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Abstract 

 

Modern analytics technology can accelerate the inventive process by increasing the rate at which existing 
knowledge can be identified, accessed, combined and deployed to new problem domains.  However, like 
prior advances in information technology, the ability of firms to exploit these opportunities depends on a 
variety of complementary human capital and organizational capabilities. We focus how the benefits of 
analytics on innovation may differ depending on how firms organize their innovative activities. Our 
analysis draws on prior work that has measured firm analytics capability using detailed employee-level 
data and matches these data to metrics on intra-firm inventor networks that reveal whether a firm has a 
centralized or decentralized innovation structure. In a panel of large firms from the years 1988 to 2013, 
we find that firms with a decentralized innovation structure have a greater demand for analytics skills and 
receive greater productivity benefits from their analytics capabilities, consistent with a complementarity 
between analytics and decentralized innovation. Furthermore, we find the complementarity is strongest 
for innovation involving the recombination of existing technologies. Our results suggest that analytics can 
have a direct influence on innovative output, especially those that are especially likely to be influenced by 
analytics. Furthermore, organizational structures, such as decentralization, have a substantial influence on 
the ability to firms to capture innovation benefits from analytics, primarily because analytics can facilitate 
the linking of distant ideas coming from different decentralized groups.  
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Introduction 

Innovation is critical to the growth of advanced economics.  Technology, especially information 

technology, has always been closely linked to innovation as both an enabler and an output of the innovative 

process over the last several decades.  The recent rise of analytics technology may have an especially 

important role in supporting innovation given that the production of new knowledge is closely related to 

the ability to exploit the stock of existing knowledge (Joshi et al. 2010, Majchrzak and Malhotra 2016).  

Analytics capabilities, advanced by artificial intelligence and enabled by digitization, have substantially 

improved the ability to detect hidden patterns in large-scale data. By accessing a wide range of knowledge, 

both within and external to a firm, analytics can accelerate the rate at which different ideas can be combined 

and applied in new problem domains. The ability of analytics to support certain types of innovative activity 

is thus a potentially important mechanism for creating economic value (Brynjolfsson and McElheran 2016, 

McElheran and Brynjolfsson 2015). 

However, not all firms have been able to take advantage of the opportunities created by the increased 

availability of data.  A recent study revealed 59% of firms fail to use advanced analytics despite having the 

necessary data (Bradstreet 2017). One possible explanation is that not all firms have strategies or other 

organizational structures that are complementary to the use of analytics. Prior work has suggested that IT-

organizational complementarities are a particularly important determinant of both the demand for and 

benefits from IT investment (e.g. Bharadwaj et al. (2007), Bresnahan et al. (2002), Nagle (2017), Pang 

(2016), Tafti et al. (2013)). This relationship between IT investments and benefits is likely to hold true for 

investments in analytics capabilities, although the complements critical to leveraging analytics appear to 

differ from those for leveraging general IT.  

Prior work has also suggested that IT has a role in driving the innovation process (Gao and Hitt 2012, 

Kleis et al. 2012), and this may be especially true for analytics technology due to its close relationship with 

the acquisition and production of information.  However, these studies have not addressed the 

organizational processes (e.g., allocation of decisions, incentives, human capital, structure of formal and 

informal pathways for the flow of information or the exercise of authority) that potentially enhances or 
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inhibits these relationships.  As a first step, we focus specifically on one important form of investment in 

analytics through hiring employees with data skills (Tambe 2014, Wu et al. 2017) and one structural 

characteristic of firms, the choice of centralization versus decentralization, that is known to have important 

influence on the nature and outcome of innovation (Argyres and Silverman 2004, Siggelkow and Rivkin 

2006).  Our goal is to provide empirical support for what we believe is the most plausible theoretical 

relationship between innovation and analytics based on their respective (and mostly independent) literatures, 

and to demonstrate that examining the relationship between analytics and innovation is important for 

fostering further research.  Moreover, complementarities between the particular practices we found is not 

inconsistent with presence of additional complementary practices we are unable to observe.1 As analytics 

become more widespread across firms, it is important to identify other complementary assets that facilitate 

innovation and productivity. 

Motivating Examples and Supporting Theory 

Our analysis is motivated by the observation that successful firms can structure their innovation 

activity in substantially different ways and that the choice of structure may potentially affect the ability to 

gain benefits from the increase in available data and associated analytics tools. For instance, Google and 

Apple, two of the most innovation-driven firms in the information economy,2 organize their innovation 

processes differently, as shown in their respective networks of patent co-authorship (Figure 1). Google 

displays a more decentralized innovation structure with many small groups of loosely connected inventors 

and some larger clusters with ties extending throughout firm. In such a structure where information is often 

hard to transfer across organizational boundaries (Von Hippel 1994), individual groups directly involved 

in firm operations may be better at understanding the nature of operational problems and at identifying and 

implementing solutions. By contrast, at Apple, much of the innovation output is centralized in a few tightly-

                                                             
1 Any set of complementary practices can be studied by examining pairwise relationships between any two practices 
(see e.g., (Brynjolfsson and Milgrom 2013, Milgrom and Roberts 1990)). 
2 According to 2016 data, Google and Apple both produced many patents, ranked 5th and 12th respectively in the 
number of patents granted by the US patent and trademark office in 2016. (http://www.ipo.org/wp-
content/uploads/2017/05/2016_Top-300-Patent-Owners.pdf) 
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linked clusters whose connections outside their groups are limited. This centralized structure has the 

advantage of enabling the conception and development of foundational technologies that are applicable 

beyond the confines of a specific group or the immediate needs of current customers and local markets. 

Accordingly, it can facilitate the search for external information and technologies which may not be of 

direct interest to any particular internal group (Argyres and Silverman 2004) but may be less effective in 

exploiting information already known inside a group.  

The structural difference between Apple and Google appears to be associated with differences in the 

results of innovation. Apple is known for the creation of novel, breakthrough products, while Google has 

been most successful in generating a steady stream of improvements to their search and targeted advertising 

technology. As data availability has grown exponentially and data analytics is increasingly adopted by firms, 

we ask whether a centralized or decentralized innovation structure is better suited for leveraging the new 

capabilities that analytics can bring. The rapid diffusion of analytics through firms with different ex-ante 

innovation structures, which change much more slowly than analytics, provides the opportunity to identify 

the relationship between analytics and innovation. 

We hypothesize that, although analytics may provide benefits to all firms in their innovation processes, 

decentralized structures, such as those found at Google are complementary to analytics capability. 

Therefore, firms that combine analytics with decentralized innovation are likely to receive greater benefits 

than firms that combine analytics with centralized innovation. A main driver for the complementarities 

relationship is that analytics capabilities can mitigate a central weakness associated with decentralization: 

the lack of search capabilities for acquiring diverse knowledge from many different areas (Argyres and 

Silverman 2004). By collecting digital traces from a variety of business processes and user behaviors both 

inside and outside of the department or functional area, analytics can help firms assimilate information from 

divergent sources that is necessary to generate new solutions. Similarly, it has been noted that as a product’s 

design matures, informal communication channels that support the development process become deeper 

and narrower, reducing the likelihood of knowledge sharing outside each group and limiting opportunities 

to link innovative ideas across areas (Henderson and Clark 1990). Analytics can mitigate this disadvantage 
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to some extent by automating the search of patterns in innovations from communities outside of the 

immediate group, and thereby facilitate the transfer and use of knowledge across organizational boundaries.  

This effort is accelerated by recent advances in data analytics such as deep learning and machine 

learning that have become increasingly effective in discovering hidden patterns and ideas across different 

domains. For example, IBM’s Watson digested 23 million medical papers across many different disciplines 

to find information related to a tumor suppressor known as p53 that is associated with half of all cancers. 

In a short amount of time, Watson was able to identify six previously-unknown proteins that interact with 

p53, a feat that would have taken researchers more than 6 years to accomplish (Chen et al. 2016), a feat that 

can potentially generate substantial financial return (Zafar et al. 2013). Essentially, to find these proteins, 

Watson has employed data analytics to substantially reduce the cost of conducting a broad search and then 

linking distant innovation areas to create new solutions. Similarly, BenevolentAI, a British AI firm was 

able identify five potential hypotheses for the treatment of ALS (Amyotrophic lateral sclerosis) in less than 

a week, one of which was proven to prevent the death of motor neurons (Smalley 2017), overcoming a 

critical difficulty in treating ALS that has no known cure. Like the IBM Watson example, BenevolentAI 

found the treatments by linking vast quantities of complex, often unstructured scientific information 

including journal articles, clinical trials, and medical records across diverse disciplines and disease areas. 

The ability to detect subtle patterns across a wide volume of existing knowledge accelerated the rate of 

innovation through combining known insights to provide new solutions. 

Data analytics has impacted innovation beyond the healthcare industry. Autodesk, teamed with race 

car drivers and engineers, put cheap sensors to collect vast amount of data on how the chassis respond to 

stresses, strains, temperature, displacement and all other factors that might affect performance. Using the 

sensor data as well as chassis design knowledge from a variety of sources, analytics helped to create a 

substantially different chassis designs from traditional ones. For example, unlike the traditional designs, the 

new chassis is asymmetric, which mirrors the fact that a race car turn more often in one direction than the 

other and thus subject the chassis to different forces. Designing a deeply asymmetric chassis would not 

have been possible without data analytics to link newly captured sensor data and traditional chassis 
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principles together and to uncover hidden patterns within the data  (McAfee and Brynjolfsson 2017). As 

decentralized innovation structures often face difficulty in sharing information from different departments 

and recombining the information into new inventions, analytics can be particularly helpful for decentralized 

innovation structure to integrate and uncover hidden common patterns in data across many sources. Thus, 

we expect that that analytics and decentralization are complementary (e.g., analytics are increasingly more 

valuable in firms that are more decentralized). 

The relationship between data analytics and centralized innovation is less clear than it is for data 

analytics and decentralized innovation. On the one hand, the preceding arguments suggest that analytics 

can support the gathering of external information which could benefit innovation output generally. On the 

other hand, there may be limits to the benefits of analytics for centralized structures for at least two reasons. 

First, centralized structures have existing mechanisms for sharing internal knowledge and gathering 

external information, limiting the marginal benefit in these areas for any new technology (including 

analytics). Second, centralized structures are disproportionately used in firms engaged in novel innovation 

(Arora et al. 2014, Siggelkow and Rivkin 2006), which has less to gain from the current state of analytics 

technology since there is often little or no available data for novel or breakthrough products because they 

do not have existing producers or customers prior to their initial deployment. Despite these critical 

knowledge sharing constraints in novel innovation, it has been noted that much of the relevant information 

is tacit and shared through informal communications channels (Avery and Norton 2014), thus making it 

less amenable to digitization or automated analysis.   Firms who adopt analytics under these conditions 

should expect less than full benefits but still bear the full costs of their analytics investments.  Thus, we 

would expect no (or even perhaps a slightly negative) interaction between analytics and centralization.  

Measurement 

Centralization and Decentralization.  We use network analysis of patent co-authorship relationships 

to construct an intra-firm patent network for each firm in our sample between 1988 and 2013 with one 

network for each year. A node in a network represents an employee inventor and an edge (link) indicates 



 7 

the presence of one or more coauthored patents between two inventors working in the same firm. To 

measure decentralization, we apply machine learning-based community detection algorithms (Multilevel) 

to these networks (Blondel et al. 2008) to identify distinct innovation communities and calculate a 

Herfindahl-based metric to measure how widely the innovations communities are dispersed for the firm 

(Appendix A). Our metric has the advantages that it measures the actual structure of innovation regardless 

of the formal hierarchy (e.g. org chart), is entirely data driven (requiring no arbitrary definitions of 

organizational boundaries), and will not be biased if the formal and informal organization of a firm diverge 

(an important issue noted in the knowledge management literature (Cross et al. 2001)). The distribution of 

the innovation structure is shown in Figure 2.3 

Innovation.  Our measures of innovation output are also based on patent data consistent with prior 

work on R&D productivity (Griliches 1990, Hall et al. 2001). While patent data cannot cover all types of 

innovative activity (e.g. internal organizational processes and trade secrets), they have the advantage that 

they can be consistently measured4 and there is a large and robust literature on patent-related measurement 

approaches.  We also measure novelty in patent: whether an innovation involves the creation of a new 

technology class (or a subclass in patent classification).This can be measured at a firm (technology class 

new to the firm) or global level (a new subclass of patent that no one else created). For our analysis, it is 

important to distinguish reuse of existing combinations from the creation of new combinations (Akcigit et 

al. 2013). We measure this difference by segmenting innovations into existing combinations and new 

combinations. These can also be measured at both the firm level (combination is new to the firm, but other 

firms have done similar combinations) or at a global level (an original combination that no one else has 

                                                             
3 The chart shows a mass at zero (maximally centralized, likely due to a limited number of inventors) and rest of the 
distribution is proximately lognormal.  Including dummy variables for the mass at zero in our analysis did not 
qualitatively change the results. 
4 Consistent measurement combined with firm fixed effects or industry controls can partially address the concern 
that different industries may have a different mix of patents and other types of innovative outputs.  Moreover, since 
different types of innovation are likely to be at least weakly positively correlated patent measures may provide a 
useful indicator of innovative activity more broadly. 
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created). Thus, we have a total of 6 ways to classifying innovation along two dimensions: (1) new 

technology, reuse and new recombination, and (2) local (firm) versus global (see Appendix B).  

Analytics.  For the purpose of our analysis we define analytics to be the ability to process data and find 

patterns within data. To measure a firm’s data analytics capabilities, we use six million resumes from 1988 

to 2007, and 3.7 million job reviews from 2008 to 2013 to calculate the total number of employees 

possessing data analytics skills. We apply natural language processing techniques on free-form text (when 

available) and job titles to identify the analytics skills of each employee and aggregating all employees with 

data analytics skills for each firm in each year after adjusting for a sampling rate (based on the fraction of 

employees found in the data for each firm) (see Appendix C). We then link these data to financial metrics 

such as physical assets, employees, and sales using the Compustat Industrial Annual files. The summary 

statistics for the financial variables, data analytics and patent-related variables are shown in Table 1. Trends 

in our data analytics measure are shown in Figure 3. 

Our primary analysis tests for complementarities between data analytics and innovation structure using 

(1) correlations (adoption or demand equations) and (2) performance differences (productivity equations). 

Although the demand equations have the advantage that they are relatively simple and provide the greatest 

power if firms are matching complementary practices optimally, they have the disadvantage that the 

simplicity makes them vulnerable to unobserved heterogeneity. In addition, such an analysis will tend to 

understate the strength of complements if not all firms are endowed with or able to change to the optimal 

match between complements. The productivity test has the advantage of a direct tie to a relevant firm 

outcome (performance), and the effects are most powerful statistically when not all firms have found the 

optimal match, which may be likely for a relatively new change in business practices. Over time, as the 

complementarities system diffuses to other firms, the correlation would increase but the productivity 

premium would decrease because the relative advantage of using a complementary system diminishes as 

its adoption spreads.  

For econometric identification, we take the view that data skills are rapidly changing (and potentially 

endogenous) while organization of innovation is quasi-fixed and  (Hannan and Freeman 1984, Lam 2005) 
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and therefore exogeneous. Identification using a combination of a fast changing practice along with a slow-

changing organizational complement is consistent with prior work (Autor et al. 2003, Bresnahan et al. 2002, 

Brynjolfsson and Hitt 1996, Milgrom and Roberts 1990). The fact that firms may not be able to 

instantaneously adapt to the diffusion of analytics provides data variation that enables productivity 

differences to be observed. Table 2 shows the demand for data analytics when firms have a decentralized 

innovation structure. After controlling for firm and year fixed effects, as well as the level of R&D and 

patent activity, the demand for data analytics is positively correlated with a decentralized innovation 

structure (this measurement is consistent and robust using alternative community detection algorithms so 

we standardize on the Multilevel algorithm for our main results) 

Results 

If data analytics and the decentralization of innovation are complementary, firms that possess both 

should experience a greater return than firms that have only one of the two complements. We first estimate 

a baseline regression specification in firm-level fixed effects that shows that our regression analysis yields 

similar estimates to those found in prior work for IT labor, as well as other productivity inputs (Table 3, 

Column 1). The regression continues to show reasonable properties when we add metrics for analytics and 

innovation (data analytics skills, number of inventors, and patent stock) (Columns 2-4). In general, we find 

data analytics is positively associated with productivity while the direct effect of patents and inventors is 

indistinguishable from zero. Our key result (Column 3) shows that while having decentralized innovation 

structures is negatively correlated with productivity (albeit not significantly so; it is perhaps due to the 

impact of fixed effects with a slow-changing quasi-fixed factor), the interaction with data analytics is 

positive. On average, a firm that is more decentralized than the average (one standard deviation above in 

our decentralization metric) receives a 2.2% increase in productivity for every standard deviation increase 

in data skills above the mean. 

To examine whether our results are affected by the potential endogeneity of analytics skills we repeat 

our main analysis using 2SLS and GMM. We treat innovation structure in firms as quasi-fixed, and 

instrument data analytics with a metric based on the adoption of enterprise systems and the flow of analytics 
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skills in neighboring firms in the labor supply network (i.e., firms that the focal firm hires from). Our 

instruments are motivated by the argument that adoption of large-scale IT innovations changes the relative 

availability of skills in the market which affects the cost of acquiring data talent. This shift, driven by 

choices external to the firm, is not directly reflected in free cash flow or management characteristics that 

would cause data skills to be influenced by prior performance (Appendix D). The first-stage regression is 

shown in Column 5 of Table 2 and the associated first-stage F-statistics are above the threshold needed to 

pass the weak instrument test. In the GMM analysis, we also add additional instruments derived from 

information within the panel. The results on the key coefficients continue to be consistent, suggesting that 

potential endogeneity of data analytics is not leading to an upward bias of our complementarities measure.  

To explore the complementarities between different types of innovation, we use the same variables 

from our previous models (data analytics, decentralization, their interactions, and other controls) to 

determine their relationship with the production of different types of patents (see Table 4). First, we find 

that none of our metrics have a substantial effect on the production of completely new knowledge overall 

(Column 1), but our hypothesized complementarity is present for within-firm novel innovation, indicating 

that analytics can enable the decentralized innovation structure to better acquire knowledge about novel 

technologies that already exist outside the firm (Column 2). Next, we examine the effect of analytics-

decentralization complementarities on innovation through the recombination of existing ideas.  First, we do 

not distinguish new combinations from refinements of existing combinations, and we find that the 

combination of data analytics and decentralized innovation facilitate recombination in innovation (Column 

3). After distinguishing new combinations from the reuse of existing combinations, we find that our data-

decentralization complementarity facilitates both combinations that are new to the firm (Column 5) and 

those new to the overall market (Column 4). On average, the interaction term implies that a one standard 

deviation increase in data analytics increase the number of new recombination patents by 3.96% in firms 

that are one standard-deviation above the mean in innovation dispersion. Given the average new 

recombination patents in a firm is about 100, a 3.96% increase is about 4 additional patents per year. 

Consistent with the prior literature, we also find that decentralization promotes innovations that constitute 
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the reuse of existing combinations, but there appears to be no particular benefit of data analytics (direct or 

complementary) to this type of innovation (Columns 6 & 7). 

To further explore the extent to which decentralization and data analytics can support the ability to 

integrate available external information, we use an alternative measure to capture the integration of new 

ideas into a firm’s patent portfolio. Following Lin et. al. (2016), we use the portion of citations to a firms’ 

own prior art in their new patents, which captures the amount of external information in use.  In Table 5 we 

repeat our main analysis, counting only innovations that cite a certain fraction of a firms’ prior art (from 0 

to 100% in 10% increments).  We find a complementarity between analytics and innovations based on in-

house innovation, and the complementarity strengthens as the proportion of external information increases 

(60% internal/40% external).  However, the complementarity begins to drop and even turns negative 

(although not significant) (see Columns 6-10) although there is a significant difference in the coefficient 

between the 60% cutoff and the 10% cutoff (p<.05).  These results suggest that analytics is most useful 

when there is potentially useful external information that can be combined with a firm’s own stock of 

knowledge, but not when the innovation is completely new or mostly incremental.  

Finally, all our prior metrics focus on analytics of the firm broadly across any business purpose, which 

raises the possibility that our results are driven by the characteristics of data-intensive firms rather than by 

the specific use of analytics to support the innovation process. To examine whether there exists a direct link 

between analytics and innovators, we repeat our main analyses focusing specifically on the data skills of 

named inventors. While named inventors are only a subset of all employees with data skills and matching 

limits the number that we can identify, we can still conduct an exploratory analysis where we divide 

analytics skills between inventors and other employees who also have data skills. Overall, we find that this 

narrower measure, despite the likely presence of considerable measurement error, behaves similarly to our 

broader data skill measure. The correlation test results are straightforward: decentralization is associated 

with a higher level of data skills in innovators (Table 6). The productivity test results are also similar. 

Furthermore, the interaction to data skills for non-inventors show a significantly positive effect, and the 

magnitude is substantially greater than the measure for inventors (see Table 7, column 2). This result 
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suggests that while the complementarities associated with data analytics come from both types of 

employees, complementarities effect is stronger for employees who provide infrastructure and extensive 

support to the inventors than the inventors who have analytics skills themselves.   Replication of our other 

results using this inventor-based measure are similar in magnitude but do not show consistently significant 

results, likely due to lack of power. 

Overall, this pattern of results is consistent with the idea that data analytics complements decentralized 

innovation to better integrate external information and to reuse novel information from within the firm. 

This assistance from data analytics is significant because both integrating external information and reusing 

novel information are known disadvantages of decentralized structures. However, data analytics provide 

limited help in improving completely novel innovation or known combinations of existing technologies. 

This finding also appears reasonable because these situations are where data may have limited marginal 

benefit either because there is no data to integrate (in the case of a completely novel innovation) or such 

data already exists locally (in the case of reuse). Our result is robust to alternative measurement of 

innovation, decentralization, and whether we consider data skills of inventors or employees overall.  

Conclusion 

As data availability has grown exponentially and data analytics is increasingly adopted by firms, our 

results suggest that the diffusion of analytics skills in the short run will favor the innovation process for 

some firms and some types of innovations over others; in the longer term, it suggests that firms can 

potentially benefit by shifting to a more decentralized innovation structure if they can also benefit from the 

types of innovations these structures produce. With data analytics becoming even more important over time, 

especially from the advances in artificial intelligence and new ways of gathering data (e.g. using robotics 

to capture optimal machine toolpaths from the motion of human laborers), a firm’s innovation structure 

would also likely evolve substantially to take advantage of the capabilities these technologies could bring. 

Those firms that can best match their existing capability or quickly adjust to acquire such capabilities would 

be likely to benefit substantially from using data analytics.   
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Our results cover two potentially important complements that may affect the nature and outcome of 

firms’ internal innovative processes as analytics technology becomes more widely deployed, and show that 

the effects on both aggregate innovation and different types of innovation are measurably influenced by 

these two complements.  Future work could productively identify additional complements (specific 

technologies, additional organizational practices) or extend the investigation to other types of innovative 

output (process innovation, new products) which may not be as well captured by patents.  Ultimately a 

better understanding of the relationship between analytics and innovation can enable better investment 

decisions in analytics capability and provide guidance on the other concurrent investments needed to 

capture the full benefit, and help explain and perhaps mitigate the recent observed decline in innovative 

output that has been observed in advanced economies (see e.g., Bloom et al. (2017)).   
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Table 1. Summary Statistics 

 

 (1) (2) (3) (4) (5) 
VARIABLES # obs. Mean Std. dev. Min Max 
      
ln(Sales ($ million)) 15,001 5.590 2.279 -6.830 13.00 
ln(Materials ($ million)) 15,001 5.245 2.025 -2.315 12.74 
ln(Capital ($ million)) 15,001 4.918 2.338 -1.427 12.41 
ln(IT labor) 15,001 3.849 1.687 0 11.68 
ln(Other labor) 15,001 6.810 2.406 0 14.60 
ln(Dispersion) 15,001 0.514 0.163 0 0.690 
ln(Data) 15,001 3.706 3.517 0 12.23 
ln(R&D ($ million)) 14,761 2.559 1.958 -4.542 9.513 
ln(Recombination) 15,001 0.323 0.118 0 0.693 
ln(New-tech Global) 15,001 0.0197 0.144 0 2.862 
ln(New-combination Global) 15,001 1.429 1.364 0 7.514 
ln(Reuse Global) 15,001 0.952 1.172 0 6.804 
ln(New-tech Local) 15,001 0.926 0.951 0 5.150 
ln(New-combination Local) 15,001 1.202 1.373 0 7.535 
ln(Reuse Local) 15,001 0.736 1.089 0 6.615 
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Correlations 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1. ln(Sales) 1               

2. ln(Materials) 0.946 1              

3. ln(Capital) 0.900 0.910 1             

4. ln(IT labor) 0.429 0.441 0.436 1            

5. ln(Other labor) 0.815 0.783 0.796 0.609 1           

6. ln(Dispersion) 0.0923 0.107 0.104 0.0226 0.0727 1          

7. ln(Data) 0.434 0.435 0.420 0.352 0.477 0.0369 1         

8. ln(R&D) 0.375 0.455 0.399 0.259 0.307 0.213 0.260 1        

9. 
ln(Recombination) 

-
0.0617 

-
0.0451 

-
0.0689 

-
0.0393 

-
0.0653 

0.164 0.0537 0.113 1       

10. ln(New-tech  
Global) 

0.170 0.184 0.174 0.125 0.157 0.00862 0.144 0.218 0.0323 1      

11. ln(New-
combination  
Global) 

0.401 0.438 0.426 0.264 0.370 0.284 0.285 0.544 0.202 0.331 1     

12. ln(Reuse  
Global) 

0.398 0.429 0.407 0.248 0.330 0.238 0.259 0.564 0.115 0.314 0.837 1    

13. ln(New-tech  
Local) 

0.365 0.403 0.393 0.245 0.346 0.261 0.253 0.463 0.195 0.305 0.907 0.744 1   

14. ln(New-
combination  
Local) 

0.407 0.441 0.425 0.261 0.363 0.258 0.287 0.567 0.159 0.340 0.954 0.886 0.793 1  

15. ln(Reuse  
Local) 

0.405 0.431 0.412 0.259 0.337 0.197 0.263 0.547 0.0849 0.328 0.814 0.963 0.700 0.847 1 
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Table 2. The Correlation Test: Data Analytics Skills and Innovation Community Structure 
DV: ln(Data) (1) (2) (3) (4) (5) 
Model FE FE FE FE FE 
      
ln(Sales) 0.405*** 0.404*** 0.403*** 0.403*** 0.460*** 
 (0.0601) (0.0602) (0.0600) (0.0601) (0.0749) 
std(Patents) 0.158 0.152 0.159 0.158 0.120 
 (0.139) (0.141) (0.138) (0.138) (0.140) 
ln(R&D) 0.193*** 0.196*** 0.192*** 0.193*** 0.194*** 
 (0.0543) (0.0543) (0.0543) (0.0543) (0.0575) 
ln(Dispersion: multilevel) 0.863**    0.823** 
 (0.405)    (0.407) 
ln(Dispersion: infomap)  0.565*    
  (0.338)    
ln(Dispersion: leading eigenvector)   0.963**   
   (0.393)   
ln(Dispersion: fastgreedy)    0.909**  
    (0.397)  
ln(Total Neighbor Data)     -0.0396 
     (0.218) 
ln(Total Neighbor ERP)     0.987** 
     (0.439) 
ln(Total Neighbor HCM)     0.185 
     (0.188) 
Lagged ln(Total Neighbor Data)     0.206 
     (0.216) 
Lagged ln(Total Neighbor ERP)     -0.542 
     (0.362) 
Lagged ln(Total Neighbor HCM)     -0.146 
     (0.160) 
      
Observations 14,761 14,761 14,761 14,761 11,049 
R-squared 0.657 0.657 0.657 0.657 0.685 
# of firms 1,856 1,856 1,856 1,856 1,594 
Industry YES YES YES YES YES 
Year YES YES YES YES YES 

Note:  
(1) Column 1-4 are results using different community detection algorithms. 
(2) Column 5 includes instrumental variables for data analytics skills, and can thus be interpreted as the first stage 
results in 2SLS estimation used in Column 4 of Table 3. 
(3) Data source for measuring data analytics skills is also controlled. 
(4) Robust (clustered by firm) standard errors are reported in parentheses. 
(5) *** p<0.01, ** p<0.05, * p<0.1 
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Table 3. The Productivity Test: Data Analytics Skills and Innovation Community Structure 

DV: ln(Sales) (1) (2) (3) (4) (5) 
Model FE FE FE 2SLS GMM/IV 
      
ln(Materials) 0.642*** 0.642*** 0.643*** 0.588*** 0.552*** 
 (0.0224) (0.0224) (0.0226) (0.0248) (0.0559) 
ln(Capital) 0.122*** 0.122*** 0.125*** 0.0808*** 0.209*** 
 (0.0209) (0.0209) (0.0206) (0.0219) (0.0578) 
ln(IT labor) 0.0190*** 0.0190*** 0.0198*** 0.0451 0.00312 
 (0.00557) (0.00555) (0.00562) (0.0569) (0.0315) 
ln(Other labor) 0.213*** 0.213*** 0.213*** 0.261*** 0.258*** 
 (0.0251) (0.0251) (0.0251) (0.0280) (0.0694) 
ln(Emp w/ college+) 0.00596** 0.00596** 0.00599** -0.00331 0.0401 
 (0.00256) (0.00261) (0.00262) (0.00660) (0.0249) 
ln(Data)  2.16e-05 -0.00147 0.0320 -0.00460 
  (0.00136) (0.00135) (0.0446) (0.00516) 
ln(Dispersion)   -0.0744 -0.0636 -0.0463 
   (0.0506) (0.0687) (0.155) 
Data X Dispersion   0.0223*** 0.0273** 0.0255* 
   (0.00400) (0.0134) (0.0136) 
      
Observations 15,001 15,001 15,001 11,049 11,049 
R-squared 0.984 0.984 0.984 0.732  
# of firms 1,864 1,864 1,864 1,594 1,594 
Industry YES YES YES YES YES 
Year YES YES YES YES YES 

Note: 
(1) The Multilevel algorithm is used to measure the dispersion of innovation communities. Data X Dispersion has 
been standardized on the interaction between ln(Data) and ln(Dispersion). We also replicate Column 3 of Table 3 
with other measurements of decentralization. They show similar results for the estimation on interaction term 
(0.0211 for leading eigenvector, 0.0148 for infomap, 0.0207 for fastgreedy). All are significant at p<0.01 (against 
the null hypothesis of zero). 
(2) Six instrumental variables are used: 1) total number of employees with data analytics skills in neighboring firms; 
2) one-period lagged values of 1); 3-4) total number of neighbors that adopt an enterprise resource planning (ERP) 
Human Capital Management (HCM) systems; 5-6) one-period lagged values for ERP or HCM variables in what are 
calculated for 3-4). The first-stage F-statistics (F(12, 9405) = 139.62) passes the weak instrument test.  
(3) We use the Blundell and Bond (1998) SYS-GMM estimator which derives additional instruments using the 
lagged level and differences from production inputs. This method was originally developed specifically for micro-
productivity applications, especially for measuring the productivity of R&D. We use three-period lags of the 
endogenous variables as instruments in addition to the external instruments used in 2SLS. The Arellano-Bond test 
for AR(2) autocorrelation in first differences suggests that serial correlation is not a concern in the first-differencing 
equations (p=0.324). Neither the Hansen test of over-identification (p= 0.373) nor the difference-in-Hansen test of 
the system GMM instruments (p= 0.676) rejects the null that the instruments are uncorrelated with the error term, 
ensuring the validity of the instruments used in the GMM estimation. We also test other lags and find they don’t 
qualitatively change our results. 
(4) Data source for measuring data analytics skills, and patent variables including firm’s patent stock and number of 
inventors are also controlled. 
(5) Robust (clustered by firm) standard errors are reported in parentheses. 
(6) *** p<0.01, ** p<0.05, * p<0.1 
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Table 4. Data Analytics Skills, Innovation Community Structure, and Types of Innovation 
 

 
 (1) (2) (3) (4) (5) (6) 
DV ln(New-

tech 
Global) 

ln(New-
tech 

Local) 

ln(New-
combination 

Global) 

ln(New-
combination 

Local) 

ln(Reuse 
Global) 

ln(Reuse 
Local) 

Model FE FE FE FE FE FE 
       
ln(Data) -9.24e-05 -0.00132 -0.00251 -0.00351 -0.00106 0.00180 
 (0.000397) (0.00326) (0.00393) (0.00380) (0.00352) (0.00331) 
ln(Dispersion) 0.0124 0.938*** 1.284*** 0.944*** 0.749*** 0.466*** 
 (0.0104) (0.0900) (0.123) (0.116) (0.0966) (0.0881) 
Data X Dispersion -0.000184 0.0287** 0.0396*** 0.0339** 0.0108 0.0158 
 (0.00180) (0.0112) (0.0143) (0.0137) (0.0120) (0.0112) 
ln(Sales) 0.000452 0.0358* 0.0497** 0.0421* 0.0513** 0.0575*** 
 (0.00214) (0.0198) (0.0240) (0.0224) (0.0215) (0.0195) 
ln(Employees) 0.00853** 0.180*** 0.258*** 0.266*** 0.241*** 0.199*** 
 (0.00419) (0.0304) (0.0406) (0.0384) (0.0339) (0.0313) 
ln(Emp w/ college+) 0.000552 0.00600 0.00667 0.00141 0.00195 0.000729 
 (0.000494) (0.00566) (0.00728) (0.00681) (0.00593) (0.00563) 
       
Observations 15,001 15,001 15,001 15,001 15,001 15,001 
R-squared 0.473 0.695 0.811 0.829 0.792 0.797 
# of firms 1,864 1,864 1,864 1,864 1,864 1,864 
Industry YES YES YES YES YES YES 
Year YES YES YES YES YES YES 

 
Note: 
(1) The Multilevel algorithm is implemented to measure the dispersion of innovation community. Data X Dispersion has been 
standardized on the interaction between ln(Data) and ln(Dispersion). 
(2) Data source for measuring data analytics skills is also controlled. 
(3) Robust (clustered by firm) standard errors are reported in parentheses. 
(4) *** p<0.01, ** p<0.05, * p<0.1 
 

Table 5. Innovation Quality Compared to Firm’s Own Patent Stock from the previous 5 years 
 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
DV 100 Post 90 Post 80 Post 70 Post 60 Prior 40 Prior 30 Prior 20 Prior 10 0 
Model FE FE FE FE FE FE FE FE FE FE 
           
ln(Data) 0.000911 0.000735 -0.000530 -0.000805 -0.000375 -0.00296 -0.00219 -0.00126 -0.00185 -0.00148 
 (0.00258) (0.00263) (0.00295) (0.00319) (0.00352) (0.00390) (0.00379) (0.00358) (0.00333) (0.00299) 
ln(Dispersion) 0.173** 0.179** 0.275*** 0.377*** 0.552*** 1.215*** 1.073*** 0.873*** 0.653*** 0.499*** 
 (0.0853) (0.0870) (0.0961) (0.0988) (0.108) (0.112) (0.107) (0.101) (0.0869) (0.0782) 
Data X 
Dispersion 

0.0205** 0.0243*** 0.0338*** 0.0391*** 0.0466*** 0.0116 0.00364 -0.00107 -0.00767 -0.0111 
(0.00872) (0.00899) (0.0103) (0.0111) (0.0123) (0.0135) (0.0132) (0.0124) (0.0112) (0.00982) 

ln(Sales) 0.0229 0.0190 0.0132 0.0171 0.0130 0.0643*** 0.0496** 0.0432* 0.0339* 0.0365* 
 (0.0148) (0.0151) (0.0168) (0.0182) (0.0203) (0.0240) (0.0238) (0.0223) (0.0201) (0.0190) 
ln(Employees) 0.116*** 0.123*** 0.151*** 0.162*** 0.190*** 0.278*** 0.270*** 0.249*** 0.210*** 0.160*** 
 (0.0245) (0.0255) (0.0297) (0.0320) (0.0354) (0.0379) (0.0372) (0.0341) (0.0301) (0.0285) 
ln(Emp w/ 
college+) 

-0.00497 -0.00511 -0.00484 -0.00549 -0.00514 0.00737 0.00641 0.00746 0.00588 0.00387 
(0.00558) (0.00567) (0.00633) (0.00666) (0.00695) (0.00628) (0.00606) (0.00606) (0.00561) (0.00538) 

           
Observations 15,001 15,001 15,001 15,001 15,001 15,001 15,001 15,001 15,001 15,001 
R-squared 0.774 0.773 0.775 0.779 0.786 0.802 0.798 0.795 0.785 0.781 
# of firms 1,864 1,864 1,864 1,864 1,864 1,864 1,864 1,864 1,864 1,864 
Industry YES YES YES YES YES YES YES YES YES YES 
Year YES YES YES YES YES YES YES YES YES YES 

Note: 
(1) The Multilevel algorithm is implemented to measure the dispersion of innovation community. Data X Dispersion has been 
standardized on the interaction between ln(Data) and ln(Dispersion). 
(2) Data source for measuring data analytics skills is also controlled. 
(3) Robust (clustered by firm) standard errors are reported in parentheses. 
(4) *** p<0.01, ** p<0.05, * p<0.1  
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Table 6. The Correlation Test using Data Analytics Skills of Inventors 

DV: ln(Data & Inventor) (1) 
Model FE 
  
ln(Dispersion) 0.279*** 
 (0.0909) 
ln(Sales) 0.0302* 
 (0.0173) 
std(Patents) 0.146* 
 (0.0846) 
ln(R&D) 0.0402*** 
 (0.0139) 
  
Observations 13,033 
R-squared 0.387 
# of firms 1,833 
Industry YES 
Year YES 

Note: The Multilevel algorithm is implemented to measure the dispersion of innovation community. Robust (clustered by firm) 
standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 
 

Table 7. The Productivity Test using Data Analytics Skills of Inventors 

DV: ln(Sales) (1) (2) 
Model FE FE 
   
ln(Materials) 0.601*** 0.600*** 
 (0.0236) (0.0236) 
ln(Capital) 0.108*** 0.110*** 
 (0.0195) (0.0195) 
ln(IT labor) 0.00856** 0.00849** 
 (0.00410) (0.00411) 
ln(Other labor) 0.262*** 0.261*** 
 (0.0185) (0.0184) 
ln(Emp w/ college+) 0.00342 0.00339 
 (0.00248) (0.00249) 
ln(Data & Inventor) -0.0225 -0.0229 
 (0.0151) (0.0151) 
ln(Data & Non-Inventor)  -0.000900 
  (0.00127) 
ln(Dispersion) 0.00111 0.00190 
 (0.0508) (0.0504) 
(Data & Inventor) X Dispersion 0.0181* 0.0178 
 (0.0109) (0.0109) 
(Data & Non-Inventor) X Dispersion  0.0177*** 
  (0.00362) 
   
Observations 13,033 13,033 
R-squared 0.986 0.986 
# of firms 1,833 1,833 
Industry YES YES 
Year YES YES 

Note: The Multilevel algorithm is implemented to measure the dispersion of innovation community. Similar standardization has 
been performed for (Data & Inventor) X Dispersion and (Data & Non-Inventor) X Dispersion as for Data X Dispersion. Patent 
variables including firm’s patent stock and number of inventors are also controlled. Robust (clustered by firm) standard errors are 
reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Figure 2. Community dispersion distribution. 

Figure 1. Comparing innovation structures between Google (left) and Apple (right). Each node on the 
graph is a particular inventor, while the edges are inventors appearing on the same patent. This graph is 
generated from the patent data in our sample. 
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Figure 3: Average data talent over time 
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