TUARA1TUARA4UNCOMPAGEE4UTAINGT1UTEDUCHESNEUTAINGT1UTEQUCHESNEUTAINGT1UTAINGT1UTAINGT1UTAINGT1UTAINGT1UTAINGT1UTEDUCHESNEUNALIS IS.2WAPATOO	SANTA CLARA		11
SCOOYAM 1 SCOTCH 1 SEATTLE 6 SHIPEK 9 SHOALWATER BAY 2 SINSLAW 1 SISHIALT 3 SISHIALT 3 SKOATATC UPSIOW 1 SMELKAMEEN 1 SNOYNALUNI 1 SOFERS ID. 1 SOOYRALUNI 1 SOOFERS ID. 1 SOOFERS ID. 1 SOOFERS ID. 1 SOOFERS ID. 1 SOOFERS ID. 1 SOOFERS ID. 1 TAAS 45 TARAHUMARA 20 TARAHUMARA 45 TARAHUMARA 45 TARAHUMARA 45 TILS 1 TUASLASIQULE 1 TOO TOO DINA 1 TUBAR 4 UNCOMPAGEE 4 UNCOMPAGEE 4 UNCOMPAGEE 4 UNCOMPAGEE 4 UNCOMPAGEE 4 UNCOMPAGE	SATUS		1
SEATTLE1SEATTLE6SHIPEK9SHOALWATER BAY1SINSLAW1SINSLAW1SINSLAW1SKOATATCUPSIOWSKOATATCUPSIOWSKOATATC1SKOATATC1SNELKAMEEN1SNAKE1SOFERS ID.1SQAEEN(23mi. ab. FT.STOCKBRIDGE86TAAM1TACS45TARAHUMARA20TARAHUMARAGENTIL22TEXELSDOUGLASTHOMPSONAll bandsTITETSAUT1TLASLASIQULA1TLASLASIQULA1TLASLASIQULA1TOONGA1TOWACONIE1TOWACONIE1TUBRIHANNISKAUTAMGT1UTAMGT1UTAMGT1UTAMGT1UTAMGT1UTAMGT1UTAMGT1UTAMGT1UTAMGT1UTAMGT1UTAMGT1UTAMGT1UTAMGT1UTAMGT1WALLIS IS.2WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1	SCOUYAM		1
SHIPEK9SHOALWATER BAY2SINSLAW1SINSLAW1SINSLAW1SKOATATCUPSIOWSKOATATCUPSIOWSKOATATC1SKOATATCUPSIOWSMAKE1SNAKE1SNAKE1SOPERS ID.1SQAEEN(23mi. ab. FT.STOCKBRIDGE86TAAM1TAOS45TARAHUMARAGENTILPEXELIS1TEXELS1TEXELS1THETSAUT1TIDETSAUT1TILASANQOALA1TLASANQOALA1TLASANQOALA1TLASLASIQULE1TONGA1TONGA1TONGA1TUBAR4TUBAR4TUBAR4UTAMGT1UTAMGT1UTAMGT1UTANGT1UTANGT1UTANGT1UTANGT1UTANGT1UTANGT1UTANGT1UTANGT1UTANGT2WAPATOO LAKE2WAPATOO LAKE1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1<	SEATTLE		6
SHOALWATER BAY2SINSLAW1SINSLAW1SINSLAW1SINSLAW1SKOATATC1SKOATATC1SKOATATC1SNARE1SNAKE1SNAKE1SOPERS ID.1SQAEEN(23mi. ab. FT.STOCKBRIDGE86TARAHUMARA20TARAHUMARA20TARAHUMARAGENTILTARAHUMARAGENTILTEXELS1TEXELSDOUGLASTHOMPSONAll bandsTILASANQOALA1TLASLASIQULA1TLASLASIQULA1TOO TOO DINA1TONGA1TONGA1TUBELIS4TUBAR4UNCOMPAGEE4UTAMGT1UTEDUCHESNEUTAMGT1UTAMGT1UTAMGT1UTAMGT2WALLIS IS.2WALLIS IS.2WALLIS IS.2WAPATOO LAKE2WAPATOO LAKE1WALLAPAI2WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK1WARNUCK </td <td>SHIPEK</td> <td></td> <td>9</td>	SHIPEK		9
SINSLAW I SISHIALT 3 SISHIALT 3 SKOATATC I UPSIOW 1 SKOATATC UPSIOW 1 SKOATATC UPSIOW 1 SMEKAMEEN 1 SNOYNALUNI 1 SOFERS ID. 1 SQAEEN (23mi. ab. FT. 1 STOCKBRIDGE 8 TAAM 1 TAOS 45 TARAHUMARA (23mi. ab. FT. 1 STOCKBRIDGE 1 TARAHUMARA 20 TARAHUMARA 45 TARAHUMARA 20 TARAHUMARA 45 TUSAUT 1 TITESAUT 1 TITETSAUT 1 TITETSAUT 1 TITETSAUT 1 TITASLASIQULA 1 TITLASLASIQULA 1 TOO TOO DINA 1 TOO TOO DINA 1 TOWACONIE 1 TITASLASIQULE 1 TONGA 1 TUTE 4 UTE 4 UTAINGT 1 UTE 4 UTAINGT 1 UTE 4 UTAINGT 1 UTE 4 APACHE 1 UTE 4 VAPATOO LAKE 20 WAPETOO LAKE 20 WAPETOO LAKE 20 WAPETOO LAKE 20 WAPETOO LAKE 20 WAPETOO LAKE 1 WIKWEMIKONG 1 WIKWEMIKONG 1 WIKWEMIKONG 1 WIKWEMIKONG 1 WIKWEMIKONG 1 WIKWEMIKONG 1 WIKWEMIKONG 1 VITE 4 VITE	SHOALWATER BAY		2
SKOATATCJSKOATATCUPSIOW1SMELKAMEEN1SMARE1SNAKE1SNAKE1SOPERS ID.1SQAEEN(23mi. ab. FT.STOCKBRIDGE86TAAM1TAOS45TARAHUMARA20TARAHUMARAGENTIL21TARAHUMARAGENTIL11TEXELSDOUGLASTHOMPSONAll bands277TIETSAUT1TLASANQOALA1TLASANQOALA1TONGA1TOWACONIE1TRIAM4TSMISHIANNISKATSMISHIANNISKAUUTAINGT1UTAINGT1UTAAll bandsSWALAPAI4WALAPAI2WALAPAI2WARNUCK1YAM HILL4YAM HILL4YAM <td>SINSLAW</td> <td></td> <td>1</td>	SINSLAW		1
SKOATATCUPSIOW1SMAELKAMEEN1SNAKE1SNAKE1SNOYNALUNI1SQAEEN(23mi. ab. FT.SQAEEN(23mi. ab. FT.STOCKBRIDGE86TAAM1TAOS45TARAHUMARA(RARAMUTCHY)TARAHUMARAGENTILQENTIL2TEXELSDOUGLASTHOMPSONAll bandsTIPEHUANAS1TIASANQOALA1TLASLASIQULA1TONGA1TONGA1TOWACONIE1TRIM4TSMISHIANNASXAUNCOMPAGEE4UTANGT1UTA1UTA1TUTEAPACHEUNCOMPAGEE4WALAPAI1UTEAPACHEUTEUCHESNEUTA1UTAMGT1UTAMGT1UTAMGT1UTAMGT1UTEAPACHEUTEQUCHESNEWALAPAI2WAPETOO LAKE2WAPETOO LAKE1WIKWEMIKONG1WIKWEMIKONG1YAM HILL4YAM HILL4YAM HILL4YAM HILL4	SKOATATC		1
SMELKAMEEN1SNAKE1SNAKE1SNAKE1SNOYNALUNI1SQFERS ID.1STOCKBRIDGE86TAAM1TAOS45TARAHUMARA20TARAHUMARAGENTIL207TARAHUMARAGENTIL211TEXELIS1TEXELSDOUGLAS11TIPEHUANAS1TITESAUT1TITASANQOALA1TLASANQOALA1TLASLASIQULE1TONGA1TONGA1TONGA1TRIAMGINNEHAUGUAKTSMISHIANNASXATSMISHIANNASXATSMISHIAN1UNCOMPAGEE4UNCOMPAGEE4UTAINGT1UTEDUCHESNE11UTEAPACHEUTEQUCHESNEWALAPAI2WALAPAI2WAPETOO LAKE1WARNUCK1WIKWEMIKONG1WIKWEMIKONG1WIKWEMIKONG1WIKWEMIKONG1YAM HILL4YAM HILL4YAM HILL4	SKOATATC	UPSIOW	1
SNAKE 1 STARAHUMARA 1 STARAHUMARA 1 STARAHUMARA 1 STARAHUMARA 1 STARAHUMARA 20 TARAHUMARA 2 STARAHUMARA 2 STARAHUMARAHUMARA 2 STARAHUMA A A STARAHUMARAHUMARAHUMARAHUMA A STARAHUMARAHUMARAHUMARAHUM	SMELKAMEEN		1
SNOTIVALION1SOFINALION1SOFINALION1SQAEEN(23mi. ab. FT.STOCKBRIDGE86TAAM1TAOS45TARAHUMARA(RARAMUTCHY)TARAHUMARAGENTIL2020TARAHUMARAGENTIL212TEXELSDOUGLASTHOMPSONAll bandsTIPEHUANAS1TIPEHUANAS1TIASANQOALA1TLASLASIQULA1TOO TOO DINA1TOWACONIE1TSMISHIANGINNEHAUGUAKTSMISHIANNISKATUBAR4UTAMGT1UTEDUCHESNEUTAMGT1UTEDUCHESNEUTSINGTAll bands2WALAPAIWALAPAI2WAPETOO LAKE1WARNUCK1WIKWEMIKONG1WAM HILL4Total N3074	SNAKE SNOVNALUNI		1
SQAEEN(23mi. ab. FT.1STOCKBRIDGE86TAAAM1TAOS45TARAHUMARA20TARAHUMARA(RARAMUTCHY)TARAHUMARAGENTIL22TEXELIS1TEXELSDOUGLASTHOMPSONAll bandsTIPEHUANAS1TIVELIS1TLASANQOALA1TLASLASIQULE1TONGA1TOWACONIE1TSMISHIANGINNEHAUGUAKTSMISHIANNISKANISKA10TSXELIS4UNCOMPAGEE4UNCOMPAGEE4UTEDUCHESNEUTEAPACHEUTEQUCHESNETUTEQUCHESNETUTEQUCHESNETUTEQUCHESNETUTEQUCHESNETUTEQUCHESNE </td <td>SOFERS ID.</td> <td></td> <td>1</td>	SOFERS ID.		1
STOCKBRIDGE86TAAM1TAAM45TARAHUMARA20TARAHUMARA(RARAMUTCHY)11TARAHUMARAGENTIL22TEXELIS1TEXELSDOUGLAS11TESAUT1TIPEHUANAS1TIASLASIQULA1TLASLASIQULA1TONGA1TONGA1TONGA1TSMISHIANGINNEHAUGUAKTSMISHIANNISKATUBAR4UNCOMPAGEE4UNCOMPAGEE4UTAINGT1UTEDUCHESNEUTAINGT1UTAINGT1UTEQUCHESNEUTAINGT1UTAINGT1UTAINGT1UTAINGT1UTAINGT1UTAINGT1UTAINGT1UTAINGT1UTAINGT2WALAPAI2WALAPAI2WAPATOO LAKE2WAPATOO LAKE1WIKWEMIKONG1WIKWEMIKONG1WIKWEMIKONG1YAM HILL4Total N3074	SQAEEN	(23mi. ab. FT.	1
TAAM1TAAM1TAA20TARAHUMARA20TARAHUMARAGENTILTARAHUMARAGENTILTARAHUMARAGENTILTEXELIS1TEXELSDOUGLASTHOMPSONAll bandsTTIETSAUT1TIPEHUANAS1TLASANQOALA1TLASLASIQULE1TONGA1TONGA1TOWACONIE1TRIAMGINNEHAUGUAKTSMISHIANNISKAUNCOMPAGEE4UTAMGT1UTEDUCHESNEUTAMGT1UTEDUCHESNEUTSINGTAll bandsWALAPAI2WALAPAI2WAPATOO LAKE1WARMUCK1WARMUCK1WARMONG1WARMONG1WARMONG1WARADA <t< td=""><td>STOCKBRIDGE</td><td></td><td>86</td></t<>	STOCKBRIDGE		86
TARA40TARAHUMARA20TARAHUMARA(RARAMUTCHY)11TARAHUMARAGENTIL21TEXELIS1TEXELSDOUGLAS11TIETSAUT1TIPEHUANAS1TILASANQOALA1TLASLASIQULE1TONGA1TONGA1TOWACONIE1TRIAMGINNEHAUGUAKTSMISHIANNASXAQ1TUBAR4TUBAR4TUBAR4UNCOMPAGEE4UTAMGT1UTEDUCHESNEUTSINGTAll bandsWALAPAI2WALAPAI2WAPATOO LAKE2WAPATOO LAKE1WAR1WARWOK1WARENUCK1WA	TAAM		1
TARAHUMARA(RARAMUTCHY)1TARAHUMARAGENTIL2TEXELIS1TEXELSDOUGLAS1THOMPSONAll bands277TIETSAUT11TIPEHUANAS11TIASLASIQULA11TLASLASIQULA11TOO TOO DINA11TOWACONIE11TSMISHIANGINNEHAUGUAK1TSMISHIANNISKA10TSXELIS41TUBAR41UTEDUCHESNE1UTEAPACHE1UTEQUAGNA1TSMISHIANSISKA2SMISHIANNISKA10TSXISHIAN11UTSMGT11UTEDUCHESNE1UTEQUACHESNE1UTEDUCHESNE1UTSINGTAll bands3WALAPAI22WAPATOO LAKE21WARNUCK11WIKWEMIKONG14YAM HILL44Total N3074	TARAHUMARA		20
TARAHUMARAGENTIL2TEXELIS1TEXELSDOUGLASTHOMPSONAll bands277TIETSAUT1TIPEHUANAS1TIXELIS1TLASLASIQULA1TLASLASIQULA1TOO TOO DINA1TOWACONIE1TSMISHIANGINNEHAUGUAKTSMISHIANNISKATUBAR4UTAMGT1UTEAPACHEUTAMGT1UTEAPACHEUTEAPACHEUTSINGTAll bandsWALAPAI2WAPATOO LAKE2WARNUCK1WIKWEMIKONG1WAM HILL4YAM HILL4YAM HILL4YAM HILL4	TARAHUMARA	(RARAMUTCHY)	1
TEXELISITEXELSDOUGLAS1THOMPSONAll bands277TIETSAUT1TIPEHUANAS1TIXELIS1TLASANQOALA1TLASLASIQULA1TLASLASIQULA1TOO TOO DINA1TOWACONIE1TSMISHIANGINNEHAUGUAKTSMISHIANNISKATUBAR4UNCOMPAGEE4UNCOMPAGEE4UTAGT1UTEDUCHESNEUTEDUCHESNEUTSINGTAll bandsWALAPAI2WALAPAI2WAPETOO LAKE2WARNUCK1WIKWEMIKONG1WAM HILL4Total N4YAM HILL4Total N3074	TARAHUMARA	GENTIL	2
THALLEDOUGLADITHOMPSONAll bands277TIETSAUT1TIPEHUANAS1TIXELIS1TLASANQOALA1TLASLASIQULA1TLASLASIQULE1TONGA1TOO TOO DINA1TOWACONIE1TSMISHIANGINNEHAUGUAKTSMISHIANNISKATSMISHIANNISKATUBAR4UNCOMPAGEE4UTAINGT1UTEDUCHESNEUTEDUCHESNEUTEQUCHESNEUTE2WALAPAI2WALAPAI2WAPETOO LAKE1WIKWEMIKONG1WIKWEMIKONG1YAM HILL4Total N3074	TEXELIS	DOUGLAS	1
TIETSAUTITIETSAUT1TIPEHUANAS1TIXELIS1TLASLASIQULA1TLASLASIQULE1TONGA1TOO TOO DINA1TOWACONIE1TRIAM4TSMISHIANGINNEHAUGUAKTSMISHIANNISKAUNCOMPAGEE4UNCOMPAGEE4UTEAPACHEUTEDUCHESNEUTSINGTAll bandsWALAPAI2WALAPAI2WALAPAI1UTSINGTAll bandsWAPATOO LAKE1WAPETOO LAKE1WARNUCK1WIKWEMIKONG1YAM HILL4Total N3074	THOMPSON	All bands	277
TIPEHUANAS1TIXELIS1TLASANQOALA1TLASLASIQULA1TLASLASIQULE1TONGA1TOO TOO DINA1TOWACONIE1TRIAM4TSMISHIANGINNEHAUGUAKTSMISHIANNASXATSMISHIAN10TSXELIS4TUBAR4UNCOMPAGEE4UTEAPACHEUTEDUCHESNEUTSINGTAll bandsWALAPAI2WAPATOO LAKE2WAPETOO LAKE1WARNUCK1WIKWEMIKONG1YAM HILL4Total N3074	TIETSAUT		1
TIAELISITLASANQOALA1TLASLASIQULA1TLASLASIQULE1TONGA1TOO TOO DINA1TOWACONIE1TRIAMGINNEHAUGUAKTSMISHIANNASXATSMISHIANNISKAUNCOMPAGEE4UTAMGT1UTEAPACHEUTEDUCHESNEUTSINGTAll bandsWALAPAI2WALAPAI2WAPETOO LAKE1WARNUCK1WARNUCK1WARNUCK1WARENONG1WARENONG1WARENONG1WAMIKONG1YAM HILL4Total N3074	TIPEHUANAS		1
TLASIAUQALA1TLASLASIQULA1TLASLASIQULE1TONGA1TOO TOO DINA1TOWACONIE1TRIAM4TSMISHIANGINNEHAUGUAKTSMISHIANNISKATSMISHIANNISKATUBAR4UNCOMPAGEE4UTAMGT1UTEAPACHEUTEDUCHESNEUTSINGTAll bandsWALAPAI2WAPATOO LAKE1WARNUCK1WIKWEMIKONG1YAM HILL4Total N3074	TIXELIS		1
TLASLASIQULE1TONGA1TOO TOO DINA1TOWACONIE1TRIAM4TSMISHIANGINNEHAUGUAKTSMISHIANNASXA2TSMISHIANNISKA10TSXELIS4TURANGT1UTEAPACHEUTEDUCHESNEUTSINGTAll bandsWALAPAI2WAPATOO LAKE1WARNUCK1WIKWEMIKONG1YAM HILL4Total N3074	TLASLASIQULA		1
TONGA1TOO TOO DINA1TOWACONIE1TRIAM4TSMISHIANGINNEHAUGUAKTSMISHIANNASXA2TSMISHIANNISKA10TSXELIS4UNCOMPAGEE4UTAINGT1UTEAPACHEUTEDUCHESNEUTE2WALAPAI2WALAPAI2WAPETOO LAKE2WARNUCK1WIKWEMIKONG1YAM HILL4Total N3074	TLASLASIQULE		1
TOO TOO DINA1TOW ACONIE1TRIAM4TSMISHIANGINNEHAUGUAK1TSMISHIANNASXA2TSMISHIANNISKA10TSXELIS4UUROMPAGEE4UTAINGT1UTEAPACHE1UTEDUCHESNE1UTSINGTAll bands3WALAPAI2WAPATOO LAKE1WARDON LAKE1WARDON LAKE1WARDON LAKE1WARDON LAKE1WARDON LAKE1WARATON LAKE1WARTON LAKE1WARDANUCK1WARDANUCH4YAM HILL4YAM HILL4YAM HILL3074	TONGA		1
TOWACOME1TRIAM4TSMISHIANGINNEHAUGUAK1TSMISHIANNASXA2TSMISHIANNISKA10TSXELIS410TSXELIS41UNCOMPAGEE41UTAINGT11UTEAPACHE1UTEDUCHESNE1UTSINGTAll bands3WALAPAI2WAPATOO LAKE1WARDOC LAKE1WEILACY1WIKWEMIKONG1YAM HILL4Total N3074	TOU TOU DINA TOWACONIE		1
TSMISHIANGINNEHAUGUAK1TSMISHIANNASXA2TSMISHIANNISKA10TSXELIS4TUBAR4UNCOMPAGEE4UTAINGT1UTAMGT1UTEAPACHE1UTEDUCHESNE1UTSINGTAll bands3WALAPAI2WAPATOO LAKE1WARDON LAKE1WEILACY1WIKWEMIKONG1YAM HILL4Total N3074	TRIAM		4
TSMISHIANNASXA2TSMISHIANNISKA10TSXELIS4TUBAR4UNCOMPAGEE4UTAINGT1UTAMGT1UTEAPACHE1UTEDUCHESNE1UTSINGTAll bands3WALAPAI2WAPATOO LAKE1WARETOO LAKE1WEILACY1WIKWEMIKONG1YAM HILL4Total N3074	TSMISHIAN	GINNEHAUGUAK	1
TSMISHIAN NISKA 10 TSXELIS 4 TUBAR 4 UNCOMPAGEE 4 UTAINGT 1 UTAMGT 1 UTE APACHE 1 UTE DUCHESNE 1 UTSINGT All bands 3 WALAPAI 2 WALLIS IS. 2 WAPATOO LAKE 2 WAPATOO LAKE 1 WARNUCK 1 WARNUCK 1 WARNUCK 1 WKWEMIKONG 1 YAM HILL 4 Total N 3074	TSMISHIAN	NASXA	2
TUBAR4TUBAR4UNCOMPAGEE4UTAINGT1UTAMGT1UTEAPACHEIUTEDUCHESNEIUTSINGTAll bandsWALAPAI2WALATOO LAKE2WAPETOO LAKE1WEILACY1WIKWEMIKONG1YAM HILL4Total N3074	TSMISHIAN TSXELIS	NISKA	10
UNCOMPAGEE4UTAINGT1UTAINGT1UTAMGT1UTEAPACHE1UTEDUCHESNE1UTSINGTAll bands3WALAPAI2WAPATOO LAKE2WAPATOO LAKE1WEILACY1WKWEMIKONG1YAM HILL4Total N3074	TUBAR		4
UTAINGT 1 UTAMGT 1 UTE APACHE 1 UTE DUCHESNE 1 UTE DUCHESNE 1 UTSINGT All bands 3 WALAPAI 2 WAPATOO LAKE 2 WAPATOO LAKE 1 WARNUCK 1 WEILACY 1 WIKWEMIKONG 4 YAM HILL 4 Total N 3074	UNCOMPAGEE		4
UTAMGT1UTEAPACHE1UTEDUCHESNE1UTSINGTAll bands3WALAPAI2WAPATOO LAKE2WAPETOO LAKE1WARUCK1WEILACY1YAM HILL4Total N3074	UTAINGT		1
OTEATACHE1UTEDUCHESNE1UTSINGTAll bands3WALAPAI2WALIS IS.2WAPATOO LAKE1WARDOO LAKE3074	UTAMGT	ADACHE	1
UTSINGTAll bands3WALAPAI2WALIS IS.2WAPATOO LAKE2WAPETOO LAKE1WARNUCK1WEILACY1WIKWEMIKONG1YAM HILL4Total N3074	UTE	DUCHESNE	1
WALAPAI2WALLIS IS.2WAPATOO LAKE2WAPETOO LAKE1WARNUCK1WEILACY1WIKWEMIKONG1YAM HILL4Total N3074	UTSINGT	All bands	3
WALLIS IS. 2 WAPATOO LAKE 2 WAPETOO LAKE 1 WARNUCK 1 WEILACY 1 WIKWEMIKONG 1 YAM HILL 4 Total N 3074	WALAPAI		2
WARTOO LAKE2WAPETOO LAKE1WARNUCK1WEILACY1WIKWEMIKONG1YAM HILL4Total N3074	WALLIS IS. WARATOO LAKE		2
WARNUCK1WEILACY1WIKWEMIKONG1YAM HILL4Total N3074	WAPETOO LAKE		1
WEILACY 1 WIKWEMIKONG 1 YAM HILL 4 Total N 3074	WARNUCK		1
WIKWEMIKONG 1 YAM HILL 4 Total N 3074	WEILACY		1
Total N 3074	WIKWEMIKONG YAM HILL		1
	Total N		3074

Table A16: Sources for Anthropological Bison Index: Tribes Whose bison-reliance is Proxied by Geography in the Anthropological Measure

Notes: For Nations were different sources were used to construct bison-reliance they are listed. This is not a complete listing of nations.

Soil Quality Indicator	Description
Nutrient Availability	"Soil texture, soil organic carbon, soil pH, and total exchangeable bases." Nutrient availability is important for low level input farming and for some intermediate input levels.
Nutrient Retention Capacity	"Soil organic carbon, soil texture, base saturation, cation exchange capacity of soil and of clay fraction." The term nutrient retention capacity refers to the capacity of the soil to retain added nutrients against losses caused by leaching, thus it is important for the effectiveness of fertilizer applications. The ability of the soil to retain nutrients is relevant for intermediate and high input cropping conditions.
Rooting Conditions	"Soil textures, bulk density, coarse fragments, vertic soil properties and soil phases affecting root penetration and soil depth and soil volume." Rooting conditions essen- tially measure soil depth and volume related to the presence of gravel and stoniness. Rooting conditions are of particular importance for yield formation.
Oxygen Availability to Roots	"Soil drainage and soil phases affecting soil drainage." Oxygen availability relates to the drainage characteristics of soils.
Excess Salts	"Soil salinity, soil sodicity and soil phases influencing salt conditions." Soil with a large amount of excess salts inhibits the uptake of water by crops, thus reducing yields, or in high levels killing the crops.
Toxicity	"Calcium carbonate and gypsum." The toxicity of the soil determines the acidity of the soil, which in turn affects the level of micro-nutrients available in the soil.
Workability	"Soil texture, effective soil depth/volume, and soil phases constraining soil manage- ment (soil depth, rock outcrop, stoniness, gravel/concretions and hardpans)." There are a number of factors that affect the workability of the soil, including the texture, structure, organic matter content, soil consistence, occurrence of gravel, etc. This has particular consequences for manual cultivation or light machinery.

Table A17: Soil quality indicators from the Harmonized World Soil Database v1.2

Notes: The information in this table was taken from the Harmonized World Soil Database v 1.2 from the Food and Agriculture Organization of the United Nations. For more information please see http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/

Table A18: Additional Sources Used for Controls in Lights Regressions

Variable	Source and Variable Construction
Population in 2015	Population estimates were taken from the Gridded Population of the World (GPW) database. The GPW uses numerous data sources to compute estimates of the world population distribution at a resolution of 30 arc-seconds. Source: Center for International Earth Science Information Network - CIESIN - Columbia University, United Nations Food and Agriculture Programme - FAO, and Centro Internacional de Agricultura Tropical - CIAT. 2005. <i>Gridded Population of the World, Version 3 (GPWv3): Population Count Grid.</i> Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://dx.doi.org/10.7927/H4639MPP. Accessed 05 05 2017.
Federal Reservation	We include an indicator for whether the reservation was established by the federal government or the state government. This information is available in the American Indian/Alaska Native/Native Hawaiian Areas (AIANNH) TIGER/Line Shapefile.
Distance Displaced	This variable was constructed by taking the geodetic distance between the tribal homeland centroid and the reservation centroid.
Log Ruggedness Index	We overlay elevation raster files from the U.S. Geological Survey-available at: https: //viewer.nationalmap.gov/viewer/-with reservation boundaries and use GIS soft- ware to calculate the ruggedness index for each reservation. The ruggedness index is calculated based on the following source: Riley, S. J, S. D. DeGloria, and R. El- liot (1999). A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Sciences 5(4), 23-27.

Notes: This table describes the sources and methods used to construct the additional control variables in the log lights regressions that were not described in the main text of the paper.

Table A19: A	Additional	Information	on	Variable	Constru	iction	for	Canadian	Regress	ions
--------------	------------	-------------	----	----------	---------	--------	-----	----------	---------	------

Variable	Source and Variable Construction
bison-reliance	We digitize tribal territory maps from the the Handbook of the North American In- dian and overlay them with our bison-range maps from Hornaday (1889) to construct a measure of initial bison-reliance for Canadian tribes.
Log GDP Per Capita	We obtain GDP per capita from the 2001 Community Well-Being (CWB) Database: https://www.aadnc-aandc.gc.ca/eng/1100100016579/1100100016580. The CWB Database provides a well-being score for each census subdivision (essentially municipality) in Canada. To construct this score, a number of component scores are used, based on housing availability, income, labor force participation, and education. We invert the income component score formula to obtain GDP per capita for 283 communities: Income Score = $\frac{\log(\text{GDP per capita}) - \log(\$2,000)}{\log(\$40,000) - \log(\$2,000)} \times 100.$
Population at Trading Post	This variable comes from the "trading posts 1823" GIS layer from EsriCanadaEducation.
Distance to Trading Post	We calculate the distance from the reserve centroid to the closest historical trading post listed in the "trading posts 1823" GIS layer from EsriCanadaEducation.
Distance to Railway Station	We use the Canadian Historic Railways layer from ESRICanadaEd: http://explorer.arcgis.com/home/item.html?id=89044dbd4e7a4ec288d18b2b477237d4 to calculate the distance between each Indigenous community and the closest railway station.
Population	We control for population which is also included in the Community Well-Being Database.
Cultural Controls	We also match a number of cultural controls from the ethnographic atlas to our data at the tribe level. This includes historical centralization, calories from agriculture, complexity of the community, level of sedentariness, and wealth distinctions.
Beaver Range	We overlay the digitized maps from the Handbook of the North American In- dian with the beaver range maps from the Canadian Geographic https://www. canadiangeographic.ca/article/rethinking-beaver to calculate the share of an- cestral territory covered by the beaver range.
Distance to City	We use Statistics Canada geographic boundary files to compute the geodetic distance between the reserve centroid and the closest census metropolitan area. Boundary files can be downloaded from: http://www12.statcan.gc.ca/census-recensement/ 2011/geo/bound-limit/bound-limit-eng.cfm. We also use these files to compute the latitude and longitude of each reserve.

Notes: This table describes the sources and methods used to construct the outcomes and controls for the Canadian regressions.