Foreign Safe Asset Demand and the Dollar Exchange Rate *

Zhengyang Jiang† Arvind Krishnamurthy‡ and Hanno Lustig§

July 3, 2018

Abstract

We develop a theory that links foreign investors’ demand for U.S. safe assets to the value of the dollar in spot markets. An increase in the convenience yield that foreign investors derive from holding U.S. safe assets induces an immediate appreciation of the US dollar and, going forward, lowers the expected return to a foreign investor from owning U.S. safe assets. Under our theory, we show that the foreign convenience yield can be measured by the ‘Treasury basis,’ defined as the wedge between the yield on foreign government bonds and the currency-hedged yield on safe U.S. Treasury bonds. We measure the convenience yield using data from a cross-country panel going back to 1988 and the US/UK cross going back to 1970. In both datasets, regression evidence strongly supports the theory. Our results help to resolve the exchange rate disconnect puzzle: the Treasury basis variation accounts for up to 41% of the quarterly variation in the dollar. Our results also provide support for recent theories which ascribe a special role to the U.S. as a provider of world safe assets.

Keywords: Covered interest rate parity, exchange rates, safe asset demand, convenience yields.

*We thank Chloe Peng for excellent research assistance. We also thank Mark Aguiar, Greg Duffee, Emmanuel Farhi, Ben Hebert, Oleg Itskhoki, Matteo Maggiori, Brent Neiman, Alexi Savov, Jeremy Stein, and Adrien Verdelhan for helpful discussions, and seminar participants at Chicago Booth, Harvard Business School, Stanford, UT-Austin and UC-Boulder for their comments.

†Kellogg School of Management, Northwestern University. Email: zhengyang.jiang@kellogg.northwestern.edu.

‡Stanford University, Graduate School of Business, and NBER. Email: a-krishnamurthy@stanford.edu.

§Stanford University, Graduate School of Business, and NBER. Address: 655 Knight Way Stanford, CA 94305; Email: hlustig@stanford.edu.
During episodes of global financial instability, there is a flight to the safety of U.S. Treasury bonds which increases their convenience yield, the non-pecuniary value that investors impute to the safety and liquidity offered by U.S. Treasury bonds (see Krishnamurthy and Vissing-Jorgensen, 2012, for example). Figure 1 illustrates this pattern during the 2008 financial crisis. The blue line is the spread between 12-month USD LIBOR and 12-month U.S. Treasury bond yields (TED spread), which is a measure of the convenience yield on U.S. Treasury bonds. The spread roughly triples in the flight to safety during the fall of 2008. We also graph the U.S. dollar exchange rate (green), measured against a basket of other currencies as well as the U.S. dollar currency basis (red), which we will define shortly. The dollar appreciates by about 30% over this period. The hypothesis of this paper is that the increase in the convenience yield on U.S. Treasury bonds assigned by foreign investors will also be reflected in an appreciation of the U.S. dollar. The spot exchange rate of a safe asset currency will reflect the cumulative value of all future convenience yields.

Figure 1: TED Spread, Average Treasury Basis and Dollar.
Our theory rests on the premise that the U.S. is the world’s most favored supplier of safe assets, and that foreign investors pay a sizeable premium to own these assets. There is a growing body of literature that analyzes the key role of the U.S. as the world’s safe asset supplier (see Gourinchas and Rey, 2007; Caballero, Farhi and Gourinchas, 2008; Caballero and Krishnamurthy, 2009; Maggiori, 2017; He, Krishnamurthy and Milbrad, 2018; Gopinath and Stein, 2017).\footnote{There is related but distinct literature on the special role of the US dollar and US asset markets in the world economy. See Gourinchas, Rey and Govillot (2011) on the “exorbitant privilege” of the US that drives low rates of return on US dollar assets. In their analysis, the low return stems from the role of the US in international risk sharing. See Lustig, Roussanov and Verdelhan (2014a) on evidence for a global dollar factor driving currency returns around the world. See Gopinath (2015) for evidence on the dominant role of the dollar as an invoicing currency.} Our paper develops a theory of the dollar exchange rate that imputes a central role to the convenience yields that foreign investors derive from the ownership of U.S. safe assets. We then provide systematic evidence, beyond Figure 1, in support of the theory by measuring the convenience yield on the safest U.S. dollar asset, U.S. Treasurys, and the value of the dollar.

Our paper explores the implications of foreign investors imputing a higher convenience yield to U.S. safe assets, such as U.S. Treasurys, than U.S. investors. This being the case, in equilibrium, foreign investors should receive a lower return \textit{in their own currencies} on holding U.S. safe assets than U.S. investors. To produce lower expected returns on U.S. safe assets in foreign currency, the dollar has to appreciate today and, going forward, depreciate in expectation to deliver a lower expected return to foreign investors than U.S. investors. We derive a novel expression for the dollar exchange rate as the expected value of all future interest rate differences and convenience yields less the value of all future currency risk premia, extending the work by Froot and Ramadorai (2005) and Engel and West (2005). Our theory predicts that a country’s exchange rate will appreciate whenever foreign investors increase their valuation of the current and future convenience properties of that country’s safe assets.

To test the theory, we need a measure of the foreign convenience yield on U.S. safe assets. We focus on U.S. Treasury bonds as the safest among the set of U.S. safe assets. U.S. Treasury bonds are known to offer liquidity and safety services to investors which results in lower equilibrium returns to investors from holding such bonds (see Krishnamurthy and Vissing-Jorgensen, 2012; Greenwood, Hanson and Stein, 2015). Under our theory, we show that the unobserved foreign convenience yield will be proportional to the difference in yield between short-term foreign government bonds, currency-hedged, into U.S. dollars, and the dollar yield on short-term U.S. Treasury bonds. This wedge, which we refer to as the dollar Treasury basis, can be measured...
using data on spot exchange rates, forward exchange rates, and pairs of government bond yields. We use two
datasets, a cross-country panel beginning in 1988 and going to 2017 and a US/UK time series that starts in
1970 and ends in 2017. The theory finds strong support in both datasets. The wedge is generally negative
and more negative during global financial crises, consistent with the picture from Figure 1. Innovations in the
dollar basis account for between 13% to 41% of the variation in the spot dollar exchange rate with the right
sign: a decrease in the dollar basis coincides with an appreciation of the dollar. These numbers are high in light
of the well-known exchange rate disconnect puzzle (Froot and Rogoff, 1995; Frankel and Rose, 1995). Using
a Vector Autoregression to model the joint dynamics of the dollar basis, the interest rate difference and the
exchange rate, we find that a 10 basis point rise in the basis drives a 1.5% depreciation in the dollar over the
next quarter. Subsequently, there is a gradual reversal over the next two to three years as the high basis leads
to a positive excess return on owning the US dollar.

Using our new convenience-yield valuation equation for the exchange rate, we implement a Campbell-
Shiller style decomposition of exchange rate innovations into a cash flow component which tracks interest rate
differences, a discount rate component which tracks currency risk premia, and, finally, a convenience yield
component. In Froot and Ramadorai (2005)'s decomposition, the latter would have been absorbed by the
discount rate component. The convenience yield channel is quantitatively important: it accounts for about
60% of the real US/UK exchange rate variance; the discount rate component accounts for roughly 120%, and
the two components are strongly positively correlated.

Finally, our lens into understanding safe-asset demand is through the measured convenience yield on U.S.
Treasurys. But our theory is broader, and posits a foreign convenience demand for all dollar-denominated safe
assets. We present evidence consistent with this point by examining the LIBOR basis and the basis constructed
using the bonds of KfW, a supranational backed by the German government.

Contribution to the literature on exchange rate disconnect: Researchers have struggled to identify the
fundamental drivers of the exchange rate (the 'exchange rate disconnect puzzle', see Froot and Rogoff (1995);
Frankel and Rose (1995)). We help resolve this puzzle by linking variation in safe asset demand to quarterly
contemporaneous variation in exchange rates, and finding regression R^2s as high as 41%. We also show that
our safe asset demand measure predicts exchange rate changes over horizons up to 3 years with R^2s on these
forecasting regressions as high as 19%. We also show that our measure has statistical power out-of-sample in
forecasting exchange rate changes, albeit more weakly than in-sample.2

Convenience yields enter as wedge into the foreign investors’ Euler equation and the uncovered interest parity condition. Adopting a preference-free approach, Lustig and Verdelhan (2016) demonstrate that a large class of incomplete markets models without these wedges cannot simultaneously address the U.I.P. violations, the exchange rate disconnect and the exchange rate volatility puzzles, while Itskhoki and Mukhin (2017) argue that models with such a wedge are one way to solve the exchange rate disconnect puzzle. Real exchange rates do not co-vary with macroeconomic quantities in the right way (see Backus and Smith, 1993; Kollmann, 1995). The existence of convenience yields introduces a wedge between the real exchange rates and the difference in the log pricing kernels that may help to resolve this issue.

A large class of theoretical models predict that interest rates should drive exchange rates. Some papers have confirmed this finding, but the results are mixed and do not always conform to theory. For example, Eichenbaum and Evans (1995) find that an increase in home rates appreciates the home currency, as would be suggested by textbook models. Textbook models also predict that the exchange rate should depreciate after an unexpected increase in the home interest rate, but U.I.P. is soundly rejected in the data, as is well known since the seminal work of Hansen and Hodrick (1980a); Fama (1984): the currency of the high interest rate currency subsequently appreciates on average. Recently, Engel (2016); Valchev (2016); Dahlquist and Penasse (2016) show that an increase in the short-term interest rate forecasts a short-horizon appreciation in the dollar, which is inconsistent with standard models, and a long-horizon depreciation, consistent with theoretical models.3 We find that the short-horizon appreciation in response to an interest rate shock disappears when convenience yield shocks are introduced.

Contribution to the safe assets literature: Our results lend empirical support to theories of the U.S as the provider of world safe assets. There is ample empirical evidence that non-US borrowers tilt the denomination of their borrowings (loans, deposits, bonds) especially towards the US dollar: Shin (2012) and Ivashina, Scharfstein and Stein (2015) on bank borrowing and Bruno and Shin (2017) on corporate bond borrowing. Moreover, foreign investors tilt their portfolio towards owning US dollar-denominated corporate bonds when they invest in bonds denominated in foreign currencies (see Maggiori, Neiman and Schreger, 2017). The evidence on the dollar

2In high frequency data, there is evidence for order flows driving exchange rate dynamics. (see Jeanne and Rose, 2002; Evans and Lyons, 2002; Hau and Rey, 2005, for recent examples).

3Engel (2016) shows that these dynamics cannot be matched by standard asset pricing models.
bias in credit markets is silent on whether demand or supply factors are the main drivers.\(^4\) Our evidence from sovereign bond markets supports a demand-based explanation. The Treasury dollar basis is typically negative and reductions in the basis appreciate the dollar, suggesting that foreign investor’s special demand for dollar-denominated assets lowers their expected returns.

Our theory posits a special role for the dollar simply because Treasurys are denominated in dollars. There is empirical evidence to support the notion that the dollar is different from other currencies. The dollar carry trade which goes long in a basket of foreign currencies when the foreign-minus-US interest rate gap is positive is highly profitable (Lustig, Roussanov and Verdelhan, 2014\(^a\)). This is not the case for other currencies (Hassan and Mano, 2014). Our theory predicts that, all else equal, a widening of the dollar basis, is accompanied by an increase in the risk premium that U.S. investors demand on a long position in foreign currency. However, the dollar continues to appreciate for another quarter after the widening of the basis. Since the dollar basis typically widens when the interest rate gap increases, this could help explain the profitability of the dollar carry trade.

Relation to the literature: The evidence we present is most closely related to Valchev (2016) who shows that the quantity of U.S. Treasury bonds outstanding helps to explain the return on the dollar. Valchev (2016) builds an open-economy model to relate the quantity of US Treasury bonds to the convenience yield on Treasury bonds and the failure of uncovered interest parity. We show that the existence of a foreign convenience yield for US Treasury bonds causes both uncovered interest parity and covered interest parity to fail. Moreover, we show that variation in the convenience yields as measured by the dollar basis explains a sizeable portion of the variation in the dollar exchange rate. Our metric for evaluating the convenience yield on Treasurys is the difference between Treasury yields and FX-swapped foreign government bond yields and is the same as an earlier paper by Du, Im and Schreger (2018). But, we use the metric for a different purpose then Du, Im and Schreger (2018). Principally, we relate the convenience yield on Treasury bonds to movements in exchange rates. We show theoretically why the convenience yield should affect exchange rate determination, and show empirically that it has strong explanatory power for explaining exchange rate movements. Additionally, Du, Im and Schreger (2018) delve into the term structure of the convenience yield, while we focus on the short-maturity convenience yield. For reasons we outline later in the paper, it makes more sense to relate short-maturity

\(^4\)The quantity evidence does not identify whether the bias towards dollar assets is demand or supply-driven.
convenience yields to exchange rates under our theory. Finally, a rudimentary version of the theory in this paper as well as results similar to that presented in Table 2 are published in Jiang, Krishnamurthy and Lustig (2018).

There is a recent literature examining the failure of covered interest rate parity (C.I.P.). Our Treasury basis measure is closely related to the C.I.P. deviation. That deviation is constructed using LIBOR rates for home and foreign countries while our basis measure is the same deviation but constructed using government bond yields for home and foreign countries. In an influential recent paper, Du, Tepper and Verdelhan (2017) document that the LIBOR basis was near zero pre-crisis and has often been significantly different than zero post-crisis. They show that the movements in the LIBOR basis are closely connected to frictions in financial intermediation that prevent arbitrage activities. Other papers have come to similar conclusions regarding the importance of financial frictions and capital controls. See Ivashina, Scharfstein and Stein (2015), Gabaix and Maggiori (2015), Amador et al. (2017), and Itskhoki and Mukhin (2017). Our paper simply points out that covered interest rate parity cannot hold for Treasurys when their ownership produces convenience yields, while foreign bonds do not, even in the absence of frictions. Moreover, we explain how financial frictions considerations can be introduced into our theory. We show that without such frictions, the LIBOR basis, but not the Treasury basis, will be zero. With such frictions, the LIBOR basis will differ from zero, increase the Treasury basis, and drive a relation between the LIBOR basis and the dollar exchange rate. We show that these predictions hold-up in the data.

The paper proceeds as follows. The next section lay out the convenience yield theory. Section 3 take the theory to data. Section 4 further discusses the empirical and theoretical results. The appendix provides further derivations of the theory, additional empirical evidence, and details our data sources.

1 A Theory of Spot Exchange Rates, Forward Exchange Rates and Convenience Yields on Bonds

There are two countries, foreign (⋆) and the U.S. (§), each with its own currency. Denote S_t as the nominal exchange rate between these countries, where S_t is expressed in units of foreign currency per dollar so that an increase in S_t corresponds to an appreciation of the U.S. dollar. There are domestic (foreign) nominal bonds
denominated in dollars (foreign currency). We derive bond and exchange rate pricing conditions that must be satisfied in asset market equilibrium.

We develop our basic results in a simplified case for expositional purposes. First, we focus on the pricing of U.S. Treasury bonds as the asset that produces convenience yields. As we will make clear, our theory is broadly about the pricing of U.S. dollar safe assets and not only U.S. Treasury bonds. On the other hand, our empirical work is specifically about the measured convenience yields on U.S. Treasury bonds, so that the theoretical expressions we derive for U.S. Treasury bonds are the relevant ones to interpret the empirical work. Second, we assume that only U.S. bonds produce convenience yields. We derive expressions for the case where foreign bonds offer convenience yields in Section 1.6. This latter case is notationally cumbersome.

1.1 Convenience yields and exchange rates

Denote y^*_t as the yield on a one-period risk-free zero-coupon bond in foreign currency. Likewise, denote y^S_t as the yield on a one-period risk-free zero-coupon Treasury bond in dollars. The stochastic discount factor (SDF) of the foreign investor is denoted M^*_t, while that of the US investor is denoted M^S_t.

Foreign investors price foreign bonds denominated in foreign currency, and the foreign investor’s Euler equation is given by:

$$
\mathbb{E}_t \left(M^*_t e^{y^*_t} \right) = 1
$$

(1)

Foreign investors can also invest in U.S. Treasurys. To do so, they convert local currency to U.S. dollars to receive $\frac{1}{S_t}$ dollars, invest in U.S. Treasurys, and then convert the proceeds back to local currency at date $t+1$ at S_{t+1}. Then,

$$
\mathbb{E}_t \left(M^*_t \frac{S_{t+1}}{S_t} e^{y^S_t} \right) = e^{-\lambda^*_t}, \quad \lambda^*_t \geq 0.
$$

(2)

The expression on the left side of the equation is standard. On the right side, we allow foreign investors in U.S. Treasurys to derive a convenience yield, λ^*_t, on their Treasury bond holdings. This λ^*_t is asset-specific. We broaden the analysis to other safe U.S. assets in Section 1.4.

If the convenience yield rises, lowering the right side of equation (2), the required return on the investment in U.S. Treasury bonds (the left side of the equation) falls; either the expected rate of dollar appreciation declines or the yield y^S_t declines, or both.
Next, we use these pricing conditions to derive an expression linking the exchange rate and the convenience yield. We assume that \(m_t^* = \log M_t \) and \(\Delta s_{t+1} = \log \frac{S_{t+1}}{S_t} \) are conditionally normal. Then, (1) can be rewritten as,

\[
\mathbb{E}_t (m_{t+1}^*) + \frac{1}{2} \text{Var}_t (m_{t+1}^*) + y_t^* = 0,
\]

and (2) as,

\[
\mathbb{E}_t (m_{t+1}^*) + \frac{1}{2} \text{Var}_t (m_{t+1}^*) + \mathbb{E}_t [\Delta s_{t+1}] + \frac{1}{2} \text{var}_t [\Delta s_{t+1}] + y_t^* + \lambda_t^* - R_P^* = 0.
\]

Here \(R_P^* = -\text{cov}_t (m_{t+1}^*, \Delta s_{t+1}) \) is the risk premium the foreign investor requires for the exchange rate risk when investing in US bonds. We combine these two expressions to find:

Lemma 1. The expected return in levels on a long position in dollars earned by a foreign investor is decreasing in the convenience yield:

\[
\mathbb{E}_t [\Delta s_{t+1}] + (y_t^S - y_t^*) + \frac{1}{2} \text{var}_t [\Delta s_{t+1}] = R_P^* - \lambda_t^*
\]

The left hand side is the excess return to a foreign investor from investing in the US bond relative to the foreign bond. This is the return on the reverse carry trade, given that US yields are typically lower than foreign yields. On the right hand side, the first term is the familiar currency risk premium demanded by a foreign investor going long US Treasurys in dollars. The second term is the convenience yield attached by foreign investors to U.S. Treasurys: A positive convenience yield lowers the return on the reverse carry trade, i.e., the return to investing in US Treasury bonds. Even in the absence of priced currency risk, \(R_P^* = 0 \), U.I.P. fails when the convenience yield is greater than zero, as previously pointed out by Valchev (2016).

Finally, this analysis does not hinge on the log-normality assumption. We use \(L_t (X_{t+1}) = \log \mathbb{E}_t (X_t) - \mathbb{E}_t \log (X_{t+1}) \) to denote the conditional entropy of \(X_t \). If we do not assume log-normality, we can derive the following expression for the expected excess return:

\[
\mathbb{E}_t [\Delta s_{t+1}] + (y_t^S - y_t^*) + L_t \left(\frac{S_{t+1}}{S_t} \right) = R_P^* - \lambda_t^*
\]

where \(R_P^* = -\left(L_t \left(M_{t+1}^* \frac{S_{t+1}}{S_t} \right) - L_t (M_{t+1}^*) - L_t \left(\frac{S_{t+1}}{S_t} \right) \right) \). Backus, Chernov and Zin (2014) refer to \(L_t (X_{t+1}Y_{t+1}) - L_t (X_{t+1}) - L_t (Y_{t+1}) \) as the co-entropy of \(X \) and \(Y \). All our derivations can be rewritten in terms of conditional entropy rather than the conditional variance of the exchange rate. Nevertheless, we develop expressions based
on log-normality, and the conditional variance term, primarily for simplicity.

1.2 U.S. demand for foreign bonds

Since U.S. investors have access to foreign bond markets, there is another pair of Euler equations to consider. An increase in the foreign convenience yield imputed to U.S. Treasurys implies an expected depreciation of the dollar. For a U.S. investor, buying foreign bonds when the dollar is expected to depreciate produces a high carry return. The U.S. investor’s Euler equation when investing in the foreign bond is:

$$\mathbb{E}_t \left(\frac{M_{t+1}^S}{S_{t+1}} e^{y^*_t} \right) = 1.$$ \hspace{1cm} (7)

We also assume that U.S. investors derive a convenience yield when investing in U.S. Treasurys:

$$\mathbb{E}_t \left(M_{t+1}^S e^{y^t} \right) = e^{-\lambda^t}, \hspace{0.5cm} \lambda^t \geq 0.$$ \hspace{1cm} (8)

λ^t is asset-specific. An increase in the U.S. investor’s convenience yield lowers U.S. Treasury bond yields, holding the SDF fixed: $y^*_t = \rho^*_t - \lambda^t$, where $\rho^*_t = -\log \mathbb{E}_t \left(M_{t+1}^S \right)$. We assume log-normality and rewrite these equations to derive an expression for the carry trade return,

$$\left(y^*_t - y^t \right) - \mathbb{E}_t[\Delta s_{t+1}] + \frac{1}{2} var_t[\Delta s_{t+1}] = R P^t + \lambda^t.$$ \hspace{1cm} (9)

where, $R P^t = -cov_t \left(m^t_{t+1}, -\Delta s_{t+1} \right)$ is the risk premium the US investor requires for the exchange rate risk when investing in foreign bonds (i.e. the risk premium attached to the dollar appreciating).

Finally, we combine (5) and (9) to derive a cross-country restriction on the convenience yields imputed to Treasurys and the currency risk premia,

$$\lambda^*_t - \lambda^t = R P^*_t + R P^t - var_t[\Delta s_{t+1}].$$ \hspace{1cm} (10)

All else equal, an increase in λ^*_t has to be accompanied by a proportional increase in the risk premium U.S. investors ($R P^*$) demand on foreign bonds, if we enforce the U.S. investor’s Euler equation for foreign bonds. In an incomplete markets setting, the increase in the risk premium is a natural equilibrium outcome given
that U.S. investors would increase their exposure to foreign exchange risk via the foreign bond carry trade in response to the expected depreciation of the dollar.\footnote{There are some subtleties in this argument when markets are complete which we explain in the section A.1 of the appendix. Alternatively, we could consider scenarios in which the U.S. Euler equation for foreign bonds does not hold for all investors. Suppose that the Euler equations for the U.S. investor in foreign bonds apply to a financial intermediary that is subject to financing frictions as in intermediary asset pricing models. Then, the Lagrange multiplier on this constraint will enter the Euler equation, so that a binding constraint can also restore equilibrium. But note that even with such frictions, our equations linking foreign convenience yield valuations and the exchange rate remain valid.}

1.3 Exchange rates and convenience yields

By forward iteration on eqn. (5), the level of exchange rates can be stated as a function of the interest rate differences, the currency risk premia and the future convenience yields (see Froot and Ramadorai, 2005, for a version without convenience yields).

Lemma 2. The level of the nominal exchange can be written as:

\[
s_t = E_t \sum_{\tau=0}^{\infty} \lambda^*_t + \rho^*_t - E_t \sum_{\tau=0}^{\infty} \left(R^*_t + \frac{1}{2} Var_t[\Delta s_{t+\tau+1}] \right) + \bar{s}. \tag{11}\]

The term \(\bar{s} = E_t[\lim_{\tau \to \infty} s_{t+\tau}] \) is constant under the assumption that the nominal exchange rate is stationary.\footnote{There is empirical support for the proposition that the real dollar exchange rate is stationary. Over the last 30 years, which is our data sample, inflation has been highly correlated and similar across developed countries, so that the nominal exchange rate is also plausibly stationary.}

The exchange rate level is determined by yield differences, the convenience yields, and the currency risk premia. This is an extension of Froot and Ramadorai (2005)’s expression for the level of exchange rates. The first term involves the sum of expected convenience yields on the U.S. Treasurys. The second term involves the sum of bond yield differences. This expression implies that changes in the expected future convenience yields should drive changes in the dollar exchange rate.

Alternatively, we can rewrite this equation as the sum of the convenience yield differentials, the fundamental yield differences, stripped of the convenience yields, and the risk premia:

\[
s_t = E_t \sum_{\tau=0}^{\infty} (\lambda^*_t - \lambda^*_t) + E_t \sum_{\tau=0}^{\infty} (\rho^*_t - \rho^*_t) - E_t \sum_{\tau=0}^{\infty} \left(R^*_t + \frac{1}{2} Var_t[\Delta s_{t+\tau+1}] \right) + \bar{s}. \tag{12}\]
where $\rho_t^s = -\log E_t \left(M_{t+1}^s \right)$ is the fundamental (no convenience effect) bond yield in dollars, and likewise for foreign. Fundamentally, the exchange rate responds only to the difference in perceived convenience yields.

These expressions are derived under the condition that the nominal exchange rate is stationary. When inflation rates are high, this assumption is likely violated. We next derive expressions for the real exchange rate, which may be stationary even if inflation rates are high.

Denote the log of the foreign and domestic price levels as p^*_t and p^s_t, respectively. The real exchange rate is,

$$q_t = s_t + p^s_t - p^*_t. \quad (13)$$

We substitute the real exchange rate expression, (13), into the earlier expressions for nominal exchange rates and rewrite to find:

Lemma 3. The level of the real exchange can be written as:

$$q_t = E_t \sum_{\tau=0}^{\infty} \lambda^*_{t+\tau} + E_t \sum_{\tau=0}^{\infty} (r^s_{t+\tau} - r^*_t) - E_t \sum_{\tau=0}^{\infty} \left(RP^*_t - \frac{1}{2} Var_t \left[\Delta s_{t+\tau+1} \right] \right) + \bar{q}. \quad (14)$$

where, $\bar{q} = E_t \left[\lim_{\tau \to \infty} q_{t+\tau} \right]$ is constant under the assumption that the real exchange rate is stationary. The terms r^s_t and r^*_t are the real interest rates, i.e., $y^s_t - E_t \left[\Delta p^s_t \right]$ is the real dollar interest rate.

1.4 Convenience yields on LIBOR deposits and forward exchange rates

The key measure in our theory is λ^*_t. We next show this object can be measured using forward exchange rates.

In US data, Krishnamurthy and Vissing-Jorgensen (2012) observe that there is a convenience yield on both Treasury bonds and other near-riskless private bonds such as bank deposits. They moreover show that some investors view near-riskless private bonds as partial substitutes for Treasury bonds. It is likely that this same property applies to foreign investors as we assume in this section. We assume that dollar LIBOR deposits also offer convenience yields to investors, but less so than U.S. Treasurys. That is, as noted earlier, our theory posits that investors receive convenience utility from U.S. safe assets, a set that includes both U.S. Treasurys and bank deposits.
Foreign and domestic investors have access to US Libor:

\[E_t \left(M_{t+1} e^{y_t,Libor} \right) = e^{-\beta_t^S \lambda_t^S} \]
\[E_t \left(M_{t+1}^* \frac{S_{t+1}}{S_t} e^{y_t^*,Libor} \right) = e^{-\beta_t^* \lambda_t^*} \]

We can write the spreads:

\[y_t^#,Libor - y_t^S = (1 - \beta_t^S) \lambda_t^S, \quad (15) \]
\[= (1 - \beta_t^*) \lambda_t^*. \quad (16) \]

where \(y_t^#,Libor \) is dollar LIBOR and \(\beta_t^* \) and \(\beta_t^S \) are less than one and reflect the relative safety valuation of dollar bank deposits and U.S. Treasurys.

We introduce banks that issue foreign and dollar deposits that pay LIBOR at rates \(y_t^#,Libor \) and \(y_t^*,Libor \).

In particular, the banks issue dollar deposits that offer a convenience yield to investors. For our present analysis it is not necessary to specify the cost function for creating these low yield deposits. See the model of Krishnamurthy and Vissing-Jorgensen (2015) for one specification of the cost function in terms of collateral backing. The key for our present analysis is that we allow banks to trade in the forward market to swap a non-dollar deposit into a dollar deposit that offers convenience services. Denote \(f_t \) as the forward exchange rate. Bank profit maximization gives:

\[y_t^*,Libor - y_t^#,Libor = f_t^1 - s_t. \quad (17) \]

If dollar deposits offer convenience, then banks will actively trade in the forward to swap foreign deposits vis-a-vis dollar deposits and earn the convenience yield while not altering their exchange rate exposure. In equilibrium, the price of the forward will adjust to equalize these margins.

Relation (17) has two implications. First, the forward price, \(f_t^1 \) embeds a convenience yield. We come to this later when interpreting carry trade relations. Second, equation (17) is the LIBOR covered interest parity (C.I.P.) condition. Note that since it is an arbitrage relation, it holds regardless of the pricing kernel of the bank (other than it is positive). Banks may be owned by foreign households, U.S. households, or a subset
of these households. We do not take a stand at this point. Since the financial crisis, LIBOR C.I.P. has not
held (see Du, Tepper and Verdelhan, 2017). We discuss this issue later in the paper and connect its failure to
intermediary asset pricing as well as explain how its failure affects our safe asset demand theory.

We next define the Treasury basis as:

$$x_t^{Treas} = y_t^S + (f_t^1 - s_t) - y_t^*.$$ (18)

Here, x_t^{Treas} is the violation of the C.I.P. condition when constructed from Treasury yields. We combine the
LIBOR C.I.P. condition with this equation to find:

Lemma 4. The Treasury basis is:

$$x_t^{Treas} = \left(y_t^S - y_t^{S,Libor} \right) - \left(y_t^* - y_t^{*,Libor} \right).$$ (19)

The basis reflects the difference between the relative yields of dollar government bonds and LIBOR deposits,
and foreign government bonds and foreign deposits. The Treasury basis provides a measure of λ_t^*, the foreign
convenience yield on U.S. Treasury bonds:\(^7\)

$$\lambda_t^* = -\frac{x_t^{Treas}}{1 - \beta_t^*}. \quad (21)$$

The key behind this lemma is that both Treasury bond yields and LIBOR rates reflect the foreign convenience
yield, but differentially. Thus the difference, as reflected in the basis, directly measures the foreign convenience
yield. In this version of the model, where only U.S. bonds have convenience yields, the term $\left(y_t^S - y_t^{S,Libor} \right)$
is what captures the foreign convenience yield. In Section 1.6 when we introduce convenience yields on foreign
bonds, we will see that the difference across the foreign and domestic spreads is the right measure in driving
exchange rates.

\(^7\)The observation that Treasury-based C.I.P. violations may be driven by convenience yields was pointed out by Adrien Verdelhan
in a discussion at the Macro Finance Society (2017). If there are no convenience yields, the basis is zero:

$$x_t^{Treas} = \rho_t^S + (f_t^1 - s_t) - \rho_t^* = 0.$$ (20)
Finally, observe that from the standpoint of the U.S. investor,

\[x_t^{\text{Treas}} = -(1 - \beta_t^S)\lambda_t^S. \]

That is, the basis is also related to U.S. investors’ convenience valuation of Treasury bonds and LIBOR deposits. As noted earlier, for us to find a relation between convenience yields and exchange rates, we must have that \(\lambda_t^S \neq \lambda_t^* \), which further implies that \(\beta_t^S \neq \beta_t^* \).

1.5 Testing the model

We arrive at four testable relations of our theory.

Proposition 1.

1. The level of the nominal exchange can be written as:

\[
 s_t = -\mathbb{E}_t \sum_{\tau=0}^{\infty} \frac{x_{t+\tau}}{1 - \beta^*_{t+\tau}} + \mathbb{E}_t \sum_{\tau=0}^{\infty} (y_t^S - y_t^*) - \mathbb{E}_t \sum_{\tau=0}^{\infty} \left(R^*_{t+\tau} - \frac{1}{2} \text{Var}_t \left[\Delta s_{t+\tau+1} \right] \right) + \bar{s}. \tag{22}
\]

2. The level of the real exchange can be written as:

\[
 q_t = -\mathbb{E}_t \sum_{\tau=0}^{\infty} \frac{x_{t+\tau}}{1 - \beta^*_{t+\tau}} + \mathbb{E}_t \sum_{\tau=0}^{\infty} (r_t^S - r_t^*) - \mathbb{E}_t \sum_{\tau=0}^{\infty} \left(R^*_{t+\tau} - \frac{1}{2} \text{Var}_t \left[\Delta s_{t+\tau+1} \right] \right) + \bar{q}. \tag{23}
\]

where, \(\bar{q} = \mathbb{E}_t[\lim_{\tau \to \infty} q_{t+\tau}] \) is constant under the assumption that the real exchange rate is stationary. The terms \(r_t^S \) and \(r_t^* \) are the real interest rates, i.e., \(y_t^S - \mathbb{E}_t[\Delta p_{t+1}^S] \) is the real dollar interest rate.

3. The expected log excess return to a foreign investor of a long position in Treasury bonds is increasing in
the risk premium and the Treasury basis:\(^8\)

\[
E_t[\Delta s_{t+1}] + (y_t^s - y_{t+1}^s) = RP_t^s - \frac{1}{2} var_t[\Delta s_{t+1}] + \frac{x_t^{Treas}}{1 - \beta_t^s} \tag{24}
\]

4. The expected log return to a foreign investor of going long the dollar via the forward contract is:

\[
E_t[\Delta s_{t+1}] - (f_t^1 - s_t) = RP_t^s - \frac{1}{2} var_t[\Delta s_{t+1}] + \frac{\beta_t^s}{1 - \beta_t^s} x_t^{Treas}. \tag{25}
\]

To develop some intuition, we make simplifying assumptions to solve for the real exchange rate at time \(t\), \(q_t\), explicitly as a function of the basis at time \(t\), \(x_t^{Treas}\). We assume that,

\[
\frac{x_t^{Treas}}{1 - \beta_t^s} = \varphi^s \frac{x_{t-1}^{Treas}}{1 - \beta_{t-1}^s} + (1 - \varphi^s) \frac{\bar{x}}{1 - \beta^s} + \epsilon_t, \quad \text{where} \quad 0 < \varphi^s < 1.
\]

That is, the basis follows an AR(1) process with long-term mean of \(\bar{x}\). We likewise assume that,

\[
z_t = r_t^s - r_t^* - RP_t^s + \frac{1}{2} var_t[\Delta s_{t+1}]
\]

also follows an AR(1) process with persistence parameter \(\varphi^z\) and long-term mean \(\bar{z}\). We then evaluate the sum in (23). For the sum to be well defined \(\frac{\bar{x}}{1 - \beta^s}\) must equal \(\bar{z}\). Within a fully specified model, such a relation can be ensured by central bank behavior that targets a real exchange rate (see the examples in Engel and West (2005)). Then, the log of the real exchange is given by the following expression:

\[
q_t = -\frac{x_t^{Treas}}{(1 - \beta_t^s)(1 - \varphi^s)} + \frac{z_t}{1 - \varphi^z} + \bar{q}. \tag{26}
\]

The quantitative effect of the dollar basis on the dollar depends on the persistence of the basis and the convenience yield on U.S. safe assets.

\(^8\)We can also write the expected log excess return to a foreign investor of a long position in Treasury bonds in terms of the real exchange rate:

\[
E_t[\Delta q_{t+1}] + \left((y_t^s - E_t[\Delta p_{t+1}^s]) - (y_t^s - E_t[\Delta p_{t+1}^s]) \right) = RP_t^s - \frac{1}{2} var_t[\Delta s_{t+1}] + \frac{x_t^{Treas}}{1 - \beta_t^s}
\]

Note however that the expected change in the real exchange rate is equal to the expected change in the nominal exchange rate minus the difference between US and foreign expected inflation. Then, we can rewrite the LHS, canceling out the expected inflation terms, to equal \(E_t[\Delta s_{t+1}] + (y_t^s - y_t^s)\), to recover the same relation as (24).
1.6 Convenience yields on foreign bonds

We have so far assumed that foreign government bonds generate no convenience utility for its holders. This allowed us to most transparently explain how the convenience yield affects exchange rate determination. We now consider the realistic case when foreign bonds also carry a convenience yield. The notation is more cumbersome, but the economics follows naturally. We show that all of the prior results continue to hold with the twist that λ_t^* should be interpreted as the the convenience yield foreigners derive from holding U.S. Treasurys in excess of the convenience yields they derive from holding their own bonds, and λ^S should be interpreted as the convenience yield U.S. investors derive from U.S. Treasurys in excess of the yield derived from the foreign bonds. Additionally, x^{Treas}_t should be interpreted as the convenience yield foreigners derive from holding U.S. Treasurys relative to U.S. LIBOR assets, relative to the same object in foreign bonds.

To arrive at these findings, we enrich notation:

- λ^*_t is the convenience yield of foreign investors for foreign bonds.
- λ^S_t is the convenience yield of foreign investors for U.S. Treasury bonds.
- $\beta^S_{t,}\lambda^S_t$ is the convenience yield of foreign investors for U.S. LIBOR deposits.
- $\beta^*_{t,}\lambda^*_t$ is the convenience yield of foreign investors for foreign LIBOR deposits.
- $\lambda^+_{t,}$ is the convenience yield of U.S. investors for foreign bonds.
- $\lambda^S_{t,}$ is the convenience yield of U.S. investors for U.S. Treasury bonds.
- $\beta^S_{t,}\lambda^S_{t,}$ is the convenience yield of U.S. investors for U.S. LIBOR deposits.
- $\beta^*_{t,}\lambda^*_t$ is the convenience yield of U.S. investors for foreign LIBOR deposits.

Appendix A.2 provides the details of the derivations. Here we just highlight the important relations. First, we find that (see equation (41) of the Appendix),

$$E_t[\Delta s_{t+1}] + \left(y_t^S - y_t^*\right) + \frac{1}{2} var_t[\Delta s_{t+1}] = R P_t^* - \left(\lambda^S_t - \lambda^*_t\right).$$ \hspace{1cm} (27)
On the RHS in parentheses is the excess of the foreign investor’s convenience yield for U.S. Treasury bonds over foreign government bonds. In our basic model, this term was \(\lambda_t^* \), the foreign investor’s convenience yield for U.S. Treasury bonds.

By forward iteration on equation (27), the level of exchange rates can be stated as a function of the interest rate differences, the currency risk premia and the future excess convenience yields:

Lemma 5. The level of the nominal exchange can be written as:

\[
s_t = E_t \sum_{\tau=0}^{\infty} (\lambda_{t+\tau}^S - \lambda_{t+\tau}^*) + E_t \sum_{\tau=0}^{\infty} (y_{t+\tau}^S - y_{t+\tau}^*) - E_t \sum_{\tau=0}^{\infty} \left(RP_{t+\tau}^* - \frac{1}{2} Var_{t+\tau}[\Delta s_{t+\tau+1}] \right) + \bar{s}. \tag{28}
\]

A similar expression applies for the real exchange rate, following the derivations of the previous sections.

Last, we construct the basis measure:

\[
x_t^{Treas} = y_t^S + (f_t^1 - s_t) - y_t^*
\]

\[
= (y_t^S - y_t^{*, Libor}) - (y_t^* - y_t^{*, Libor})
\]

\[
= -(1 - \beta_t^S)\lambda_t^S + (1 - \beta_t^{*, *}) \lambda_t^*
\]

The basis reflects the difference between the relative yields of dollar government bonds and LIBOR deposits, and foreign government bonds and foreign deposits.

Proposition 2. Under the assumption that \(\beta_t^{S,*} = \beta_t^{*,*} \), the level of the nominal exchange can be written as:

\[
s_t = -E_t \sum_{\tau=0}^{\infty} \frac{x_t^{Treas}}{1 - \beta_t} + E_t \sum_{\tau=0}^{\infty} (y_{t+\tau}^S - y_{t+\tau}^*) - E_t \sum_{\tau=0}^{\infty} \left(RP_{t+\tau}^* - \frac{1}{2} Var_{t+\tau}[\Delta s_{t+\tau+1}] \right) + \bar{s}. \tag{29}
\]

The assumption that the beta’s for U.S. and foreign LIBOR are the same means that the relative safety of these assets are the same regardless of currency. To a first order, the assumption seems plausible to us.
1.7 Frictions in banks and LIBOR C.I.P. deviation

Equation (17) is derived under the assumption of frictionless bank arbitrage. We showed that under these conditions, covered interest rate parity computed using LIBOR rates holds exactly. However, as shown by Du, Tepper and Verdelhan (2017), this condition has not held post-crisis. In particular,

\[y_t^{*,Libor} - (f_t - s_t) > y_t^{$,Libor} \] (30)

implying that banks find it cheaper to borrow at \(y_t^{$,Libor} \) in dollars and swap the borrowing in the forward market back to the foreign currency rather than borrow at \(\ell_t^{*} \). Du, Tepper and Verdelhan (2017) present compelling evidence that the LIBOR basis has not been zero because of bank regulations that constrain the arbitrage.

We extend our model to discuss how frictions in banks affects our analysis. The extension is minimal rather than a full-blown intermediary asset pricing model as these frictions are not the primary focus of our analysis.

Suppose that a bank chooses \(\theta_t^B \), the quantity of the LIBOR rate arbitrage to solve:

\[
\max_{\theta_t^B} \theta_t^B \left(y_t^{*,Libor} - (f_t - s_t) - y_t^{$,Libor} \right) - \kappa \left(\theta_t^B \right)^2
\]

where \(\kappa \) parameterizes the capital/leverage cost associated with this strategy. The F.O.C. for the bank is,

\[-\kappa \theta_t^B = x_t^{LIBOR} \equiv y_t^{$,Libor} - \ell_t^{*} + (f_t - s_t)\]

Here \(x_t^{LIBOR} \) is the LIBOR basis. If \(y_t^{$,Libor} \) is particularly low, say driven by an increase in demand for dollar deposits, then \(x_t^{LIBOR} \) will rise and banks will increase the quantity of such deposits, \(\theta_t^B \), swapping these deposits into foreign currency to keep their exchange rate exposure unaffected. In our baseline model, we assumed that such swapping was frictionless. Now we assume that it is costly which then means that \(x_t^{LIBOR} \) will not be zero.

Suppose that across the banking sector the quantity of deposits supplied in this way is \(\Theta_t^B = \theta_t^B \). Then, the LIBOR basis is,

\[x_t^{LIBOR} = -\kappa \Theta_t^B \] (31)
If the demand for dollar deposits from foreign safe asset investors rises, so that the equilibrium Θ^B_t rises, the basis also becomes more negative. This latter connection is the key for what follows.

The Treasury basis, when the LIBOR basis is non-zero, is,

$$x^\text{Treas}_t = y^S_t - y^*_t + f_t - s_t = -(1 - \beta^*_t)\lambda^*_t - \kappa \Theta^B_t$$ \hspace{1cm} (32)

Note that the Treasury basis measures the foreign demand for U.S. safe assets through both the Treasury convenience yield λ^*_t and through movements in the quantity of dollar deposits (Θ^B_t).

Finally, this analysis also implies that the LIBOR basis measures safe asset in demand, and in particular:

Proposition 3. Consider the case where $\kappa > 0$. Suppose that when the foreign investor’s convenience demand for US safe assets rises, their demand for dollar LIBOR assets also rises, so that Θ^B_t rises when λ^*_t rises. Then,

1. x^LIBOR_t will be positively correlated with x^Treas_t.

2. x^LIBOR_t will explain movements in the dollar exchange rate.

We show that both of these predictions are supported in the data.

2 The U.S. Treasury Basis

We use two datasets, a panel from 1988 to 2017 and a longer single time series from 1970 to 2016 for the United States/United Kingdom pair. The shorter panel is based on quarterly data from 10 developed economies. The countries are Australia, Canada, Germany, Japan, New Zealand, Norway, Sweden, Switzerland, United States, and United Kingdom. The sample starts in 1988Q1 and ends in 2017Q2. However, the panel is unbalanced, with data for only a few countries at the start of the sample. The data comprises the bilateral exchange rates with respect to the U.S. dollar, 12-month bilateral forward foreign exchange contract prices, and 12-month government bond yields and LIBOR rates in all countries. We use actual rather than fitted yields for government bonds whenever possible. The main exception is the 2001:9-2008:5 period when the U.S. stopped issuing 12-month bills.\(^9\)

\(^9\)See Table 12 in the Appendix for detailed information. The Data Appendix contains information about data sources.
An important issue in our empirical strategy concerns bond maturity. To understand the issue, consider two extremes: one-day maturity bonds versus perpetuities. Let us also suppose that a period in the model is one-day. The basis measured from one-day maturity bonds measures the convenience yield for the next one-day. From our earlier expressions, it can be seen that the relevant term in driving exchange rates is the expected value of the convenience yield from \(t \) to \(\infty \) and not just the overnight convenience yield at time \(t \):

\[
s_t = E_t \sum_{\tau=0}^{\infty} \lambda^*_{t+\tau} + ...\]

Thus when we run a regression of \(s_t \) on \(x_{t,1-day}^* \) we are using \(x_{t,1-day}^* \) to measure \(E_t \sum_{\tau=0}^{\infty} \lambda^*_{t+\tau} \), which gives rise to a classical measurement error problem. Unless the basis is unit root, which it is evidently not, the one-day basis will be a noisy measure of the expected convenience yield term. This logic suggests measuring the convenience yield from long-term bonds (ideally, perpetuities), which may encode the time-\(t \) expectation of the convenience yield over the maturity of the bond. But at long maturities there is another factor at work: long maturity Treasury bonds carry considerable interest rate risk and may not satisfy foreign-investors’ safe asset demand. In this case, their prices will not reflect a convenience yield. In fact, Du, Im and Schreger (2018) document that convenience yields when measured from long-maturity Treasury bonds have been negative recently indicating that the safe-asset demand effects we highlight are not contained in these prices. Thus, we have focused on the 3-month and 12-month maturities. Throughout this paper we report results using the 12-month maturity.\(^{10}\)

We construct the basis using the 12-month yields and forwards for each currency following (18). We do so using both government bond yields as measures of \(y_t \) as well as LIBOR rates as measures (\(x_{t,Treas}^* \) and \(x_{t,LIBOR}^* \)). In each quarter, we construct the mean and median basis across the panel of countries for that quarter. Figure 2 plots these series.

The blue thick-dashed line corresponds to the median LIBOR basis. The dotted blue-line is the mean LIBOR basis. This series is not informative pre-crisis because its spikes are driven by idiosyncracies of LIBOR rates in Sweden in 1992 and Japan in 1995. That basis is close to zero for most of the sample and turns negative and volatile beginning in 2007. These facts concerning the LIBOR basis are known from the work of Du, Tepper and Verdelhan (2017). The solid black line is the mean Treasury basis and the dashed black line is the median Treasury basis. Unlike the LIBOR basis, the Treasury basis has always been negative and

\(^{10}\)See Section E.3 of the Separate Appendix for the 3-month results. The results using the 3-month are broadly consistent with the 12-month results but uniformly weaker, likely because the 3-month basis is a noisy measure of the long-term expectation term that drives exchange rates under our theory.
Table 1 reports the time-series moments of the Treasury basis, the Libor basis, the 12M Treasury yield difference and the 12M forward discount. The average mean Treasury basis is -25 bps per annum, which means that foreign investors are willing to give up 25 bps per annum more for holding currency-hedged U.S. Treasurys than their own bonds. The standard deviation of the mean Treasury basis is 24 bps per quarter. In contrast, the average LIBOR basis is -7 bps.

Before the financial crisis, when the LIBOR basis was close to zero (-4 bps), the Treasury basis (-27 bps) is mostly due to this differential in the Treasury-LIBOR spreads. The U.S. LIBOR-Treasury spread is 23 bps larger than its foreign counterpart. During and after the crisis, this U.S. LIBOR-Treasury spread is only 7 bps per annum higher than the foreign one, while the average LIBOR basis increases to -13 bps per annum. Over the entire sample, the Treasury and Libor basis have a correlation of 0.36. This correlation is largely driven

Figure 2: LIBOR and Treasury basis in basis points from 1988Q1 to 2017Q2. The maturity is one year.
by the post-crisis relation where the correlation 0.56. The high correlation between these bases post-crisis is consistent with our Proposition 3 in Section 1.7. Finally, the Treasury basis is negatively correlated (-0.27) with the Treasury yield difference and the forward discount.

Table 2 provides some statistics on the covariates of the Treasury basis. In the first column, we regress the basis on the OIS-T-bill spread which is a measure of the liquidity premium on Treasury bonds. Note that the basis is negative on average (see Figure 2). There is little relation between the basis and OIS-Tbill. The second column instead uses the spread between LIBOR and OIS. This spread is strongly negatively related to the basis. When the LIBOR-OIS spread rises, the basis goes more negative, as in the crisis episode pictured in Figure 1. The R^2 of the regression is 69.5% indicating a flight-to-quality pattern in the foreign demand for safe Treasury bonds. Note that OIS data is only available since 2001. Column (3) reports the correlation with the LIBOR-Tbill spread which we can construct to the start of our sample in 1988. There is a strong negative relation between the spread and the basis, and we learn from columns (1) and (2) that the relation is likely due to the LIBOR-OIS component of this spread (note also that the coefficient on LIBOR-OIS is quite similar to the coefficient on LIBOR-T-bill). Column (4) includes the spread between US interest rates and the mean foreign interest rate. When US rates are high relative to foreign rates, the basis is more negative. We have run specifications where we include both US and foreign interest rates, and subject to the caveat that these rates do move together, the correlation seems to be driven by the US interest rate and not the foreign rate. Column (5) and (6) include both the LIBOR spread and the US to world interest rate differential. The explanatory power for the basis is largely driven by the LIBOR spread as one can see when comparing the R^2 in columns (5) and (6) to those in columns (3) and (4).

Our second dataset covers the US/UK cross. This data begins in 1970Q1 and ends in 2016Q2. The daily data quality is poor, with many missing values and implausible spikes in the constructed basis from one day to the next. To overcome these measurement issues, we take the average of the available data for a given quarter as the observation for that quarter. We construct the Treasury basis in the same manner as described earlier. Figure 3 plots the resulting series. LIBOR rates do not exist back to 1971. The average US/UK Treasury basis is 0.84 bps per annum. On average, U.K. investors are close to indifferent between holding U.S. Treasurys on a currency-hedged basis and holding gilts. However, the standard deviation is 48 bps. per quarter. For comparison the figure also plots the mean basis from the cross-country panel. The two series track each other.
Table 1: Summary Statistics of Cross-sectional Mean Basis and Interest Rate Difference

Table reports summary statistics in percentage points for the 12-M Treasury dollar basis p_{Treas}, the Libor dollar basis p_{Libor}, the 12M yield spread $y^{S} - y^{*}$, and the 12M forward discount $f - s$ in logs. Table reports time-series averages, time-series standard deviations and correlations. Numbers reported are time-series moments of the cross-sectional means of the unbalanced Panel. The countries are Australia, Canada, Germany, Japan, New Zealand, Norway, Sweden, Switzerland, United States, and United Kingdom. The sample starts in 1988Q1 and ends in 2017Q2. For each of these cross-sectional averages, we employ the same set of countries that are in the sample at time t.

<table>
<thead>
<tr>
<th></th>
<th>p_{Treas}</th>
<th>p_{Libor}</th>
<th>$y^{S} - y^{*}$</th>
<th>$f - s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: 1988Q1−2017Q2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>-0.25</td>
<td>-0.07</td>
<td>-0.45</td>
<td>-0.20</td>
</tr>
<tr>
<td>stdev</td>
<td>0.24</td>
<td>0.18</td>
<td>1.87</td>
<td>1.95</td>
</tr>
<tr>
<td>skew</td>
<td>-1.33</td>
<td>-3.08</td>
<td>-0.61</td>
<td>-0.29</td>
</tr>
<tr>
<td>x_{Treas}</td>
<td>1.00</td>
<td>0.36</td>
<td>-0.27</td>
<td>-0.39</td>
</tr>
<tr>
<td>x_{Libor}</td>
<td>0.36</td>
<td>1.00</td>
<td>0.47</td>
<td>0.40</td>
</tr>
<tr>
<td>$y^{US} - y^{*}$</td>
<td>-0.27</td>
<td>0.47</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>Panel B: 1988Q1−2007Q4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>-0.27</td>
<td>-0.04</td>
<td>-0.33</td>
<td>-0.05</td>
</tr>
<tr>
<td>stdev</td>
<td>0.26</td>
<td>0.16</td>
<td>2.25</td>
<td>2.34</td>
</tr>
<tr>
<td>skew</td>
<td>-0.93</td>
<td>-4.62</td>
<td>-0.69</td>
<td>-0.42</td>
</tr>
<tr>
<td>x_{Treas}</td>
<td>1.00</td>
<td>0.34</td>
<td>-0.31</td>
<td>-0.41</td>
</tr>
<tr>
<td>x_{Libor}</td>
<td>0.34</td>
<td>1.00</td>
<td>0.54</td>
<td>0.48</td>
</tr>
<tr>
<td>$y^{US} - y^{*}$</td>
<td>-0.31</td>
<td>0.54</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>Panel C: 2008Q1−2017Q2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>-0.20</td>
<td>-0.13</td>
<td>-0.64</td>
<td>-0.44</td>
</tr>
<tr>
<td>stdev</td>
<td>0.21</td>
<td>0.20</td>
<td>0.78</td>
<td>0.80</td>
</tr>
<tr>
<td>skew</td>
<td>-2.51</td>
<td>-1.78</td>
<td>0.16</td>
<td>0.09</td>
</tr>
<tr>
<td>x_{Treas}</td>
<td>1.00</td>
<td>0.56</td>
<td>0.00</td>
<td>-0.25</td>
</tr>
<tr>
<td>x_{Libor}</td>
<td>0.56</td>
<td>1.00</td>
<td>0.51</td>
<td>0.35</td>
</tr>
<tr>
<td>$y^{US} - y^{*}$</td>
<td>0.00</td>
<td>0.51</td>
<td>1.00</td>
<td>0.97</td>
</tr>
</tbody>
</table>
Table 2: The Treasury Basis and Interest Rate Spreads

We regress the quarterly average Treasury basis, π^{Treas}, on a number of US money market spreads and the US to foreign government bond interest rate differential. The spreads and interest rate differential are constructed as the quarterly average of the indicated series. Data is from 1988Q1 to 2017Q2 for the regressions with 118 observations and 2001Q4 to 2017Q2 for the regressions with 63 observations. OLS standard errors in parentheses.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 6-month OIS−T-bill</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 6-month LIBOR−OIS</td>
<td>-0.40</td>
<td>-0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.034)</td>
<td>(0.027)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 6-month LIBOR−T-bill</td>
<td></td>
<td>-0.47</td>
<td>-0.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.045)</td>
<td>(0.044)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y^s − y^∗$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.047</td>
<td>-0.07</td>
<td>-0.029</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>R^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td>69.5</td>
<td>48</td>
<td>16.7</td>
<td>82.9</td>
<td>54</td>
</tr>
<tr>
<td>N</td>
<td>63</td>
<td>63</td>
<td>118</td>
<td>118</td>
<td>63</td>
<td>118</td>
</tr>
</tbody>
</table>

closely for the period where they overlap, but the US/UK basis is consistently higher than the panel basis. This may indicate that UK bonds also have a convenience yield, which is sometimes larger than that of US bonds. Additionally, the basis is volatile in the 1970s and frequently positive. Suffering a balance-of-payments deficit in the early 1970s, the Nixon administration decided to suspend convertibility of the dollar into gold in 1973 and effectively ended the Bretton-Woods system. This action led to considerable uncertainty in the international monetary system, with some observers noting that foreigners became unwilling to continue to hold the dollar assets necessary to finance the balance-of-payments deficit (see Bach et al. (1972) and Farhi and Maggiori (2017)). Additionally, the U.K. suffered a balance-of-payments crisis in 1976, turning to the IMF for a large loan. These shifts in asset demand for U.S. and then U.K. bonds are apparent in the figure: the basis turns positive in 1973 before subsequently turning negative in 1976.
Figure 3: US/UK Treasury basis from 1970Q1 to 2017Q2 and the mean Treasury basis across the panel of countries, in basis points. The maturity is one year.

3 Joint Dynamics of Exchange Rates, Treasury Bases, and Convenience Yields

We next turn to providing empirical support for the propositions outlined in the theory. We begin by showing that in univariate regressions, innovations to the Treasury basis correlate with innovations in the dollar exchange rate in both the cross-country panel and the US/UK data. This provides support for result 1 in Proposition 1 and Proposition 2. We also show that the LIBOR basis comoves with the exchange rate in the post-crisis sample but not the pre-crisis sample, consistent with Proposition 3. We then show that the basis explains future movements in currency excess returns and the exchange rate, confirming result 2 in Proposition 1. We put these results together in a vector auto-regression (VAR) allowing us to fully describe the dynamic relation between the exchange rate and the basis. Finally, we provide a variance decomposition from the VAR as well as a Campbell-Shiller decomposition for exchange rates that quantify how much basis shocks explain exchange
rate movements.

3.1 Variation in the Treasury Basis and the Dollar

We denote the cross-sectional mean basis in the panel as π_{t}^{Treas}. Similarly, we use $\bar{y}_t^* - y_t^S$ to denote the cross-sectional average of yield differences, and $\bar{\pi}_t$ denotes the equally weighted cross-sectional average of the log of bilateral exchange rates against the dollar. For each of these cross-sectional averages, we employ the same set of countries that are in the sample at time t. We construct quarterly AR(1) innovations in the basis by regressing $\pi_{t}^{Treas} - \pi_{t-1}^{Treas}$ on $\bar{y}_{t-1}^S - \bar{y}_t^*$ and computing the residual, $\Delta \pi_{t}^{Treas}$.11 We then regress the contemporaneous quarterly change in the spot exchange rate, $\Delta \pi_t \equiv \pi_t - \pi_{t-1}$, on this innovation.

Table 3 reports the results. From columns (1), (3), (5), (6) and (8), we see that the innovation in the Treasury basis strongly correlates with changes in the exchange rate. The R^2s are quite high for exchange rates, i.e. in light of the well-known exchange rate disconnect puzzle (Froot and Rogoff, 1995; Frankel and Rose, 1995). Our regressors account for 16.1% to 42.4% of the variation in the dollar’s rate of appreciation. The sign is negative as predicted by Proposition 1. The result is also stable across the pre-crisis and post-crisis sample. From column (1), we see that a 10 bps decrease in the basis (or an increase in the foreign convenience yield) below its mean coincides with a 0.96% appreciation of the U.S. dollar.

To provide a further sense of magnitudes, note that the basis is mean reverting with an AR(1) coefficient of 0.53. A 10 basis point increase in the basis today implies that next quarter’s basis will be about 5 basis points, and the following quarter will be 2.5 basis points, etc. Substituting these numbers into (26) and dividing by 4 to convert to quarterly values, the sum of these future increases is $\frac{10}{4} \times \frac{1}{1-0.53} = 5.3$. From (26), to rationalize the 0.96% appreciation we need a value of $1 - \beta^*$ of $\frac{5.3}{96} = 0.055$.

The LIBOR basis has explanatory power in the post-crisis sample as has been documented in prior work by Avdjiev et al. (2016). They attribute this effect to an increase in the supply of dollars after a dollar depreciation by a foreign banking sector that borrows heavily in dollars. Our theory, outlined in Section 1.7, runs through safe asset demand. In the post-crisis period, frictions in banking lead the LIBOR basis to also reflect foreign convenience demand. Thus both the exchange rate and the LIBOR basis reflect convenience demand, driving the post-crisis relation between these variables. In the pre-crisis sample there is no relation between the LIBOR

11Because our data is an unbalanced panel, we construct country-level changes in the basis first, and then take the cross-country average to arrive at the change in the basis.
basis and the appreciation of the dollar because banks act to drive the LIBOR basis to zero.

Table 3: Average Treasury Basis and the USD Spot Nominal Exchange Rate

The dependent variable is the quarterly change in the log of the spot USD exchange rate against a basket. The independent variables are the innovation in the average Treasury basis, $\Delta \bar{x}^{Treas}$, as log yield (i.e. 50 basis points is 0.005), the lagged value of the innovation, the innovation in the LIBOR basis, and the innovation in the US-to-foreign Treasury yield differential. Data is quarterly. OLS standard errors in parentheses.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \bar{x}^{Treas}$</td>
<td>-9.62, (2.05)</td>
<td>-9.70, (1.95)</td>
<td>-9.30, (1.70)</td>
</tr>
<tr>
<td>$\Delta \bar{x}^{LIBOR}$</td>
<td>-2.48, (3.05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag $\Delta \bar{x}^{Treas}$</td>
<td>-6.65, (1.94)</td>
<td>-6.21, (1.69)</td>
<td></td>
</tr>
<tr>
<td>$\Delta(y^s - \bar{y}^*)$</td>
<td></td>
<td>3.80, (0.70)</td>
<td>3.59, (0.59)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>16.1</td>
<td>0.6</td>
<td>23.5</td>
</tr>
<tr>
<td>N</td>
<td>117</td>
<td>117</td>
<td>116</td>
</tr>
</tbody>
</table>

Column (3) of Table 3 includes the contemporaneous and the lagged innovation to the basis. This specification increases the R^2 to 23.5%. The explanatory power of the lag is somewhat surprising and is certainly not consistent with our model as it indicates that there is a delayed adjustment of the exchange rate to shocks to the basis. On the other hand, time-series momentum has been shown to be a common phenomena in many asset markets, including currency markets (see Moskowitz, Ooi and Pedersen, 2012), although there is no commonly agreed explanation for such phenomena. The existence of momentum also indicates that $\frac{1}{1-\beta}$ is higher than the coefficient on the contemporaneous innovation, since a shock to the basis affects exchange rates for two quarters. We will evaluate the full impact via a Vector Autoregression in Section 3.3.

Column (4) of the table includes the innovation in the interest rate differential, $y^s - \bar{y}^*$, constructed analogous to the basis innovation. We see that increases in this interest rate spread has significant explanatory power in our sample. A rise in the US rate relative to foreign appreciates the currency, which is what textbook models of exchange rate determination will predict (and is what equation (11) predicts). We include this covariate in column (5) along with the basis innovation. The R^2 rises to 42.4% and the coefficient estimates and standard
errors are nearly unchanged. This is because the basis innovation and interest rate innovation are nearly uncorrelated in this sample (note: the levels are negatively correlated).

Figure 4: Scatter plot of changes in the log exchange rate, averaged over a quarter, against shocks to the quarterly average basis. Data is from 1988Q1 to 2017Q2. In red we plot the fitted regression line. The R^2 is 22.8% and the slope coefficient is -14.6 with a t-statistic of 5.8.

The FX markets in both spot and forward are large and liquid. Nevertheless, one may want to know the extent to which the relation we uncover stems from micro-structure order flow effects as in Evans and Lyons (2002) or Froot and Ramadorai (2005). Our theory does not involve these types of effects, and to test our theory ideally our data would reflect the mid of the bid and ask. Figure 4 presents a scatter plot of the change in the quarterly average log exchange rate against the change in the quarterly average basis. By computing a quarterly average, we average out bid-ask bounce and thus likely measure true mid-market prices. The relation we uncover is quite strong in this averaged data (in fact it is stronger than the end-of-quarter data of Table 3). Additionally, we can see from the graph that the variation reflected in the exchange rate is an order of magnitude larger than typical bid-ask spreads. The standard-deviation of exchange rate changes in log points is 0.04, or 4%, which is well above typical bid-ask spreads. The standard-deviation of Treasury basis changes
is 0.00134 (13.4 basis points). The slope coefficient on the fitted regression line of -14.5 implies that a one standard deviation change in the basis drives a 1.94% move in the exchange rate, which is also an order of magnitude larger than bid-ask spreads. Finally, the evidence in column (3) of Table 3 for momentum relates the lagged innovation in the basis to next quarter’s change in the exchange rate.12

Next we turn to the US/UK data. The sample is longer, going back to 1970Q1. Figure 5 plots the real exchange rate in units of GBP-per-USD in red against the US/UK Treasury basis in blue. Both series are based on quarterly averaged data. We use the real exchange rate here because there are clear trends in the price levels of both countries in the 1970s and early 1980s that we would expect to enter exchange rate determination. It is evident that the two series are negatively correlated. Table 4 presents regressions analogous to that of Table 3. We again see a strong relation between shocks to the basis and real exchange rate changes. The relation becomes stronger later in the sample. We think this is in part because of measurement issues with the basis

12In section D of the separate Appendix, we also show predictability evidence in Table A.1 and A.3 relating the current basis to future changes in the exchange rate. Our results are evidently not driven by micro-structure effects.
Table 4: US/UK Treasury Basis and the Spot Real Exchange Rate

The dependent variable is the quarterly change in the quarterly-mean of the log of the spot USD/UK real exchange rate (quoted in GBP-per-USD). The independent variables are the innovation in the quarterly average Treasury basis, $\Delta \pi^{Treas}$, as log yield (i.e. 50 basis points is 0.005), the lagged value of the innovation, and the innovation in the real US-UK interest rate differential. Data is quarterly. OLS standard errors in parentheses.

<table>
<thead>
<tr>
<th></th>
<th>1970Q1 - 2016Q2</th>
<th>1980Q1 - 2016Q2</th>
<th>1990Q1 - 2016Q2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \pi^{Treas}$</td>
<td>-1.77 (0.78)</td>
<td>-1.74 (0.77)</td>
<td>-3.40 (1.57)</td>
</tr>
<tr>
<td>Lag $\Delta \pi^{Treas}$</td>
<td>-1.70 (0.78)</td>
<td>-1.69 (0.77)</td>
<td>-4.59 (1.52)</td>
</tr>
<tr>
<td>$\Delta(y^$ - \bar{y}^{UK})$</td>
<td>0.13 (0.08)</td>
<td>0.13 (0.08)</td>
<td>0.13 (0.08)</td>
</tr>
<tr>
<td>R^2</td>
<td>5.0</td>
<td>1.6</td>
<td>6.5</td>
</tr>
<tr>
<td>N</td>
<td>183</td>
<td>185</td>
<td>183</td>
</tr>
</tbody>
</table>

during the 1970s. Note the spikey behavior of the basis in the 1970s in Figure 5. In the sample from 1990 onwards, the regression R^2 is 28.4% which is a remarkably strong fit. The coefficient in column (4) of the Table indicates that a 10 basis point increase in the basis is correlated with an 0.34% depreciation in the US dollar against the pound. The coefficients using the full sample are smaller than that of Table 3. For column (5), where the sample starts in 1990, the coefficient of -11.67 is similar in magnitude to our earlier estimates.

Column (2) considers the innovation in the interest rate differential as a regressor. In this sample in contrast to the cross-country sample, the interest rate differential has almost no explanatory power for the exchange rate. As noted in the introduction, the prior evidence linking interest rate changes and exchange rates is mixed and this is a clear example of this pattern. The source of the difference is the time period: If we focused on the sample from 1990 onwards, the interest rate differential has explanatory power similar to the result in Table 3. Column (3) includes basis innovations and interest rate differential innovations. The coefficients on the basis in column (3) are almost identical to those of column (1).
3.2 Treasury Basis Forecasts Currency Excess Returns and Exchange Rates

We turn to the second implication of Proposition 1, which can be read as a forecasting regression. A more negative x_t (high λ^*_t) today means that today’s dollar exchange rate appreciates, which induces an expected depreciation over the next period. We define the annualized log excess return as

$$rx_{t \rightarrow t+k} = \frac{1}{k} \left(\Delta s_{t \rightarrow t+k} + k(y^*_t - \bar{y}_t) \right)$$

Note that the LHS of equation (24) is akin to the return on the reverse currency carry trade. It involves going long the U.S. Treasury bond, funded by borrowing at the rate of the foreign government bond. The carry trade return has a risk premium term (RP), and following the literature, a proxy for this risk premium is the rate differential across the countries. Thus we include the mean Treasury yield differential at each date as a control in our regression. Additionally as we have shown in Table 3, there is a slow adjustment to basis shocks, as given by the lag of Δx_{Treas}, which we also include in our regression.

We project future excess returns $rx_{t \rightarrow t+k}$ on the average Treasury basis, \bar{x}_{Treas}, the nominal Treasury yield difference ($y^*-\bar{y}$) and the change in the average Treasury basis, as well as the lagged change in the Treasury basis:

$$rx_{t \rightarrow t+k} = \alpha^k + \beta^k_{x}\bar{x}_{Treas}^k + \beta^k_{y}(y^*_t - \bar{y}_t) + \beta^k_{L}\Delta \bar{x}_{Treas}^k + \gamma^k_{L}\Delta \bar{x}_{Treas}^{k-1} + \epsilon^k_{t+k}$$

Our theory suggests that the coefficient β_x should be positive. We run this regression using quarterly data, but compute the returns on the LHS as 3-months, one-year, two-year, and three-year returns. Because there is overlap in the observations, we compute heteroskedasticity and autocorrelation adjusted standard errors.

Table 5 reports the results obtained when forecasting the annualized excess returns on a long position in the dollar. We project future excess returns $rx_{t \rightarrow t+k}$ on the average Treasury basis, \bar{x}_{Treas}, the nominal Treasury yield difference ($y^*-\bar{y}$) and the change in the average Treasury basis, as well as the lagged change in the Treasury basis. Panel A reports the regression results for the entire sample.

The slope coefficient on the average basis β^k_x varies from -16.76 at the 3-month horizon to 8.12 at the 3-year horizon. A one-standard-deviation negative shock to the basis of 20 bps increases the expected excess returns by 3.35% per annum over the first 3 months, as the dollar continues to appreciate for another quarter. However, this basis-induced momentum effect is short-lived and the slope coefficient switches signs over longer holding periods. The long-horizon estimates are an accurate reflection of the basis effect after stripping away the momentum effect, as we discuss below. These effects are economically significant. A widening in the
Table 5: Forecasting Currency Excess Returns in Panel Data

The dependent variable is the annualized nominal excess return (in logs) r_{t+k}^{fx} on a long position in U.S. Treasuries and a short position (equal-weighted) in all foreign bonds over k quarters. The independent variables are the average Treasury basis, \bar{x}_{Treas}, the nominal Treasury yield difference ($y^s - y^*$), the change in the average Treasury basis $\Delta \bar{x}_{Treas}^t$, and the lagged change in the average Treasury basis $\Delta \bar{x}_{Treas}^{t-1}$. Data is quarterly from 1988Q1 to 2017Q2. Heteroskedasticity and autocorrelation adjusted standard errors in parentheses.

<table>
<thead>
<tr>
<th></th>
<th>\bar{x}_{Treas}</th>
<th>$y^s - y^*$</th>
<th>$\Delta \bar{x}_{Treas}^t$</th>
<th>Lag $\Delta \bar{x}_{Treas}^{t-1}$</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: 1988-2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 months</td>
<td>-16.76</td>
<td>-0.17</td>
<td>-7.96</td>
<td>2.80</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>(13.15)</td>
<td>(1.36)</td>
<td>(10.29)</td>
<td>(10.25)</td>
<td></td>
</tr>
<tr>
<td>1 year</td>
<td>-0.63</td>
<td>0.28</td>
<td>-7.46</td>
<td>-2.93</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>(8.72)</td>
<td>(0.96)</td>
<td>(5.64)</td>
<td>(3.93)</td>
<td></td>
</tr>
<tr>
<td>2 years</td>
<td>4.72</td>
<td>0.35</td>
<td>-7.65</td>
<td>-5.24</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>(5.07)</td>
<td>(0.58)</td>
<td>(3.27)</td>
<td>(2.48)</td>
<td></td>
</tr>
<tr>
<td>3 years</td>
<td>8.12</td>
<td>0.49</td>
<td>-8.45</td>
<td>-5.22</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>(3.99)</td>
<td>(0.39)</td>
<td>(2.74)</td>
<td>(2.07)</td>
<td></td>
</tr>
<tr>
<td>Panel B: 1988-2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 months</td>
<td>-30.66</td>
<td>-0.37</td>
<td>5.79</td>
<td>14.55</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>(15.04)</td>
<td>(1.47)</td>
<td>(9.51)</td>
<td>(10.52)</td>
<td></td>
</tr>
<tr>
<td>1 year</td>
<td>-10.23</td>
<td>0.16</td>
<td>-5.55</td>
<td>-3.70</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>(9.63)</td>
<td>(0.92)</td>
<td>(7.00)</td>
<td>(5.21)</td>
<td></td>
</tr>
<tr>
<td>2 years</td>
<td>-2.33</td>
<td>0.18</td>
<td>-4.41</td>
<td>-4.31</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>(5.51)</td>
<td>(0.56)</td>
<td>(4.12)</td>
<td>(3.04)</td>
<td></td>
</tr>
<tr>
<td>3 years</td>
<td>5.14</td>
<td>0.42</td>
<td>-8.11</td>
<td>-5.50</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>(4.83)</td>
<td>(0.37)</td>
<td>(3.50)</td>
<td>(2.51)</td>
<td></td>
</tr>
<tr>
<td>Panel C: 2007-2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 months</td>
<td>17.94</td>
<td>-3.58</td>
<td>-32.05</td>
<td>-29.41</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>(10.92)</td>
<td>(3.04)</td>
<td>(11.78)</td>
<td>(10.40)</td>
<td></td>
</tr>
<tr>
<td>1 year</td>
<td>18.56</td>
<td>-2.41</td>
<td>-6.44</td>
<td>-3.43</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>(7.11)</td>
<td>(2.57)</td>
<td>(6.19)</td>
<td>(3.27)</td>
<td></td>
</tr>
<tr>
<td>2 years</td>
<td>20.71</td>
<td>0.35</td>
<td>-13.35</td>
<td>-9.06</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>(3.47)</td>
<td>(0.82)</td>
<td>(2.21)</td>
<td>(2.22)</td>
<td></td>
</tr>
<tr>
<td>3 years</td>
<td>13.35</td>
<td>-0.19</td>
<td>-7.26</td>
<td>-5.26</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>(2.80)</td>
<td>(0.70)</td>
<td>(1.79)</td>
<td>(1.39)</td>
<td></td>
</tr>
</tbody>
</table>
Treasury basis of 10 bps. raises expected returns by 0.81% per annum over the next 3 years. Alternatively, a one-standard-deviation positive basis shock of 20 bps. raises the expected excess return by 1.62% per annum over the next three years. These regressors jointly explain about 12% of the joint variation in excess returns at the 3-year horizon. The basis is not a persistent regressor. Hence, there is no mechanical relation between the forecasting horizon and the R^2.

From equation (9) we see that the value of $\frac{1}{1-\beta_x}$ is equal to β_x for the 1-year horizon, but the 1-year β_x for 1-year is small and imprecisely estimated, likely because of the momentum effect we have found. A lower bound for $1 - \beta^*$ is $\frac{1}{\beta_x}$ on the 2- and 3-year horizon regressions. This is a lower bound because a shock to the basis gradually reverses over time (we explore this formally in the next section), so that the returns in the 2nd and 3rd year are responding to a smaller value of the basis. This gives a lower bound for $1 - \beta^*$ of 0.12.

Panel B and C of Table 5 report the regression results for the pre-and post-crisis sample. The momentum effect is only present prior the crisis. In the post-crisis sample, the slope coefficients on the basis are all positive. At the 3-year horizon, the coefficient is 13.35: A one-standard-deviation positive basis shock raises the expected excess return by 2.67% per annum over the next three years. In the post-crisis sample, these regressors jointly explain about 35% of the joint variation in excess returns at the 3-year horizon.

Table 6 provides more detail for the 3-year forecasting results. Panel A reports the 3-year results. Panel B excludes the first four quarters from the cumulative excess return to remove the momentum effect. At the 3-year horizon, the slope coefficient in a univariate regression of returns on the basis is not statistically significantly different from zero. However, when we exclude the first 4 quarters from the left-hand-side return, the slope coefficient in the univariate regression increases from 1.62 to 6.54. The variation in the Treasury basis explains 7% of the variation in the returns at the 3-year horizon.

The return predictability is mostly driven by the exchange rate component of returns. Table A.1 and A.2 in section D of the Separate Appendix shows predictability results for exchange rate changes. After excluding the first year, there is solid statistical evidence that the average Treasury basis forecasts changes in exchange rates: the slope coefficient estimate is 11.24, implying that the dollar appreciates by 2.24% per annum over the next 3 years following a one-standard-deviation widening of average Treasury basis.

When we add the other regressors, the R^2 increases to 15% over the entire sample. The slope coefficient on the Treasury basis increases to 13.01. A one-standard-deviation positive basis shock raises the expected returns by 1.62% per annum over the next 3 years.
excess return by 2.60% per annum over the next three years. The coefficient estimates reported in Panel B after cleansing the cumulative returns of the momentum effect are remarkably stable across subsamples.

Table 6: Forecasting 3-year Currency Excess Returns in Panel Data

In Panel A (B), the dependent variable is the annualized nominal excess return (in logs) \(r_{x,t}^{fx} \) (\(r_{x,t+4}^{fx} \)) on a long position in U.S. Treasuries and a short position (equal-weighted) in all foreign bonds over \(k \) quarters. The independent variables are the Treasury basis, \(x^{Treas} \), the nominal Treasury yield difference \(y^s - y^* \), the change in the Treasury basis \(\Delta x^{Treas} \), and the lagged change in the Treasury basis \(\Delta x^{Treas}_{t-1} \). Data is quarterly from 1988Q1 to 2017Q2. Heteroskedasticity and autocorrelation adjusted standard errors in parentheses.

<table>
<thead>
<tr>
<th></th>
<th>Panel A: (r_{x,t}^{fx})</th>
<th>Panel B: (r_{x,t+4}^{fx})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988-2017</td>
<td>\begin{array}{cccc}x^{Treas} & y^s - y^* & \Delta x^{Treas} & \Delta x^{Treas} \end{array} & \begin{array}{cccc}x^{Treas} & y^s - y^* & \Delta x^{Treas} & \Delta x^{Treas} \end{array}</td>
<td>\begin{array}{cccc}R^2 & R^2 \end{array}</td>
</tr>
<tr>
<td></td>
<td>\begin{array}{cccc}1.62 & 0.01 & 6.54 & 0.07 \end{array} & \begin{array}{cccc}2.26 & 0.02 & 7.12 & 0.07 \end{array}</td>
<td>\begin{array}{cccc}(2.47) & (2.82) & (2.63) & (2.37) \end{array}</td>
</tr>
<tr>
<td></td>
<td>\begin{array}{cccc}5.34 & 0.07 & 9.89 & 0.10 \end{array} & \begin{array}{cccc}5.14 & 0.12 & 13.01 & 0.15 \end{array}</td>
<td>\begin{array}{cccc}(3.22) & (2.46) & (3.60) & (4.60) \end{array}</td>
</tr>
<tr>
<td></td>
<td>\begin{array}{cccc}8.12 & 0.12 & 10.67 & 0.09 \end{array} & \begin{array}{cccc}8.12 & 0.20 & 13.87 & 0.24 \end{array}</td>
<td>\begin{array}{cccc}(3.99) & (3.99) & (3.21) & (3.21) \end{array}</td>
</tr>
<tr>
<td>1988-2007</td>
<td>\begin{array}{cccc}-1.17 & 0.00 & 6.53 & 0.06 \end{array} & \begin{array}{cccc}-0.49 & 0.01 & 7.21 & 0.07 \end{array}</td>
<td>\begin{array}{cccc}(2.96) & (2.93) & (2.98) & (2.98) \end{array}</td>
</tr>
<tr>
<td></td>
<td>\begin{array}{cccc}2.30 & 0.04 & 9.97 & 0.09 \end{array} & \begin{array}{cccc}2.30 & 0.04 & 12.82 & 0.13 \end{array}</td>
<td>\begin{array}{cccc}(3.98) & (3.98) & (4.25) & (4.25) \end{array}</td>
</tr>
<tr>
<td></td>
<td>\begin{array}{cccc}5.14 & 0.09 & 10.67 & 0.09 \end{array} & \begin{array}{cccc}5.14 & 0.09 & 13.87 & 0.24 \end{array}</td>
<td>\begin{array}{cccc}(4.83) & (4.83) & (5.55) & (5.55) \end{array}</td>
</tr>
<tr>
<td>2007-2017</td>
<td>\begin{array}{cccc}8.17 & 0.20 & 5.73 & 0.06 \end{array} & \begin{array}{cccc}8.17 & 0.20 & 5.73 & 0.06 \end{array}</td>
<td>\begin{array}{cccc}(2.80) & (2.80) & (3.09) & (3.09) \end{array}</td>
</tr>
<tr>
<td></td>
<td>\begin{array}{cccc}8.17 & 0.20 & 5.73 & 0.06 \end{array} & \begin{array}{cccc}8.17 & 0.20 & 5.73 & 0.06 \end{array}</td>
<td>\begin{array}{cccc}(2.80) & (2.80) & (3.09) & (3.09) \end{array}</td>
</tr>
<tr>
<td></td>
<td>\begin{array}{cccc}10.67 & 0.27 & 8.50 & 0.14 \end{array} & \begin{array}{cccc}10.67 & 0.27 & 8.50 & 0.14 \end{array}</td>
<td>\begin{array}{cccc}(2.88) & (2.88) & (3.23) & (3.23) \end{array}</td>
</tr>
<tr>
<td></td>
<td>\begin{array}{cccc}13.87 & 0.33 & 12.89 & 0.22 \end{array} & \begin{array}{cccc}13.87 & 0.33 & 12.89 & 0.22 \end{array}</td>
<td>\begin{array}{cccc}(3.21) & (3.21) & (3.59) & (3.59) \end{array}</td>
</tr>
</tbody>
</table>

35
The results for the US/UK Treasury basis are quite similar to those obtained on the shorter sample for the Panel. Table A.3 reports the results obtained when forecasting the annualized excess returns on a long position in the dollar and a short position in the pound. Panel A considers the results obtained on the entire sample. At short horizons of 3 months, the slope coefficient on the Treasury basis is negative (−2.01). On the other hand, at horizons of 3 years, the slope coefficient is positive and statistically significant: 7.15. This is a quantitatively significant response as well: a one-standard-deviation shock to the U.S./U.K. Treasury basis increases the 3-year return by 2.78%. These regressors jointly explain 28% of the variation in the 3-year excess returns.

Panel B and C report results for the pre-and post-crisis sample. The slope coefficients at the 3-year horizon vary from 7.11 in the pre-crisis sample to 8.80 in the post-crisis sample. As was the case in the Panel data, there is no evidence of a basis-induced momentum effect post-crisis: all of the coefficient estimates for the US/UK Treasury basis are positive at all forecasting horizons. At the 3-month horizon, these variables jointly explain 54% in the post-crisis sample.

Table 8 provides more detail by reporting results for each subsample. Panel A examines the 3-year excess returns. Panel B excludes the first year. As was the case for the Panel, excluding the first year increases the size of the slope coefficient. The univariate slope coefficient on the U.S./U.K. increases from 2.86 to 9.18. When we include the other regressors, the slope coefficient changes from 7.15 to 13.84. This coefficient estimate implies that a one-standard-deviation shock to the Treasury basis increases the expected excess return by 5.39% per annum over the next 3 years.

The results in Tables 5 through 8 are based on regressions that use the full sample. The Tables in section D of the Separate Appendix document exchange rate predictability, raising the question of whether these results continue to hold up out-of-sample. One approach to answering this question follows Meese and Rogoff (1983). These authors ask whether exchange rate fundamentals outperform a random walk when forecasting future exchange rates, finding that the random walk always outperforms than the theory. We have explored the Meese-Rogoff approach in our sample and found mixed results: over some horizons the convenience yield beats the random walk out-of-sample, while in others it does not. Results are available upon request. This negative result is because the parameter estimates (but not their signs) are sample dependent and to pass the random walk test both the convenience yield must matter for exchange rates and the relation between the convenience
Table 7: Forecasting Currency Excess Returns: US/UK

The dependent variable is the annualized nominal excess return (in logs) \(r_{x_{t\rightarrow t+k}}^{fx} \) on a long position in U.S. Treasuries and a short position (equal-weighted) in U.K. bonds over \(k \) quarters. The independent variables are the Treasury basis, \(x_{t}^{Treas} \), the nominal Treasury yield difference \(y^\$ - y^\ast \), the change in the Treasury basis \(\Delta x_{t}^{Treas} \), and the lagged change in the Treasury basis \(\Delta x_{t-1}^{Treas} \). Heteroskedasticity and autocorrelation adjusted standard errors in parentheses. Data is quarterly from 1970Q1 to 2017Q2.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x_{t}^{Treas})</td>
<td>(y^$ - y^\ast)</td>
<td>(\Delta x_{t}^{Treas})</td>
</tr>
<tr>
<td>3 months</td>
<td>-2.01</td>
<td>2.73</td>
<td>-6.08</td>
</tr>
<tr>
<td></td>
<td>(4.38)</td>
<td>(1.26)</td>
<td>(4.68)</td>
</tr>
<tr>
<td>1 year</td>
<td>0.21</td>
<td>1.79</td>
<td>-3.28</td>
</tr>
<tr>
<td></td>
<td>(3.07)</td>
<td>(0.86)</td>
<td>(2.02)</td>
</tr>
<tr>
<td>2 year</td>
<td>3.26</td>
<td>1.49</td>
<td>-5.40</td>
</tr>
<tr>
<td></td>
<td>(2.17)</td>
<td>(0.59)</td>
<td>(1.72)</td>
</tr>
<tr>
<td>3 year</td>
<td>7.15</td>
<td>1.49</td>
<td>-6.64</td>
</tr>
<tr>
<td></td>
<td>(1.70)</td>
<td>(0.44)</td>
<td>(1.43)</td>
</tr>
</tbody>
</table>
Table 8: Forecasting 3-year Currency Excess Returns: US/UK

In Panel A (B), the dependent variable is the annualized nominal excess return (in logs) $r_{x,t+12}^f$ ($r_{x,t+4}^f$) on a long position in U.S. Treasuries and a short position (equal-weighted) in all foreign bonds over k quarters. The independent variables are the Treasury basis, x^{Treas}, the nominal Treasury yield difference ($y^s - y^*$), the change in the Treasury basis Δx_t^{Treas}, and the lagged change in the Treasury basis Δx_{t-1}^{Treas}. Data is quarterly from 1988Q1 to 2017Q2. Heteroskedasticity and autocorrelation adjusted standard errors in parentheses.

<table>
<thead>
<tr>
<th></th>
<th>x^{Treas}</th>
<th>$y^s - y^*$</th>
<th>Δx^{Treas}</th>
<th>Lag</th>
<th>R^2</th>
<th>x^{Treas}</th>
<th>$y^s - y^*$</th>
<th>Δx^{Treas}</th>
<th>Lag</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Panel A: $r_{x,t+12}^f$</td>
<td></td>
</tr>
<tr>
<td>1988-2017</td>
<td>2.86</td>
<td></td>
<td>0.05</td>
<td></td>
<td></td>
<td>9.18</td>
<td></td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4.12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.99</td>
<td>1.19</td>
<td>0.14</td>
<td></td>
<td></td>
<td>9.28</td>
<td>0.89</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.07)</td>
<td>(0.48)</td>
<td></td>
<td></td>
<td></td>
<td>(4.16)</td>
<td>(0.89)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.14</td>
<td>1.31</td>
<td>-4.04</td>
<td>0.21</td>
<td></td>
<td>12.08</td>
<td>1.07</td>
<td>-5.67</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.49)</td>
<td>(0.46)</td>
<td>(1.00)</td>
<td></td>
<td></td>
<td>(3.76)</td>
<td>(0.90)</td>
<td>(2.38)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.15</td>
<td>1.49</td>
<td>-6.64</td>
<td>-4.31</td>
<td>0.28</td>
<td>13.84</td>
<td>1.26</td>
<td>-7.84</td>
<td>-4.08</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>(1.70)</td>
<td>(0.44)</td>
<td>(1.43)</td>
<td>0.96</td>
<td></td>
<td>(3.70)</td>
<td>(0.91)</td>
<td>(2.84)</td>
<td>(1.91)</td>
<td></td>
</tr>
<tr>
<td>1988-2007</td>
<td>2.85</td>
<td></td>
<td>0.05</td>
<td></td>
<td></td>
<td>9.68</td>
<td></td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4.23)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.96</td>
<td>1.16</td>
<td>0.14</td>
<td></td>
<td></td>
<td>9.75</td>
<td>0.76</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.11)</td>
<td>(0.54)</td>
<td></td>
<td></td>
<td></td>
<td>(4.28)</td>
<td>(1.00)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.09</td>
<td>1.28</td>
<td>-3.97</td>
<td>0.21</td>
<td></td>
<td>12.45</td>
<td>0.94</td>
<td>-5.44</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.54)</td>
<td>(0.53)</td>
<td>(1.01)</td>
<td></td>
<td></td>
<td>(3.85)</td>
<td>(1.01)</td>
<td>(2.44)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.11</td>
<td>1.47</td>
<td>-6.61</td>
<td>-4.35</td>
<td>0.30</td>
<td>13.99</td>
<td>1.13</td>
<td>-7.36</td>
<td>-3.64</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>(1.76)</td>
<td>(0.51)</td>
<td>(1.47)</td>
<td>0.98</td>
<td></td>
<td>(3.76)</td>
<td>(1.02)</td>
<td>(2.94)</td>
<td>(1.93)</td>
<td></td>
</tr>
<tr>
<td>2007-2017</td>
<td>6.90</td>
<td></td>
<td>0.07</td>
<td></td>
<td></td>
<td>-19.12</td>
<td></td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.52)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(10.64)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.22</td>
<td>-2.06</td>
<td>0.18</td>
<td></td>
<td></td>
<td>-19.60</td>
<td>3.05</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.49)</td>
<td>(0.63)</td>
<td></td>
<td></td>
<td></td>
<td>(9.52)</td>
<td>(1.74)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.11</td>
<td>-1.82</td>
<td>-4.64</td>
<td>0.20</td>
<td></td>
<td>-7.81</td>
<td>4.54</td>
<td>-28.89</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.74)</td>
<td>(0.83)</td>
<td>(4.54)</td>
<td></td>
<td></td>
<td>(8.00)</td>
<td>(1.76)</td>
<td>(13.37)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.80</td>
<td>-1.82</td>
<td>-4.48</td>
<td>0.57</td>
<td>0.20</td>
<td>-3.29</td>
<td>4.62</td>
<td>-31.15</td>
<td>-8.57</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>(6.90)</td>
<td>(0.86)</td>
<td>(5.29)</td>
<td>(3.78)</td>
<td></td>
<td>(13.58)</td>
<td>(1.77)</td>
<td>(12.36)</td>
<td>(15.73)</td>
<td></td>
</tr>
</tbody>
</table>
yield and the exchange rate must be stable over time.

We take a different approach to establishing out-of-sample predictability that is more robust to parameter instability. We calculate the historic average of the Treasury basis between quarter $t - N$ and quarter $t - 1$. We consider values of N of 4, 10, or 20 quarters. We then compute the profits from a trading strategy where we buy the U.S. dollar against the basket of other currencies in quarter t when the Treasury basis is higher than this historic average, i.e. when the U.S. Treasury convenience yield is lower. We short the U.S. dollar otherwise. We compute the profits when holding this position for a quarter and then rebalancing the position in the next quarter. If the convenience yield contains information for future exchange rate changes, this trading strategy will earn abnormal profits. Since the trading strategy is based only on information available at time t, the existence of abnormal profits is an out-of-sample confirmation of our convenience yield theory.

Table 9 reports the results, with Panel A for the short cross-country sample and Panel B for the long US/UK sample. In both samples, the unconditional trading strategy of going long the dollar earns slightly negative profits. The conditional strategy earns abnormal profits in all cases. Focusing on the results for $N = 10$, the Sharpe ratio is 0.12 in Panel A and 0.27 in Panel B. These numbers are comparable to the Sharpe ratio on the carry trade strategy (see Lustig, Roussanov and Verdelhan (2014b)). Again, the results in Panel B, with the longer sample, are stronger than those of Panel A.

3.3 Impulse Response of the Dollar to Treasury Basis Shocks

We use a Vector Autoregression (VAR) to model the joint dynamics of the interest rate difference, the exchange rate and the Treasury basis. We estimate the VAR separately in both the panel and the US/UK data. For this exercise, we define the 12-month US real interest rate $r_t^\$ as $y_t^\$ - \pi_t^\$. The foreign real interest rate is similarly defined as $y_t^* - \pi_t^{*-4}$. For the panel, we run a VAR with three variables: the basis, the real interest rate difference, and the log of the real exchange rate x_t^{Treas}, $r_t^\$ - r_t^*$, and q_t. The VAR includes one lag of all variables. We identified the VAR(1) as the optimal specification using the BIC. This specification assumes that the log of the real U.S. dollar index is stationary, which seems to be case in this sample period. We order the VAR so that shocks to the basis affect all variables contemporaneously, shocks to the interest rate affect the exchange rate and the interest rate differential but not the basis, and shocks to the exchange rate only affect itself. This ordering implies that nominal and real exchange rates can respond instantaneously to all of the
In each quarter, we go long in the U.S. dollar against the basket of other currencies when the Treasury basis is higher than its average in the past N quarters, and short the US dollar otherwise. Table reports the quarterly mean nominal exchange rate movement of the currencies we go long against the currencies we short in the portfolio, the quarterly mean excess return of the portfolio, and the quarterly Sharpe Ratio of this strategy. We also report the performance of the portfolio that always buys the U.S. dollar against the basket of other currencies. Standard errors in parentheses obtained from bootstrapping over 10,000 rounds. In each round, we resample excess returns and exchange rate movements with replacement.

<table>
<thead>
<tr>
<th>Portfolio</th>
<th>Mean FX Δ (%)</th>
<th>Mean Excess Return (%)</th>
<th>Sharpe Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Dollar</td>
<td>-0.20</td>
<td>-0.08</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>(0.44)</td>
<td>(0.44)</td>
<td>(0.09)</td>
</tr>
<tr>
<td>$N = 4$ qtrs</td>
<td>0.81</td>
<td>0.86</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>(0.43)</td>
<td>(0.43)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>$N = 10$ qtrs</td>
<td>0.51</td>
<td>0.56</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>(0.45)</td>
<td>(0.44)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>$N = 20$ qtrs</td>
<td>0.32</td>
<td>0.46</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>(0.38)</td>
<td>(0.38)</td>
<td>(0.10)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Portfolio</th>
<th>Mean FX Δ (%)</th>
<th>Mean Excess Return (%)</th>
<th>Sharpe Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Dollar</td>
<td>-0.29</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(0.32)</td>
<td>(0.33)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>$N = 4$ qtrs</td>
<td>0.59</td>
<td>0.65</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>(0.33)</td>
<td>(0.33)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>$N = 10$ qtrs</td>
<td>1.18</td>
<td>1.20</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>(0.34)</td>
<td>(0.34)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>$N = 20$ qtrs</td>
<td>1.08</td>
<td>1.19</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>(0.35)</td>
<td>(0.36)</td>
<td>(0.08)</td>
</tr>
</tbody>
</table>
Table 10: Explaining Performance Treasury Basis FX Strategies

We regress the return of the conditional dollar portfolio whose look-back period is 4 quarters during each quarter on the carry factor during that quarter, the dollar factor during that quarter, and the Treasury basis at the start of that quarter. The carry factor is obtained from Lustig, Roussanov and Verdelhan (2011), and the dollar factor is the excess return of the US dollar against the equal-weighted portfolio of other currencies in our sample. In this table, all returns and bases are in percentage points.

<table>
<thead>
<tr>
<th></th>
<th>Panel A: Panel</th>
<th>Panel B: US/UK data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Treasury Basis</td>
<td>-4.31</td>
<td>-4.02</td>
</tr>
<tr>
<td></td>
<td>(1.93)</td>
<td>(1.78)</td>
</tr>
<tr>
<td>Dollar Factor</td>
<td>-0.07</td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>Carry Factor</td>
<td>0.04</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
<td>(0.09)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.83</td>
<td>-0.24</td>
</tr>
<tr>
<td></td>
<td>(0.46)</td>
<td>(0.66)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.60)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.42)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.42)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.34)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.61</td>
<td>5.27</td>
</tr>
<tr>
<td></td>
<td>4.41</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>0.62</td>
<td>0.01</td>
</tr>
<tr>
<td>N</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>113</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>126</td>
<td>181</td>
</tr>
</tbody>
</table>
structural shocks. As we discuss, the evidence from the VAR provides support for interpreting our regression evidence causally: shocks to convenience yields drive movements in the exchange rate.

Figure 6 plots the impulse response from orthogonalized shocks to the basis. The top left panel plots the dynamic behavior of the basis (in units of percentage points), the top right panel plots the dynamic behavior of the interest rate difference (in percentage points), and the bottom left panel plots the behavior of the exchange rate (in percentage points). The pattern in the figure is consistent with the regression evidence from the Tables. An increase in the basis of 0.2% (decrease in the convenience yield) depreciates the real exchange rate contemporaneously by about 4% over two quarters. The finding that the depreciation persists over 2 quarters is consistent with the time-series momentum effect discussed earlier. Thus, the exchange rate exhibits classic Dornbusch (1976) overshooting behavior. Then there is a gradual reversal over the next 5 years over which the
effect on the level of the dollar gradually dissipates. There is no statistically discernible effect of the basis on
the interest rate differential. Finally, the bottom right panel plots the quarterly log excess return on a long
position in dollars. Initially, the quarterly excess return drops, but after the first 2 quarters, it is higher than
average for the next 15 to 18 quarters, consistent with higher expected returns on long positions in Treasurys.

Interestingly, once you add the basis shock, U.I.P. roughly holds for the dollar against this panel of currencies.
Figure 7 plots the response to the interest rate shocks. The dollar appreciates in real terms in the same quarter
by more than 100 basis points in response to a 100 bps increase in the U.S. yields above the foreign yields.
Recently, Engel (2016) and Dahlquist and Penasse (2016) have documented that an increase in the short-term
US interest rate initially causes the dollar to appreciate, but they subsequently depreciate on average. Once
we allow for shocks to the basis, the initial appreciation effect disappears. The bottom right panel of the figure
plots the excess return on the currency, and we see that this return is zero after the first quarter indicating
that U.I.P. holds once we account for shocks to the basis.

Basis shocks account for a large fraction of the exchange rate forecast error variance, especially at longer
horizons, as shown in Figure 8. At the one-quarter horizon, basis shocks account for more than 20% of the
variance; this fraction increases to 60% at longer horizons. In contrast, the interest rate shocks account for less
than 15% at all horizons. While the initial impact of a one-standard deviation interest rate shock on the dollar
is similar to that of a one-standard deviation basis shock (roughly 2%), its effect does not initially build up and
is much less persistent. Figure A.1 in Section B of the Separate Appendix reports all of the impulse responses.

Importantly, the results are not sensitive to switching the order of the basis and interest rate differential,
indicating that we can plausibly interpret the relation between the basis and exchange rate causally. A shock
to convenience yields moves both the basis and the exchange rate. We say this because we have allowed for
other known determinants of the exchange rate, relative price levels and relative interest rates, and yet recover
the same relation between the basis and the exchange rate. Figure A.2 in the Separate Appendix switches
the ordering of the interest rate difference and the basis in the VAR. The impulse responses to a basis shock
are nearly identical to those of Figure 7. The exchange rate falls a little under 4% over two quarters and
then gradually reverts over the subsequent 2 years. Note that our finding that ordering does not matter need
not have been the result. It occurs simply because the reduced form VAR innovations to the basis and the
interest rate difference are only weakly correlated. Finally, the variance decomposition also looks independent
The red line plots the impulse response of a one-standard-deviation orthogonalized shock to the yield difference on the basis (top left panel), the real interest rate differential (top right panel), the log real spot exchange rate (bottom left panel), and the quarterly log excess return on a long position in dollars (bottom right panel). The units for the y-axis are in percentage points. The grey areas indicates 95% confidence intervals. Standard errors were generated using 10,000 Monte Carlo simulations. The VAR is estimated using a sample from 1988Q1 to 2017Q2. The ordering is $[\bar{x}_t, r_t^S - \bar{r}_t^*, q_t]$.
Figure 8: Variance Decomposition: Panel

Plot of Variance of Forecast Error due to orthogonalized basis shocks, rate shocks and FX shocks against the forecast horizon. The VAR is estimated using a sample from 1988Q1 to 2017Q2. The ordering is $\pi_t, r_t^b - \pi_t^e, q_t$.
The red line plots the impulse response of a one-standard-deviation orthogonalized shock to the US/UK Treasury basis on the basis (top left panel), the real US/UK interest rate differential (top right panel), and the log real GBP-per-USD spot exchange rate (bottom left panel), as well as the quarterly excess return (bottom right panel). The units for the y-axis are in percentage points. The grey areas indicates 95% confidence intervals. Standard errors were generated using 10,000 Monte Carlo simulations. The VAR is estimated using a sample from 1970Q1 to 2016Q2. The ordering is $[x_t, \pi_t^*, \tau_t^* - \pi_t^*, q_t]$. The responses to the basis shock again look identical. Finally, we also adopted a local projection approach by projecting returns $r_{x_{t+k-1} \rightarrow t+k}$ on $[\pi_t, r_t^\pi - \pi_t^*, q_t]$, and $[\Delta \pi_t, \Delta \pi_t]$. These yield impulse responses that are quite similar to the ones produced by the Cholesky decomposition. The results are not reported.
3.4 Decomposing Variation in the Dollar

We denote \(d_t = y_{t}^{US} - y_{t}^{UK} \). Define \(z'_t = \begin{bmatrix} x_t & d_t & s_t \end{bmatrix} \). We estimate following the first-order VAR for \(z_t \):

\[
z_t = \Gamma_0 + \Gamma_1 z_{t-1} + a_t,
\]

where \(\Gamma_0 \) is a 3-dimensional vector, \(\Gamma_1 \) is a \(3 \times 3 \) matrix and \(a_t \) is a sequence of white noise random vector with mean zero and variance covariance matrix \(\Sigma \). The variance covariance matrix is required to be positive definite.

The log of the currency excess return is given by \(r x_t = s_t - s_{t-1} + d_{t-1} \). The realized risk premium component of the log currency excess return is the realized log excess return minus the convenience yield: \(r p_t = r x_t - \frac{1}{1-\beta} x_{t-1} \). As a result, we can add an equation for the risk premium component of the log excess return to the VAR, and we end up with the following first-order VAR. Accordingly, we can define the state as the vector of demeaned variables: \(y'_t = \begin{bmatrix} \tilde{r} p_t & \tilde{x}_t & \tilde{d}_t & \tilde{s}_t \end{bmatrix} \). \(y_t \) follows a VAR(1) where

\[
y_t = \Psi_1 y_{t-1} + u_t,
\]

where \(\Psi_1 \) is the \(4 \times 4 \) matrix defined in (47) in section A of the Separate Appendix and \(u_t \) is the \(4 \times 1 \) vector of residuals defined above. When we use the real exchange rate \(q_t \), we replace the interest rate difference \(d_t \) with the real interest rate difference \(i_{t-1} = d_{t-1} - \pi_{t}^{US} + \pi_{t}^{UK} \). The log of the currency excess return is then \(r x_t = q_t - q_{t-1} + i_{t-1} = s_t - s_{t-1} + d_{t-1} \); the realized inflation difference drops out from the excess return.

Our analysis follows Froot and Ramadorai (2005). From equation (23), changes in the exchange rate are due to changes in expectations of the basis ("convenience yield news"), changes in expectation of interest rate differentials ("cash flow news"), and changes in expectation of risk premia ("discount rate news"). We decompose exchange rate movements into those components and estimate how much each of the components account for variation in the exchange rate.

\[
s_t = -\frac{1}{1-\beta} \mathbb{E}_t \sum_{\tau=0}^{\infty} x_{t+\tau} + \mathbb{E}_t \sum_{\tau=0}^{\infty} (y_{t+\tau}^S - y_{t+\tau}^*) - \mathbb{E}_t \sum_{\tau=0}^{\infty} \left(R P_{t+\tau}^* - \frac{1}{2} Var_{t+\tau}[\Delta s_{t+\tau+1}] \right) + \bar{s}. \tag{33}
\]
We assume homoskedasticity of exchange rate changes. As a result, the expression for the log of the exchange rate is given by:

\[s_t = \frac{1}{1 - \beta^*} \mathbb{E}_t \sum_{\tau=0}^{\infty} x_{t+\tau} + \mathbb{E}_t \sum_{\tau=0}^{\infty} d_{t+\tau} - \mathbb{E}_t \sum_{\tau=1}^{\infty} r p_{t+\tau} + \bar{s}, \]

(34)

where we define \(CY_t = -\frac{1}{1 - \beta^*} \mathbb{E}_t \sum_{\tau=0}^{\infty} x_{t+\tau} \) to be the convenience yield component, \(CF_t = \mathbb{E}_t \sum_{\tau=0}^{\infty} d_{t+\tau} \) to be the interest rate difference component, and the last part is the discount rate component: \(DR_t = \mathbb{E}_t \sum_{\tau=1}^{\infty} r p_{t+\tau}. \)

From the definition of \(r p_t \), it is easy to check that the current return innovation can be decomposed into a cash flow term, a discount rate term and a convenience yield term:

\[
(\mathbb{E}_t - \mathbb{E}_{t-1}) r p_t = (\mathbb{E}_t - \mathbb{E}_{t-1}) \left[\sum_{j=0}^{\infty} d_{t+j} \right] - (\mathbb{E}_t - \mathbb{E}_{t-1}) \left[\sum_{j=0}^{\infty} \frac{1}{1 - \beta^*} x_{t+j} \right] - (\mathbb{E}_t - \mathbb{E}_{t-1}) \left[\sum_{j=1}^{\infty} r p_{t+j} \right]
\]

First, we compute the discount rate news from the VAR as:

\[
N_{DR,t} = (\mathbb{E}_t - \mathbb{E}_{t-1}) \left[\sum_{j=1}^{\infty} r p_{t+j} \right] = e'_1 \Psi_1 (I - \Psi_1)^{-1} u_t
\]

Second, we can compute the CF or interest rate news from the VAR as:

\[
N_{CF,t} = (\mathbb{E}_t - \mathbb{E}_{t-1}) \left[\sum_{j=0}^{\infty} d_{t+j} \right] = e'_3 (I - \Psi_1)^{-1} u_t
\]

Finally, what’s left is the news about the convenience yields, which can be backed out of the discount rate and cash flow news:

\[
N_{CY,t} = -(\mathbb{E}_t - \mathbb{E}_{t-1}) \left[\sum_{j=0}^{\infty} \frac{1}{1 - \beta^*} x_{t+j} \right] = -N_{CF,t} + N_{DR,t} + e'_1 u_t
\]

We need an estimate of \(\beta^* \) to decompose the FX news. We can identify \(\beta^* \) from IR to basis shock:

\[\beta^* = \frac{\text{Var}[\Delta s_{t+1}]}{\text{Var}[\Delta s_{t+1}]} \]

As a result, the discount rate component of the log exchange rate can be stated as:

\[\mathbb{E}_t \sum_{\tau=0}^{\infty} r p_{t+\tau} = \mathbb{E}_t \sum_{\tau=0}^{\infty} r p_{t+\tau} + \text{constant} = \mathbb{E}_t \sum_{\tau=1}^{\infty} (r x_{t+\tau} - \frac{1}{1 - \beta^*} x_{t+\tau-1}) + \text{constant}. \]

Using the VAR expressions, this simplifies to:

\[s_t = -\frac{1}{1 - \beta^*} \mathbb{E}_t \sum_{\tau=0}^{\infty} x_{t+\tau} + \sum_{j=0}^{\infty} e_2 \Psi_j [y_t - \sum_{j=1}^{\infty} e_1 \Psi_j y_{t-1} + \bar{s}]. \]
\[
\frac{1}{1-\beta^*} = \frac{\Delta s_t^\text{real}}{\Delta E_t \sum_{\tau=0}^\infty x_{t+\tau}}.
\]

Figure 10 plots the news about convenience yields against news about exchange rates. Most of the variation in CY news arises during periods of increased global uncertainty and during crises; during crisis episodes, the CY news induces an appreciation of the USD during global financial crises, when global investors seek the safety of the USD safe assets. During the recent crisis, CY news induced an appreciation of 15% of the USD. However, these effects are largely transitory, given that the basis quickly reverts back to its mean.

![Figure 10: News about Convenience Yields](image)

Plots quarterly news about convenience yields $N_{CY,t}$ against quarterly news about about exchange rates $\epsilon_i' u_t$ for the Panel. VAR is estimated using a sample from 1988Q1 to 2017Q2. The VAR(1) includes $[\pi_t, r_t^S - r_t^*, q_t]$. β^* is 0.97. Shaded areas include the ERM crisis, the Gulf war, the Russian default and LTCM crisis and the recent global financial crisis.

Panel A of Table 11 presents the variance decomposition for the panel of countries. For the panel, we identify a larger β^* of 0.97. As a result, we see that convenience yield news (CY) accounts for 66% of the variance in quarterly exchange rates, in line with the high R^2 from earlier regressions. Interest rate news (CF) accounts for only a small component (17%) of the variance, while risk premium news (DR) accounts for a sizable component of 111%.\(^{15}\) Panel B reports the results for the U.S./U.K. We identify a much smaller β^*

\(^{15}\)Note that the numbers in each row add up to 100% because shocks to these news components may be negatively correlated, as is apparent from the last two columns of the table. That is, the numbers in Table 11 should be read as the answer to the question: suppose we only had shocks to the basis, holding other components fixed – even though in practice such components will change
of 0.83. As a result, news about the convenience yields accounts for a much larger 18% of the exchange rate news in the Panel, compared to 61% for the cash flow component. These results are quantitatively similar: If we impute the β^* of 0.97 to the US/UK numbers, we get a similar decomposition of the news in the log of the GBP/USD.

Table 11: News Decomposition of Real Exchange Rates Innovations

Panel A reports Decomposition of quarterly innovations in log of average USD exchange rate in the Panel. The VAR is estimated using a sample from 1988Q1 to 2017Q2. The VAR(1) includes $[x_t, r_t^* - r_t^*, q_t]$. β^* is 0.97. Panel B reports Decomposition of quarterly innovations in log of GBP/USD. The VAR is estimated using a sample from 1970Q1 to 2016Q2. The VAR(1) includes $[x_t, r_t^* - r_t^*, q_t]$. β^* is 0.83. We identify β^* from IR to basis shock:

$$\frac{1}{1-\beta^*} = \frac{\Delta s^*_{real}}{\Delta E_t \sum_{\tau=0}^{\infty} x_{t+\tau}}.$$

<table>
<thead>
<tr>
<th>β^*</th>
<th>var(CY)</th>
<th>var(CF)</th>
<th>var(DR)</th>
<th>2cov(CY, CF)</th>
<th>-2cov(CY, DR)</th>
<th>-2cov(CF, DR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Panel Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.97</td>
<td>0.66</td>
<td>0.17</td>
<td>1.11</td>
<td>0.26</td>
<td>-0.93</td>
<td>-0.28</td>
</tr>
<tr>
<td>Panel B: US/UK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.83</td>
<td>0.18</td>
<td>0.61</td>
<td>1.29</td>
<td>-0.10</td>
<td>0.12</td>
<td>-1.11</td>
</tr>
</tbody>
</table>

4 The Treasury Basis and Safe Asset Demand

We have argued that a specific form of capital flows, that for safe dollar assets, drives the value of the US dollar. This section further explains why our evidence supports this interpretation.

First, we construct the basis from the safest asset, the US Treasury bond, and document a relation between this basis and the dollar. Second, our estimates imply a value of β^* in the range of 0.65 to 0.95. That is, foreign investors also have a convenience demand for dollar LIBOR bank deposits. In the pre-crisis sample, bank arbitrage meant that the forward price also reflected this convenience demand so that the LIBOR basis was near zero. However, in the post-crisis sample, the existence of bank arbitrage constraints allows convenience demand to be reflected in the LIBOR basis. We show in this sample that the LIBOR basis has explanatory power in the post-crisis sample, consistent with the broad safe asset demand theory. Third, Figure 11 plots the basis for KfW bonds. KfW is a German issuer whose bonds are backed by the German government, so when a basis shock arrives – how much variance in exchange rates will the basis shocks generate.
that they are near default free. KfW issues bonds in different currencies allowing us to compute the basis for
the bonds of the same issuer, i.e., holding safety fixed, in different currencies. We compute the basis for KfW
bonds using one-year yields on these bonds for Australia, Euro, UK, and Switzerland against the US. The yield
data is from Bloomberg and corresponds to a fitted yield at the one-year maturity (one-year maturity bonds
do not always exist). Clearly this measure is not as reliable as our Treasury basis measure which only uses
information from traded instruments. Figure 11 plots the cross-country mean KfW basis and the Treasury
basis (cross-country mean for the same countries) over a sample with daily data from 2011Q2 to 2017Q2. The
two series have roughly the same magnitude and track each other closely. This evidence also indicates that
foreign investors’ demand is for U.S. dollar safe KfW bonds. Our final point is that the literature has found
mixed evidence on the effectiveness of sterilized foreign exchange intervention (e.g, see the review article of
Sarno and Taylor (2001)). That is, the data is not consistent with general capital account transactions, such as
equity capital flows or central bank interventions, driving the exchange rate. Such an effect may be expected
in the portfolio balance models of Kouri (1976), Hau and Rey (2004), and Gabaix and Maggiori (2015). Our
evidence indicates that a specific form of the capital flow, that for safe US assets, drives the value of the US
dollar.

Prior evidence for the special role of the US dollar in safe debt markets comes from quantity evidence based
on non-government borrowings and investments. On the one hand, non-US borrowers tilt the denomination
of their borrowings (loans, deposits, bonds) especially towards the US dollar. See Shin (2012) and Ivashina,
Scharfstein and Stein (2015) on bank borrowing, Bräuning and Ivashina (2017) on loan denomination, and
Bruno and Shin (2017) on corporate bond borrowing. On the other hand, there is also evidence that when
foreign investors hold corporate bonds in currencies other than their own, they tilt their portfolios toward
owning US dollar corporate bonds (see Maggiori, Neiman and Schreger (2017)). Note that this evidence does
not pin down whether it is investors that especially want to own dollar assets, driving down the cost of borrowing
in dollars and hence incentivizing firms and banks to borrow in dollars, or whether it is the reverse. That is,
Firms and banks especially want to borrow in dollars, are willing to pay higher returns on borrowing in dollars
and hence attracting dollar international investors. Prices help resolve the issue. Our evidence is in favor of
the former explanation, i.e., there is a special demand for US dollar safe assets driving down yields on these
assets. The Treasury dollar basis is negative and declines in the basis appreciate the dollar.
5 Conclusion

We present a convenience yield theory of exchange rates, which departs from existing theories, imputes a central role to international flows in Treasury debt and related dollar safe asset markets in exchange rate determination. Under our theory the spot exchange rate of a safe asset currency will reflect the cumulative value of all future convenience yields. Empirical evidence strongly supports the theory. Our results shed light on two important topics in international finance. First, we help to resolve the exchange rate disconnect puzzle by demonstrating both theoretically and empirically that the demand for safe assets drives a sizeable portion of the variation in the dollar exchange rate. Second, we provide strong empirical support for recent theories regarding safe assets and the central role of the U.S. in the international monetary system.
References

Maggiori, Matteo, Brent Neiman, and Jesse Schreger. 2017. “International currencies and capital allocation.”

Appendix

A Theory of Convenience Yields and Exchange Rates

A.1 Convenience Yields in Complete Markets

We follow the approach of Backus, Foresi and Telmer (2001). Consider the Euler equations (1) and (7) for the US and foreign investor when investing in the foreign bond. To satisfy these Euler equations, we conjecture an exchange rate process that satisfies,

\[
\frac{M_t^S}{S_{t+1}^*} = M_t^*.
\]

This guess, as can easily be verified, satisfies the Euler equations. If financial markets are complete, then this is the unique exchange rate process that is consistent with the absence of arbitrage opportunities. Using lower case letters to denote logs, and log-linearizing this expression, we find:

\[
\Delta s_{t+1}^* = m_t^S - m_t^*. \tag{35}
\]

Next consider the pair of Euler equations, (2) and (8), which apply to investments in the US bond that gives a convenience yield. We conjecture an exchange rate process that satisfies,

\[
M_t^* e^{\lambda_t^*} \frac{S_{t+1}^*}{S_t^*} = M_t^S e^{\lambda_t^S}.
\]

Log-linearizing this expression, we find:

\[
\Delta s_{t+1} = \left(m_t^S - m_t^* \right) + \left(\lambda_t^S - \lambda_t^* \right) \tag{36}
\]

It is evident that (35) and (36) cannot both be satisfied in an equilibrium unless \(\lambda_t^* = \lambda_t^S \). But note that in the case, convenience yields have no impact on exchange rates.

How is equilibrium restored when \(\lambda_t^* \neq \lambda_t^S \)? The answer is that one of the Euler equations must be an inequality. There are many ways this may happen. Portfolio choices could be at a corner. For example, if foreign investors assign a positive convenience yield to their own foreign bonds, while US investor do not, then the US investor Euler equation does not apply to foreign bonds. Alternatively, if foreign convenience demand for US bonds is so high that US investors do not own US bonds, then the US Euler equation does not apply to US bonds. Another possibility are forms of market segmentation. Suppose that some US investors derive convenience value from US bonds, but these same investors do not own foreign bonds. Other US investors do not derive convenience value from US bonds, and these investors do own foreign bonds. In these cases as well, one of the Euler equations we have posited is an inequality.
A.2 Convenience Yields on Foreign Bonds

This section allows for a convenience yield on foreign bonds. Foreign investors price foreign bonds denominated in foreign currency, and the foreign investor’s Euler equation is given by:

$$ E_t(M_{t+1}^* e^{y_t^*}) = e^{-\lambda_t^*}. \quad (37) $$

Foreign investors can also invest in U.S. Treasurys. To do so, they convert local currency to U.S. dollars to receive S_t dollars, invest in U.S. Treasurys, and then convert the proceeds back to local currency at date $t+1$ at S_{t+1}. Then,

$$ E_t(M_{t+1}^* S_{t+1} e^{y_{t+1}}) = e^{-\lambda_{t+1}^*}, \quad \lambda_t^* \geq 0. \quad (38) $$

Next, we use these pricing conditions to derive an expression linking the exchange rate and the convenience yield. We assume that $m_t^* = \log M_t^*$ and $\Delta s_{t+1} = \log \frac{S_{t+1}}{S_t}$ are conditionally normal. Then, (37) can be rewritten as,

$$ E_t(m_{t+1}^*) + \frac{1}{2} \text{Var}_t(m_{t+1}^*) + y_t^* + \lambda_t^{*,*} = 0, \quad (39) $$

and (38) as,

$$ E_t(m_{t+1}^*) + \frac{1}{2} \text{Var}_t(m_{t+1}^*) + E_t[\Delta s_{t+1}] + \frac{1}{2} \text{Var}_t[\Delta s_{t+1}] + y_t^8 + \lambda_t^{8,*} - RP_t^* = 0. \quad (40) $$

Here $RP_t^* = -cov_t(m_t^{*+1}, \Delta s_{t+1})$ is the risk premium the foreign investor requires for the exchange rate risk when investing in US bonds. We combine these two expressions to find that the expected return in levels on a long position in dollars earned by a foreign investor is given by:

$$ E_t[\Delta s_{t+1}] + (y_t^* - y_t^8) + \frac{1}{2} \text{Var}_t[\Delta s_{t+1}] = RP_t^* - \lambda_t^{8,*} + \lambda_t^{*,*}. \quad (41) $$

The U.S. investor’s Euler equation when investing in the foreign bond is:

$$ E_t(M_{t+1}^8 S_{t+1} e^{y_t^8}) = e^{-\lambda_t^{8,*}}. \quad (42) $$

We also assume that U.S. investors derive a convenience yield when investing in U.S. Treasurys:

$$ E_t(M_{t+1}^8 e^{y_t^8}) = e^{-\lambda_t^{8,*}}. \quad (43) $$

λ_t^8 is asset-specific. An increase in the U.S. investor’s convenience yield lowers U.S. Treasury bond yields, holding the SDF fixed:

$$ y_t^8 = \rho_t^8 - \lambda_t^{8,*}, \quad \lambda_t^{8,*} = -\log E_t(M_{t+1}^8). $$

We assume log-normality and rewrite these equations to derive an expression for the carry trade return,

$$ \left(y_t^* - y_t^8\right) - E_t[\Delta s_{t+1}] + \frac{1}{2} \text{Var}_t[\Delta s_{t+1}] = RP_t^8 - \lambda_t^{8,*} + \lambda_t^{8,*}. \quad (44) $$

where, $RP_t^8 = -cov_t(m_t^{*+1}, \Delta s_{t+1})$ is the risk premium the US investor requires for the exchange rate risk when investing in
foreign bonds (i.e. the risk premium attached to the dollar appreciating).

Finally, we combine (41) and (44) to derive a cross-country restriction on the convenience yields imputed to Treasurys and the currency risk premia,

$$ (\lambda_t^S - \lambda_t^* - \lambda_t^* - \lambda_t^S) = R_P^S + R_P^* - \varpi_t[\Delta s_{t+1}] $$

(45)

By forward iteration on eqn. (41), the level of exchange rates can be stated as a function of the interest rate differences, the currency risk premia and the future convenience yields (see Froot and Ramadorai, 2005, for a version without convenience yields):

$$ s_t = \mathbb{E}_t \sum_{r=0}^{\infty} (\lambda_t^{S,r} - \lambda_t^{*,r}) + \mathbb{E}_t \sum_{r=0}^{\infty} (y_t^{S,r} - y_t^{*,r}) - \mathbb{E}_t \sum_{r=0}^{\infty} \left(R_P^{*,r} - \frac{1}{2} \operatorname{Var}_t \Delta s_{t+j+1} \right) + \bar{s} $$

(46)

The term $\bar{s} = \mathbb{E}_t[\lim_{j \to \infty} s_{t+j}]$ which is constant under the assumption that the nominal exchange rate is stationary.

Last, we construct the basis measure:

$$ x_{t}^{Treas} = y_t^S - (f_t^1 - s_t) - y_t^* $$

$$ = (y_t^S - y_t^{*, Libor}) - (y_t^* - y_t^{*, Libor}) $$

$$ = -(1 - \beta_t^{S,*}) \lambda_t^{S,*} + (1 - \beta_t^{*,*}) \lambda_t^{*,*} $$

The basis reflects the difference between the relative yields of dollar government bonds and LIBOR deposits, and foreign government bonds and foreign deposits.

B Data Sources

For the FX data, before December 1996, we use the Barclays Bank source from Datastream. After December 1996, we use World Markets Reuters (WMR) from Datastream. The Datastream codes for the spot rates and 12M forward rates are: BBGBPSP, BBGBPYF, BBAUDSP, BBAUDYF, BBCADSP, BBCADYF, BBDEMSP, BBDEMYF, BBJPYSF, BBJPYF, BNZDSP, BBNZDYF, BBNOKSP, BBNOKYF, BBSEKSP, BBSEKYF, BBCHFSP, BBCHFYF, AUSTDOL, UKAUDYF, CNDOLLAR, UKCADYF, DMARKER, UKDEMWAYF, JAPAYEN, UKJPYF, NZDOLLAR, UKNZDYF, NORKRON, UKNOKYF, SWEKRON, UKSEKYF, SWISSFR, UKCHFYYF, UKDOLLYF, UKUSDYF.

For the Government Bond Yields (see Table 13), most country-maturities pairs only use one source, except if there are gaps. If there are gaps, we use all the data from the first source wherever available, as indicated in the Table, and then fill in any gaps for some year month using the second data source (indicated by '2').

For LIBORs (see Table 14), we use the BBA-ICE LIBOR when available. Coverage is good for Germany, Japan, Switzerland, UK, and U.S.. For other countries, we then use other interbank survey rates (BBSW, CDOR, NIBOR, STIBOR) to fill in any gaps. We then use deposit rates (Bank Bill, NKD, SKD) for any remaining gaps.
Table 12: Country Composition of Unbalanced Panel

<table>
<thead>
<tr>
<th>Country</th>
<th>Maturity</th>
<th>Source</th>
<th>Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Australia'</td>
<td>12</td>
<td>All</td>
<td>199912 - 201707</td>
</tr>
<tr>
<td>'Canada'</td>
<td>12</td>
<td>All</td>
<td>199312 - 201707</td>
</tr>
<tr>
<td>'Germany'</td>
<td>12</td>
<td>All</td>
<td>199707 - 201707</td>
</tr>
<tr>
<td>'Japan'</td>
<td>12</td>
<td>All</td>
<td>195004 - 201707</td>
</tr>
<tr>
<td>'New Zealand'</td>
<td>12</td>
<td>All</td>
<td>199603 - 200905 201006 - 201212 201310 - 201412 201606 - 201707</td>
</tr>
<tr>
<td>'Norway'</td>
<td>12</td>
<td>All</td>
<td>199001 - 199611 199701 - 201707</td>
</tr>
<tr>
<td>'Sweden'</td>
<td>12</td>
<td>All</td>
<td>199103 - 199611 199701 - 201304 201306 - 201707</td>
</tr>
<tr>
<td>'Switzerland'</td>
<td>12</td>
<td>All</td>
<td>198801 - 201707</td>
</tr>
<tr>
<td>'United Kingdom'</td>
<td>12</td>
<td>All</td>
<td>199707 - 201707</td>
</tr>
<tr>
<td>'United States'</td>
<td>12</td>
<td>All</td>
<td>198801 - 201707</td>
</tr>
</tbody>
</table>

Table 13: Sources for Government Bond Yields

<table>
<thead>
<tr>
<th>Country</th>
<th>Maturity</th>
<th>Months</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Australia'</td>
<td>12</td>
<td>'Bloomberg'</td>
<td>GTAUD1Y Govt</td>
</tr>
<tr>
<td>'Canada'</td>
<td>12</td>
<td>'Bank of Canada (Datastream)'</td>
<td>CNTBB1Y</td>
</tr>
<tr>
<td>'Germany'</td>
<td>12</td>
<td>'Bloomberg'</td>
<td>GTDEM1Y Govt</td>
</tr>
<tr>
<td>'Japan'</td>
<td>12</td>
<td>'Bloomberg'</td>
<td>GTJPY1Y Govt</td>
</tr>
<tr>
<td>'New Zealand'</td>
<td>12</td>
<td>'Bloomberg'</td>
<td>GTNZD1Y Govt</td>
</tr>
<tr>
<td>'New Zealand'</td>
<td>12</td>
<td>'Reserve Bank of New Zealand (Datastream)'</td>
<td>NZGBY1Y</td>
</tr>
<tr>
<td>'Norway'</td>
<td>12</td>
<td>'Oslo Bors'</td>
<td>ST3X</td>
</tr>
<tr>
<td>'Sweden'</td>
<td>12</td>
<td>'Sveriges Riksbank (Cristina)'</td>
<td>2</td>
</tr>
<tr>
<td>'Sweden'</td>
<td>12</td>
<td>'Sveriges Riksbank (website)'</td>
<td>1</td>
</tr>
<tr>
<td>'Switzerland'</td>
<td>12</td>
<td>'Swiss National Bank'</td>
<td></td>
</tr>
<tr>
<td>'United Kingdom'</td>
<td>12</td>
<td>'Bloomberg'</td>
<td>GTGBP1Y Govt</td>
</tr>
<tr>
<td>'United States'</td>
<td>12</td>
<td>'Bloomberg'</td>
<td>GB12 Gov</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

The numbers indicate which source takes precedence.

Table 14: Sources for LIBOR

<table>
<thead>
<tr>
<th>Country</th>
<th>Maturity</th>
<th>Source</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Australia'</td>
<td>12</td>
<td>'Bank Bill (Bloomberg)'</td>
<td>ADBBI2M Curncy</td>
</tr>
<tr>
<td>'Australia'</td>
<td>12</td>
<td>'Bank Bill Swap (Bloomberg)'</td>
<td>BBSW1Y Index/BBSW1MD Index</td>
</tr>
<tr>
<td>'Canada'</td>
<td>12</td>
<td>'CDOR (Bloomberg)'</td>
<td>CDOR12 Index</td>
</tr>
<tr>
<td>'Australia'</td>
<td>12</td>
<td>'BBA-ICE LIBOR (Datastream)'</td>
<td>BBAUD12</td>
</tr>
<tr>
<td>'New Zealand'</td>
<td>12</td>
<td>'Bank Bill (Bloomberg)'</td>
<td>NDBBI2M Curncy</td>
</tr>
<tr>
<td>'Canada'</td>
<td>12</td>
<td>'BBA-ICE LIBOR (Datastream)'</td>
<td>BBCADI2</td>
</tr>
<tr>
<td>'Germany'</td>
<td>12</td>
<td>'BBA-ICE LIBOR (Datastream)'</td>
<td>BBDEM12</td>
</tr>
<tr>
<td>'Japan'</td>
<td>12</td>
<td>'BBA-ICE LIBOR (Datastream)'</td>
<td>BBJPY12</td>
</tr>
<tr>
<td>'New Zealand'</td>
<td>12</td>
<td>'BBA-ICE LIBOR (Datastream)'</td>
<td>BBNZD12</td>
</tr>
<tr>
<td>'Norway'</td>
<td>12</td>
<td>'NIBOR (Bloomberg)'</td>
<td>NIBOR12M Index</td>
</tr>
<tr>
<td>'Norway'</td>
<td>12</td>
<td>'Norwegian Krone Deposit (Bloomberg)'</td>
<td>NKDR1 Curncy</td>
</tr>
<tr>
<td>'Sweden'</td>
<td>12</td>
<td>'BBA-ICE LIBOR (Datastream)'</td>
<td>BBSEK12</td>
</tr>
<tr>
<td>'Sweden'</td>
<td>12</td>
<td>'STIBOR (Bloomberg)'</td>
<td>STIB1Y Index</td>
</tr>
<tr>
<td>'Sweden'</td>
<td>12</td>
<td>'Swedish Krona Deposit (Bloomberg)'</td>
<td>SKDR1 Curncy</td>
</tr>
<tr>
<td>'Switzerland'</td>
<td>12</td>
<td>'BBA-ICE LIBOR (Datastream)'</td>
<td>BBCHF12</td>
</tr>
<tr>
<td>'United Kingdom'</td>
<td>12</td>
<td>'BBA-ICE LIBOR (Datastream)'</td>
<td>BBGBP12</td>
</tr>
<tr>
<td>'United States'</td>
<td>12</td>
<td>'BBA-ICE LIBOR (Datastream)'</td>
<td>BBUSD12</td>
</tr>
</tbody>
</table>
Figure 12: Treasury Bases for individual countries.