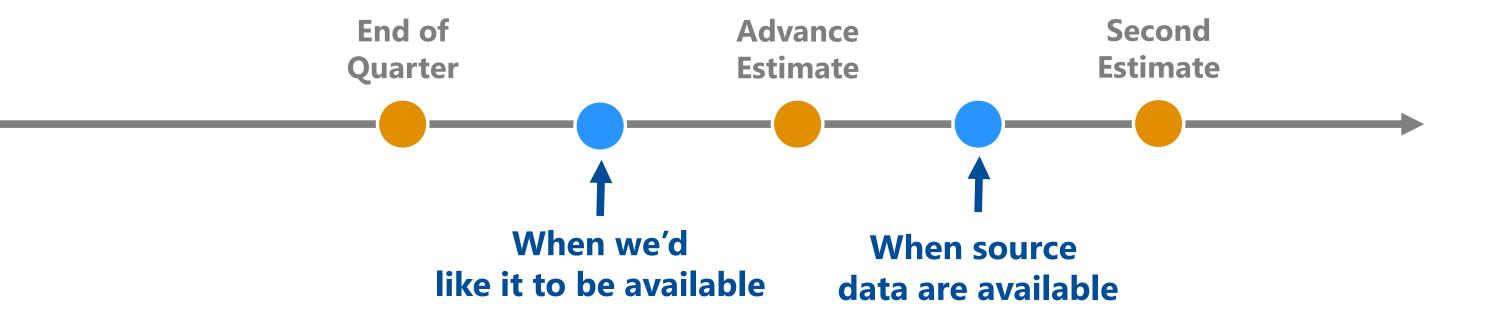
Off to the Races: A Comparison of Machine Learning and Alternative Data for Predicting Economic Indicators

Jeffrey C. Chen, Abe Dunn, Kyle Hood, Alex Driessen and Andrea Batch

Roadmap

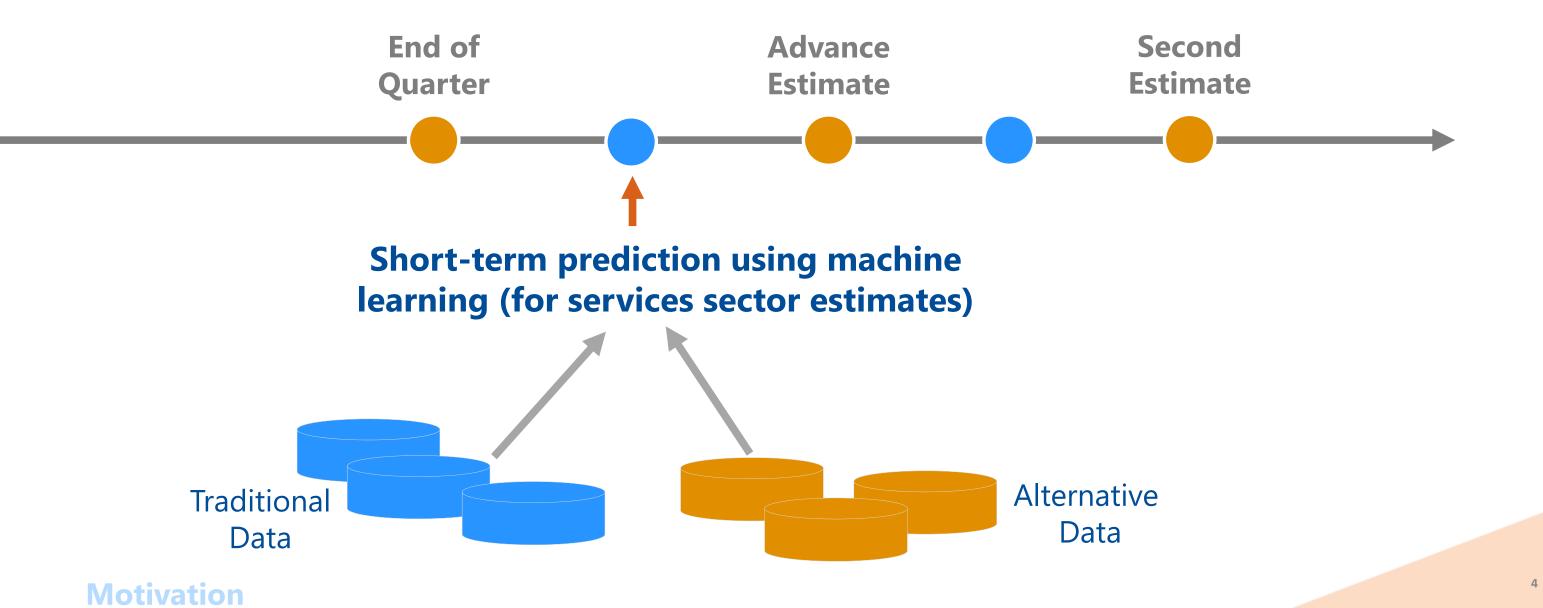
- 1. Motivation
- 2. Approach
- 3. Results
- 4. Implications

Timing of GDP Estimates

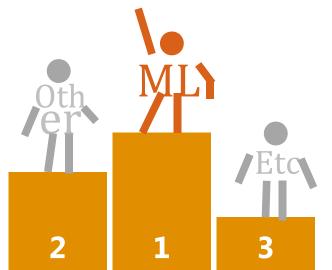


Motivation

Timing of GDP Estimates



Objectives: ML for National Economic Accounts



Identify which modeling considerations (e.g. algorithm, data, feature selection) are associated with accuracy gains for PCE services component of GDP.

M₁ vs. M₂

 Develop a framework to determine where predictions can be reliably applied to reduce revisions given sample size constraints.

There's more variables than records.

Issue

Traditional statistical methods have trouble with k > n

Id	Υ	X1	X2	Х3	X4	X5	• •	x999
							•	
1								
2								
3								

.

29

Which variables to choose?!

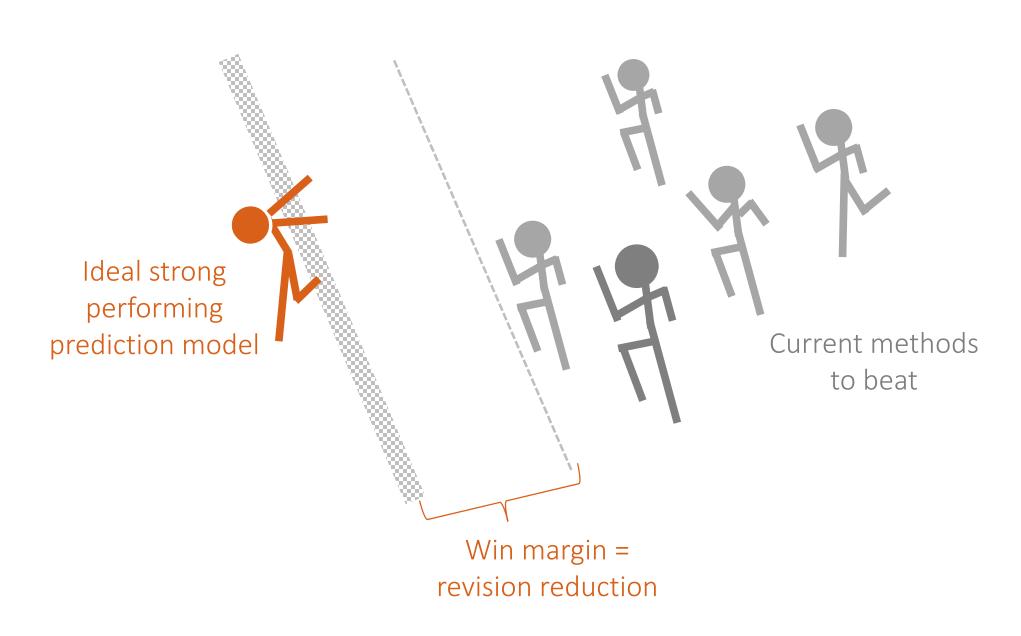
Solution

Many ML methods can efficiently sift through inputs that maximize predictive accuracy.

Id	Y	X1	Х2	Х3	X4	X5	• •	x999
1								
2								
3								

Motivation

Predictions must beat current methods.



Poor performing prediction model

A Prediction Horse Race

Prediction Horse Race $y_{it} = f_m[g_k(X_t, Y_{i,t-p},)]$

Evaluate Absolute Performance

Identify Best Relative Reductions

Predict the Quarterly Services Survey (QSS).

8

Step 1: A Prediction Horse Race

$$y_{it} = f_m[g_k(X_t, Y_{i,t-p})]$$

"Predict quarterly industry growth y_{it} using a large number of combinations of algorithms, data, and variable selection methods"

Step 1: Data in Horse Race

Draw on a broad range of potential source data to compare traditional sources and alternative sources.

$$\mathbf{y_{it}} = f_m[g_k(X_t, Y_{i,t-p})]$$

Quarterly Services Survey

U.S. Census Bureau

188 industry series n = 31 quarters

Source data for significant proportion of PCE Services

Credit Card Transactions

First Data – Palantir/ Fed Board Revised Series

192 industries

Search Queries

Google Trends

230 associated searches

Current Employment SurveyBLS

140 industries

Consumer Price Index

BLS

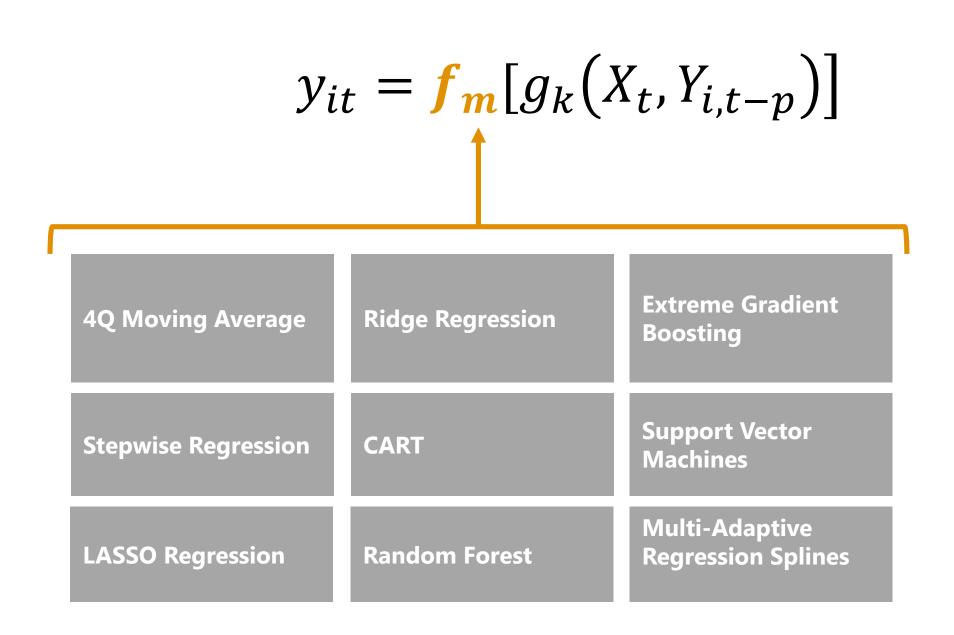
600+ indexes

Lagged QSS

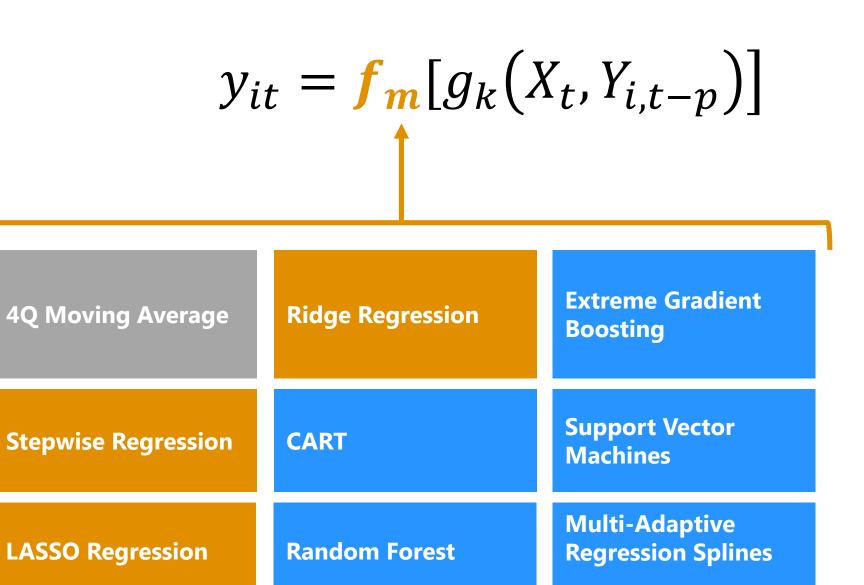
U.S. Census Bureau

188 industry codes lagged for t-4 to t-1

Step 1: Algorithms in Horse Race



Step 1: Algorithms in Horse Race



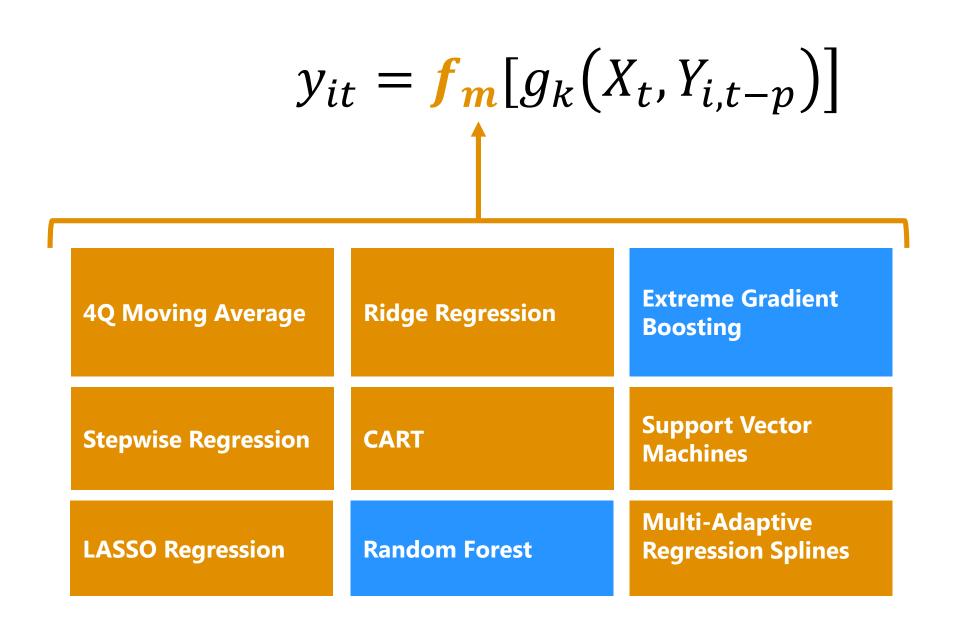
Type of Method

Univariate

Multivariate Regression

Non-Linear or Non-Parametric

Step 1: Algorithms in Horse Race

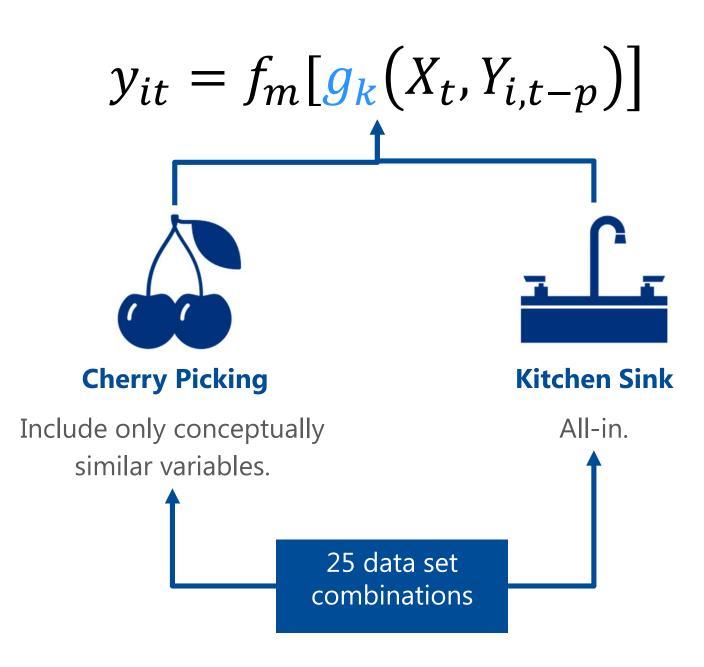


Single or Ensemble (many in one)

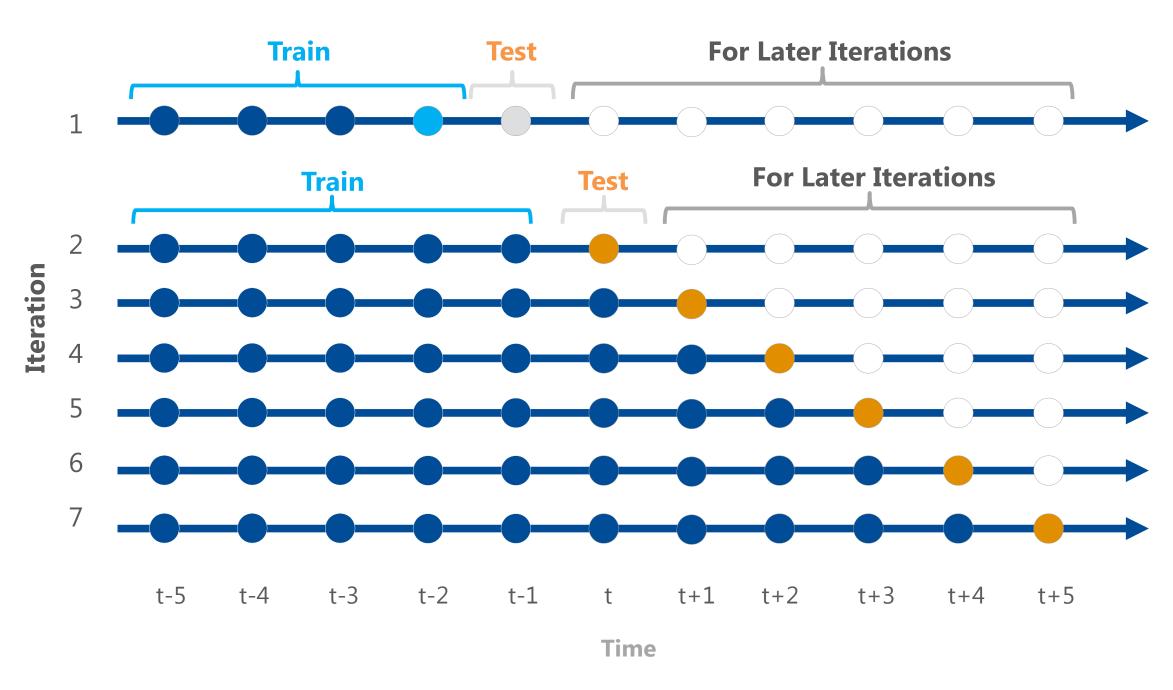
Single

Ensemble

Step 1: Variable Selection Procedures in Horse Race



Methods: One-Step Ahead



Horse Race

Methods: A Prediction Horse Race

For this study **886,608** models were trained, based on the combinations of

```
industry

X
data sets

X
algorithm

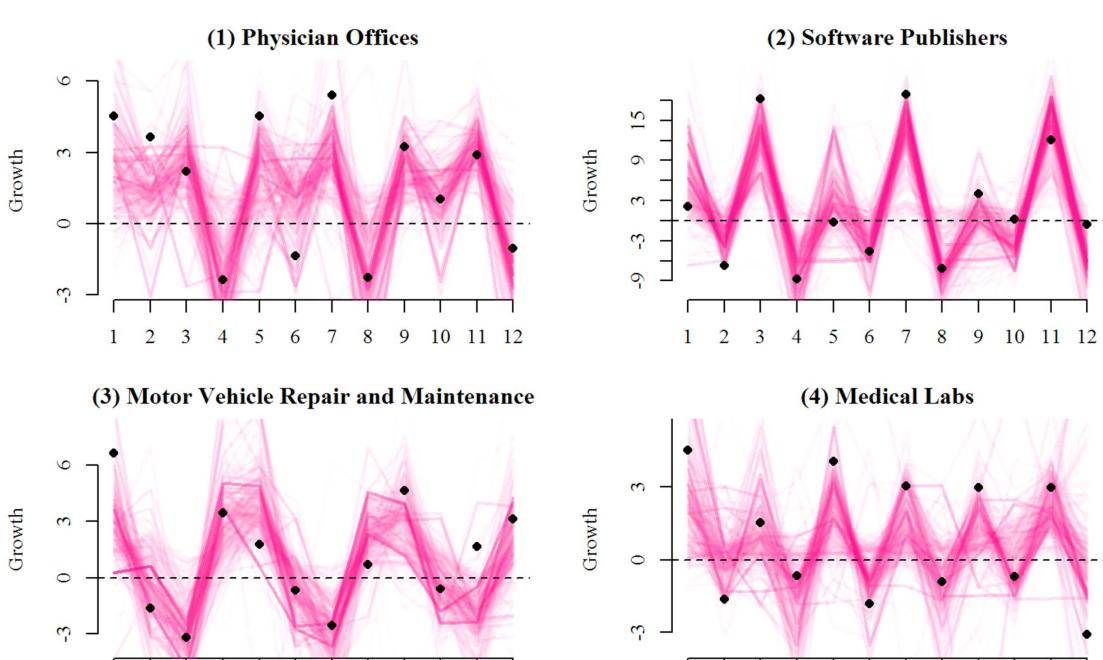
X
variable selection

X
time period
```

Horse Race

Prediction tracks show agreement and [disagreement] in growth patterns.

5



10 11 12

8

9

10 11 12

9

6

Approach (Part 2): Evaluating Absolute Performance

Prediction Horse Race $y_{it} = f_m[s_k(X_t, Y_{i,t-p},)]$

Evaluate Absolute Performance

Identify Best Relative Reductions

Measure what generally leads to an accuracy increase in the QSS

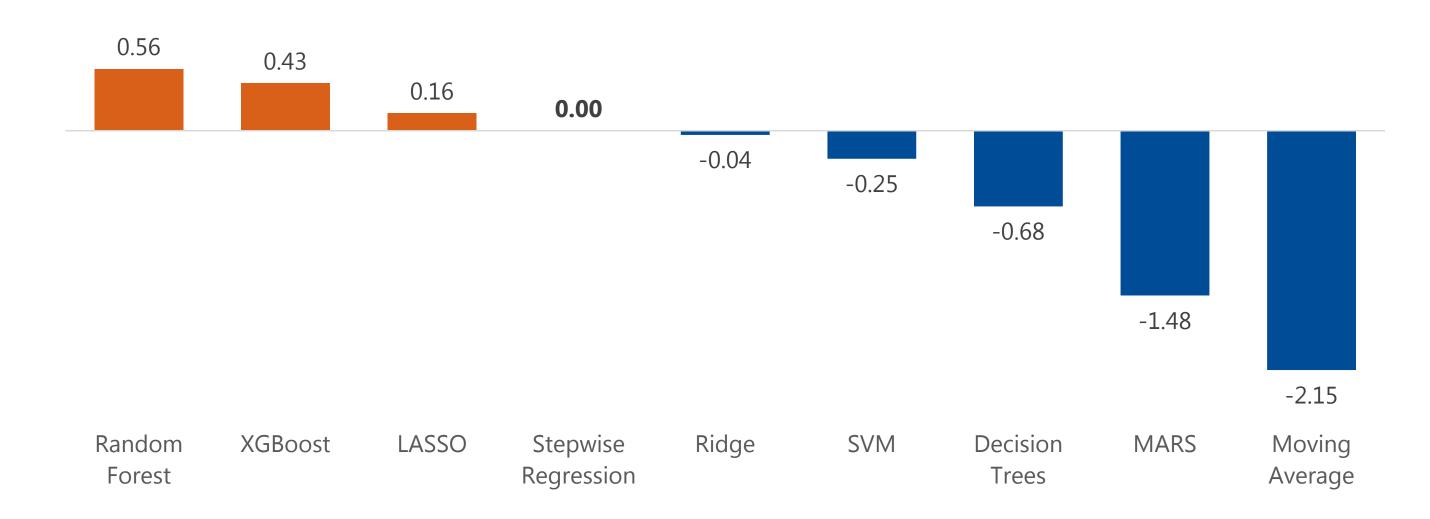
Average Absolute Accuracy

$$RMSE_{i,k,m} = \beta + \alpha_i + \gamma_m + \xi_k + \varepsilon_{i,k,m}$$

Estimate a **fixed-effects regression** to parse out the average accuracy gain associated with each algorithm, data set, etc.

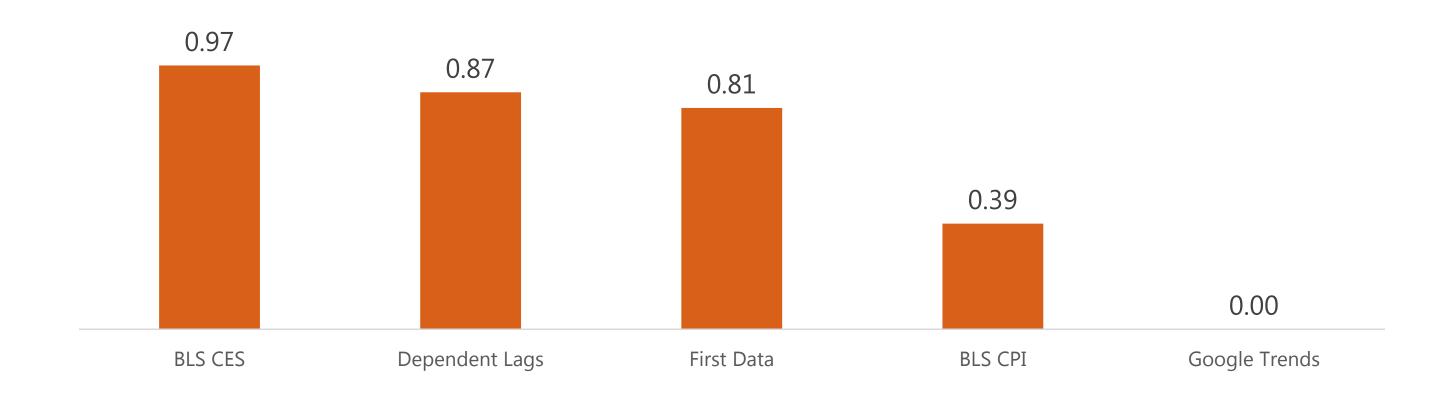
Results: Average RMSE Improvement (Relative to Stepwise)

<u>Takeaway</u>: On average, ensemble methods improve accuracy the most.



Average RMSE Improvement (Relative to Google Trends)

<u>Takeaway</u>: Measures of consumption and employment help the most. Also, the processes are strongly seasonal.



More data might not better, and cherry picking does not help.

Cherry Picking vs. Kitchen Sink

-0.28 Cherry Picking *adds* error to predictions.

Number of Data Sets (Need to be considered in conjunction with dataset parameter estimates)

-0.31

Two data sets add some additional error, but can be offset depending on the datasets that are combined.

-0.8

Three data sets add a disproportionate amount of error, but no three data set combination is better than a two data set combination.

Revision Impacts

Prediction Horse Race $y_{it} = f_m[g_k(X_t, Y_{i,t-p},)]$

Evaluate Absolute Performance

Identify Best Relative Reductions

Convert QSS into PCE and find sure-fire improvements compared with current

Calculate Sustainable Improvements

Convert QSS into PCE services components

$$\hat{C}_m = g_c(\hat{y}_{it})$$

Calculate Percent
Improved Periods (PIP)

Calculate Mean Revision
Reduction Probability
(MRRP)

Mean Revision Reduction Probability

1 Calculate the Root Mean Squared Revision for each model *m* and *current* BEA methods.

$$RMSR_{current} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\mathring{C}_{current} - C_{third})^2} \qquad RMSR_m = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\mathring{C}_m - C_{third})^2}$$

2 Calculate revision reduction for model *m*

$$\Delta RMSR_m = RMSR_m - RMSR_{current}$$

Bestimate probability that any model will result in revision reduction for component **C**

$$MRRP_c = \frac{1}{M} \sum_{m=1}^{M} (\Delta RMSR_m < 0)$$

Percent Improved Periods (PIP)

How often do models offer an improvement?

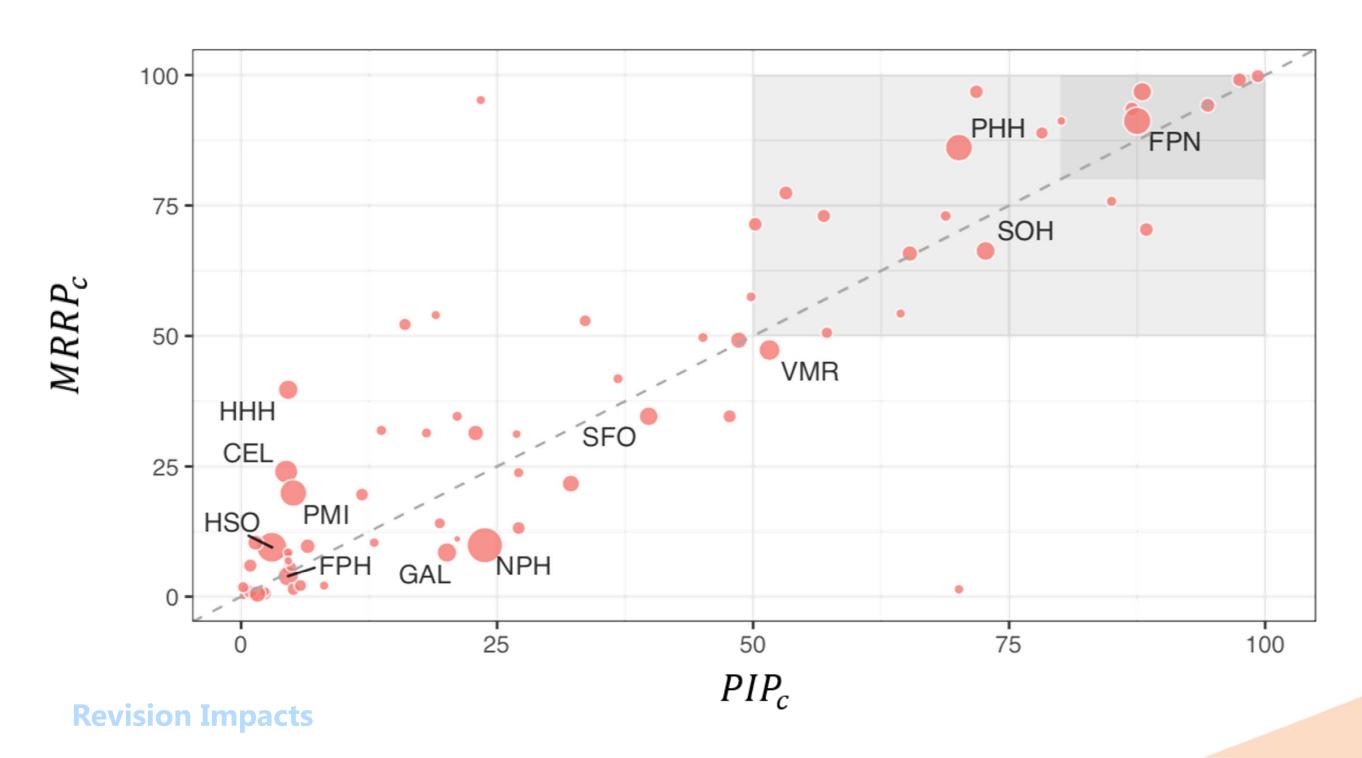
Calculate the Root Mean Squared Revision for each model *m* and *current* BEA methods.

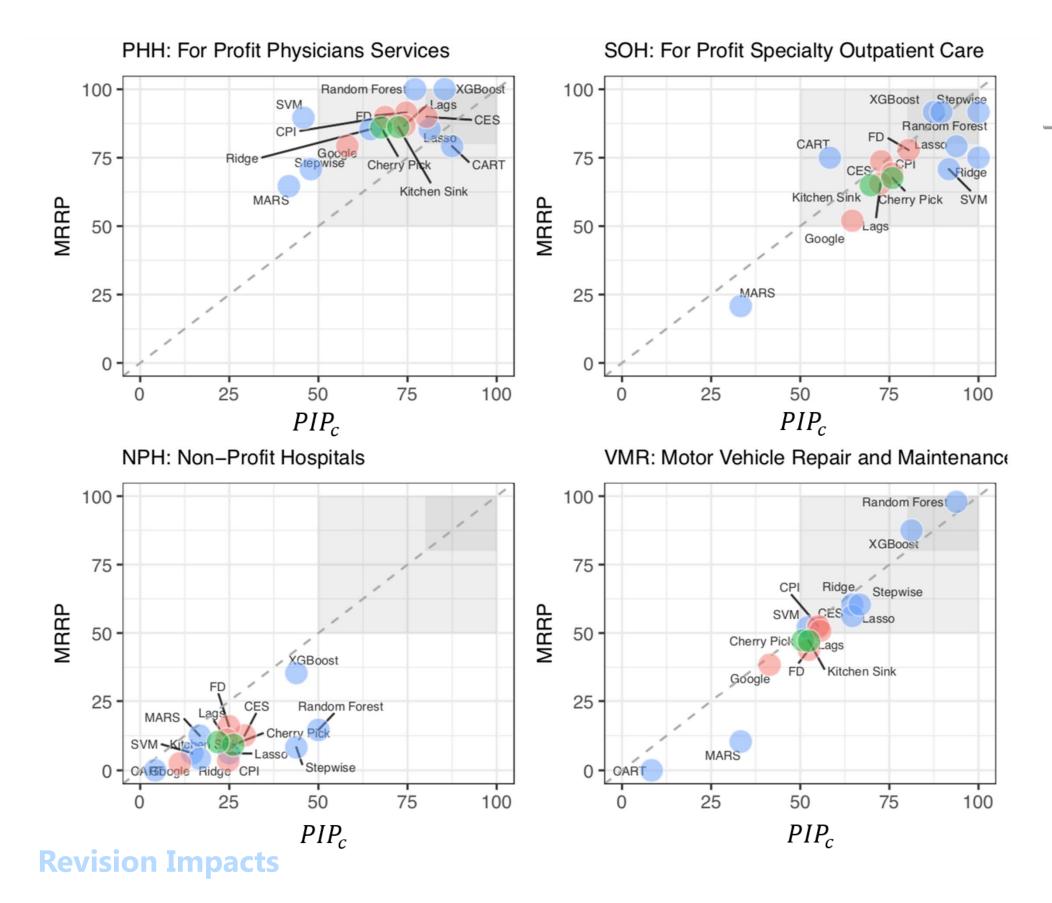
$$PIP_{m} = \frac{1}{T} \sum_{i=1}^{T} (|\hat{C}_{mt} - C_{third,t}| < |\hat{C}_{current,t} - C_{third,t}|)$$

2 Calculate average revision reduction using model *m*

$$PIP_c = \frac{1}{M} \sum_{m=1}^{M} (PIP_m > 0.5)$$

Identifying predictable series comparing MRRP and PIP





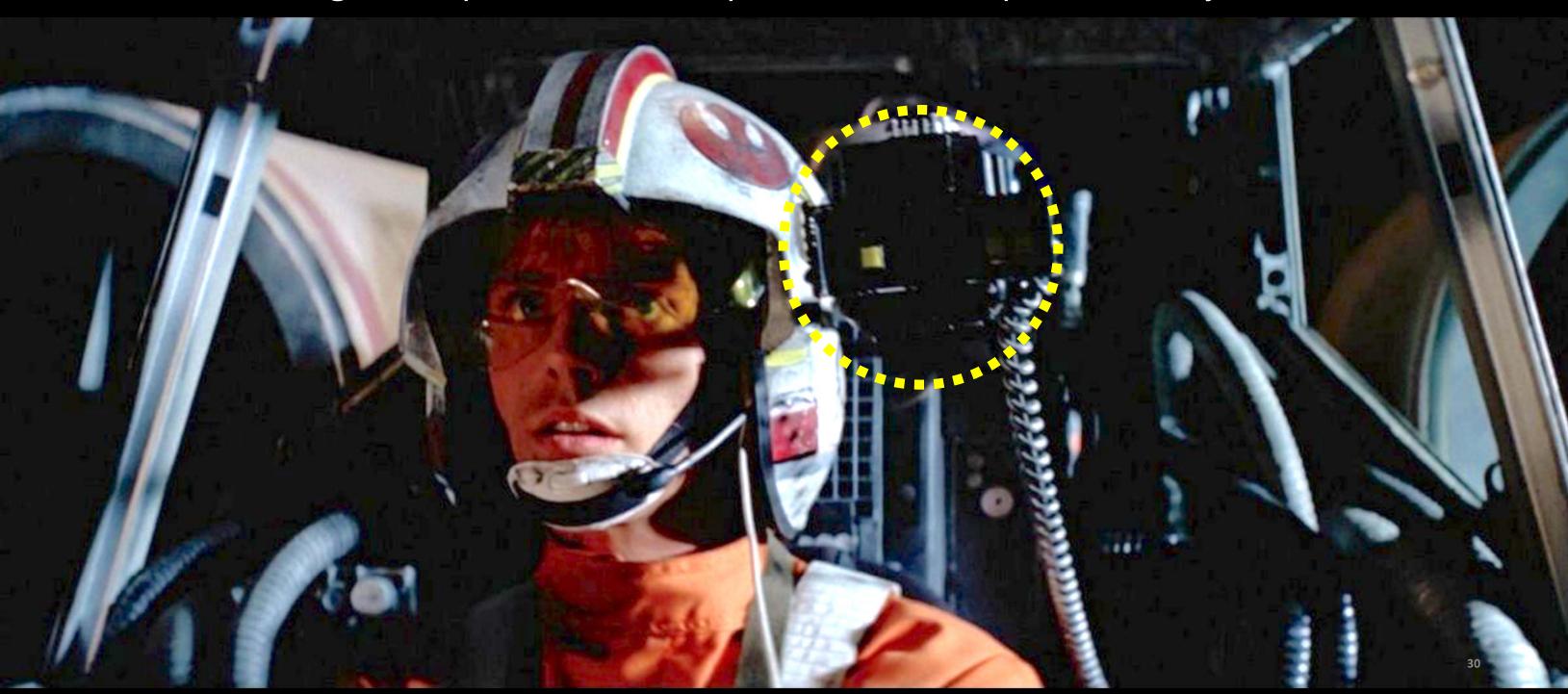
Given the methods and data, some algorithms are far less predictable than others.

Mean Revision Impacts for Random Forest models

	Percent				Levels (\$	SMil)	Direction	
Component	10th	Mean	Median	90th	Mean	Median	ML	Current
PCE	5.59	12.17	13.11	18.33	2054.75	2213.61	100	100
PCE Services	0.2	10.3	11.78	19.72	1552.69	1775.76	100	100
Health Care	2.23	11.27	12.64	18.99	1442.62	1618	100	100
Transportation	2.91	25.57	26.7	43.86	1100.38	1149.29	75	67
Recreation	4.28	8.47	8.28	12.75	349.73	341.88	92	83
Education	1.74	3.25	3.11	5.16	17.6	16.83	100	100
Professional and Other	1.38	4.2	3.72	7.02	77.84	68.89	75	67
Personal Care and Clothing	21.8	27.37	28.24	31.03	513.85	530.18	92	83
Social Services and Religious	10.29	14.21	14.7	17.82	155.06	160.42	83	83
Household Maintenance	-24.25	10.94	16.71	34.38	45.49	69.49	100	92
GO NP Social Services	0.07	0.43	0.47	0.74	9.37	10.2	33	33
GO NP Prof Advocacy	26.24	36.99	41.03	47.8	235.12	260.79	100	100

Next Steps

Conduct testing and operationalize a productionable prediction system.



Jeffrey.Chen@bea.gov

