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Abstract

This paper studies how talent translates into knowledge production, and whether

this varies for talented people born in different countries. We construct an original

dataset covering the career histories and scientific output of the participants to an

international competition for high school students - the International Mathematics

Olympiad (IMO). This enables us to measure talent in late teenage years in a com-

parable manner across countries. We first document that performance at the IMO is

strongly correlated with production of cutting-edge mathematics in later years. We

provide evidence that this correlation reflects the underlying talent distribution rather

than a success begets success dynamic. We then show that IMO participants from low-

and middle-income countries produce consistently less mathematical knowledge than

equally talented participants from high-income countries. Our results suggest that the

quantity of lost knowledge production arising from cross-country differences in the pro-

ductivity of IMO participants is sizeable, and that this lost knowledge production is

not easily replaced by other mathematicians.
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1 Introduction

The production of knowledge is often perceived to be the archetype of a cognitively demand-

ing activity that requires some form of innate or natural ability (talent). PhD physicists are

reported to have an average IQ in the neighborhood of 140 (Harmon 1961). The top results

of a Google search of the term ‘genius’ are images of Albert Einstein, a scientist. If talent

is important in knowledge production, this raises the distinct possibility that the rate of

knowledge production may be slowed if highly talented people eschew careers in knowledge

production. Yet, there has been little systematic study on the extent to which talented

individuals become knowledge producers (or not), and how talent translates into knowledge

production more generally.1

This paper seeks to contribute filling this gap. We ask two questions in particular. First,

how does knowledge produced depends on an individual’s talent? Second, conditional on a

given level talent, what is the impact of country of birth on knowledge produced? Answering

those questions raises three major empirical challenges: (1) measuring talent; (2) measuring

talent in a comparable way across multiple countries; and (3) constructing a sample without

selecting on eventual success in knowledge production. To address these challenges, we

focus on knowledge production in mathematics and use a unique institutional feature of this

discipline: the International Mathematics Olympiads (IMO), a prominent competition for

high-school students. This setting allows us to measure talent in teenage years (as proxied

by IMO scores2) as well as to conduct direct comparisons of talent in teenage years across

countries. By connecting multiple sources, we are able to build an original database covering

the education history and publications of the population of IMO participants participating

across 20 years of competition (1981-2000; n=4,711).

1A notable exception is Aghion et al. (2018) who find a significant but relatively weak correlation between
visiospatial IQ (from an army entrance exam) and the propensity to becoming an inventor in Finland. Bell
et al. (2017) also report a correlation between 3rd grade math score and the propensity to become a
patent inventor in the U.S. There is also a psychology literature investigating the nexus between intelligence,
creativity and scientific achievement. For instance, Cox (1926) estimates IQ scores for 300 ‘geniuses’ who
made outstanding achievement to science.

2IMO scores are an imperfect measure of talent since they also reflect training undertaken for the IMO
and human capital accumulated more generally. However, it is difficult to imagine measures of ability that
would not be based on some type of test and hence immune from that criticism. Our proxy has the advantage
to be comparable across countries and informative for differences at the top of the talent distribution
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We first document a salient positive correlation between the points scored at the IMO and

subsequent mathematics knowledge production. Each additional point scored on the IMO

(out of a total possible score of 42) is associated with a 2.6 percent increase in mathematics

publications and a 4.5 percent increase in mathematics citations. These correlations reflect

both the extensive and intensive margins: strong IMO performers are more likely to become

professional mathematicians (as proxied by getting a PhD in mathematics); and condition-

ally on becoming professional mathematicians, they are more productive than lesser IMO

performers.

We then investigate whether success at the IMO might have a causal effect on subsequent

achievements in mathematics due to a success begets success dynamics. To do so, we exploit

the fact that IMO medals are an important summary of IMO performance, and are allocated

solely based on the number of points scored at the IMO. We implement a regression dis-

continuity research design comparing those who nearly made medal threshold versus those

who nearly missed them. We find no evidence of a causal effect of medals or better medals

on subsequent performance. We thus interpret the medal-math achievement relationship as

reflecting underlying differences in talent rather than a success begets success dynamic.

Next, we investigate differences across countries of origin by analyzing the career out-

comes and knowledge production of IMO participants controlling for IMO score. We find

that there is a developing country penalty throughout the talent distribution in our sample.

That is, compared to their counterparts from high-income countries who obtained the same

score in the IMOs, participants born in low- or middle-income countries produce consider-

ably less knowledge over their lifetime. A participant from a low-income country produces

35% fewer mathematics publications, and receive over 50% fewer mathematics citations than

an equally talented participant from a high-income country. Finally, we investigate whether

this developing country penalty may have decreased over time, perhaps reflecting better

opportunities for aspiring mathematicians from developing countries. We do find that the

developing country penalty has decreased over time, though not at the top of the talent

distribution.

Finally, we present three pieces of evidence to assess the broader implications of losing a

few talented individuals to mathematics. First, we perform a back of the envelope calcula-

tion asking how much more mathematics knowledge could be produced if IMO participants

from developing countries produced knowledge at the same rate as those from developed

countries. We conclude that the knowledge production (from IMO participants) could be

10% higher in terms of publications and 17% in terms of cites.3 Second, we show that

3This calculation does not take into account countervailing effects on mathematics production by other
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strong performers at the IMO have a disproportionate ability to produce frontier mathe-

matical knowledge compared to PhD graduates and even PhD graduates from elite schools.

The conditional probability that an IMO gold medalist will become a Fields medalist is two

order of magnitudes larger than the corresponding probability for a PhD graduate from a

top 10 mathematics program. Third, we show that while developing country participants

are slightly more likely to do a PhD in a discipline other than mathematics, this far from

offsets the difference observed in getting a mathematics PhD. Thus, the loss to mathemat-

ics of losing talented individuals does not appear to be offset by gains in other domains of

production.

This works builds upon the macroeconomic literature on talent allocation and the mi-

croeconomic literature on the origin of knowledge producers.4 Baumol (1990) and Murphy,

Shleifner & Vishy (1991) emphasize the allocation of talent across different sectors of the

economy as being key for economic growth. More recently, Hsieh et al. (2013) attribute

part of aggregate wage growth in the U.S. to the integration of talented women and blacks

in the U.S. labor market. Most relevant for us, a recent empirical literature investigate how

children’s socioeconomic and geographic background influence the likelihood of becoming a

patent inventor in the U.S. (Bell et al. 2017, Akcigit, Grigsby & Nicholas 2017, Celik 2017)

and in Finland (Aghion et al. 2018). A consistent finding is that children of low-income

parents are much less likely to become inventors than their higher-income counterparts. Bell

et al. (2017) also report considerable differences between states of birth in the likelihood of

becoming an inventor - for instance they find that children born in Massachusetts are five

times more likely than children born in Alabama to become inventors.

Our results echo these differences at the international level. Besides the cross-country

dimension, a distinguishing feature of our data is that we have a sample of individuals in the

very right tail of the ability distribution; and we document that even there different back-

ground results in substantial differences in knowledge produced. The evidence we present

on the importance of talent in the production of frontier knowledge also puts further light

on the costs of having talented individuals eschew careers in knowledge production.

More generally, our results also map into the study of the determinants of the rate

of knowledge production. The endogeneous growth literature has studied the size of the

knowledge production sector (see e.g. Jones 2002, Freeman & Von Reenen 2009, Bloom

mathematicians, nor do we quantify the costs of enabling talented individuals from developing countries to
realize their potential in mathematics. See the main text for further discussion.

4We also build on the literature on the role of place in knowledge production (Kahn & MacGarvie 2016),
and on the determinants of high math achievement (Andreescu et al. 2008, Ellison & Swanson 2010, Ellison
& Swanson 2016)

4



et al. 2017) but has given less attention to its composition. Similarly, the literature on

the economics of science has typically focused on how the institutions and incentives affect

the productivity of existing researchers rather than who becomes a scientist or knowledge

producers in the first place.5 This study suggests that the selection of talented individuals

into knowledge production may be important for the rate of scientific progress.

The paper proceeds as follows. Section 2 describes the International Mathematics Olympiads.

Section 3 presents the data. The results on the link between IMO success and long-term

achievements are in section 4 and those on cross-country comparisons are in section 5. Sec-

tion 6 provides additional evidence on the importance of losing a few talented individuals

and section 7 concludes.

2 The International Mathematics Olympiads

Since the International Mathematics Olympiad (IMO) plays an important role in our re-

search design, we describe it in some details in this section. The IMO is a competition held

annually since 1959. Participants travel to the location of IMO (typically a different city

every year) together as part of a national team. Initially, only Eastern European countries

sent participants but over time participation expanded to include over 100 countries.6 The

competition is aimed at high school students with the requirements that participants be

younger than 20 years of age and not enrolled at a tertiary education institution.

The IMO participants are selected by their national federation (up to six per country),

often on the basis of regional and national competitions. Some participants compete several

years successively though the majority of participants only compete once. They solve a total

of six problems drawn from geometry, number theory, algebra and combinatorics. Each

problem is worth 7 points and participants can score up to 42 points. Appendix A provides

additional information on IMO problems, including two examples. Medals are awarded

based solely on the sum of points collected across problems. Slightly fewer than half of

the participants receive medals, which can be either gold, silver or bronze. An “honourable

mention” recognizing a perfect solution to one problem has been given out to non-medalists

5For instance, Borjas & Doran (2012) study the productivity of U.S. mathematicians following a large
influx of Russian mathematicians into the U.S. Other studies on the determinants of scientific productivity
among established scientists include Azoulay, Graff-Zivin & Manso (2011), Azoulay, Graff Zivin & Wang
(2010), Waldinger (2011), Jacob & Lefgren (2011), Ganguli (2017), Iara, Schwarz & Waldinger (forthcoming).
For a more general survey on the economics of science, see Stephan (2012)

6The United Kingdom and France joined in 1967, the U.S. joined in 1974 and China in 1985. The only
countries with population above 20 millions that never participated are Ethiopia, Sudan and the Democratic
Republic of Congo.
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since 1987.

Several IMO participants are known to have had outstanding careers as professional

mathematicians. Maryam Mirzakhani, an IMO gold medalist with a perfect score, was the

first woman to win the Fields medal - the most prestigious award in mathematics. Terence

Tao received a gold medal at the 29th IMO and went on to win the Fields medal and is one

of the most productive mathematician in the world. Another IMO gold medalist, Gregori

Perelman, solved the Poincaré conjecture and famously declined the Fields medal as well

as the Millenium Prize and its associated one million dollar purse. Out of the twenty-two

Fields medals awarded between 1994 and 2014, twelve went to former IMO medalists (see

table 1).

(insert table 1 about here)

3 Data

Multiple sources of data were combined to create the original data for this paper. We started

with the official IMO website: http://www.imo-official.org. For each participant, the website

lists the name of the participant, the country (s)he represented and the year of participation,

the number of points obtained on each problem and the type of medal, if any. We extracted

data on all IMO participants from that website and then selected those who participated

between 1981 and 2000 included.7 Some participants compete in multiple years in which

case we only kept the last participating year. We ended up with a list of 4,711 individuals.

We then constructed long-term performance outcomes in mathematics for these indi-

viduals using PhD and bibliometric data. For PhD theses, we relied on the Mathematics

Genealogy Project. The Mathematics Genealogy Project is a volunteer effort whose mis-

sion is ‘to compile information on all mathematicians in the world’.8 It has achieved broad

coverage, with information on more than 200,000 mathematicians. For each graduating stu-

dent, it lists the university, the name of the advisor, the year of graduation and the topic

of the dissertation. For bibliometric data, we used MathSciNet data which is produced by

Mathematical Reviews under the auspices of the American Mathematical Society. While the

7We did not include later cohorts of participants as we wanted enough time to have elapsed to construct
meaningful long-term outcomes. In principle, we could include earlier cohorts but those are small as relatively
few countries were participating in the 1970s.

8One might worry that the coverage of the Mathematics Genealogy Project might be worse for developing
countries, which would problematic for cross-country comparisons. However, we have encountered only few
cases of individuals with math publications (or with a faculty appointment in mathematics) that were not
listed in the genealogy project, and these were not necessarily from developing countries.
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underlying publication data is richer, our outcomes are based on total publications and cites

by author as computed by MathSciNet (and reflecting the manual author disambiguation by

the publishers of Mathematical Reviews). Both of these databases have been used in prior

research (Borjas & Doran 2012, 2015a, 2015b, Agrawal, Goldfarb & Teodoridis 2016). We

complemented the publication data by collecting a list of speakers at the International Math-

ematics Congresses (IMC) and tagging IMO participants who spoke at the IMC congress.

Being invited to speak at the IMC congress is a mark of honor for mathematicians and we

use it a measure of community recognition independent of bibliometrics. Similarly, we tag

IMO participants who received the Fields medal.

While these measures give us a reasonable overview of an individual’s contribution to

mathematics, they are silent on what individuals do when they choose a different career

paths. To partially shed light on the non-mathematics careers, we manually searched the

names of IMO participants online. We use the results of the manual searches to generate

two measures: (1) whether the person has a PhD outside mathematics, (2) whether the

presence has any kind of ‘online presence’ - such as a linkedin profile, an online bio, or a

personal web page. Given that this part of the data collection is particularly time-intensive,

this information was only collected for the IMO medalists (2,273 people out of the 4,711

participants).

Our final database covers the population of IMO participants who obtained a medal

between 1981 and 2000 (4,711 people). Besides information on IMO participation (year,

country, points scored, type of medal), we know whether the person has a PhD in mathe-

matics, and if so in which year and from which school, mathematics publications and cites

counts until 2015 and whether that person was a speaker at the IMC Congress or a Fields

Medalists. For the medalists, we also whether that person has a PhD outside mathematics;

and whether s(he) has some form of online presence. For the IMO participants who have

a PhD in mathematics, we are interested in whether they have a graduated from an elite

school; we proxied this by graduating from one of the top ten school in the Shanghai 2010

mathematics rankings (cf table A6 for the list).

Table 2 presents descriptive statistics on our sample. Around 8% of IMO participants earn

a gold medal; while 16% have a silver medal and 24% have a bronze medal; a further 10% have

an honourable mention (recognizing a perfect solution to one problem). Around 22% of IMO

participants have a PhD in mathematics; of those around a third have a PhD in mathematics

from a top 10 school. One percent of IMO participants became IMC speakers, and 0.2%

became Fields medalists. Collectively, the IMO participants in our sample produced more

than 15,000 publications and received more than 160,000 cites. In the subsample of medalists

7



with manually collected information, around 5% have a PhD in a discipline other than

mathematics, and slightly more than half have some form of online presence.

(insert table 2 about here)

We proxied country of origin by the country individuals represented at the IMO. Around

half of the participants were from high-income countries (as per the 2000 World Bank classi-

fication), 23% from upper middle income countries, 16% from lower middle-income countries;

and 11% from low-income countries. Historically, the most successful countries at the IMO

have been China (54 gold medals in our sample), followed by USSR/Russia (43), the U.S.A.

(27) and Romania (26). Germany, Bulgaria, Iran, Vietnam, the U.K., Hungary and France

also have more than 10 gold medalists in our sample.

(insert figure 1 and 2 about here)

Finally, we produced an ancillary dataset that has all the PhD graduates (irrespective of

IMO participation) listed in the Math Genealogy Project who graduated between 1990 and

2010 (n=89,086). For those, we know the school and year they graduated from, how many

math publications and cites they produced (from MathSciNet) and whether they were IMC

speakers or Fields Medalists.

4 How much does teenage talent affect long-term per-

formance?

In this section, we investigate whether teenage talent-as proxied by IMO scores-is corre-

lated with long term performance in the field of mathematics. On the one hand, it is

natural to expect performance at the IMO to be positively correlated with becoming a

professional mathematician, mathematical knowledge production, and outstanding achieve-

ments in mathematics. After all, both IMO problems and research in mathematics are two

activities that involve problem solving in the field of mathematics. Moreover, there is ample

anecdotal evidence of distinguished mathematicians having won IMO medals.

However, the link between IMO score and long-term performance is less obvious than it

seems. IMO problem solving and mathematical research are very different types of work.

Mathematical research encompasses activities other problem solving - such as conceptual-

ization and hypothesis generation. Moreover, the IMOs problems are quite different from
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research problems, in that they are known to have a solution and they have to be solved in a

very short time frame, without access to the literature or the help of other mathematicians.9

Even if talent is indeed important for the production of knowledge, IMO scores may not be a

good measure of talent. If some measure of luck or extraeneous factors affect IMO scores, this

will introduce classical measurement when considering IMO scores as a measure of talent.

We also have to allow for the possibility that IMO scores may be correlated with performance

in mathematics research even if IMO scores are uninformative about talent. That scenario

could occur if IMO performance had a causal effect on performance, a possibility we will

investigate in subsection 4.2.

4.1 Link between IMO score and long-term performance

We begin with some graphical evidence: Figure 3 plots the mean achievements of Olympians

by the number of points they scored at the IMO, with a linear fit superimposed. Six achieve-

ments are considered: obtaining a PhD degree in mathematics, obtaining a PhD in mathe-

matics from a top 10 school, the number of mathematics publications (in logs), the number of

mathematics cites (in logs), being a speaker at the International Congress of Mathematicians,

and earning a Fields medal.

(insert figure 3 about here)

The graphs in the first two rows of figure 3 all display a clear positive gradient: IMO

participants with higher IMO scores are more likely to have a PhD in mathematics or a

PhD in mathematics from a top school; and they produce more mathematical knowledge

measured in terms of publications or cites. The two graphs in the bottom rows measure

exceptional achievements in mathematics. By definition, these are rare outcomes and the

graphs are less smooth, but the broad pattern is similar.

We also investigate the relationship between points scored at the IMO and subsequent

achievements in a regression format at the individual level. We regress each achievement on

points scored at the IMO, cohort fixed effects, and country of origin fixed effects. Specifically

we run specifications of this type:

Yit = βIMOscoreit + δXit + εit (1)

9Similarities and differences between IMO problems and research problems are often discussed among
professional mathematicians. See e.g. Smirnov (2011)
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where i indexes IMO participants and t indexes Olympiad years. Yit is one of the six

outcomes variables as previously defined, IMOscoreit is the number of points scored at the

IMO; Xit includes cohort (Olympiad year) fixed effects and country of origin fixed effects.

(insert table 3 about here)

The results suggest (see table 3, panel A) that each additional point scored at the IMO

(out of a total possible score of 42) is associated with a 1 percent point increase in likelihood

of obtaining a Ph.D., a 2.6 percent increase in publications, a 4.5 percent increase in citations,

a 0.1 percent point increase in the likelihood of becoming an IMC speaker, and a 0.03 percent

point increase in the likelihood of becoming a Fields medalist.10 Interestingly, the coefficients

for the score on more difficult problems is consistently larger than for the score on less difficult

problems, though the latter also tends to be significant (see table 3, panel B). Overall, the

results of this subsection suggest that there is a close link point scored at the IMO and future

achievements.

4.2 Is the result driven by whether high scorers are more likely

to do a PhD?

We proceed by analyzing whether long term performance is correlated once we condition

on getting a PhD in mathematics. We have documented in the last subsection that higher

scorers are more likely to do a PhD in mathematics. Is the link between IMO points and

knowledge produced entirely driven by this extensive margin or is there an intensive margin

story as well?

To investigate this intensive margin, we restrict the sample to IMO participants who have

a PhD in mathematics (n = 1023). In table 4 panel A, we regress pubs, cites, becoming

an IMC speaker, and receiving the Fields medal on IMO scores, cohort fixed effects and

Olympiad fixed effects. The point estimates are positive and significant: an additional IMO

point is associated with a 2% increase in publications, 4% increase in cite, a 0.2 percentage

point increase in the propensity to become IMC speaker and a 0.07 percentage point in the

propensity to become a Fields Medalist. Interestingly, these estimates are hardly lower than

those of table 3 panel A.

(insert table 4 about here)

10IMO scores alone explain around 8% of the variation in math PhD, publications and citations (not shown
on the table).
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In table 4 panel B, we run the same regressions but adding graduate school by olympiad

year fixed effects. That is, we compare IMO participants who competed in the same

Olympiad and did a mathematics PhD in the same school. Even in this very demanding

specification, we find a positive correlation between IMO scores and long-term performance.

The point estimates are somewhat lower than in panel A for pubs and cites, but similar for

becoming an IMC speaker, and receiving the Fields medal.

4.3 Is there a causal effect of medals on long-term performance?

We have so far documented a link between IMO scores and long-term performance. Could

this be because scoring a high score at the IMO boosts one’s self-confidence in mathematics

or facilitate access to better schools? Could IMO scores-by themselves-have a causal effect

on long-term performance? If scoring well at the IMO generates a success begets success

dynamic, IMO scores could affect long term performance even if talent is not relevant to the

production of knowledge.

While we cannot directly test for a causal effect of scores, we can investigate whether IMO

medals may have a causal effect on performance.11 At the IMO, medals are awarded based

on an explicit cutoff in the IMO score. For example in the year 2000, all participants who

scored 30 points and above received a gold medal, those between 21 and 29 received a silver

medal, and those between 11 and 20 received a bronze medal. To the extent that medals

play a useful rule of summarizing and communicating IMO performance to outsiders - as one

might expect given that IMO medals are frequently mentioned on CVs and linkedin profiles,

whereas raw IMO scores are not - the causal effect of IMO medals may be informative about

the causal effect of IMO performance more generally.

The IMO medal allocation mechanism is a natural setting for a regression discontinuity

(RD) design comparing those who just made the medal (or a better medal) versus those

who nearly missed it. The assignment variable here is the number of points scored which

completely determine what medal a participant gets. Importantly, the number of points

scored cannot be precisely manipulated by participants, and in any case the medal thresholds

are not known when the participants solve the problems. Moreover, since the thresholds are

different each year, these results are likely to be robust to any sharp non-linearities in the

function linking IMO score and performance.

We implement a simple regression discontinuity design by estimating linear regressions

11Our outcomes are getting a PhD in mathematics and/or mathematical knowledge produced since the
data is too sparse to consider exceptional achievement such as getting the Fields Medal
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of the following type:

yit = α + βAboveThresholdit + δ1(IMOScoreit − Thresholdt)

+δ2AboveThresholdit ∗ (IMOScoreit − Thresholdt) + λXit+ εit
(2)

Where i indexes IMO participants and t indexes Olympiads. yit is either obtaining a

PhD in mathematics, obtaining a PhD in mathematics from a top 10 school, mathematics

publications in logs or mathematics cites in logs. AboveThresholdit is an indicator variable

for being at or above the medal threshold and our variable of interest. We control for linear

distance to the cutoff (IMOScoreit−Thresholdt), allowing it to be different on each side of

the threshold. Additional controls in Xit include cohort fixed effects and country of origin

fixed effects.

We have three different time-varying thresholds corresponding to the gold, silver and

medals. For each threshold, we construct the sample of participants no more than 5 points

from the threshold.12 To maximise power, we then pool these three samples and look at the

effect of being above the threshold across the three thresholds.13

(insert table 5, figure 4 about here)

The results are presented in Table 5 while figure 4 shows the mean of each outcome by

distance to the threshold. The point estimates for the effect of a (better) medal are close

to zero and insignificant for all four outcome variables. That is, controlling for score, being

awarded a better medal appear to have no additional benefit on becoming a professional

mathematician or future knowledge production.

(insert table 6 about here)

We present two complementary pieces of evidence to conclude this subsection. First, re-

ceiving an honourable mention - an award for solving one of the six IMO problems perfectly

- does not appear to have a causal effect on long-term performance (see appendix for de-

tails). Second, there appears to be a positive gradient between points scored and long-term

12The results are robust to varying this bandwidth.
13That is, our variable of interest is the effect of being above the threshold which itself a weighted aver-

age of the effect of being above the gold threshold, being above the silver threshold and being above the
bronze threshold. We find qualitatively similar results when running the regressions separately for each
sample/threshold.
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performance even within medal bins. For instance, in the sample of gold medalists, IMO

points scored is positively correlated with each of the four outcomes (table 6 panel A). The

same holds for bronze medalists (table 6 panel A) while for silver medalists, the number

of points scored is significantly correlated with two of the four outcomes. Taken together,

these results suggest that the link between IMO scores and long-term performance reflect

difference in the underlying talent of medalists rather than a causal effect of medals.

5 Does the link between talent and performance de-

pend on your country of origin?

5.1 Link between IMO score and long-term performance by coun-

try income group

The previous section establishes that performance at the IMOs is strongly correlated with

getting a PhD in mathematics and mathematics knowledge produced. We now proceed to

this link vary according to the country of origin of IMO participants. Because we have

relatively few participants for any country, we group countries in income groups (according

to the 2000 World Bank classification) as a broad proxy of differences of opportunities and

environment across countries. We will consider specifically how IMO participants from low-

and middle-income countries - about half of our sample - perform in the long run compared to

observationally equivalent participants from high-income countries.14 While our regressions

will explicitly control for IMO scores, it is worth noting that participants from developing

countries do not score worse at the IMO than those of developed countries.15

(insert figure 6 about here)

We begin by exploring graphically the link between points scored at the IMO and the

propensity to a PhD in mathematics for participants from different group of countries. In

figure 6, we plot the share of IMO participants obtaining a PhD in math by points scored

at the IMO (five-points bands) across group of countries. The general pattern we observe is

that for a given number of points, the share getting a PhD in math is typically highest for

high-income countries, followed by upper middle-income, then by lower middle income, with

low-income countries having the lowest share.

14We adopt the income group classification of the World Bank (as of 2000).
15Cf appendix table A2 for details.
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We investigate cross-country differences more formally using the following specification:

Yit = β1IMOscoreit + β2CountryIncomeGroupi + ηt + εit (3)

where as i indexes medalists and t indexes Olympiad years. Yit is an indicator variable

for getting a PhD in mathematics, getting a PhD in mathematics from a top school, the

publications in logs and the cites in logs. Our variable of interest is the income group of

the country that a participant represented at the Olympiad. We include indicator variables

for low-income, lower middle-income and upper middle-income with high-income being the

omitted category. Crucially, we control for the number of points scored at the IMO, our

proxy for talent. We also control for Olympiad year fixed effects (ηt).

(insert table 7 about here)

Results (see table 7) suggest that across all long-term productivity outcome variables IMO

participants from low- and middle-income countries significantly underperform compared to

their high-income counterparts. For instance, IMO participants from low-income countries

are 16 percentage points less likely to do a PhD and 3.4 percentage points less likely to

do a PhD in a top school; they produce 35% fewer publications and 57% fewer cites. To

put things in perspective, the low-income penalty in getting a math PhD is equivalent to

that of scoring 15 fewer points at the IMO. A similar, though less pronounced, pattern

can be observed for participants from middle-income countries. We find similar results if we

replace country income groups by linear income per capita (cf table A3) or indicator variables

for deciles in the income per capita distribution (cf table A4). Naturally, other country

characteristics besides income may influence the career choices and knowledge production

of IMO participants. In appendix table A5, we show that the number of mathematical

articles produced by the origin country is correlated with the publications and cites of IMO

participants, though not with the propensity to do a PhD. If we interact the number of

points score with the country income group (cf table 8), we find that the low income penalty

is larger for individuals who score more points.

(insert table 8 about here)

We also consider whether there is a difference in the mathematics knowledge produced

by developing country and developed country IMO participants considering only those who

have a PhD in mathematics (table 9). The point estimates for low-income, lower middle
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income and upper middle income, albeit negative, are not significant. When we compare

participants who competed in the same year and went to the same graduate school (IMO

participation year by graduate school fixed effects, panel B), the point estimates are positive

and significant (with the exception of upper middle-income in the cites regression). Taken

together, this evidence suggests that the effect of coming from a developing country may

possibly operate primarily through the extensive margin (getting a math PhD) rather than

through an intensive one (productivity conditional on having a math PhD).16

(insert table 9 about here)

5.2 Is the importance of country of origin decreasing over time?

We now explore whether the low- and middle-income country penalty has changed over

time. We repeat the last specifications but now including an interaction term between the

country income group and an indicator variable for ‘late’ cohorts (IMO participants who

competed between 1991 and 2000, with those who competed between 1981 and 1990 the

omitted category). Results are displayed in table 10.

(insert table 7 about here)

The results are somewhat mixed. On the one hand, the interaction between late and

low-income is positive (and significant for three out of the four outcomes), indicating that

the penalty associated with coming from a low-income country has decreased over time.

However the interaction term between late and upper middle-income is negative; suggesting

an increasing gap over time between upper middle-income and high-income countries.

(insert figure 7 about here)

Finally, we present some graphical evidence on how the low-income penalty has evolved

over time for different parts of the talent distribution. In figure 7, we plot the difference in

the share of medalists getting a PhD in math between high- and low-income countries. We

plot this difference separately by five-years bands (of IMO participation) and type of medal.

Consistent with the regression results, the difference is always positive. For bronze medalists

and silver medalists, the difference has considerably diminished over time. However, for gold

medalists we observe no such decrease.
16Although we control for the IMO score, this comparison is complicated by the fact that the selection

into doing a PhD in mathematics is different for developing country and developed country participants.
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Overall, the evidence suggests that coming from a low-income country is less detrimental

than it used to be for becoming a professional mathematician and producing mathematical

knowledge. However, the gap between high- and low-income countries at the top of the

talent distribution has not narrowed.

6 Does losing a few talented individuals matter?

6.1 Quantifying the size of the lost knowledge production

The previous section documented that IMO participants from low- and middle-income coun-

tries produce consistently less knowledge that equally talented participants from high-income

countries. We now proceed to quantify the size of the knowledge production lost. Specif-

ically, we ask how much knowledge production (from IMO participants) there could be if

IMO participants from low-income countries were producing knowledge at the same rate as

those from high-income countries. The size of the loss depends on the share of participants

in each income groups and the penalty for that group. Around half of the IMO participants

and medalists are from low- and middle-income countries (cf descriptive statistics table 2).

We multiply the coefficients on the country income groups in our main specifications by

the share of IMO participants in each group; and then aggregate across the country income

groups (cf table 11). We conclude that the knowledge production (from IMO participants)

could be 10% higher in terms of publications and 17% in terms of cites if IMO participants

from low-income countries were producing knowledge at the same rate as IMO participants

from high-income countries.

(insert table 11 about here)

While this calculation suggests that the benefits of enabling developing country individu-

als to produce knowledge at the same rate as those from developed countries may be sizeable,

we are unable to quantify the costs of doing so, and such costs may be substantial as well.17

Moreover, enabling developing country individuals to produce more knowledge could reduce

the knowledge produced by individuals from developed countries (for instance if the num-

ber of important mathematical problems to be solved is fixed, or if native mathematicians

in developed countries are crowded out from research positions (Borjas & Doran 2012)).

17On the one hand, a number of targeted fellowships for particularly talented individuals, or spots in
highly ranked mathematical programs would not be particularly expensive. On the other hands, improving
mathematical training and research in developing countries could involve larger costs.
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We also need to contend with the possibility that inducing individuals to engage in mathe-

matical careers may reduce distinctive contributions that they may otherwise make outside

mathematics. The next two subsections seek to partially address these last two points.

6.2 Comparing IMO participants with other Mathematicians

We have shown that a set of particularly talented individuals from developing countries (the

IMO participants and in particular the IMO medalists) produce less mathematical knowledge

than a similar set of individuals from developed countries. However, perhaps that knowledge

can be replaced by other individuals. This could occur if factors such as effort, luck and/or

training could substitute for talent in the production of knowledge. It could also be that there

are enough very talented individuals overall that losing a fraction of those is inconsequential

for the overall rate of knowledge productions.

A first insight into these issues might be gained from the fact that more than half of the

Fields medalists were IMO medalists, as mentioned previously (cf table 1), and all but one

of these were gold medalists. We take this fact as evidence that talent is very important for

the production of the most groundbreaking mathematical discoveries, as more than half of

the Fields medalists had displayed elite problem solving ability (as measured by having an

IMO gold medal) when teenagers. Moreover, this is likely to be an underestimate as other

Fields medalists might have had high talent/innate ability in a way we do not measure. We

also take it as evidence that there are not many individuals that are as talented as the IMO

gold medalists.18

In order to study these issues in a more systematic manner, we compare IMO medalists

with other mathematicians. For this comparison, we constructed a sample with all PhD

students obtaining a PhD in mathematics between 1990 and 2010 (n=89,068). We also

constructed the subsample of PhD students graduating from top 10 schools (n=9,049). We

then constructed the sample of IMOs bronze and silver medalists with a mathematics PhD

(n=520) and that of gold medalists with a mathematics PhD (n=145). We then plot (see

figure 8) the average number of papers, the average number of citations, the share becoming

IMC speakers and the share becoming Fields medalists across the four groups.

18An alternative explanation is that the Fields medal committee is somehow biased towards those that
were ‘anointed’ as top talent by the IMO gold medal. We cannot completely rule out this explanation,
although we have shown earlier that IMO medals do not appear to have a causal effect on the likelihood of
getting a mathematics PhD, a mathematics PhD from a top school, or mathematics publications and cites.
Another consideration is that both the IMO medalists and Fields medalists disfavour late bloomers as IMO
participants must be younger than twenty and Fields medalists younger than 40.
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(insert figure 8 about here)

For each outcome, we observe the same pattern: the medalists (and especially the gold

medalists) outperform both the other PhD graduates and the PhD graduates from top

schools. While the IMO medalists produce more papers and receive more cites than other

graduates, we observe a much larger difference for exceptional achievements such as being

invited to the IMC Congress and receiving the Fields medal. One interpretation is that tal-

ent may be more important for exceptional research achievement rather than more routine

knowledge production.

We proceed by comparing IMO medalists to other PhD graduates using regressions. Using

the sample of 89,068 mathematics PhD graduates, we regress each of the four outcomes on

an indicator variable taking value one for IMO bronze or silver medalists; and an indicator

variable taking value one for IMO gold medalists. We run these regressions without other

controls in Panel A and include PhD graduation year fixed effects and PhD graduate school

fixed effects in column B.

(insert table 12 about here)

We find positive and significant coefficients for both bronze/silver medalists and for gold

medalists. The magnitude of the effect is sizeable in the regressions with papers and citations

as outcome. But it is considerably larger still for the regressions with exceptional achieve-

ments: for the propensity to become IMC speaker, the coefficient for IMO gold medalist

is an order of magnitude larger than the mean propensity to become IMC speaker; for the

propensity to become a Fields medalist, it is two orders of magnitude larger than the mean

propensity to become a Fields medalist. Interestingly, the coefficients are roughly similar

when we control for PhD graduate school fixed effects. Overall, we find that IMO medal-

ists who get a PhD tend to outperform both other mathematics PhD graduates and their

classmates from the same school.

(insert figure 9 about here)

Finally, we take a brief look at how IMO medalists sort themselves across graduate

schools. To do this, we compute the number of IMO medalists graduating with a PhD

degree from each school, and plot that against the rank of the school as proxied by the

Shanghai university ranking for mathematics (see figure 9). The medalists tend to cluster

in the very best schools, with 36% of the IMO medalists who get a PhD in math graduating

from the top 10 schools. We see this as further evidence that highly talented individuals (as

proxied by IMO medals) are scarce.
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6.3 Careers of IMO participants outside mathematics

The last two subsections suggested that the quantity of lost knowledge production arising

from cross-country differences in the productivity of IMO participants is sizeable, and that

this lost knowledge production is not easily replaceable by that of other mathematicians.

These do not necessarily imply that the resulting allocation of talent is inefficient. The

efficient allocation of talent would clearly depend (among other considerations) on how valu-

able mathematical knowledge is to society compared to other goods and services as well the

comparative advantage of IMO participants in the production of mathematical knowledge.

In their influential paper on talent allocation and growth, Murphy, Shleifer & Vishny

(1991) make a distinction between people who have a strong natural comparative advantage

in one activity versus those can become the best in many occupations. We think of IMO

participants as being more in the first category given the high specificity of mathematics as

a discipline and occupation. Still, our views on whether it is efficient that individuals from

developing countries with a talent for mathematics eschew careers in this discipline may be

influenced by what else they are doing. Measuring the non-mathematical activities of the

IMO participants is intrinsically challenging but for the subsample of IMO medalists, we are

able to observe those who have a PhD in a non-mathematics discipline as well as those who

have a linkedin profile or some other sort of online presence (without having a mathemat-

ics PhD). We regress these two variables on the country income group indicator variables,

points scored and cohort dummies (cf table 13 for the results). While developing country

participants are slightly more likely to do a PhD in a discipline other than mathematics, this

far from offsets the difference observed in getting a mathematics PhD. As far as having a

visible online presence without having a mathematics PhD, we see no difference across the

country income groups.

(insert figure 13 about here)

7 Conclusion

This paper studied how talent translates into knowledge production, and whether this varies

for talented people born in different countries. We investigated that in the context of mathe-

matics knowledge and relied on the scores at the International Mathematics Olympiad (IMO)

as a measure of talent in late teenage years that is comparable across countries. We docu-

mented a strong and consistent link between IMO scores and a number of achievements in
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mathematics, including getting a PhD in mathematics, mathematics publications and cites,

and getting the Fields medal. We suggested, and provided some evidence, that this correla-

tion reflects the underlying talent distribution rather than a success begets success dynamic.

We then showed that IMO participants from low- and middle-income countries produce con-

sistently less mathematical knowledge than equally talented participants from high-income

countries. Our results suggest that the quantity of lost knowledge production arising from

cross-country differences in the productivity of IMO participants is sizeable, and that this

lost knowledge production is not easily replaceable by that of other mathematicians.

While we have devoted considerable attention to the link between IMO score and future

performance in mathematics, we are in no way implying that a high ability in problem

solving in late teenage years - much less IMO participation or performance - is a necessary

condition to become a successful mathematician. Some individuals may excel at mathematics

knowledge production without scoring well on IMO-style tests or having a taste for that type

of competition. Others may become interested in mathematics after their teenage years. We

are using IMO medals as a tool to observe part of the extreme right tail of the ability

distribution. What we are suggesting is that it may be a loss to mathematics if individuals

who are in the extreme right tail of ability (some of whom are IMO participants and some

of whom are not) drop out of mathematics.

One might question whether having less mathematical knowledge produced is in any

way bad for welfare. An in-depth analysis or even discussion of the contributions of math-

ematics to the economy is beyond the scope of this paper. However, we note that there is

plenty of anecdotal evidence of mathematical discoveries having direct or indirect practical

applications, such as in weather simulations, cryptography or telecommunications.19,20

Even if mathematical knowledge production contributes to welfare, the lost knowledge

production arising from the under-utilization of developing-country talent is more palatable

(or perhaps even desirable) if talent from developing countries is used to produce other

types of knowledge. We have shown that while developing country IMO participants are

slightly more likely to do a PhD in a discipline other than mathematics, this far from

offsets the difference observed in getting a mathematics PhD. We cannot rule the possibility

that developing country talent end up in valuable occupations (outside mathematical and

non-mathematical knowledge production) where they might make distinctive contributions.

19The following quote from Laurent Schwartz presents the indirect benefits of mathematics thus: “What
is mathematics helpful for? Mathematics is helpful for physics. Physics helps us make fridges. Fridges are
made to contain spiny lobsters....”

20A Deloitte report quantified the benefits of mathematical research to the UK economy as above 200
billion pounds (Deloitte, 2012).
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However, if we think of IMO participants as having a strong natural comparative advantage

in one very particular activity (mathematics) - as we do - this makes it more likely that the

current allocation is inefficient.

Having more developing country talent engaged into mathematics production might have

side effects on the production of developed country mathematicians. On the one hand, there

might be learning and spillovers (Azoulay et al. 2010). On the other hand, competition from

developing country talent might induce displacement and crowding out of developed country

mathematicians if there is a limited number of spots in graduate school or faculty ranks.

Borjas & Doran (2012) document such effects among American mathematicians following the

influx of talent Russian mathematicians after the collapse of the Soviet Union. These effects

may be important for the distribution of welfare among knowledge producers (and potential

knowledge producers). From the perspective of generating knowledge, however, it is highly

desirable to have the most talented people engaged in knowledge production: as we show in

this paper, they have a disproportionate ability to make ground-breaking contributions.

This paper falls short of identifying why developing country participants eschew careers

in mathematics and produce less mathematical knowledge. On the one hand, participants

from developing countries might have fewer opportunities in general. They may not have

access to excellent training opportunities at home or face higher barriers when applying to

universities outside their home countries. On the other hand, they may have different pref-

erences for different types of careers, in particular if career outside mathematics pay more.

Future research might shed light on which factors play a larger role in these differences. For

now, now we briefly mention several types of supply-side policies that could be useful in

this context. First, fellowships for high-end talent to study mathematics at undergraduate

and/or graduate level may alleviate resources constraints and make mathematics careers

more attractive. Second, top schools could encourage applications from developing coun-

tries; recruiting elite talent to their student programs is probably in their interest. Third,

strengthening mathematics research and training capacity in developing countries would not

only improve the training of those who prefer to stay in their home country but would also

make mathematics research careers more attractive to them. While this paper has focused

on mathematics, there are other disciplines - such as biomedicine or computer science - where

knowledge production is perhaps more important to welfare. We suspect that developing

country talent might also be under-utilized in those fields, though it is less clear whether

talent is as important in those fields as it appears to be in mathematics.

21



References

Aghion, P., Akcigit, U., Hyytinen, A., & Toivanen, O. (2018). “The Social Origins of

Inventors.” NBER Working Paper No 24110. National Bureau of Economic Research

Akcigit, U., Grigsby, J., & Nicholas, T. (2017). “The rise of american ingenuity: Inno-

vation and inventors of the golden age.” NBER Working Paper No 23047. National Bureau

of Economic Research.

Agrawal A., Goldfarb A., & Teodoridis F. (2016) “Understanding the Changing Structure

of Scientific Inquiry.” American Economic Journal: Applied Economics 8(1): 100-128

Andreescu, T., Gallian, J. A., Kane, J. M., & Mertz, J. E. (2008). “Cross-cultural

analysis of students with exceptional talent in mathematical problem solving.” Notices of

the AMS, 55(10), 1248-1260.

Azoulay, P., Graff Zivin, J. S., & Wang, J. (2010). “Superstar extinction.” The Quarterly

Journal of Economics, 125(2), 549-589.

Azoulay, P., Graff Zivin, J. S., & Manso, G. (2011) “Incentives and creativity: evidence

from the academic life sciences.” The RAND Journal of Economics 42, no. 3: 527-554.

Bell, A., Chetty, R., Jaravel, X., Petkova, N., & Von Reenen, J. (2017) “Who Becomes

an Inventor in America? The Importance of Exposure to Innovation” NBER Working Paper

No 24062. National Bureau of Economic Research.

Baumol, W. J. (1990). “Entrepreneurship: Productive, Unproductive, and Destructive.”

Journal of Political Economy, 98(5 Part 1), 893-921.

Bloom, N., Jones, C. I., Van Reenen, J., & Webb, M. (2017). “Are ideas getting harder

to find?” NBER Working Paper No 23782. National Bureau of Economic Research.

Borjas, G.J., & Doran, K. B. (2012) “The Collapse of the Soviet Union and the Productiv-

ity of American Mathematicians.” The Quarterly Journal of Economics 127(3): 1143-1203.

Borjas, G. J., & Doran, K. B. (2015a). “Cognitive Mobility: Labor Market Responses to

Supply Shocks in the Space of Ideas.” Journal of Labor Economics, 33(S1), S109-S145.

Borjas, G. J., & Doran, K. B. (2015b) “Which peers matter? The relative impacts

of collaborators, colleagues, and competitors.” Review of Economics and Statistics 97(5):

1104-1117.

Celik, M. A. (2017). “Does the Cream Always Rise to the Top? The Misallocation of

Talent and Innovation.” mimeo, University of Pennsylvania.

22



Cox, C. M. (1926). Genetic studies of genius. II. The early mental traits of three hundred

geniuses.

Deloitte (2012). Measuring the Economic Benefits of Mathematical Science Research

in the U.K.: Final Report. Available at http://www.maths.dundee.ac.uk/info/EPSRC-

Mathematics.pdf

Engel, A. (1998) Problem-Solving Strategies. New York: Springer. Print. Problem

Books in Mathematics.

Ellison, G., & Swanson, A. (2010). “The Gender Gap in Secondary School Mathemat-

ics at High Achievement Levels: Evidence from the American Mathematics Competitions.

Journal of Economic Perspectives 24 (2): 10928.

Ellison, G., & Swanson, A. (2016). “Do Schools Matter for High Math Achievement?

Evidence from the American Mathematics Competitions.” American Economic Review,

106(6), 1244-77.

Freeman, R., & Van Reenen, J. (2009). “What if Congress doubled R&D spending on

the physical sciences?” Innovation Policy and the Economy, 9(1), 1-38.

Ganguli, I. (2017). “Saving Soviet science: The impact of grants when government R&D

funding disappears”. American Economic Journal: Applied Economics, 9(2), 165-201.

Iaria, A., Schwarz, C., & Waldinger, F. (2017). “Frontier Knowledge and Scientific

Production: Evidence from the Collapse of International Science.” The Quarterly Journal

of Economics.

Harmon, L. R. (1961). “High school backgrounds of science doctorates”. Science.

133(3454): 679-88

Hunter, R. S., Oswald, A. J., & Charlton, B. G. (2009). “The elite brain drain”. The

Economic Journal, 119(538), F231-F251.

Hsieh, C. T., Hurst, E., Jones, C. I., & Klenow, P. J. (2013). “The allocation of talent

and us economic growth. NBER Working Paper No 18693. National Bureau of Economic

Research.

Jones, C. I. (2002). “Sources of US Economic Growth in a World of Ideas. American

Economic Review, 92(1), 220-239.

Kahn, S., & MacGarvie, M. J. (2016). “How Important is US Location for Research in

Science? Review of Economics and Statistics.” 98(2), 397-414.

Murphy, K. M., Shleifer, A., & Vishny, R. W. (1991). “The Allocation of Talent: Impli-

23



cations for Growth.” The Quarterly Journal of Economics, 106(2), 503-530.

Rothenberg, A. (2014). “Flight from wonder: An investigation of scientific creativity”.

Oxford University Press.

Stephan, P. E. (2012). “How economics shapes science. Cambridge, MA: Harvard Uni-

versity Press.

Smirnov, S. (2011). “How do Research Problems Compare with IMO Problems?” pp.

71-83 in Schleicher, D. & Lackman, M. (eds) An Invitation to Mathematics, Springer.

Waldinger, F. (2010). “Quality matters: The expulsion of professors and the conse-

quences for PhD student outcomes in Nazi Germany.” Journal of Political Economy, 118(4),

787-831.

Waldinger, F. (2011). “Peer effects in science: Evidence from the dismissal of scientists

in Nazi Germany.” The Review of Economic Studies, 79(2), 838-861.

24



Tables

Table 1: IMO Medalists and Fields medalists

Fields medalists by award year
Year (Former IMO medalists in bold)

1994 Jean Bourgain Pierre-Louis Lions J-C Yoccoz Efim Zelmanov
1998 Richard Borcherds Timothy Gowers Maxim Kontsevich Curtis McMullen
2002 Laurent Lafforgue Vladimir Voevodsky
2006 Andrei Okounkov Grigori Perelman Terence Tao Wendelin Werner
2010 Elon Lindenstrauss Ngo Bao Chau Stanislav Smirnov Cedric Vilani
2014 Artur Avila Manjul Bhargava Martin Hairer M Mirzakhani

Notes: Fields medals are a highly prestigious prize awarded every four years to up to four mathematicians
under the age of 40.
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Table 2: Summary statistics on IMO participants (1981-2000)

Variable Obs Mean Std. Dev. Min Max

IMO Score 4,711 16.0 11.3 0 42
Gold Medal 4,711 0.08 0.27 0 1
Silver Medal 4,711 0.16 0.16 0 1
Bronze Medal 4,711 0.24 0.24 0 1
Honourable Mention 4,711 0.10 0.30 0 1
Olympiad Year 4,711 1992.4 5.5 1981 2000

Math PhD 4,711 0.22 0.41 0 1
Math PhD (top 10) 4,711 0.07 0.25 0 1
Pubs 4,711 3.2 11.5 0 264
Cites 4,711 34.5 221.1 0 11,062
IMC speaker 4,711 0.01 0.09 0 1
Fields medalist 4,711 0.002 0.04 0 1
Non-math PhD (*) 2,273 0.05 0.21 0 1
Any web presence (*) 2,273 0.53 0.50 0 1

High-income country 4,711 0.50 0.50 0 1
Upper middle-income country 4,711 0.23 0.42 0 1
Lower middle-income country 4,711 0.16 0.37 0 1
Low-income country 4,711 0.11 0.31 0 1

Notes: The table display descriptive statistics on the sample of all individuals who participated in any IMO
from 1981 to 2000. IMO medals are based on the number of points scored (IMO score). Multiple gold,
silver and bronze medals are awarded at every IMO. Math PhD is based on the Mathematics Genealogy
Project. Math PhD (top 10) is based on the list of the 10 top schools listed in appendix table A6. Pubs
and cites are from MathSciNet. IMC speaker stands for speaker at the International Mathematics Congress.
Non-math PhD and any web presence were (manually) collected only for the subsample of IMO medalists
(2,273 people), hence the lower number of observations. Country income groups are based on the World
Bank classification of 2000.
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Table 3: IMO scores and subsequent achievements

Panel A (1) (2) (3) (4) (5) (6)
Math PhD Math PhD Pubs Cites IMC Field

(top 10) (log) (log) speaker medalist

IMO Score 0.0100∗∗∗ 0.0053∗∗∗ 0.0258∗∗∗ 0.0430∗∗∗ 0.0012∗∗∗ 0.0003∗∗∗

(0.0008) (0.0006) (0.0021) (0.0035) (0.0003) (0.0001)
Olympiad Year FE Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes

Observations 4711 4711 4711 4711 4711 4711
Adjusted R2 0.1482 0.1102 0.1402 0.1466 0.0202 0.0012

Panel B (1) (2) (3) (4) (5) (6)
Math PhD Math PhD Pubs Cites IMC Field

(top 10) (log) (log) speaker medalist

Score on less 0.0086∗∗∗ 0.0043∗∗∗ 0.0341∗∗∗ 0.0205∗∗∗ 0.0010∗∗∗ 0.0002
difficult problems (0.0011) (0.0007) (0.0044) (0.0027) (0.0003) (0.0001)

Score on more 0.0126∗∗∗ 0.0075∗∗∗ 0.0611∗∗∗ 0.0371∗∗∗ 0.0019∗∗∗ 0.0007∗∗

difficult problems (0.0022) (0.0015) (0.0095) (0.0059) (0.0006) (0.0003)

Olympiad Year FE Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes

Observations 4492 4492 4492 4492 4492 4492
Adjusted R2 0.1475 0.1119 0.1495 0.1429 0.0249 0.0041

Notes: These regressions are run on the sample of all IMO participants who competed at any point between
1981 and 2000. The dependent variables are as follows: obtaining a math PhD (column 1), obtaining a math
PhD from a top 10 school (column 2), the log plus one of mathematics publications (column 3), the log plus
one of mathematics cites (column 4), becoming an IMC speaker at the IMC Congress (column 5), becoming
a Fields medalist (column 6). The variable of interest in panel A is the number of points scored controlling
for cohort (olympiad year) fixed effects and country fixed effects. Panel B distinguishes between the number
of points scored normally considered easier (1, 2, 4 and 5) and those considered more difficult (3 and 6);
we do not have the score breakdown for all IMOs, hence the lower number of observations in panel B. All
regression are estimated by OLS. Standard errors in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 4: Performance conditional on PhD

Panel A (1) (2) (3) (4)
Pubs (log) Cites (log) IMC speaker Fields medalist

IMO Score 0.0232∗∗∗ 0.0394∗∗∗ 0.0027∗∗∗ 0.0007∗∗

(0.0055) (0.0087) (0.0009) (0.0003)
Country FE Yes Yes Yes Yes
Olympiad Year FE Yes Yes Yes Yes
Observations 1,023 1,023 1,023 1,023

Panel B (1) (2) (3) (4)
Pubs (log) Cites (log) IMC speaker Fields medalist

IMO Score 0.0165∗ 0.0272∗∗ 0.0025∗∗ 0.0008
(0.0088) (0.0137) (0.0012) (0.0005)

Country FE Yes Yes Yes Yes
Graduate School Yes Yes Yes Yes
by Olympiad Year FE

Observations 1,023 1,023 1,023 1,023

Notes: These regression are on the subset of IMO participants who have a PhD in mathematics (n=1,023).
The dependent variables are: the log plus one of mathematics publications (column 1), the log plus one
of mathematics cites (column 2), becoming an IMC speaker at the IMC Congress (column 3), becoming a
Fields medalist (column 4). The variable of interest in is the number of points scored controlling for cohort
(olympiad year) fixed effects and country fixed effects. Panel B also include graduate school by olympiad
year fixed effects - comparing participants who participated in the same year and went to the same school
for their PhD. All regressions are estimated by OLS. Standard errors in parentheses. * p < 0.1, ** p < 0.05,
*** p < 0.01.
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Table 5: Regression discontinuity estimates of the effect of (better) medals

(1) (2) (3) (4)
Math PhD Math PhD Pubs Cites

(top 10) (log) (log)
Above (better) -0.0078 0.0108 -0.0120 -0.0227
medal threshold (0.0307) (0.0196) (0.0792) (0.1300)

Distance from 0.0130∗ 0.0032 0.0191 0.0253
threshold (0.0074) (0.0047) (0.0192) (0.0316)

Distance from -0.0071 0.0006 0.0004 0.0166
threshold X above threshold (0.0098) (0.0063) (0.0255) (0.0418)

Country FE Yes Yes Yes Yes
Olympiad Year FE Yes Yes Yes Yes
Observations 3,347 3,347 3,347 3,347
Mean of dep. var. 0.2844 0.0908 0.5774 0.9586

Notes: The IMO medals (gold, silver and bronze) are allocated solely based on the number of points scored
at the IMO. The medal thresholds for a gold, silver, or bronze medal vary from year to year. For each
medal threshold, we construct the sample of participants no more than 5 points from the threshold. We
then stack these three samples and construct a unique distance (number of points) to the threshold for a
(better) medal. The effect of being above the threshold is thus a weighted average of the effect of being above
the gold threshold, being above the silver threshold and being above the bronze threshold. The dependent
variables are as follows: obtaining a math PhD (column 1), obtaining a math PhD from a top 10 school
(column 2), the log plus one of mathematics publications (column 3), the log plus one of mathematics cites
(column 4). All regressions are estimated by OLS and include country fixed effect and cohort (olympiad
year) fixed effects. Standard errors in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 6: IMO score gradient within medal bins

Panel A Sample: IMO Gold Medalists

(1) (2) (3) (4)
Math PhD Math PhD Pubs Cites

(top 10) (log) (log)

IMO Score 0.0300∗∗∗ 0.0175∗∗ 0.0816∗∗∗ 0.1274∗∗∗

(0.0102) (0.0079) (0.0280) (0.0462)
Country FE Yes Yes Yes Yes
Cohort (Olympiad Year) FE Yes Yes Yes Yes
Observations 371 371 371 371
Adjusted R2 0.0698 0.1524 0.1393 0.1337

Panel B Sample: IMO Silver Medalists

(1) (2) (3) (4)
Math PhD Math PhD Pubs Cites

(top 10) (log) (log)
IMO Score 0.0026 -0.0010 0.0325∗ 0.0539∗

(0.0066) (0.0049) (0.0185) (0.0300)
Country FE Yes Yes Yes Yes
Cohort (Olympiad Year) FE Yes Yes Yes Yes
Observations 775 775 775 775
Adjusted R2 0.1127 0.1304 0.1219 0.1424

Panel C Sample: IMO Bronze Medalists

(1) (2) (3) (4)
Math PhD Math PhD Pubs Cites

(top 10) (log) (log)
IMO Score 0.0104∗∗ 0.0052∗ 0.0286∗∗ 0.0495∗∗

(0.0049) (0.0027) (0.0132) (0.0211)
Country FE Yes Yes Yes Yes
Cohort (Olympiad Year) FE Yes Yes Yes Yes
Observations 1,127 1,127 1,127 1,127
Adjusted R2 0.0595 0.0642 0.0536 0.0568

Notes: These regressions repeat those of table 3 separately on the subsample of gold medalists (column A),
silver medalists (panel B) and bronze medalists (panel C). The dependent variables are as follows: obtaining
a math PhD (column 1), obtaining a math PhD from a top 10 school (column 2), the log plus one of
mathematics publications (column 3), the log plus one of mathematics cites (column 4). All regressions are
estimated by OLS and include country fixed effect and cohort (olympiad year) fixed effects. Standard errors
in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 7: Link between IMO score and long-term performance by country income group

(1) (2) (3) (4)
Math PhD Math PhD Pubs Cites

(top 10) (log) (log)

Income group of origin country:

Low-income -0.162∗∗∗ -0.034∗∗∗ -0.345∗∗∗ -0.571∗∗∗

(0.019) (0.012) (0.048) (0.079)

Lower middle-income -0.102∗∗∗ -0.021∗∗ -0.197∗∗∗ -0.325∗∗∗

(0.015) (0.009) (0.036) (0.060)

Upper middle-income -0.039∗∗ -0.024∗∗ -0.082∗∗ -0.170∗∗∗

(0.016) (0.010) (0.040) (0.066)
High-income: omitted category

IMO Score 0.011∗∗∗ 0.005∗∗∗ 0.027∗∗∗ 0.045∗∗∗

(0.001) (0.000) (0.001) (0.002)
Cohort (Olympiad Year) FE Yes Yes Yes Yes

Observations 4,711 4,711 4,711 4,711
Mean of D.V. 0.217 0.068 0.429 0.710

Notes: We are interested in how becoming a professional mathematician, and the mathematics knowledge
produced, depends on income level of a participant’s origin country (with the income level based on the
World Bank 2000 classification). The omitted country level category is high income country. The dependent
variables are as follows: obtaining a math PhD (column 1), obtaining a math PhD from a top 10 school
(column 2), the log plus one of mathematics publications (column 3), the log plus one of mathematics cites
(column 4). All regressions are estimated by OLS, control for the number of points scored at the IMO and
include cohort (olympiad year) fixed effects. Standard errors in parentheses * p < 0.1, ** p < 0.05, ***
p < 0.01.

31



Table 8: Link between IMO score and long-term performance by country income group

(1) (2) (3) (4)
Math PhD Math PhD Pubs Cites

(top 10) (log) (log)

Income group of origin country:

Low-income -0.093∗∗∗ -0.026 -0.077 -0.103
(0.033) (0.021) (0.084) (0.137)

Lower middle-income -0.084∗∗∗ -0.016 -0.107∗ -0.162
(0.025) (0.016) (0.062) (0.102)

Upper middle-income -0.048∗ -0.001 -0.066 -0.099
(0.028) (0.018) (0.070) (0.115)

IMO Score 0.012∗∗∗ 0.006∗∗∗ 0.031∗∗∗ 0.052∗∗∗

(0.001) (0.000) (0.002) (0.003)

Low-income X IMO Score -0.004∗∗ -0.000 -0.015∗∗∗ -0.027∗∗∗

(0.002) (0.001) (0.004) (0.006)

Lower middle-income X IMO Score -0.001 -0.000 -0.006∗ -0.010∗∗

(0.001) (0.001) (0.003) (0.005)

Upper middle-income X IMO Score 0.001 -0.002 -0.001 -0.004
(0.001) (0.001) (0.004) (0.006)

Cohort (Olympiad Year) FE Yes Yes Yes Yes

Observations 4,711 4,711 4,711 4,711
Mean of D.V. 0.217 0.068 0.429 0.710

Notes: These regressions repeat those of table 7 but include interactions between the country income group
and the number of points scored at the IMO. Standard errors in parentheses * p < 0.1, ** p < 0.05, ***
p < 0.01.
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Table 9: Cross-country comparisons conditional on math PhD

Panel A (1) (2)
Pubs (log) Cites (log)

Income group of origin country:

Low-income -0.203 -0.324
(0.177) (0.285)

Lower middle-income -0.054 -0.074
(0.115) (0.186)

Upper middle-income -0.054 -0.242
(0.112) (0.181)

High-income: omitted category

IMO Score 0.022∗∗∗ 0.037∗∗∗

(0.004) (0.007)

Olympiad Year FE Yes Yes
Observations 1023 1023

Panel B (1) (2)
Pubs (log) Cites (log)

Income group of origin country:

Low-income 0.143 0.082
(0.318) (0.521)

Lower middle-income 0.175 0.261
(0.238) (0.390)

Upper middle-income -0.354 -0.767∗

(0.264) (0.432)
High-income: omitted category

IMO Score 0.020∗∗ 0.034∗∗

(0.009) (0.015)
Graduate School Yes Yes
by Olympiad Year FE
Observations 590 590

Notes: These regression are run on the subset of IMO participants who have a PhD in mathematics.
The dependent variables are: the log plus one of mathematics publications (column 1), the log plus one
of mathematics cites (column 2). The variables of interest are the country income group dummies (high-
income omitted) and we control the number of points scored and cohort fixed effects. Panel B also include
graduate school by olympiad year fixed effects - comparing participants who participated in the same year
and went to the same school for their PhD; the number of observations as some IMO years/graduate school
cells only have one observations and are dropped. All regressions are estimated by OLS. Standard errors in
parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 10: Is the importance of the country of origin diminishing over time?

(1) (2) (3) (4)
Math PhD Math PhD Pubs Cites

(top 10) (log) (log)

Income group of origin country:

Low-income -0.232∗∗∗ -0.059∗∗ -0.597∗∗∗ -0.981∗∗∗

(0.038) (0.024) (0.094) (0.155)
Lower middle-income -0.080∗∗∗ -0.008 -0.205∗∗∗ -0.346∗∗∗

(0.025) (0.016) (0.063) (0.103)
Upper middle-income 0.017 0.010 0.031 0.007

(0.028) (0.018) (0.070) (0.116)
Low-income X late cohort 0.101∗∗ 0.030 0.346∗∗∗ 0.562∗∗∗

(0.043) (0.027) (0.109) (0.179)
Lower middle-income X late cohort -0.026 -0.022 0.018 0.037

(0.031) (0.019) (0.077) (0.126)
Upper middle-income X late cohort -0.082∗∗ -0.055∗∗∗ -0.157∗ -0.247∗

(0.034) (0.021) (0.085) (0.140)
IMO Score 0.011∗∗∗ 0.005∗∗∗ 0.027∗∗∗ 0.046∗∗∗

(0.001) (0.000) (0.001) (0.002)
Cohort (Olympiad Year) FE Yes Yes Yes Yes

Observations 4,711 4,711 4,711 4,711
Mean of D.V. 0.208 0.066 0.415 0.688

Notes: These regressions repeat those of table 7 but include interactions between the country income group
and an indicator variable for ‘late cohort’. Late cohort takes value one for individuals who participated in
the IMO between 1991 and 2000; the omitted category is those who participated between 1980 and 1990.
The main effect of late cohort is absorbed in the Olympiad year fixed effects. Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 11: Back of the envelope calculation on the size of lost knowledge production

Share of Coeff Coeff Loss Loss
IMO (pubs) (cites) (pubs) (cites)

Low-income 0.11 -0.345 -0.571 -0.038 -0.063
Lower middle-income 0.23 -0.197 -0.325 -0.045 -0.075
Upper middle-income 0.23 -0.082 -0.170 -0.019 -0.039

Total -0.102 -0.177

Notes: This back of the envelope calculation seeks to estimate how much mathematics knowledge production
is lost due to developing country participants producing at a lower rate than those of developed countries. To
do this we take a weighted sum of coefficients from the main cross-country comparison regressions (7) where
the weights are the share of IMO participants in low-income, lower middle-income and upper middle-income
countries respectively. This calculation ignores spillovers to other researchers (potentially negative due to
crowding out).
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Table 12: Comparison with non medalists

(1) (2) (3) (4)
Pubs Cites IMC Fields
(log) (log) speaker medalist

Gold 1.2579∗∗∗ 2.1527∗∗∗ 0.0822∗∗∗ 0.0342∗∗∗

medalist (0.0968) (0.1583) (0.0052) (0.0011)

Silver or Bronze 1.1332∗∗∗ 1.8417∗∗∗ 0.0367∗∗∗ 0.0037∗∗∗

Medalist (0.0513) (0.0838) (0.0028) (0.0006)

Graduate from 0.1130∗∗∗ 0.2648∗∗∗ 0.0098∗∗∗ 0.0005∗∗∗

top 10 schools (0.0130) (0.0212) (0.0007) (0.0001)
PhD Graduation Year FE Yes Yes Yes Yes

Observations 89,068 89,068 89,068 89,068
Mean of D.V. 0.9754 1.6089 0.0040 0.0002

(1) (2) (3) (4)
Pubs Cites IMC Fields
(log) (log) speaker medalist

Gold 1.1709∗∗∗ 1.9891∗∗∗ 0.0760∗∗∗ 0.0274∗∗∗

medalist (0.1088) (0.1828) (0.0080) (0.0018)

Silver or Bronze 1.0104∗∗∗ 1.6726∗∗∗ 0.0432∗∗∗ 0.0057∗∗∗

Medalist (0.0661) (0.1112) (0.0048) (0.0011)
Graduate School Yes Yes Yes Yes
by graduation year FE

Observations 37,501 37,501 37,501 37,501
Mean of D.V. 0.9892 1.6793 0.0070 0.0003

Notes: These regressions are based on an ancillary sample including all math PhD graduates listed in the
Math Genealogy Project graduating between 1990 and 2010. The dependent variables are the log plus one of
mathematics publications (column 1), the log plus one of mathematics cites (column 2), becoming a speaker
at the International Mathematics Congress (column 3) and getting the Fields medal (column 4). The top
10 schools are defined according to the Shanghai Math Ranking and are listed in appendix table A6. All
regressions estimated by ordinary least squares. Standard errors in parentheses * p < 0.1, ** p < 0.05, ***
p < 0.01.
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Table 13: Careers outside mathematics

(1) (2)
non-math PhD non-math web presence (0/1)

Origin country:
Low-income 0.027∗ 0.003

(0.014) (0.030)

Lower middle-income -0.006 -0.007
(0.012) (0.024)

Upper middle-income 0.026∗∗ 0.026
(0.013) (0.026)

High-income: omitted

IMO points 0.001 -0.001
(0.001) (0.001)

Cohort Fixed Effects Yes Yes

Observations 2273 2273
Mean of D.V. 0.05 0.26

Notes: These regressions are based on the subsample of IMO participants for which we have manually
collected information, i.e. all IMO medalists. Having a non-math web presence is an indicator variable that
takes value for individuals who (1) we can find on linkedin or have a personal page and (2) do not have
mathematics PhD. Standard errors in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01.
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Figures

Figure 1: Medalists by country
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Notes: The figure displays the total number of IMO participants who got a medal between 1981 and 2000
by country.
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Figure 2: Gold medalists by country
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Notes: The figure displays the total number of IMO participants who got a gold medal between 1981 and
2000 by country.
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Figure 3: Relationship between points scored at the IMO and subsequent achievement
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Notes: We compute the sample means of each of the six outcomes variables by the number of points
scored at the IMO. We then plot the resulting number against the number of points scored. A linear fit is
superimposed.
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Figure 4: Distance to medal threshold and long-term performance
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Notes: The IMO medals (gold, silver and bronze) are allocated solely based on the number of points scored
at the IMO. The medal thresholds for a gold, silver, or bronze medal vary from year to year. For each
medal threshold, we construct the sample of participants no more than 5 points from the threshold. We then
stack these three samples and construct a unique distance (number of points) to the threshold for a (better)
medal. The graph displays samples means by distance to the threshold for a (better) medal, with linear fits
superimposed.
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Figure 5: Talent conversion by country
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Notes: We first regress the propensity of doing a mathematics PhD on country fixed effects, cohorts fixed
effects and points fixed effects. We then plot those country fixed effects. The omitted country in these
regressions is the U.S. and thus the fixed effects shown can be thought as relative to the U.S. Countries
whose IMO participants have a low propensity of doing a PhD mathematics are shown in red where those
countries who have a high propensity of doing a PhD a mathematics are shown in green.
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Figure 6: Differences in the share getting a PhD in math across countries
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Notes: We compute the share of IMO participants getting a PhD in mathematics by number of IMO points
scored (5-year bands) and plot the resulting share against the number of points scored.
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Figure 7: Difference in share getting a PhD between high and low income countries for different
cohorts of medalists

0

.2

.4

.6

1980 1985 1990 1995

Olympiad year

Gold medalists

Silver medalists

Bronze medalists

Notes: We compute the share of IMO medalists getting a PhD in mathematics by Olympiad year (5-year
band) and medal type. We then plot the result share against Olympiad year.
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Figure 8: Comparing IMO medalists with other professional mathematicians
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Notes: These figures are based on an ancillary sample including all mathematics PhD graduates listed in
the Mathematics Genealogy Project. The graph display sample means across four outcomes (publications,
cites, becoming a speaker at the IMC congress, and becoming a Fields medalist) for four groups of PhD
graduates (all PhD graduates, PhD graduates from top ten schools, IMO bronze or silver medalists, IMO
gold medalists).
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Figure 9: Number of IMO medalists graduating from math PhD programs, by graduating school
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A Appendix: IMO problems

IMO problems are meant to be solveable without knowledge of higher level mathematics such

as calculus and analysis taught at tertiary level. They are typically drawn from geometry,

number theory or algebra. Potentials problems are submitted by national mathematical

federation and then selected by a problem selection committee from the host country.

Compendia of past problems are available and often used as training by future partici-

pants. The topic of the most difficult problems is often discussed on online forums such as

Quora.21

An example of an ‘easy’ problem. IMO 1964 Problem 1: (a) Find all natural numbers

n such that the number 2n− 1 is divisible by 7. (b) Prove that for all natural numbers n the

number 2n + 1 is not divisible by 7.

The following solution is suggested on the https://artofproblemsolving.com:

“We see that 2n is equivalent to 2, 4 and 1 ( mod 7) for n congruent to 1, 2 and 0 (

mod 3), respectively. From the statement above, only n divisible by 3 work. Again from the

statement above, 2n can never be congruent to −1 ( mod 7) so there are no solutions for

n.”

An example of a difficult problem. IMO 1988 Problem 6. Let a and b be positive

integers such that (1 + ab)|(a2 + b2). Show that (a2 + b2)/(1 + ab) must be a perfect square.

Engel (1998:138) recounts the following story regarding this problem.

“[The] problem was submitted in 1988 by the FRG [Federal Republic of Ger-

many]. Nobody of the six members of the Australian problem committee could

solve it. Two of the members were Georges Szekeres and his wife, both famous

problem solvers and problem creators. Since it was a number theoretic problem

it was sent to the four most renowned Australian number theorists. They were

asked to work on it for six hours. None of them could solve it in this time. The

problem committee submitted it to the jury of the XXIX IMO marked with a

double asterisk, which meant a superhard problem, possibly too hard to pose.

After a long discussion, the jury finally had the courage to choose it as the last

problem of the competition. Eleven students gave perfect solutions.”

21See for instance https://www.quora.com/What-according-to-you-is-the-easiest-problem-ever-asked-in-
an-IMO or https://www.quora.com/What-is-the-toughest-problem-ever-asked-in-an-IMO
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B Appendix: estimating the causal effect of honourable

mentions

IMO participants who do not win a medal but solve one problem perfectly (7 points out of

7) receive an honourable mention. To estimate the causal effect of receiving an honourable

mention, we rely on the fact that the honourable mention award was introduced at the 1988

IMO (and given out in subsequent years) but did not exist previously. This enables us to

identify a set of ‘counterfactual honourable mention awardees’ that would have received the

award if the award existed in the year in which they competed, but did not actually receive

the award. While comparing the actual awardees to the counterfactual awardees is concep-

tually appealing, we must reckon with the fact that the actual and counterfactual awardees

necessarily belong to different cohorts. We thus implement a difference-in-differences ap-

proach comparing those who solved one problem perfectly before and after the honourable

mentions were introduced, using the rest of non-medalists participants as a control group to

infer a counterfactual time trend. Specifically, we run regressions of the following type:

yit = α + β ∗ Scored7it + δ ∗Honourableit + ηt + εit (4)

where yit is one of obtaining a PhD in mathematics, obtaining a PhD in mathematics from

a top 10 school, mathematics publications in logs or mathematics cites in logs. Score7it is

an indicator variable for having solved one problem perfectly. Honourableit is an indicator

effect for having received an honourable mention. Honourableit also corresponds to the

interaction between Score7it and an indicator variable for competing after 1988. Finally ηt

is a full set of Olympiad year fixed effects. The sample for these regressions is the set of

non-medalists among all IMO participants.

(insert table A1 about here)

The results are displayed in table A1. We find no significant effect of getting an hon-

ourable mention. While the estimates are noisy, the point estimate for the effect of getting an

honourable mention is actually negative for all four outcomes. We conclude that honourable

mentions do not appear to have a causal effect on getting a PhD in mathematics and other

mathematics-related career achievements.
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C Appendix tables

Table A1: Effect of obtaining a honourable mention at the IMO

(1) (2) (3) (4)
Math PhD Math PhD Pubs Cites

(top 10) (log) (log)
Honourable mention -0.0550 -0.0238 -0.0443 -0.0769

(0.0357) (0.0170) (0.0764) (0.1259)

Perfect score 0.0613∗ 0.0320∗∗ 0.0678 0.1124
on one problem (0.0313) (0.0149) (0.0669) (0.1104)
Observations 2,438 2,438 2,438 2,438
Adjusted R2 0.0021 0.0029 0.0059 0.0060

Notes: Standard errors in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A2: IMO score by country income group

(1)
IMO Score

Income group of origin country:

Low-income 3.204∗∗∗

(0.534)

Lower middle-income 0.621
(0.404)

Upper middle-income 0.028
(0.444)

High-income: omitted category

Cohort (Olympiad Year) FE Yes

Observations 4711
Mean of D.V. 16.008

Notes: Standard errors in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A3: IMO score, long-term performance and GDP per capita of the origin country

(1) (2) (3) (4)
Math PhD Math PhD Pubs Cites

(top 10) (log) (log)

GDP per capita 0.003∗∗∗ 0.001∗∗∗ 0.006∗∗∗ 0.011∗∗∗

(1000 USD) (0.000) (0.000) (0.001) (0.001)
IMO score 0.011∗∗∗ 0.006∗∗∗ 0.027∗∗∗ 0.046∗∗∗

(0.001) (0.000) (0.001) (0.002)
Cohort (Olympiad Year) FE Yes Yes Yes Yes

Observations 4,379 4,379 4,379 4,379
Mean of D.V. 0.211 0.068 0.415 0.689

Notes: Standard errors in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01. GDP per capita is as of 2000
and expressed in thousands of U.S. dollars.
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Table A4: Link between IMO score and long-term performance by country income deciles

(1) (2) (3) (4)
Math PhD Math PhD Pubs Cites

(top 10) (log) (log)

Decile 1 -0.1372∗∗∗ -0.0463∗∗∗ -0.2377∗∗∗ -0.4025∗∗∗

(poorest) (0.0230) (0.0145) (0.0576) (0.0944)

Decile 2 -0.1279∗∗∗ -0.0345∗∗ -0.2543∗∗∗ -0.4151∗∗∗

(0.0241) (0.0152) (0.0604) (0.0990)

Decile 3 -0.0767∗∗∗ -0.0243∗ -0.1816∗∗∗ -0.2957∗∗∗

(0.0233) (0.0146) (0.0583) (0.0955)

Decile 4 0.0032 -0.0066 0.0280 0.0383
(0.0229) (0.0144) (0.0573) (0.0939)

Decile 5 0.0409∗ -0.0315∗∗ 0.1447∗∗ 0.1938∗∗

(0.0239) (0.0150) (0.0597) (0.0978)

Decile 6 -0.0015 -0.0149 0.0381 0.0468
(0.0235) (0.0147) (0.0587) (0.0962)

Decile 7 -0.0678∗∗∗ -0.0098 -0.1341∗∗ -0.2216∗∗

(0.0235) (0.0147) (0.0587) (0.0961)

Decile 8 0.0538∗∗ -0.0154 0.1506∗∗∗ 0.2725∗∗∗

(0.0224) (0.0141) (0.0560) (0.0918)

Decile 9 0.0962∗∗∗ 0.0089 0.2531∗∗∗ 0.4299∗∗∗

(0.0232) (0.0146) (0.0581) (0.0953)
Richest decile omitted

IMO score 0.0106∗∗∗ 0.0053∗∗∗ 0.0258∗∗∗ 0.0430∗∗∗

(0.0005) (0.0003) (0.0013) (0.0022)
Cohort (Olympiad Yes Yes Yes Yes
Year) FE

Observations 4,711 4,711 4,711 4,711
Mean of D.V. 0.211 0.068 0.415 0.689

Notes: Standard errors in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01. The income deciles are
computed based on 2000 GDP per capita.
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Table A5: Controlling for scientific and mathematics articles of the origin country

(1) (2) (3) (4)
Math PhD Math PhD Pubs Cites

(top 10) (log) (log)

Scientific articles 0.004 0.007 -0.020 -0.030
of origin country (log) (0.008) (0.005) (0.020) (0.033)

Math articles 0.010 -0.000 0.049∗∗ 0.077∗∗

of origin country (log) (0.009) (0.006) (0.022) (0.037)

Low-income -0.134∗∗∗ -0.020 -0.318∗∗∗ -0.535∗∗∗

(0.024) (0.015) (0.059) (0.098)

Lower middle-income -0.073∗∗∗ -0.010 -0.150∗∗∗ -0.256∗∗∗

(0.019) (0.012) (0.047) (0.078)

Upper middle-income -0.022 -0.026∗∗ -0.050 -0.128∗

(0.017) (0.011) (0.044) (0.072)
High-income: omitted category

IMO Score 0.010∗∗∗ 0.005∗∗∗ 0.025∗∗∗ 0.043∗∗∗

(0.001) (0.000) (0.002) (0.003)
Cohort (Olympiad Year) FE Yes Yes Yes Yes
Observations 4300 4300 4300 4300
Mean of D.V. 0.214 0.069 0.423 0.702

Notes: These regressions mirror those of table our main result table 7 but add two additional country level
controls: the number of scientific articles produced by the country (as of 2000, in logs) and the number of
mathematical articles produced by the country (as of 2000, in logs). The dependent variables are as follows:
obtaining a math PhD (column 1), obtaining a math PhD from a top 10 school (column 2), the log plus one
of mathematics publications (column 3), the log plus one of mathematics cites (column 4). All regressions
are estimated by OLS, control for the number of points scored at the IMO and include cohort (olympiad
year) fixed effects. Standard errors in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A6: Top ten schools in mathematics according to the 2010 Shanghai (ARWU) subject
ranking

University Rank

Princeton University 1
University of California, Berkeley 2
Harvard University 3
Stanford University 4
University of Cambridge 5
Pierre and Marie Curie University (Paris 6) 6
University of Oxford 7
Massachusetts Institute of Technology 8
University of Paris Sud (Paris 11) 9
University of California, Los Angeles 10
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