Re-Engineering Key National Economic Indicators

Gabriel Ehrlich (Michigan), John C. Haltiwanger (Maryland),
Ron Jarmin (Census), David Johnson (Michigan),
and Matthew D. Shapiro (Michigan)

Bethesda, March 2019
Acknowledgements and Disclaimers

This research is supported by the Alfred P. Sloan Foundation with additional support from the Michigan Institute for Data Science. This presentation uses the researchers’ own analyses calculated (or derived) based in part on data from the Nielsen Company (US), LLC and marketing databases provided through The Nielsen Datasets at the Kilts Center for Marketing Data Center at The University of Chicago Booth School of Business. The conclusions drawn from the Nielsen data are those of the researchers and do not reflect the views of Nielsen. Nielsen is not responsible for, had no role in, and was not involved in analyzing and preparing the results reported herein. This presentation also uses data from NPD housed at the U.S. Census Bureau. All results using the NPD data have been reviewed to ensure that no confidential information has been disclosed (CBDRB-FY19-122). Opinions and conclusions expressed are those of the authors and do not necessarily represent the view of the U.S. Census Bureau. We thank Jamie Fogel, Diyue Guo, Edward Olivares, Luke Pardue, Dyanne Vaught, and Laura Zhao for superb research assistance.
Status quo: Decentralized data collections

Real output

• Census collects the “numerator”: Revenue
• BLS collects the “denominator”: Prices
• BEA does the division: $Q = \frac{P*Q}{P}$

Non-simultaneous collection of price and quantity

• Stratified surveys from small and deteriorating samples
• Mismatch of price and revenue data
• High cost and burden
• Difficulty of accounting for changes in products
Re-engineering measuring sales and prices

Challenge: Tap the firehose of transactions level data now available from businesses on P and Q.

P&Q microdata
• Internet retailers
• Brick and mortar
• Aggregators

Agencies
Data products:
• GDP
• inflation

Data improvements:
• Quality change
• Timeliness
• Granularity
• Distributional statistics
Reengineered data for retail P and Q

Item-level transactions data

• Item-level data allows inferring price from sales and quantities

• Price, quantity and revenue measured
 – Simultaneously
 – At high frequency
 – Universe (or large sample) of transactions
 – With little lag
 – With reduced need for revisions
 – With granular information on location of sale (geography, store/online)
 – Immediate accounting for changes in goods
Re-engineering: Accept data as they come

Alternative modes of data collection should co-exist:

1. Direct collection of item-level transaction
 e.g., Australian Bureau of Statistics received transactions date from chain grocers

2. Firms aggregate transaction data with APIs
 Multiple APIs to accommodate different information systems

3. Aggregators
 Valued-added product: Prepare statistical reports (data feeds) from information already collected from firms
Re-engineering benefits to firms

• Data feed replaces multiple surveys and enumerations
• Data requests match information systems
• Official statistics better matched firm-specific metrics
• Better national economic indicators
• Better evidence on productivity and innovation
Re-engineering challenges

• Company buy-in for reporting item-level data
• Heterogeneity of company information systems
• Stability/consistency of data stream
• Re-engineering: Human, software, and computation/storage
• Organization and coordination of the statistical agencies
• Conceptual and measurement issues (this paper’s topic)
Roadmap of analysis presented today

Using scanner data for P and Q

• Nielsen covers grocery stores and mass merchandisers
 • More than 100 product groups and 1000 product modules.
 • Classify into Food and NonFood items
 • Food nominal expenditures: Compare scanner data to Census surveys and Personal consumption expenditures for food (Scanner provides high frequency product detail)
 • Food and NonFood prices indices: Compare scanner price indices (with and without quality adjustment) to BLS CPI

• NPD covers general merchandise and online retailers
 • NPD data have rich product attributes
 • Explore hedonics vs. alternative methods (e.g., UPI) for quality adjustment
Price indices adjusted for quality

Key challenge/opportunity: **Enormous Product Turnover**

- 650,000 products per quarter from 35,000 stores
- Product entry and exit rates (quarterly)
 - 9.62% (entry) and 9.57% (exit)
- Sales-weighted entry and exit rates
 - 1.5% (entry) and 0.3% (exit)
 - Rates vary substantially across product groups
 - Asymmetry in sales-weighted: “slow death” of exiting products

Source: Nielsen scanner data (Food and NonFood)
Some product turnover is mainly packaging and marketing. Product entry and exit rates for soft drinks are both 7.1% per quarter. Sales weighted: 0.3% (entry), 0.07% (exit).

Some reflects substantial changes in product design. Product entry and exit rates for video games 12.9% and 13.5% per quarter. Sales weighted: 30.3% (entry) 0.5% (exit).

Source: Nielsen scanner data
Capturing product quality: Alternative approaches

UPI: Expenditure function approach using CES aggregators

- Capture product turnover with changing expenditure shares of new vs. old goods PV_{adj} (Feenstra 1994)
- Extend to capturing quality/appeal change of existing goods CV_{adj} (Redding-Weinstein 2018)
- *Needs item classification/nesting + estimation of elasticity of substitution*

Hedonic approach

- Estimate hedonic function within product groups using relationship between P and attributes (Pakes 2003)
- Use chain-weighting to accommodate turnover (Bajari and Benkard 2005)
- *Needs item attributes*
Laspeyres index using scanner is similar to BLS CPI (especially food) While Feenstra and UPI have much lower price change
Alternative Price Indices Memory Cards

Correlations with UPI

<table>
<thead>
<tr>
<th></th>
<th>Laspeyres</th>
<th>Feenstra</th>
<th>Hedonic (Laspeyres)</th>
<th>Hedonic (Paasche)</th>
<th>UPI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.15</td>
<td>0.07</td>
<td>0.32</td>
<td>0.48</td>
<td></td>
</tr>
</tbody>
</table>

Mean Rate of Quarterly Price Change

Key attributes for Memory Cards: Size and Speed, R-squared for Hedonics is about 0.8 each quarter
Empirically:
Product Variety and Consumer Valuation Bias Correction Factors Positively Related

Source: Nielsen, Averages by Product Group
Why is Consumer Valuation Bias So Large?
Simulated entry/exit with quality change

Simulation assumes no change in nominal prices. All changes in prices due to quality change
Why is Consumer Valuation Bias So Large?
Simulated entry/exit with quality change

Relative Product Quality

Price Indices

RW CV_adj dominates Feenstra adjustment with more gradual buildup/decline of product quality via entry and exit. Implies CV_adj may reflect dynamics of entry and exit.
Open issues and challenges

Progress on conceptual and measurement methodology but open questions remain:

• UPI: Nesting and estimation?
 • Use attributes for nesting?
 • Product appeal reflects relative demand residual
 • Specification/measurement error?
• Hedonics: Implementation at scale measuring attributes?
• Do these methods converge using the same attributes?
Extra Slides
Product Variety and Consumer Valuation Bias Adjustments

\[PV_{adj} = \frac{\lambda_{t,t-1}}{\lambda_{t-1,t}} \]

\[\lambda_{t,t-1} \equiv \frac{\sum_{k \in \Omega_{t,t-1}} P_{kt}C_{kt}}{\sum_{k \in \Omega_{t}} P_{kt}C_{kt}} \]

\[\lambda_{t-1,t} \equiv \frac{\sum_{k \in \Omega_{t,t-1}} P_{kt-1}C_{kt-1}}{\sum_{k \in \Omega_{t-1}} P_{kt-1}C_{kt-1}} \]

\[S_{lt}^* \equiv \frac{P_{lt}C_{lt}}{\sum_{k \in \Omega_{t,t-1}} P_{kt}C_{kt}} \]

\[\tilde{S}_t^* = \left(\prod_{k \in \Omega_{t,t-1}} S_{lt}^* \right)^{1/N_{t,t-1}} \]

\[CV_{adj} = \left(\frac{\tilde{S}_t^*}{\tilde{S}_{t-1}^*} \right) \]

\[\Omega_{t,t-1} = \text{Goods common to } t-1 \text{ and } t \]

\[\Omega_t = \text{All goods in period } t \]

\[PV_{adj} \text{ and } CV_{adj} \text{ may be related by complex post-entry and pre-exit dynamics} \]
Unified Price Index (UPI) (Redding and Weinstein 2018)

\[
\text{UPI} = PV_{\text{adj}} \frac{1}{\sigma-1} \quad CV_{\text{adj}} \frac{1}{\sigma-1} \quad \text{RPI}
\]

\(PV_{\text{adj}}\) = Product Variety Adjustment (Feenstra)

\(CV_{\text{adj}}\) = Consumer Valuation Adjustment (RW)

\(RPI\) = Continuing goods price index (Jevons)

\(\sigma\) = Elasticity of substitution

Applied to narrow product groups; requires estimate of elasticity of substitution
Hedonics and transactions data

Following Pakes (2003) and Bajari and Benkard (2005) hedonics regressions estimated every period using item-level data

\[p_{it} = X_i' \beta_t + \eta_{it}, \text{ where } X_i \text{ is vector of characteristics} \]

Laspeyres Hedonic Index \((LPH)\) given by

\[
LPH_t = \sum_{i \in A_{it-1}} \frac{h^t(X_i)q_{it-1}}{\sum_{i \in A_{it-1}} h^{t-1}(X_i)q_{it-1}}
\]

where \(h^t(X_i)\) is the period \(t\) estimate of the hedonic function and \(A_{it-1}\) is the set of all goods sold in period \(t-1\) (including exits).
Growth Rates of Survey vs. Scanner Data of Sales Track Each Other Well: Food

Scanner = Nielsen Retail Scanner, PCE = Personal Consumption Expenditures (Food), MRTS=Monthly Retail Trade Survey
Seasonally adjusted, quarterly nominal sales growth.
CES model can be estimated and UPI constructed for memory cards

• Estimate of elasticity of substitution = 4.21 (0.48) (Feenstra method)

• Summary Statistics on product quality across items:

<table>
<thead>
<tr>
<th></th>
<th>Common Goods</th>
<th>Exiting Goods</th>
<th>Entering Goods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std Deviation</td>
<td>1.300</td>
<td>1.400</td>
<td>1.500</td>
</tr>
<tr>
<td>Average (relative) product quality</td>
<td>1.300</td>
<td>1.400</td>
<td>1.500</td>
</tr>
</tbody>
</table>

Exiting Goods of entering goods partly reflects re-entry

Std Deviation of Product Quality: Much higher across Entering goods

Average (relative) product quality much lower for exiting compared to entering goods
Item-level data shows that collapsing into broader product definitions increases UPI (towards Laspeyres).

Attributes here based on product module, brand, size and packaging.

This approach could be modified to nested CES.

More generally, close substitutes in terms of grouping of goods based on attributes is worth considering.

If attributes used to nest, do we converge towards Hedonics?
NPD item-level characteristics for Memory Cards
Quality improves over period; marginal value falls

Key Attributes of Memory Cards by Quarter

<table>
<thead>
<tr>
<th></th>
<th>Memory Size (GB)</th>
<th>Read Speed (MB/Sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Changing Marginal Value of Attributes by Quarter

Trend of linear terms from hedonic regression

Linear trend on sales-weighted Memory size and speed.
UPI vs. Hedonics?

Is UPI more general and scalable?
• Needs classification/nesting
 • Nests based on attributes likely the most appropriate approach
• Captures residual of relative demand curve?
 • Do we want residual? Specification/measurement error?

Are the magnitudes of the UPI plausible?
• Large magnitude of UPI due to consumer valuation (CV).