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Status quo:  Decentralized data collections
Real output
•Census collects the “numerator”:  Revenue
•BLS collects the “denominator”:  Prices
•BEA does the division:  Q = P*Q/P

Non-simultaneous collection of price and quantity 
• Stratified surveys from small and deteriorating samples
•Mismatch of price and revenue data
•High cost and burden
•Difficulty of accounting for changes in products



Re-engineering measuring sales and prices

P&Q microdata
• Internet retailers
• Brick and mortar
• Aggregators

Agencies
Data products:
• GDP
• inflation
Data improvements:
• Quality change
• Timeliness
• Granularity
• Distributional 

statistics

Challenge:  Tap the firehose of transactions level data
now available from businesses on P and Q .



Reengineered data for retail P and Q

Item-level transactions data

• Item-level data allows inferring price from sales and quantities

• Price, quantity and revenue measured
– Simultaneously

– At high frequency

– Universe (or large sample) of transactions

– With little lag

– With reduced need for revisions

– With granular information on location of sale (geography, store/online)

– Immediate accounting for changes in goods



Re-engineering:  Accept data as they come

Alternative modes of data collection should co-exist:
1.  Direct collection of item-level transaction

e.g., Australian Bureau of Statistics received transactions date from chain grocers

2.  Firms aggregate transaction data with APIs
Multiple APIs to accommodate different information systems

3.  Aggregators
Valued-added product:  Prepare statistical reports (data feeds) from information 
already collected from firms



Re-engineering benefits to firms

•Data feed replaces multiple surveys and enumerations

•Data requests match information systems

•Official statistics better matched firm-specific metrics

•Better national economic indicators

•Better evidence on productivity and innovation



Re-engineering challenges

• Company buy-in for reporting item-level data

• Heterogeneity of company information systems

• Stability/consistency of data stream

• Re-engineering:  Human, software, and computation/storage

• Organization and coordination of the statistical agencies

• Conceptual and measurement issues (this paper’s topic)



Roadmap of analysis presented today
Using scanner data for P and Q 

• Nielsen covers grocery stores and mass merchandisers
• More than 100 product groups and 1000 product modules.

• Classify into Food and NonFood items
• Food nominal expenditures: Compare scanner data to Census surveys and Personal 

consumption expenditures for food (Scanner provides high frequency product detail)

• Food and NonFood prices indices: Compare scanner price indices (with and without 
quality adjustment) to BLS CPI 

• NPD covers general merchandise and online retailers
• NPD data have rich product attributes

• Explore hedonics vs. alternative methods (e.g., UPI) for quality adjustment



Price indices adjusted for quality

Key challenge/opportunity:  Enormous Product Turnover

• 650,000 products per quarter from 35,000 stores

• Product entry and exit rates (quarterly)
• 9.62% (entry) and 9.57% (exit)

• Sales-weighted entry and exit rates  
• 1.5% (entry) and 0.3% (exit)
• Rates vary substantially across product groups
• Asymmetry in sales-weighted: “slow death” of exiting products

Source:  Nielsen scanner data (Food and NonFood)



Sorting out product turnover

Some product turnover is mainly packaging 
and marketing.  
Product entry and exit rates
for soft drinks are both 7.1% per quarter. 
Sales weighted:  0.3% (entry), 0.07% (exit)

Some reflects substantial changes in product design.
Product entry and exit rates for video games 12.9% and 
13.5% per quarter.
Sales weighted:  30.3% (entry) 0.5% (exit).

Source:  Nielsen scanner data

https://www.google.com/imgres?imgurl=https://i0.wp.com/blog.bearing-consulting.com/wp-content/uploads/2012/12/Coca-Cola-can-with-Santa2.jpg&imgrefurl=http://blog.bearing-consulting.com/2012/12/24/the-innovation-story-of-santa-claus-and-coca-cola/&docid=DTTmXauTz66OVM&tbnid=4pugsCF7Be1nvM:&vet=10ahUKEwi3yLGx7KzeAhWKnOAKHch0CaIQMwgpKAAwAA..i&w=324&h=495&bih=603&biw=1280&q=santa%20claus%20on%20coke%20cans&ved=0ahUKEwi3yLGx7KzeAhWKnOAKHch0CaIQMwgpKAAwAA&iact=mrc&uact=8
https://www.google.com/imgres?imgurl=https://images.performgroup.com/di/library/GOAL/da/11/fifa-18-world-cup-update_1muuluhdqyeshz1y22gbiw58s.jpg?t%3D-1535892213&imgrefurl=https://www.goal.com/en-ie/news/fifa-18-world-cup-video-game-when-is-it-released-how-to-download-/1g9jswn5w3iir12a9wog5lfk01&docid=FDsvcOD1F4bNOM&tbnid=FTaJGx9QUSbTWM:&vet=1&w=1920&h=1080&bih=603&biw=1280&ved=0ahUKEwiCpfaf7qzeAhWsTt8KHUR0AjYQMwhAKAAwAA&iact=c&ictx=1


Capturing product quality: Alternative approaches
UPI:  Expenditure function approach using CES aggregators 

• Capture product turnover with changing expenditure shares of new vs. old 
goods 𝑃𝑉𝑎𝑑𝑗 (Feenstra 1994)

• Extend to capturing quality/appeal change of existing goods 𝐶𝑉𝑎𝑑𝑗 (Redding-
Weinstein 2018)

• Needs item classification/nesting + estimation of elasticity of substitution

Hedonic approach

• Estimate hedonic function within product groups using relationship between 
P and attributes (Pakes 2003)

• Use chain-weighting to accommodate turnover (Bajari and Benkard 2005)

• Needs item attributes
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Alternative Price Indices Memory Cards

Correlations with UPI           Laspeyres Feenstra Hedonic (Laspeyres)   Hedonic (Paasche)  

0.15                     0.07                     0.32                       0.48
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Key attributes for Memory Cards:  Size and Speed, R-squared for Hedonics is about 0.8 each quarter



Empirically: 
Product Variety 
and Consumer 
Valuation Bias 

Correction
Factors 

Positively 
Related

Source:  Nielsen, Averages by Product Group



Why is Consumer Valuation Bias So Large? 
Simulated entry/exit with quality change
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Why is Consumer Valuation Bias So Large? 
Simulated entry/exit with quality change
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Open issues and challenges

Progress on conceptual and measurement 
methodology but open questions remain
•UPI:  Nesting and estimation? 

• Use attributes for nesting?
• Product appeal reflects relative demand residual

• Specification/measurement error?

•Hedonics:  Implementation at scale measuring 
attributes?
•Do these methods converge using the same 

attributes?



Extra Slides
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Product Variety and Consumer Valuation Bias Adjustments



Unified Price Index (UPI) (Redding and Weinstein 2018)

UPI = 𝑃𝑉𝑎𝑑𝑗
1

𝜎−1 𝐶𝑉𝑎𝑑𝑗
1

𝜎−1 RPI

𝑃𝑉𝑎𝑑𝑗 = Product Variety Adjustment (Feenstra)

𝐶𝑉𝑎𝑑𝑗 = Consumer Valuation Adjustment (RW)

RPI = Continuing goods price index (Jevons)

𝜎 = Elasticity of substitution  

Applied to narrow product groups; requires estimate of elasticity of 
substitution 



Hedonics and transactions data

Following Pakes (2003) and Bajari and Benkard (2005) hedonics 
regressions estimated every period using item-level data

𝑝𝑖𝑡 = 𝑋𝑖
′𝛽𝑡 + 𝜂𝑖𝑡, where 𝑋𝑖 is vector of characteristics

Laspeyres Hedonic Index (LPH) given by

𝐿𝑃𝐻𝑡 =
σ𝑖𝜖𝐴𝑖𝑡−1

ℎ𝑡(𝑋𝑖)𝑞𝑖𝑡−1

σ𝑖𝜖𝐴𝑖𝑡−1
ℎ𝑡−1(𝑋𝑖)𝑞𝑖𝑡−1

where ℎ𝑡(𝑋𝑖) is the period t estimate of the hedonic function and 
𝐴𝑖𝑡−1 is the set of all goods sold in period t-1 (including exits).  



Growth Rates of Survey vs. Scanner Data of Sales Track Each Other Well:  Food

Scanner = Nielsen Retail Scanner, PCE = Personal Consumption Expenditures (Food), MRTS=Monthly Retail Trade Survey
Seasonally adjusted, quarterly nominal sales growth.
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CES model can be estimated and UPI constructed 
for memory cards

• Estimate of elasticity of substitution = 4.21 (0.48) (Feenstra method)

• Summary Statistics on product quality across items:
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Item-level data
shows that collapsing
into broader product
definitions increases
UPI (towards Laspeyres)

Attributes here based on
product module, brand,
size and packaging.

This approach could be 
Modified to nested 
CES.

More generally, close
substitutes in terms of
grouping of goods 
based on attributes 
is worth considering. 

If attributes used to nest,
do we converge towards
Hedonics?



NPD item-level characteristics for Memory Cards
Quality improves over period; marginal value falls
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UPI vs. Hedonics?

Is UPI more general and scalable? 

• Needs classification/nesting 

• Nests based on attributes likely the most appropriate approach

• Captures residual of relative demand curve?

• Do we want residual? Specification/measurement error?

Are the magnitudes of the UPI plausible?

• Large magnitude of UPI due to consumer valuation (CV).  


