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Abstract
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random weekly variation in global Internet latency to identify the causal effect of
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effect of the Internet on local protests comes from national differences in political
institutions and local differences in Internet penetration.
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1 Introduction

On the night of November 30th 2013, Ukrainian special police units (Berkut) brutally

attacked and dispersed protesters at a rally at Kiev’s Maidan square. Online videos and

images of the police violence immediately went viral through Youtube and Facebook and

were key in mobilizing people for Ukraine-wide protests and civil unrests that lasted until

February 2014.1 The “Euromaidan” protests ultimately resulted in the resignation of the

government and the ousting of President Yanukovich.

This is just one of many anecdotes that highlights the Internet’s potential as a “liber-

ation technology.”2 The argument suggest that the Internet can foster political activism,

participation and mass mobilization by decreasing transaction costs and increasing infor-

mation and communication. It enables citizens to report and receive news, expose wrong

doings of public officials and share information about economic grievances.3 It can also

help to coordinate and organize grass root movements and eventually help to mobilize

supporters during protests and elections.4

However, the Internet can also be a bane for political mobilization. Similar to the

introduction of TV (e.g., Gentzkow 2006), the Internet might crowd out other, more

politically relevant, sources of information and foster citizens’ disengagement with the

political process. Similarly, the Internet can play a role in decreasing social capital accu-

mulation which is often seen as a pre-requisite for mass mobilization by increasing weak

social ties as opposed to strong social ties (e.g. Bond et al. 2012).

Despite the popularity of the liberation technology argument, only a few empirical

studies exist that empirically examine the nexus between the Internet and political mobi-

1According to a survey (Kurylo and Dumova 2016) around 70 % of the participants in the Maidan
protests named the viral videos as a reason for participation.

2For example, In 2011, a young women was beaten by Egyptian police during a protest on Cairo’s
Tahrir square. The video of her ordeal was circulated online and quickly broadcasted by large international
news companies. In response, thousands of Egyptians marched into Tahrir Square later in December 2011
including the largest number of women in decades.

3One example is the violent death of Sun Zhigang in police custody in Guangzhou, China, in 2003.
The news that Mr. Zhigang had been beaten to death in custody quickly spread though chat forums and
soon after became a national story, forcing China’s central government to launch an investigation that
resulted in the conviction of 12 perpetrators (Diamond 2010).

4Prominent examples are Barack Obama’s 2008 U.S. presidential election campaign, the Five Star
Movement (“Movimento 5 Stelle”) in Italy, or Emanual Macron’s “La République En Marche!” in France.
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lization. Enikolopov et al. (2016) find that an increase in the adoption of VK, a Russian

social network platform, increased the incidence of local protests in Russia during 2011.

Manacorda and Tesei (2016) combine yearly data of mobile phone adaptation rates and

protests at a 55km × 55 km grid-cell level for the entirity of Africa. Their results show

that higher mobile phone penetration can lead to more protests but only during times of

economic downturns. Campante et al. (2017) study the effect of broadband roll-out on

voter turnout in Italy. Initially, access to broadband Internet decreased voter turnout,

but this effect was subsequently reversed by the emergence of political movements that

used the Internet to attract and mobilize supporters. Finally, Falck et al. (2014) find a

negative effect of broadband coverage on election turnout in Germany.

We complement the existing literature by analysing the effect of the Internet on local

protests at a global scale and by employing Internet data at a high spatial and temporal

resolution. In particular, we make use of a unique panel dataset that combines geo-

referenced data on Internet access and quality and weekly protests for 18,907 subnational

ADM2 regions (‘districts’) from 236 countries and territories over the years 2006–2012.

This high spatio-temporal resolution allows us to exploit within year and within subna-

tional district variation and explore the potential heterogeneity of the effect along national

and subnational differences.

We focus on latency-adjusted Internet activity on the local level. Latency relates to

the travel time that a data package requires to get from its source point to its destination

point. In the context of political mobilization, Internet latency is essential because it

is strongly associated with the time it takes to upload or download a video or a photo,

access particular sites or communicate via voice-over-IP. The basic idea is that Internet

access by itself is a necessary but not sufficient condition for political mobilization. What

is required is a sufficiently stable and fast local connection (“the entrance to the data

highway”) as well as a functioning global Internet backbone (“the global data highway

itself”) along which any data package travels.

Our identification strategy ultimately employs the random weekly variation in the

latter component, the global Internet backbone. Our main explanatory variable is an in-
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teraction term between local (in the district) Internet activity and global, weekly Internet

latency. In combination with the fine spatio-temporal resolution of the protest and Inter-

net data, this enables causal identification. In practice, we specify a regression model that

includes district × year fixed effects as well as week-of-the-year fixed effects. Thereby, we

compare the effect of within-district-year variation in local Internet activity on within-

district-year variation in weekly protests conditional on the level of weekly, global Internet

latency. In other words, we examine if a district with high Internet activity is more likely

to observe a protest in a week with good global Internet latency compared to a week with

large distortions to the global Internet backbone.

This estimation strategy relies on two assumptions: First, large shocks to the global

Internet backbone have to have a systematic impact on Internet speed and thereby peo-

ple’s interaction with the Internet. We present evidence that supports the argument that

random damages to the regional fibre-optic cable-network had significant, temporary im-

pact on regional Internet speed. We then show that human usage of the Internet decreases

during periods of slow global Internet speed.

Second, global Internet latency needs to be orthogonal to local protest activity. As a

support for this assumption we provide evidence that shocks to global latency are driven by

damages to the physical infrastructure of the Internet (e.g., cuts of submarine cables) and

basically unaffected by even the largest global Internet bandwidth intensity events during

our sample period. In addition, we provide evidence that Internet latency is unaffected

even by the largest live-video stream events and weeks with large media events.

In our empirical analysis, we examine the effect of the Internet on local protests in the

very short-run. We find that latency-adjusted Internet activity systematically increases

the occurrence of local protests in a given week.5 The quality of a country’s political

institutions and local Internet penetration, measured by IPs per capita, seem to explain

most of the heterogeneity of the effect.6

Our paper makes a number of contributions to the recent literature on the effect of the

5We present results based on monthly aggregates in Appendix C.
6‘IP’ is the common short-hand for ‘Internet Protocol address’. Any device with a connection to the

internet is assigned a unique IP such that information packages can be sent and received, from or to, the
device.
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media on political mobilization. Among this literature is a strand that has investigated

the effect of more traditional forms of media such as Radio (Stromberg 2004) and TV

(e.g., Gentzkow 2006; DellaVigna and Kaplan 2007; Oberholzer-Gee and Waldfogel 2009;

Campante et al. 2017) on voter turnout and election outcomes.

While more recent contributions focus explicitly on the role of the Internet on election

outcomes (e.g., Campante et al. 2013; Falck et al. 2014) and political protests (e.g.,

Enikolopov et al. 2016; Manacorda and Tesei 2016), they typically rely on data from

individual countries. A notable exception is the recent study by Manacorda and Tesei

2016 who use data from all African countries.

Our first contribution is that we take the analysis to a global level using data from

236 countries and territories with large variation in economic development and political

institutions. Exploiting in particular the heterogeneity in the level of democracy, we show

that the effect of the Internet on the incidence of local protests is more pronounced in

less democratic countries. As such, this study provides the first globally generalizable,

empirical support for the claim that the Internet is a liberation technology, helping to

mobilize citizens in countries with otherwise limited options for political participation.

Second, we augment the existing literature by focusing on the mobilization effect of

the Internet in the very short run. A few exceptions aside (e.g., Enikolopov 2016), most

studies rely on cross-sectional or yearly variation in both the outcome variable (i.e. voter

participation or protest incidence) and the Internet or ICT variables. To identify the

effect, the majority of these studies have to rely on instrumental variables (IVs). In

contrast, the fine temporal granularity of our Internet data allows us to estimate effects

directly, and with a less stringent set of identifying assumptions.

Third, our data allows us to distinguish between the role of Internet activity per

se and latency-adjusted Internet activity. Our findings imply that it is access to the

Internet in combination with good quality/latency of the network that matters for political

mobilization. As such, our results support the approach that is applied by many papers

that use access to high-speed Internet for their identification strategy (e.g., Falck et al.

2014). Further, our findings also have important implications for the ongoing policy
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debate about the importance of net neutrality.7 If Internet speed matters for political

mobilization, any systematic discrimination in the handling of different Internet packages,

could potentially have consequences for political participation and political outcomes.

The remainder of the paper is organized as follows: Section 2 presents the data on local

protests, Internet activity and latency. Section 4 discusses the main empirical strategy and

present the results using weekly data, while section 4 presents the results using monthly

aggregates. Section 5 concludes.

2 Data

We construct an unbalanced panel dataset at the district-week level for the period 2006–

2012. Our panel unit i are 18,907 subnational districts at the second federal level (ADM2)

from 236 countries and territories c. ADM2 districts correspond to U.S. counties, Aus-

tralian LGAs or districts in India etc. Our time unit t are weeks. We have compiled data

for (almost) every week t in month m and year y starting from week 9 in 2006 until week

52 in 2012.

2.1 Protests

Our data on protests comes from the open-source GDELT 1.0 database. GDELT collects

daily news event information from “the world’s broadcast, print, and web news from

nearly every corner of every country in over 100 languages” (Leetaru and Schrodt 2013).

News reports from other languages are translated into English through a collaboration

with Google Ideas. Each news report is fed into a parsing algorithm that automatically

extracts information about the time and location of the event as well as to classify it into

categories and define the actors involved.

GDELT uses 20 main event classifications based on the CAMEO (Conflict and Me-

diation Event Observations) coding scheme. We use all events from the category “140:

7‘Net neutrality’ refers to the existing principle, adopted by all carriers in all jurisdictions globally, that
every packet routed on the Internet is given equal standing with respect to routing priority, regardless of
origin, destination, or contents.
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Protests”, which defines events as follows: “All civilian demonstrations and other col-

lective actions carried out as protests against the target actor not otherwise specified.”

Category 140 is further subdivded into sub-categories which allows us to distinguish be-

tween demonstrations, strikes and boycotts, and violent protests. Figure 1 plots the

weekly number of protest events recorded in the GDELT database in our sample period.

Figure 1 about here

A main advantage of GDELT data is the fine temporal scale (daily) of the event data

which allows us to construct monthly aggregates of protest events and exploit within-year

and country variation of those events. Another advantage is that the GDELT data has

been georeferenced using an ADM2 boundary shapefile. Other daily event datasets (e.g.,

ACLED or UDCP) are often limited in geographic coverage or do not contain information

about protests.

One caveat of the GDELT data is that it is sourced from online news reports and

relies on automatic coding. This means that the data coverage and data quality can vary

over time. To account for global, seasonal, shocks in data coverage and quality we include

week-of-the-year dummies. To control for country as well as district and year specific

shocks in coverage and quality we also include a large vector of district-year dummies.

Our main outcome variable, protestit, is a dummy variable that switches to one if a

protest event was recorded in GDELT in week t and region i. We only consider an event

a local protest if the precision code in the GDELT data suggests georeference precision

at the subnational (rather than country) level and the country code of the event matches

the country code of the ADM2 region.

2.2 Internet Data

To associate historical Internet activity and latency with a given ADM2 region and week,

two datasets are required. First, an Internet activity database provides observations on

the online/offline status of individual IPs which have been scanned (or ‘probed’) frequently

over time. In this study, Internet activity data were provided by the University of Southern
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California (USC) PREDICT internet-security database who conducted two types of IP

scans: ‘census’ scans, where the universe of 232 unique IP addresses were scanned over

a period of time; and ‘survey’ scans, where 1% samples of IP addresses were scanned at

high frequency (11 min) (Heidemann et al., 2008). In each case, the most basic package

(a ‘ping’) is sent over the Internet to the target IP, effectively querying the target’s

online/offline status, with the query yielding a success indicator, and a return time for

the query to complete.8 In the case that an IP address is not online, or unreachable due

to firewalls or other prohibitions, the nearest router or host will respond to indicate the

result. Due to the vast scale of the Internet addressing space, and the frequency of scans,

the Internet activity database used in this study comprised over 1.5 trillion observations.

On its own, such an Internet activity database provides highly granular observations

on the activity and latency of individual IPs within the abstracted routing network (the

Internet) only. To associate these observations with human localities a second dataset

is required, namely, a historical geo-IP catalogue which provides a precise geo-location

(lat/lon) for each IP, or IP-range. Since the geo-location of IPs (or IP-ranges) is not static

over time,9 the best geo-IP catalogues are updated bi-weekly to ensure maximum loca-

tional accuracy. For this purpose we used a commercial product, the NetAcuity database

from Digital Envoy,10. This database has consistently been recognised as the most ac-

curate geo-IP catalogue of its type (Gharaibeh et al., 2017), and provides a geo-location

for the universe of IPs, updated on average every two weeks.

The mechanics of joining the activity and geo-location datasets are involved and are

discussed in the Appendix. In summary, we associate an historically accurate geo-location

from the geo-IP database to each online/offline IP observation in the IP activity database.

From this intermediate we produce two datasets. First, for each month, the number of

unique IPs that were found to be online at least once during the month were counted in

each of the 40,000 ADM2 (subnational districts) boundaries. This formed the basis of our

measure of Internet activity, IPim, being the (log of) the number of unique IPs per 1,000

8Return times are typically in the order of 50 to 750 milliseconds.
9Internet service providers (ISPs) routinely purchase or release tranches of IPs as required for their

customer needs, associating the IP to physical users by updating routing tables.
10See https://www.digitalenvoy.com/.
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inhabitants for each district i and month m.

Figure 2 about here

Second, we utilise the ping return time (in milliseconds, ms) which is recorded with

every online IP observation in the Internet activity database. The higher the ping return

time the worse is the carriage speed of packets being sent and received by the given IP

(i.e. the ‘slower’ the Internet for that IP). Figure 3 plots the weekly measurements of

average global ping speed in our sample period from 2006 to 2012. We use the inverse of

the average global ping return time to calculate our measure for global Internet latency in

week t, pingt. For an alternative specification we also calculate the inverse of the average

weekly ping return time for each country c and week t, pingct.

Figure 3 about here

Two key factors are required for our identification strategy: first, that large shocks to

the Internet backbone have a systematic impact on local Internet speed, and so, individual

interaction with the Internet; and second, that variation in global latency is orthogonal

to protest activity, or in other words, Internet activity associated with protests have no

impact on the global backbone. We shall take each factor in turn.

Table 2 presents the summary statistics of our key variables.

Table 2 about here

2.3 Global Latency is Supply Driven

The most common source of major shocks to global latency are random breakages and

technical faults to the Internet’s physical infrastructure (overland and submarine fibre-

optic cables.). For example cuts to submarine fibre-optic cables caused by ship anchors

and trawling activity are well known in the telecommunications industry.11 Other sources

11One industry source has estimated ‘about 100’ submarine cable cuts occur each year, see
http://www.wired.co.uk/article/vulnerable-undersea-cables.
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of shocks are due to natural disasters or accidental cuts.12 Figure 6 shows the effect of

three major cable cuts on regional ping speed, including: (a) the Taiwanese earthquake

of 26 Dec 2006; (b) the series of submarine cable cuts off Egypt of 30 Jan – 4 Feb 2008;

and (c) the Christmas Day submarine cable cut of 2011 off the Arab peninsula. In each

case, the internet backbone disturbance is indicated by a vertical grey bar, with coloured

lines given the average change in ping speed, by country, relative to the average over the

series.

Figure 6 about here

Second, we show that, despite common perceptions, even spikes in simultaneous mass

user demand for content over the internet has no impact on global, or regional, latency.

To begin, it should be noted that the majority of Internet bandwidth consumed during

our sample period is used for peer-to-peer (P2P) file sharing.13 In 2007, over 70% of the

global Internet traffic originated from P2P file sharing exchanges (Ipoque 2007).14 Hence,

large, concentrated events, where a vast number of people use bandwidth heavy Internet

services, such as video streaming, are of relatively trivial scale when compared to this

P2P background demand.

As an illustration, Figure 4 plots the weekly regional latency around two of the biggest

live video stream events in our sample period: The 2011 Royal Wedding in Great Britain

(panel a) and the finals of the 2012 League of Legends (an online computer game) Cham-

pionships.15 The periods when the event took place are highlighted by the gray vertical

bars. In both events, we are unable to detect a significant decrease in the Internet latency

of the countries expected to be most affected by the event. To place, for instance, the

2011 Royal Wedding in context, it is estimated that 1.3 Tbps of streamed content was

12One example is the infamous Hayastan Shakarian cut (Bachmann et al. 2016). Hayastan Shakarian,
an elderly women from Georgia cut through an underground fibre-optic cable while digging to scavenge
copper. This triggered an Internet blackout for more than three-and-a-half million people in Georgia as
well as neighboring Armenia and Azerbaijan.

13For example BitTorrent.
14Among the files shared the largest fraction is made up by current movies, pornography, and music.
15Over its course, the live streams of the finals attracted an average of around 1.1

million concurrent viewers accumulating a total of 24,230,688 hours online streaming.
https://www.polygon.com/2012/10/23/3542424/league-of-legends-final-attracts-8-2-million-viewers-
season-2 .
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demanded at the peak of the event which compares with around 1.1 Tbps during the

inauguration of President Obama. Together, these two events are rated as the highest

streaming pressure events of this period, but neither had any noticable impact on global,

or regional, Internet latency.16

Figure 4 about here

As a further illustration, one might consider that large news events suddenly increases

the Internet activity globally because people search simultaneously for news related in-

formation online, causing congestion. To analyse if there is a systematic impact between

large news events and global Internet latency, we compared data on weekly news pressure

(Stromberg 2004) with weekly fluctuations in global latency.17 The scatter plot in Figure

5 shows that there is no systematic relationship and the simple correlation between those

two measures is also very low (Pearson’s rho: 0.072)

Figure 5 about here

Taken together, we have presented evidence that exogenous shocks to the Internet

backbone have dramatic and measurable impacts on latency and that there is little ev-

idence of any kind of congestion-effect even by the most bandwidth intensive Internet

events that occured during our sample period. As such, we think it is reasonable to as-

sume that shocks to global Internet speed are supply side driven and unaffected, even by

large protest considered in this study.

2.4 Global Latency affects Human Internet Activity

In this section we provide some evidence that global latency affects human Internet activ-

ity. We accessed publicly available data by O’Neill et al. (2016) who compiled a unique

dataset on gaming behaviour of over 108.7 million users of the Steam community over the

16See https://techcrunch.com/2017/01/23/trumps-inauguration-broke-live-video-streaming-records/ .
As pointed out in the linked article, one should be careful comparing peak stream levels over distant
years, given the huge expansion in bandwidth capacity and streaming quality (intensity of information
per second) over time.

17The idea is that major news events in general increase news pressure. For more information on how
this variable is constructed see Stromberg (2004).
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years 2013 and 2014. Steam is one of the world’s largest gaming communities and this

dataset allows us to track a particular form of human Internet activity, online gaming,

over time.

From this dataset, we use information about the total time played on online games

(in minutes) over the past two weeks globally, and regress it on the average global ping

speed over the past two weeks.

The results in Table 1 reveal that higher ping in the past two weeks systematically

reduces the average time spend playing online games. We take this result as support

for our claim that the global ping speed measured in our dataset systematically impacts

human Internet activity.

Table 1 about here

This analysis supports our claim that shocks to the global ping speed, which is used in

this study, have a systematic impact on people’s use of the Internet. During our sample

period of 2006–2012, we find that in weeks with relatively low Internet quality, individuals

spend less time online.

3 Empirical Analysis

3.1 Baseline Results

We commence our analysis by presenting correlations between protest incidence in week

t and district i and Internet activity in the corresponding month m and district i. In a

first step we estimate the following baseline model:

protestit = αi + β1IPi,m−1 + Tt + εit (1)

where protestit is a dummy that switches to one if there is a protest in district i in month

m and week t. IP is natural log of the number of active IPs per 1,000 inhabitants in

district i and the previous month m− 1. We use the first lag of Internet activity to avoid
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issues related to reversed causality.18 αi are district fixed effects which capture any time-

invariant differences between districts that determine variation in Internet activity and

protest likelihood. Finally, Tt is a vector of week-of-the-year fixed effects that accounts

in a very flexible way for any seasonal variation in Internet activity and protests. After

estimating the baseline specifications, including only week-of-the-year fixed effects as well

as region and week-of-the-year fixed effects, we are going to estimate specifications with a

more conservative set of fixed effects. First, we will augment equation (1) by a vector of

country-year fixed effects to account for any shocks that are common to all districts in a

given country and year. Second, we will replace district fixed effects by a vector of district-

year fixed effects. This vector of fixed effects allows us to control for any unobservable

shocks that are common to the weekly observations in each district i and year y.

We estimate equation (1) as a linear probability model (LPM) using OLS. The results

are presented in columns 1–4 of Table 3. The estimates in columns (1) and (2) show that,

controlling for week and region fixed effects, Internet activity in district i and month m−1

are positively and significantly correlated with protest incidence.

In column (3), we further include a vector of country-year fixed effects. The coefficient

is still statistically significant but the effect is basically zero. Once we replace the district

and country year fixed effects from column (3) by district-year fixed effects in column (4),

the coefficient also loses statistical significance.

Table 3 about here

These baseline results reveal that, once we control for country-year specific as well as

district-year specific shocks, monthly variation in Internet activity does not seem to be

systematically correlated with protest activity in the very short run.

This could indicate that increased availability and usage of Internet by itself might

not be sufficient condition to increase coordination and political mobilization, at least, in

the very short run.

Therefore, in the next step, we expand our baseline specification and include the

Internet latency as additional regressor:

18Using the contemporary values of Internet acitvity in month m yields very similar results.
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protestit = αi + β1IPi,m−1 + β2pingct + Tt + εit (2)

In equation (2), pingct denotes the inverse of the average ping speed in country c and

week t. However, any correlation between the incidence of protest and weekly variation in

a country’s ping speed could be spuriously driven by other country wide events in a given

week, such as a general government crack-down on opposition and wide-spread Internet

censorship. In order to avoid this problem, we eventually replace average country ping

speed pingct by our preferred Internet latency variable, average global ping speed pingt.

The results in columns (5) and (6) in Table 3 show that weekly improvement in

country-wide and global Internet latency have are systematically positively correlated

with protest occurrence.

We now combine the insights from the baseline analysis so far to specify a model

that allows for a causal interpretation of the effect of the Internet on the incidence of

protest in the very short-run. In particular, we exploit the exogenous variation in global

Internet latency and construct a measure for local, latency-adjusted Internet activity. The

basic idea is that, better Internet allows for the online dissemination of more information

with better quality in a more timely manner. This improves short-run mobilization of

protesters and, consequently, the incidence of protests.

To implement this, we specify our main model as follows:

protestit = λiy + β1IPi,m−1 + β2pingct + δ(IPi,m−1 × pingt) + Tt + εit (3)

where λiy is a vector of district-year fixed effects and pingt is the inverse of the global

average ping speed in week t. We will also be presenting results using the average country

ping speed in week t, pingct, instead of pingt. δ is the parameter of key interest, reflecting

the effect of latency-adjusted Internet activity on the incidence of protests in district i

and week t. Again, we estimate equation (3) with OLS and cluster the standard errors at

the year-week level.19

Table 4 reports our main results. Column (1) presents the specifications using average

19The results are robust to alternative levels of clustering. See robustness check in Table 7

14



country ping speed. We find that latency adjusted Internet activity, IPi,m−1 × pingct,

has a positive and statistically significant effect on the incidence of protests in the same

week.20

It is possible that the δ using pingct is subject to issues of reversed causality and

omitted variable bias. As such, in column (2), we replace pingct by pingt, the average

global Internet latency in week t. The coefficient of latency adjusted Internet activity is

again positive and statistically significant at the 1% level.

How large is the effect of latency adjusted Internet on protest incidence? As reported

in Table 2 the probability of a protest in a given week in our sample is 0.09. A one

standard-deviation increase in latency-adjusted IP activity, which compares to an increase

in latency-adjusted IP activity in Port Philip (VIC) between late 2008 and early 2012,

translates into an increase in the probability of protest to 0.14.

Column (3) uses Internet activity in the current month, IPim, as opposed to the first

lag, and the results stay qualitatively and quantitatively the same. Columns (4) to (7)

use several other dependent variables. In column (4), we replace the protest incidence by

the (log of) the number of protests and we a similar pattern to the main results in column

(2). In columns (5)-(7), we split the protest variable into it’s three sub-categories, demon-

strations, strikes & boycotts, and violent protests. We find that our results are mainly

driven by events labeled as demonstrations. The estimated coefficient for latency adjusted

Internet activity in columns (6) and (7) are positive but not statistically significant and

very small in magnitude.

These results are intutive given that strikes are the result of some longer planning

and do not necessarily rely on short-run mobilization via the Internet. The eruption of

violence during a protest are mainly the result of ad-hoc dynamics during the protest

rather than short-term online mobilization.

Table 4 about here

20Note that the number of observations in column (1) is smaller than in the other columns. The
reason for this difference is that for some country-week observations, there was not sufficient IP scan data
available to calculate average country ping speed.
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3.2 Robustness Tests

We now present a number of exercises to show the robustness of our main specification in

column (2) of Table 4. In Table 5 column (1) we include the lagged dependent variable as

an additional control variable. In column (2) we exclude all observations that had only 1

recording of a protest event in the GDELT database. The idea is to check how sensitive

the results are to the exclusion of marginal protest events, that only received one news

report in total. The coefficient slightly drops in magnitude and is still highly statistically

significant. On the one hand this shows that the short-run effect of the Internet on protest

incidence is stronger for the marginal protest event.21 On the other hand, this robustness

check provides further support for our argument that our analysis estimates a mobilization

rather than a news reporting effect. Recall, that our dependent variable is constructed

from the GDELT archive that collects news reports about protest events. If there is

indeed a reporting effect, this one should mainly occur for small, marginal protests (with

only one entry in the GDELT database).

In column (3) we exclude all district and week observations with more than 10 protest

event recordings in the GDELT database to check if our results are robust to the exclusion

of very large events and potential outliers. The estimated coefficient remains similar to

the coefficient estimate in our main specification, again supporting the idea that Internet

increases the short-run mobilization for relatively smaller protest events.

In column (4) we exclude all observations with zero IP activity in a given district and

week. The results suggest that our main findings are not driven by districts and weeks

that switch from zero to positive IP activity (e.g., districts that have received access to

the Internet recently). Finally, we exclude all observations with more than 100 unique

IPs per 1,000 inhabitants. Again, our results are robust.

Table 5 about here

In the next step, we investigate the dynamics around global changes in ping speed.

We do that by estimating specifications including lagged values ping, in particular the

21Our analysis basically estimates the effect on the extensive margin (occurrence of protests) rather
than the intensive margin (size of the protests)
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global ping speed in the previous week, pingt−1 as well as leads, which is the ping speed

in the following week, pingt+1.

A specification using deeper lags would enable us to learn more about the temporal

extent of the mobilization effect. In contrast, global ping speed in the following week22

should have no systematic effect on the incidence of protest. A statistically significant and

positive coefficient would indicate that we capture a reporting rather than a mobilization

effect.

Table 6 about here

In Table 7 we present specifications with alternative levels of clustering. In particular,

we cluster at the country-year (Column 1), country (2), district-year (3), district level

(4). Changing the cluster units does not effect our results.

Table 7 about here

3.3 Heterogeneity

We now want to uncover some of the heterogeneity of the effect. In a first step, we exploit

the global coverage of our dataset and investigate whether there are systematic differences

of the effect of Internet on short-run mobilization.

In Table 8 we add various interaction terms between our main explanatory variable

and dummy variables that assign countries to different country groups depending on their

level of development, degree of Internet censorship, and geographic location.23

Table 8 about here

In Table 9 we look a the heterogeneity of the Internet effect along a number of national

indicators. In particular, we build interaction terms between our main variable of interest,

IPi,m−1 × pingct, and the quality of political institutions polity, dummy variables for

22Controlling for global ping speed in the current week to account for potential autocorrelation in global
ping speed)

23Censor countries include: China, Iran, India, Iraq, South Korea, North Korea, Russia, Pakistan,
Vietnam, UAR, Tajikistan, Uzbekistan, Turkey, Egypt, Syria.
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democracies (Democ), anocracies (Anoc), and dictatorships (Dict), and indicator if the

country has above median GDP per capita (HighGDP ), and if the country is currently

in a recession (Recession), respectively.

The results in Table 9 reveal the following pattern: Overall, the effect of latency

adjusted internet activity on short-run mobilization is stronger with weaker political in-

stitutions (columns 1, 5, and 6), but this effect seems to be mainly driven by dictatorial

regimes and less so by anocracies (column 2). The effect is more pronounced in higher

income countries (columns 3 and 4) and weaker if the country currently experiences a

recession (columns 4 and 6).

Table 9 about here

Finally, in Table 10 we examine the heterogeneity of the Internet effect along a num-

ber of subnational indicators. We build interaction terms between our main variable of

interest, IPi,m−1 × pingct, two sets of measures which vary at the district and year level.

The first one is the nighttime light intensity in district i and year y, HiLightiy (if light

is above median light) and Lightiy > 58 (if light is above 58). Nighttime light intensity

is used as a proxy for district level economic development given the absence of any other

official measure of district level economic development with a global coverage. The second

set of measures are dummy variables to indicate if the Internet penetration in the district

is above a certain threshold.

Table 10 about here

4 Conclusion

We study the effect of the Internet on local protests using data at the district-week

level. We find that latency-adjusted Internet activity increases the occurrence of local

protests. The effect is stronger in more democratic countries and ADM2 regions with

higher local Internet penetration. The information effect is strongest in the 3 months

prior to the protest. We also find some preliminary evidence of a crowding-out effect in

the information channel.
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Figures and Tables

Figure 1: Weekly number of protests events recorded in GDELT, 2006–2012
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Figure 2: Global unique IPs, 2012
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Figure 3: Weekly Variation in Global Ping, 2006–2012
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Figure 4: The Effect of the Large Stream Events on Global Ping

a) Royal Wedding 2011

b) League of Legends Championships 2012
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Figure 5: News Pressure and Global Ping
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Figure 6: The Effect of Cable Cuts on Regional Ping

a) Taiwanese Earthquake 2006

b) Cable Cut 2008

c) Cable Cut 2011
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Table 1: Internet Latency and Global Online Gaming Behaviour - May-Nov 2013

(1) (2) (3) (4)
Playtime past 2 weeks ln(Playtime past 2 wks)

Average ping past 2 weeks -9.3784** -8.7967**
(3.6452) (3.6008)

ln(average ping past 2 weeks) -0.5140** -0.5066**
(0.2083) (0.2009)

Day of the Week FE No Yes No Yes
N 171 171 171 171

Notes: All specifications include month fixed effects and quadratic time trends. *** (**, *): significant at the one (five, ten) percent level.
Robust Standard errors in parenthesis.
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Table 2: Descriptive Statistics

Variable Obs. Mean Std. Dev. Min. Max.
protestiymt 5,464,123 0.023 0.151 0.000 1.000
#protestiymt 5,464,123 0.131 3.037 0.000 2421.000
Demo 5,464,123 0.108 2.490 0.000 1849.000
Strike 5,464,123 0.007 0.196 0.000 54.000
V iolent 5,464,123 0.011 0.529 0.000 511.000
Events abroad 5,464,123 0.001 0.113 0.000 174.000
IPi,m−1 5,464,123 -1.135 3.832 -4.605 11.936
pingcymt 5,450,164 0.040 0.023 0.000 0.296
pingymt 5,464,123 0.228 0.017 0.169 0.312

Table 3: Correlations

Protest (1) (2) (3) (4) (5) (6)
IPi,m−1 0.0041*** 0.0019*** -0.0001*** 0.0000 0.0000 0.0001*

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
pingct 0.0735***

(0.0055)
pingt 0.0665***

(0.0042)
Week FE Yes Yes Yes Yes Yes Yes
Region FE No Yes Yes No No No
Country-Year FE No No Yes No No No
Region-Year FE No No No Yes Yes Yes
N 5464123 5464123 5464123 5464123 5450164 5464123

Notes: Robust standard errors in parenthesis. *** (**, *): significant at the one (five,
ten) percent level.
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Table 4: Main Results

(1) (2) (3) (4) (5) (6) (7)
Protest # Protests Demo Strike Violent

IPi,m−1 -0.0007*** -0.0062*** -0.0339*** -0.0058*** -0.0003 -0.0005
(0.0001) (0.0017) (0.0097) (0.0016) (0.0004) (0.0003)

IPi,m−1 × pingct 0.0152***
(0.0031)

pingct 0.0623***
(0.0220)

IPi,m−1 × pingt 0.0279*** 0.1526*** 0.0264*** 0.0011 0.0023
(0.0077) (0.0436) (0.0073) (0.0017) (0.0015)

pingt 0.1436*** 0.1372*** 0.7937*** 0.1305*** 0.0107 0.0183***
(0.0353) (0.0358) (0.1994) (0.0331) (0.0076) (0.0063)

IPim -0.0056***
(0.0018)

IPim × pingt 0.0257***
(0.0079)

N 5450164 5464123 5464123 5464123 5464123 5464123 5464123

Notes: All specifications include district-year and week-of-the-year fixed effects except for column (1) which only includes district-year fixed
effects. *** (**, *): significant at the one (five, ten) percent level. Standard errors (in parenthesis) are adjusted for within Year-Week clustering.
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Table 5: Robustness Tests 1

Protest (1) (2) (3) (4) (5)
Protests>1 Protests<10 IPi,m−1 >0 IPi,m−1 <100

Protesti,t−1 0.0566***
(0.0020)

IPi,m−1 -0.0066*** -0.0037*** -0.0061*** -0.0062*** -0.0042***
(0.0018) (0.0014) (0.0017) (0.0023) (0.0011)

IPi,m−1 × pingymt 0.0300*** 0.0167*** 0.0277*** 0.0285*** 0.0188***
(0.0079) (0.0064) (0.0076) (0.0101) (0.0051)

pingt 0.1485*** 0.0900*** 0.1413*** 0.1472*** 0.1044***
(0.0359) (0.0282) (0.0346) (0.0408) (0.0245)

N 4934727 5414712 5449365 3071177 4997918

Notes: All specifications include district-year and week-of-the-year fixed effects. *** (**, *):
significant at the one (five, ten) percent level. Standard errors (in parenthesis) are adjusted
for within Year-Week clustering.
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Table 6: Robustness Tests 2 - Lags and Leads

Protest (1) (2) (3) (4) (5)

IPi,m−1 -0.0065*** -0.0063*** -0.0086*** -0.0088*** -0.0104***
(0.0017) (0.0019) (0.0019) (0.0019) (0.0021)

IPi,m−1 × pingt−1 0.0300*** 0.0203** 0.0125
(0.0076) (0.0085) (0.0094)

pingt−1 0.1669*** 0.1217*** 0.0938**
(0.0344) (0.0435) (0.0459)

IPi,m−1 × pingt+1 0.0285*** 0.0160 0.0133
(0.0085) (0.0123) (0.0133)

pingt+1 0.1492*** 0.0799* 0.0741
(0.0333) (0.0476) (0.0512)

IPi,m−1 × pingt 0.0190** 0.0235* 0.0216
(0.0089) (0.0133) (0.0136)

pingt 0.0828* 0.1227** 0.0802
(0.0440) (0.0558) (0.0602)

N 4934727 4934727 4934727 4934727 4405331

Notes: All specifications include district-year and week-of-the-year fixed effects. *** (**, *):
significant at the one (five, ten) percent level. Standard errors (in parenthesis) are adjusted
for within Year-Week clustering.
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Table 7: Robustness Tests 3 - Clustering

Protest (1) (2) (3) (4)

IPi,m−1 -0.0062*** -0.0062*** -0.0062*** -0.0062***
(0.0024) (0.0021) (0.0004) (0.0004)

IPi,m−1 × pingymt 0.0279** 0.0279*** 0.0279*** 0.0279***
(0.0111) (0.0101) (0.0017) (0.0017)

pingt 0.1436*** 0.1436*** 0.1436*** 0.1436***
(0.0464) (0.0480) (0.0073) (0.0075)

Cluster Unit cy c iy i
N 5464123 5464123 5464123 5464123

Notes: All specifications include ADM2-year fixed effects. *** (**, *): significant at the one
(five, ten) percent level. Standard errors (in parenthesis) are adjusted for within Year-Week
clustering.
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Table 8: Heterogeneity by Country Groups

Protest (1) (2) (3) (4)

IPi,m−1 -0.0235*** -0.0344*** -0.0110 -0.0409***
(0.0073) (0.0100) (0.0258) (0.0119)

IPi,m−1 × pingt 0.0995*** 0.1550*** 0.0731 0.1859***
(0.0330) (0.0449) (0.0233) (0.0536)

IPi,m−1 × pingt 0.0729*
×OECDc (0.0425)
IPi,m−1 × pingt 0.0263
×Censorc (0.0521)
IPi,m−1 × pingt 0.0408
×Africac (0.1983)
IPi,m−1 × pingt 0.0788
×Asiac (0.1202)
IPi,m−1 × pingt -0.0432
×Europec (0.1143)
IPi,m−1 × pingt 0.1819
×Americasc (0.1431)
IPi,m−1 × pingt 0.0741
×Oceaniac (0.1242)
IPi,m−1 × pingt -0.1643***
×ECAc (0.0476)
IPi,m−1 × pingt -0.0396
×EAPc (0.0450)
IPi,m−1 × pingt 0.2022
×MENAc (0.2442)
IPi,m−1 × pingt 0.7062*
×SAc (0.3910)
IPi,m−1 × pingt -0.1364
×SSAc (0.1754)
pingt 0.6300*** 0.7399*** 0.4377 0.8480***

(0.1683) (0.2014) (0.5262) (0.2330)

N 5464123 5464123 5419039 5419039

Notes: All specifications include ADM2-year fixed effects. *** (**, *): significant at the one
(five, ten) percent level. Standard errors (in parenthesis) are adjusted for within Year-Week
clustering. Censor countries include: China, Iran, India, Iraq, South Korea, North Korea,
Russia, Pakistan, Vietnam, UAR, Tajikistan, Uzbekistan, Turkey, Egypt, Syria. Other
interaction terms between country group variables and pingymt as well as country group
variables and IPim−1 included in specifications but not reported.

33



Table 9: Heterogeneity by National Indicators

Protest (1) (2) (3) (4) (5) (6)

IPi,m−1 -0.0122*** -0.0006** -0.0045*** -0.0084*** -0.0128*** -0.0115***
(0.0039) (0.0002) (0.0016) (0.0023) (0.0039) (0.0039)

IPi,m−1 × pingt 0.0499*** 0.0197*** 0.0379*** 0.0527*** 0.0465***
(0.0170) (0.0070) (0.0104) (0.0173) (0.0172)

IPi,m−1 × pingt -0.0231 -0.0437** -0.0089
×Politycy (0.0178) (0.0192) (0.0202)
IPi,m−1 × pingt 0.0274***
×Democcy (0.0079)
IPi,m−1 × pingt 0.0417
×Anoccy (0.0288)
IPi,m−1 × pingt 0.0777***
×Dictcy (0.0203)
IPi,m−1 × pingt 0.0109 0.0204**
×HighGDPc (0.0090) (0.0097)
IPim−1 × pingt -0.0373*** -0.0363***
×Recessioncy (0.0112) (0.0118)
pingymt 0.1979** 0.0460** 0.1326*** 0.1858*** 0.2106*** 0.1895**

(0.0771) (0.0218) (0.0361) (0.0468) (0.0772) (0.0775)

N 5352921 5464123 5321502 5464123 5244981 5352921

Notes: All specifications include ADM2-year fixed effects. *** (**, *): significant at the one (five, ten) percent level. Standard errors (in
parenthesis) are adjusted for within Year-Week clustering. Other interaction terms between national indicator variables and pingymt as well as
national indicator variables and IPim−1 included in specifications but not reported.
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Table 10: Heterogeneity by Subnational and National Indicators

Protest (1) (2) (3) (4) (5) (6) (7) (8)

IPi,m−1 -0.0044*** -0.0062*** -0.0029*** -0.0038*** -0.0021** -0.0030*** -0.0123*** -0.0135***
(0.0013) (0.0017) (0.0010) (0.0011) (0.0008) (0.0010) (0.0039) (0.0039)

IPi,m−1 × pingt 0.0203*** 0.0279*** 0.0136*** 0.0174*** 0.0102*** 0.0139*** 0.0505*** 0.0555***
(0.0056) (0.0077) (0.0043) (0.0049) (0.0036) (0.0043) (0.0170) (0.0172)

IPi,m−1 × pingt 0.0104** 0.0047 0.0046
×HiLightiy (0.0051) (0.0039) (0.0039)
IPi,m−1 × pingt -0.0052 -0.0141* -0.0156*
×Lightiy > 58 (0.0075) (0.0080) (0.0082)
IPi,m−1 × pingt 0.0499*** 0.0477*** 0.0511*** 0.0508*** 0.0542***
×HiIP1iy (0.0167) (0.0163) (0.0171) (0.0158) (0.0166)
IPi,m−1 × pingt 0.0517***
×HiIP2iy (0.0169)
IPi,m−1 × pingt -0.0534*** -0.0545***
×Politycy (0.0193) (0.0193)
IPi,m−1 × pingt 0.0121 0.0117
×HighGDPc (0.0081) (0.0082)
pingt 0.1039*** 0.1443*** 0.0863*** 0.1018*** 0.0618*** 0.0878*** 0.1899** 0.2140***

(0.0263) (0.0349) (0.0221) (0.0248) (0.0183) (0.0217) (0.0751) (0.0763)

N 5380862 5380862 5464123 5464123 5380862 5380862 5161879 5161879

Notes: All specifications include ADM2-year fixed effects. *** (**, *): significant at the one (five, ten) percent level. Standard errors (in
parenthesis) are adjusted for within Year-Week clustering. Other interaction terms between subnational and national indicator variables and
pingt as well as subnational and national indicator variables and IPi,m−1 included in specifications but not reported.
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Appendix

A Joining the IP Activity and geo-IP datasets: de-

tails

With a smaller problem the computational challenge of joining the IP Census and geo-

location data sets can be efficiently carried out with standard SQL processing. However

with the present dataset, comprising trillions of observations, a different approach is

necessary. The problem is threefold. First, depending on the IP Census time-stamp,

the appropriate location database has to be selected. Second, an individual IP in the

Census has to be lined up with an IP range entry in the location database from which

the geographical location is then obtained. Finally, an individual geo-located IP needs to

be associated with an internet service provider range.

In a map-reduce framework, the join problem has to be specified differently. In the

map phase for each element, the join key gets derived, in the reduce phase an assigned

reducer collects all items with the same join key and performs the merge. One possible

solution to the time matching is to create a virtual key as there are 516 location database

revisions from 2005 to 2012. A look up of all time stamps can now be used to create a

common key for the IP Census and the location database. However, for the range join

required in this study, where 7.0 · 107 ISP ranges have to be merged with 5.2 · 109 location

records and then have to be joined with 1.5 · 1012 observations a different strategy is

necessary. The standard approach would involve creating a cross product between the

data-sets pre-selected by the virtual key of the matching time followed by elimination

of each record which does not correspond to the range. This would work for a smaller

data-set but is not feasible for the given cross-product’s 5.5 · 1028 possible combinations.

To proceed, an alternative approach was developed which, to the best of our knowledge,

is novel to the field. The condition that needs to be satisfied for our approach is that the

ranges per location database and ISP time revision are not overlapping. If that condition

holds our approach can be used for any kind of dataset, where an association by range is
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needed.

The main idea of our two developed algorithms is to segment and sort the data set

intelligently, which allows the sub-problem to be solved in small junks on a single reducer

task. For the merging of the ranges between location and ISP, the difficulty is that the ISP

ranges are blocks of IP addresses for a whole country, regardless of the location within.

The ISP range needs to be joined onto the location ranges, creating possible gaps. As

the ISP database only contains 70 million rows, at first the ISP database is replicated to

pre-associated the closest matching location database out of all 516.

The individual IP and location join operates differently in the first step. The IP ranges

have to be partitioned by revision using a modified quintile algorithm, which returns the

next real value rather than a value between 2 observations. Finally, for both algorithms,

the individual partitions can be merged from both data-sets as a sorted list.

Essentially, two sorted lists are merged sequentially within a partition by iterating both

lists one element at a time to find a match, or alternatively, skip an input. Depending on

the number of partitions generated the join can be parallelized across various nodes of the

distributed clusters as the conditions and sorting guarantees that only possible matching

observations are contained in the same partition. It is this scaling effect of the modified

join algorithm which delivers the substantial computational advantage required over the

otherwise computationally expensive cross-product.
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B Internet Latency and Internet Use - Evidence from

Online Gaming Behaviour

Valve Corporation, the company that owns and operates Steam, provides a REST API,

called the Steam Web API, for gathering information about users’ profiles, friendships,

game ownerships and playtimes, group memberships, and more. O’Neill et al. (2016) used

this API to crawl 108.7 million Steam accounts, to gather information about games played

and play times for each account. This dataset comprises all Steam accounts available at

the time of collection.

The dataset has been made publicly available as an sql database and can be accessed

from https://steam.internet.byu.edu/. From that database we use table “Games 1” which

provides results from an API request conducted between May and Novmember 2013. The

table contains information about the games that each steam user owns. Each row in the

table presents a unique steam user and game combination (i.e. A user that owns 4 games

has 4 rows in the table) and the total time (in minutes) the user has run each game in

the two-week period leading up to the date of the API request.

From an initial number of around 100 million user and game combinations, we only

keep entries where the game was one of the five24 main online games played during this

period (which require the Internet to be played).

We then collapsed the date at a daily level and build the sum of minutes dedicated to

playing any of those five online games over the past weeks.

24Those games (Steam ID) are: Counter Strike: Source (240) , Team Fortress (440), DOTA (570), and
Counter Strike: GO (730)
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C Empirical Results based on Monthly Aggregates

To analyze the information channel, we aggregate the weekly variables up to the monthly

level (averages) and re-write equation (2) as follows:

protestim = λiy + γ1IPi,m−1 + γ2pingy,m−1 + µ(IPi,m−1 × pingy,m−1) + vim (4)

Our preferred specifications include lags 1-3 and lags 1-6, respectively. Those specifi-

cations are then used to calculate the cumulative marginal effects of Internet quality over

the past 3 and 6 months, respectively.

The main results are presented in Table 11. Columns (1) and (2) present specifications

that include IP activity and latency adjusted IP activity in the previous month, m − 1.

The estimated coefficient of the interaction term is positive, statistically significant at

the 1%-level and of similar magnitude as in the weekly specification. In columns (3) and

(4) we present a model that adds the second and third, and all lags up to the sixth,

respectively, to the specification presented in column (1). Again the coefficient is positive

and statistically significant at the 1 and 5%-level.

This coefficients present the cumulative effect of better latency-adjusted Internet over

the past 3 and 6 months, respectively. The cumulative effect is likely to reflect the

impact of the Internet on protests through the information channel. Interestingly, this

effect is larger than the mobilization effect, but the cumulative effects decreases with the

inclusion of longer lags. In other words, the effect of better Internet on protests is actually

negative in some months. We interpret this as an indication that the crowding out effect

of the Internet (for example through its large content of non-political (i.e. entertainment)

information) might outweigh the information and mobilization effect.
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Table 11: Monthly Aggregates

protestiym (1) (2) (3) (4)
Marg. cum. effect

3 months 6 months

protestiy,m−1 -0.0527***
(0.0019)

IPi,m−1 -0.0004*** -0.0004***
(0.0002) (0.0002)

(IPi,m−1 × pingm−1) 0.0029*** 0.0030*** 0.0289*** 0.0131**
(0.0007) (0.0007) (0.0035) (0.00537)

pingm−1 0.1962*** 0.2042***
(0.0117) (0.0117)

N 1,417,755 1,417,755 1,417,755 1,417,755

Notes: All specifications include ADM2-year fixed effects. *** (**, *): significant at the one
(five, ten) percent level. Standard errors (in parenthesis) are adjusted for within Year-Month
clustering.
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