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Abstract 
 
The classic papers by Newey and West (1987) and Andrews (1991) spurred a large body of work 
on how to improve heteroskedasticity- and autocorrelation-robust (HAR) inference in time series 
regression. This literature finds that using a larger than usual truncation parameter to estimate the 
long-run variance, combined with Kiefer-Vogelsang (2002, 2005) fixed-b critical values, can 
substantially reduce size distortions, at only a modest cost in (size-adjusted) power. Empirical 
practice, however, has not kept up. This paper therefore draws on the post-Newey West/Andrews 
literature to make concrete recommendations for HAR inference. We derive truncation parameter 
rules that choose a point on the size-power tradeoff to minimize a loss function. If Newey-West 
tests are used, we recommend the truncation parameter rule S = 1.3T1/2 and (nonstandard) fixed-b 
critical values. For tests of a single restriction, we find advantages to using the equal-weighted 
cosine (EWC) test, where the long run variance is estimated by projections onto Type II cosines, 
using ν = 0.4T2/3 cosine terms; for this test, fixed-b critical values are, conveniently, tν or F. We 
assess these rules using first an ARMA/GARCH Monte Carlo design, then a dynamic factor 
model design estimated using a 207 quarterly U.S. macroeconomic time series. 
  
JEL codes: C12, C13, C18, C22, C32, C51 
 
Key words: heteroskedasticity- and autocorrelation-robust estimation, HAC, long-run variance 
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1. Introduction 

 

If the error term in a regression with time series data is serially correlated, ordinary least 

squares (OLS) is no longer efficient and the usual OLS standard errors are in general invalid. 

There are two solutions to this problem: efficient estimation by generalized least squares, and 

OLS estimation using heteroskedasticity- and autocorrelation robust (HAR) standard errors. In 

many econometric applications, the transformations required for generalized least squares result 

in inconsistent estimation, leaving as the only option OLS with HAR inference. Such 

applications include multi-period return regressions in finance, single-equation estimators of 

impulse response functions in macroeconomics, distributed lag estimation of dynamic causal 

effects, and multi-step ahead direct forecasts. 

The most common approach to HAR inference is to use Newey-West (1987) (NW) 

standard errors. To compute NW standard errors, the user must choose a tuning parameter, called 

the truncation parameter (S). Based on theoretical results in Andrews (1991), conventional 

practice is to choose a small value for S, then to evaluate tests using standard normal or chi-

squared critical values. A large subsequent literature (surveyed in Müller (2014)) has shown, 

however, that this standard approach can lead to tests that incorrectly reject the null far too often. 

This literature has proposed many alternative procedures that do a better job of controlling the 

rejection rate under the null, but none have taken hold in practice. 

The purpose of this article is to propose and to vet two tests that build on the vast post-

Andrews (1991) literature and which improve upon the standard approach.  

Before presenting the two procedures, we introduce some notation. Our interest is in the 

time series regression model,  

yt = β´Xt + ut, t = 1,…, T,       (1) 

where Xt =  1 tx
 , where xt  and ut are second-order stationary stochastic processes and 

E(ut|Xt) = 0. The HAR inference problem arises if zt = Xtut is heteroskedastic and/or serially 

correlated. The key step in computing HAR standard errors is estimating the long-run variance 

(LRV) matrix Ω of zt, 

Ω = 2 (0)j z
j

s




  ,        (2) 
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where  cov ,j t t jz z   , j = 0, ±1,… and sz(0) is the spectral density of zt at frequency zero. The 

fundamental challenge of HAR inference is that Ω involves infinitely many autocovariances, 

which must be estimated using a finite number of observations. 

The NW estimator of Ω, ˆ NW , is a linearly declining weighted average of the sample 

autocovariances of ˆt̂ t tz X u  through lag S, where  t̂u  are the regression residuals. A typical rule 

for choosing S is S = 0.75T1/3. This rule obtains from a formula in Andrews (1991), specialized to 

the case of a first-order autoregression with coefficient 0.5, and we shall refer to it, used in 

conjunction with standard normal or chi-squared critical values, as “textbook NW”.1 

The two proposed tests build on recent literature that combines the two workhorse tools 

of the theoretical literature, Edgeworth expansions (Velasco and Robinson (2001), Sun, Phillips, 

and Jin (2008)) and fixed-b asymptotics (Kiefer and Vogelsang (2002, 2005)), where b is the 

truncation parameter as a fraction of the sample size, that is, b = S/T. Both tests use fixed-b 

critical values, which deliver higher-order improvements to controlling the rejection rate under 

the null (Jansson (2004), Sun, Phillips, and Jin (2008), Sun (2013, 2014)). The choice of b entails 

a tradeoff, with small b (small S) resulting in biased estimates of Ω and large size distortions, and 

large b resulting in smaller size distortions but greater variance of the LRV estimator and thus 

lower power. The two tests are based on rules, derived in Section 3, that minimize a loss function 

that trades off size distortions and power loss. Using expressions for this tradeoff from Lazarus, 

Lewis, and Stock (2017) (LLS), we obtain closed-form expressions for the rules. The rules are 

derived for the problem of testing the mean of a Gaussian time series (the Gaussian location 

                                                            
1 The Newey-West estimator is implemented in standard econometric software, including Stata 
and Eviews. Among undergraduate textbooks, Stock and Watson (2015, eq (15.17)) recommends 
using the Newey-West estimator with the Andrews rule S = 0.75T1/3. Wooldridge (2012, sec. 
12.5) recommends using the Newey-West estimator with either a rule of thumb for the 
bandwidth (he suggests S = 4 or 8 for quarterly data, not indexed to the sample size) or using 
either of the rules, S = 4(T/100)2/9 or S = T1/4 (Wooldridge also discusses fixed-b asymptotics and 
the Kiefer-Vogelsang-Bunzel (2000) statistic). Both the Stock-Watson (2015) and Wooldridge 
(2012) rules yield S = 4 for T = 100 and S = 4 (second Wooldridge rule) or 5 (Stock-Watson and 
first Wooldridge rule) for T = 200 (rounded up). Dougherty (2011) and Westhoff (2013) 
recommend Newey-West standard errors but do not mention bandwidth choice. Hill, Griffiths, 
and Lim (2011) and Hilmer and Hilmer (2014) recommend Newey-West standard errors without 
discussing bandwidth choice, and their empirical examples, which use quarterly data, 
respectively set S = 4 and S = 1.  
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model). We conduct extensive Monte Carlo simulations to assess their performance in the non-

Gaussian location model and in time series regression. 

Throughout, we restrict attention to tests that (i) use a positive semidefinite (psd) LRV 

estimator and (ii) have known fixed-b distributions. In addition, (iii) we consider persistence that 

is potentially high but not extreme, which we quantify as zt having persistence no greater than an 

AR(1) with ρ = 0.7. Criteria (i) and (ii) limit the class of estimators we consider,2 and (as 

explained in Section 3) results in Lazarus, Lewis, and Stock (2017) (LLS) motivate us to further 

restrict attention to the quadratic spectral (QS), equal-weighted periodogram (EWP), and equal-

weighted Type-II discrete cosine transform (EWC) estimators, along with the Newey-West 

estimator.3 Criterion (iii) means that our tests are relevant for many, but not all, HAR problems, 

and in particular are not designed to cover the case of highly persistent regressors, such as the 

local-to-unity process examined by Müller (2014). In addition, in developing our procedures we 

focus on the case of positive persistence, which (as shown in Section 3) corresponds to over-

rejections under the null; in our Monte Carlo assessment, however, we include anti-persistent 

designs. 

The first of our two proposed tests uses the NW estimator with the rule, 

S = 1.3T1/2 (loss-minimizing rule, NW).     (3)  

                                                            
2 Criteria (i) and (ii) restrict our attention to kernel estimators and orthonormal series estimators 
of Ω, the class considered by LLS. Series estimators, also called orthogonal multitapers, are the 

sum of squared projections of ˆt tX u  on orthogonal series, see Brillinger (1975), Grenander and 

Rosenblatt (1957), Müller (2004), Stoica and Moses (2005), and Phillips (2005) (Sun (2013) 
discusses this class and provides additional references). This class includes subsample (batch-
mean) estimators, the family considered in Ibragimov and Müller (2010), see Lazarus, Lewis, 
and Stock (2017) for additional discussion. Our requirement of a known fixed-b asymptotic 
distribution rules out several families of LRV estimators: (a) parametric LRV estimators based 
on autoregressions (Berk (1974)) or vector autoregressions (VARHAC; den Haan and Levin 
(2000), Sun and Kaplan (2014)); (b) kernel estimators in which parametric models are used to 
prewhiten the spectrum, followed by nonparametric estimation (e.g. Andrews and Monahan 
(1992)); (c) methods that require conditional adjustments to be psd with probability one, e.g. 
Politis (2011). Our focus on ease and speed of implementation in standard software leads us 
away from bootstrap methods (e.g. Gonçalves and Vogelsang (2011)). 
3 The EWP estimator is the familiar estimator of the spectral density at frequency zero using the 
flat (Daniell) kernel in the frequency domain. The EWC estimator is asymptotically equivalent to 
the EWP to the order of the Edgeworth expansions used here, but unlike the EWP which is based 
on projections onto sine/cosine pairs, the EWC can be implemented using any integer number of 
cosines. These estimators are discussed in more detail in Section 2. 



5 
 

This rule yields a much larger value of S than the textbook rule. For example, for T = 200, the 

rule (3) yields S = 19 (rounded up4), compared to S = 5 for the textbook rule. The test uses fixed-

b critical values, which are nonstandard for the NW estimator. 

The second test uses the Equal-Weighted Cosine (EWC) estimator of the long-run 

variance. The EWC test is a close cousin of the Equal-Weighted Periodogram (EWP) test, which, 

although less familiar to econometricians, has a long history. The EWP estimates the spectral 

density at frequency zero by averaging the squared discrete Fourier transform near frequency 

zero, that is, the squared projections of ˆtz  onto sines and cosines at Fourier frequencies near 

zero. The EWC estimator (Müller (2004)) uses instead the Type II discrete cosine transform, so 

it is an equal-weighted average of projections on cosines only (see Equation (10) in Section 2). 

The free parameter for EWP and EWC is ν, the total number of sines and cosines for EWP or, for 

EWC, the total number of cosines. The proposed rule is, 

ν = 0.4T2/3  (loss-minimizing rule, EWP/EWC).    (4)  

As shown in Müller (2004), the EWC estimator produces t-ratios and Wald statistics with large-

sample null distributions that are analogues of the finite-sample distributions from i.i.d. normal 

samples, where  is the degrees of freedom of the Student t or Hotelling T2 distribution. 

Specifically, the fixed-b distribution of the EWP/EWC t-ratio is tν, a result that, for EWP, 

appears to date to an exercise in Brillinger (1975, exercise 5.13.25). For multiple restrictions, the 

EWP/EWC F statistic (with a degrees-of-freedom correction) has a fixed-b asymptotic F 

distribution. The EWC and EWP tests are asymptotically equivalent for ν even , but EWC has 

the practical advantage of allowing ν to be any integer whereas ν must be even for EWP because 

the Fourier sines and cosines appear in pairs. 

Sections 4 and 5 and the online Supplement report results of extensive Monte Carlo 

simulations examining these two tests. Section 4 uses a tightly parameterized ARMA/GARCH 

design. To provide a more realistic test platform, the simulations in Section 5 use a design based 

on a dynamic factor model fit to 207 quarterly U.S. macroeconomic time series, both with 

Gaussian errors and with errors drawn from the empirical distribution in a way that preserves 

time series structure of the second moments.  

                                                            
4 All tests considered in this paper use integer values of the truncation parameter S and the 
degrees of freedom ν. Our rounding convention is to round up S for NW. For EWP/EWC, ν = 
T/S, so we round down ν. 



6 
 

Although there are nuances, it turns out that most of our findings are captured by a simple 

Monte Carlo design with a single stochastic regressor, in which xt and ut are independent 

Gaussian AR(1) processes, for which results are shown in Table 1.5 The table reports Monte 

Carlo rejection rates under the null for NW and EWC tests, and illustrates three of our five main 

findings. 

First, as shown in the first row, the textbook NW method can result in large size 

distortions. The practitioner hopes to conduct a 5% test, but the test actually rejects 11.4% of the 

time under the null in the moderate-dependence case (ρx = ρu = 0.5 ) and 18.0% of the time in 

the high-dependence case (ρx = ρu = 0.7 ). This finding recapitulates simulation results dating 

at least to den Haan and Levin (1994, 1997). The large size distortions stem from bias in the NW 

estimator arising from using a small truncation parameter. 

Second, as seen in rows 2 and 3, using the rules (3) or (4) with fixed-b critical values 

substantially reduces the size distortions observed in the textbook NW test. 

Third, these improvements in size come with little cost in loss of power. This is shown in 

theory in Section 3 for the location model and is verified in the Monte Carlo simulations. 

Fourth, although in theory the EWC test asymptotically dominates NW (both with the 

proposed rules and fixed-b critical values) for the location model, our simulation results suggest 

that, for sample sizes typically found in practice, neither test has a clear edge in regression 

applications. Broadly speaking, for inference about a single parameter, EWC has a slight edge, 

but in high dimensional cases with lower persistence, NW has the edge. Generally speaking, 

however, these differences are small, and the choice between the two is a matter of convenience. 

In this regard, a convenient feature of EWC is its standard t and F fixed-b critical values. 

Fifth, as seen in rows 4-6, for each of the three tests, the size distortions are substantially 

less using the restricted instead of unrestricted estimator of Ω. The difference between the two 

estimators is whether the null is imposed in constructing z: the unrestricted estimator uses 

ˆˆt t tz X u  as described above, whereas the restricted estimator uses t t tz X u  , where tu  is the 

OLS residual from the restricted regression that imposes the null. However, this size 

                                                            
5 If xt and ut are independent scalar AR(1)s with coefficients ρx and ρu, then zt has the 
autocovariances of an AR(1) with coefficient ρxρu. Throughout, we calibrate dependence through 
the dependence structure of zt, which is what enters Ω. 
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improvement comes with a loss of power that, in some of our simulations, can be large; 

moreover, the econometric theory of the differences between the restricted and unrestricted 

estimators is incomplete. As a result, our recommendations focus on the use of the unrestricted 

estimator. 

Figure 1 summarizes the derivation of the rules (3) and (4) for 5% two-sided tests of the 

mean in the scalar location case (that is, Xt = 1 in (1)) for a Gaussian AR(1) process with AR 

coefficient 0.7 and T = 200. Figure 1 plots the size-power tradeoff for a number of tests, all of 

which use fixed-b critical values. The horizontal axis is the size distortion ΔS, which is the 

rejection rate of the test minus its nominal level α = 0.05. The vertical axis is the maximum size-

adjusted power loss, max
P , relative to the infeasible oracle test that uses the true value of Ω, 

where the maximum is computed over all alternatives.6 The dashed line shows the theoretical 

tradeoff (derived in LLS) between the size distortion and the maximum power loss for the NW 

test; the points on this tradeoff are determined by different choices of b, with large b 

corresponding to points in the northwest and small b corresponding to points in the southeast. 

The solid line is the theoretical size-power tradeoff shared by the EWP and EWC estimators. 

LLS show that among psd estimators that produce tests with t or F fixed-b critical values, EWC 

and EWP share the most favorable asymptotic size-power tradeoff. In fact, the EWP/EWC 

theoretical tradeoff is very close to the asymptotic frontier for the size-power tradeoff for all 

kernel tests (the dotted line), which is achieved by the quadratic spectral (QS) kernel using 

nonstandard critical values. A point in Figure 1 has both better size control and less power loss 

than all points to its northeast. As the sample size grows, the curves shift in, but more slowly for 

NW so that eventually it is dominated by EWP/EWC, but for 200 observations with ρ = 0.7, the 

NW and EWP/EWC lines cross. 

The squares and circles denote size distortions and power loss combinations computed by 

Monte Carlo simulation. For the EWC test (squares), the theoretical tradeoff evidently is a very 

good guide to the finite sample performance. In contrast, for NW, the finite-sample tradeoff 

                                                            
6 The theory of optimal testing aims to find the best test among those with the same size. To 
compare rejection rates under the alternative for two tests with different finite-sample sizes, an 
apples-to-apples comparison requires adjusting one or both of the tests so that they have the 
same rejection rate under the null. We elaborate on size adjustment in Section 3.  
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(circles) are well to the northeast of the theoretical tradeoff, a finding we suspect relates to the 

remainder term in the Edgeworth expansion being of a lower order for NW than for EWC. The 

finite-sample EWC tradeoff dominates the NW tradeoff. 

The solid circle indicates the textbook NW test: its null rejection rate is 0.14, so its size 

distortion is 0.09, and its maximum size-adjusted maximum power loss, relative to the oracle 

test, is 0.03. The solid triangle is the Kiefer-Vogelsang-Bunzel (2000) (KVB) test, which is NW 

with bandwidth equal to the sample size (b = 1). The textbook NW test is in the southeast corner 

of the plot: it prioritizes a small power loss at the cost of a large size distortion. In contrast, KVB 

prioritizes size control at the cost of a large power loss of 0.23. 

These tradeoffs represent points that can be achieved by different choices of b; but which 

of these points should be chosen? We propose to decide by minimizing a loss function that is 

quadratic in ΔS and max
P : 

   22 max(1 )S PLoss       .        (5) 

This formulation departs from the classical approach to testing, which insists on perfect 

size control, and rather takes the practical compromise position that some size distortion is 

acceptable; that is, it is acceptable to choose a point on the size-power tradeoff in Figure 1. In the 

spirit of classical testing, we propose putting a large weight on controlling size, specifically, we 

use κ = 0.9. The loss function (5) maps out an ellipse, and the tangency point between the ellipse 

and the tradeoff is the loss-minimizing choice of b, which is shown as solid stars in Figure 1. A 

theoretical expression for the loss-minimizing bandwidth is given in Section 3; when evaluated 

for κ = 0.9 and an AR(1) with ρ = 0.7, the result is the rules (3) and (4). The open stars in Figure 

1 show the Monte Carlo outcomes when the rules (3) and (4) are used. For EWC, the solid and 

open stars are very close to each other, but less so for NW. 

The remainder of the paper is organized as follows. Section 2 summarizes kernel LRV 

estimators and fixed-b distributions. Section 3 reprises key theoretical results for the Gaussian 

location model and uses those to derive loss-minimizing bandwidth formulas for general kernel 

estimators, which we specialize to NW and EWC. Simulation results for are given in Section 4 

for the location problem and in Section 5 for the regression problem. Section 6 concludes. 
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2. LRV Estimators and Fixed-b Critical Values 

 

2.1 LRV estimators for time series regression  

The NW, EWP, and QS estimators are kernel estimators of the long-run variance. The 

EWC estimator is not a kernel estimator, but rather falls in the class of orthogonal series 

estimators; however, to the order of approximation used in this paper, the EWC estimator is 

asymptotically equivalent to the EWP estimator. 

Kernel estimators. Kernel estimators of Ω are weighted sums of sample autocovariances 

using the time-domain weight function, or kernel, k(.): 

1

( 1)

ˆ ˆ
T

j
j T

j
k

S



 

    
 

   where 
min( , )

max(1, 1)

1ˆ ˆ ˆ
T T j

j t t j
t j

z z
T




 

   ,   (6) 

The Newey-West estimator ˆ NW  uses the Bartlett kernel k(v) = (1 – |v|)1(|v|1), and the QS 

estimator ˆ QS  uses the Bartlett-Priestley-Epanechnikov quadratic-spectral (QS) kernel, k(v) = 

3[sin(πx)/πx – cosπx] /(πx)2 for x = 6v/5; see Priestley (1981) and Andrews (1991) for other 

examples. 

The estimator in (6) uses the sample autocovariances of the residual process, that is, 

ˆ
t̂ t tz y y y     in the location model and ˆt̂ t tz X u  in the regression model, where ˆtu  is the 

OLS residual from the unrestricted regression. We refer to estimators of Ω that use t̂z  as 

unrestricted estimators. Alternatively, ̂  can be computed imposing the null, that is, using 

0 0( ) ( )t t tz X u   , where 0( )tu   are the residuals from the restricted regression. We exposit the 

unrestricted estimator, which is the version typically used in practice, but return to the restricted 

estimator in the Monte Carlo analysis. 

The estimator in (6) can alternatively be computed in the frequency domain as a weighted 

average of the periodogram: 

̂  = 
1

ˆˆ
1

2 (2 / ) (2 / )
T

T zz
j

K j T I j T  



 ,     (7) 

where KT(ω) = 
11

0
( / )

T i u

u
T k u S e  

  and where ˆˆ ( )zzI   is the periodogram of ˆtz  at frequency ω, 

ˆˆ ( )zzI   = 1
ˆ ˆ(2 ) ( ) ( )z zd d    , where ˆ ( )zd   = 

1

1/2 1/

1

2ˆ ˆcos sin
T

t t

T

ttT iz t z tT  
 

  . (8) 
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The equal-weighted periodogram (EWP) estimator is computed using the Daniell (flat) 

frequency-domain kernel that equally weights the first B/2 values of the periodogram, where B is 

even: 

/2

ˆˆ
1

2
/ )ˆ (2

/ 2
EW

z
P

B

z
j

I
B

j T
 



   .      (9) 

Kernel estimators are psd with probability one if the frequency-domain weight function 

KT(ω) is nonnegative. The QS, NW, and EWP estimators satisfy this condition. 

The EWC estimator. The expression for ˆ ( )zd   in (8) shows that the EWP estimator in 

(9) is the sum of squared normalized coefficients from a regression of ˆtz  onto orthogonal sine 

and cosines, {sin(2πj/T), cos(2πj/T)}, j = 1,…, B/2. Because the sines and cosines come in pairs, 

only even values of B are available for EWP. A closely related estimator, which allows for all 

integer values of B, replaces the sines and cosines of the periodogram with a set of just cosines; 

like the Fourier terms, these cosines constitute an orthonormal basis for L2. Specifically, the 

EWC estimator is, 

1

1ˆ ˆ
B

EWC
j

jB 

   , where ˆ
j  = ˆ ˆ

j j
   and ˆ

j  = 
1

1/ 2
co

2
sˆ

T

t
t

t

T
j

T
z 



   
    

 . (10) 

The projection ˆ
j  is the Type II discrete cosine transform of ˆtz . The EWC estimator is psd with 

probability one. 

The estimator ˆ EWC  cannot be written in the form (6) and thus is not a kernel estimator; 

rather ˆ EWC is a member of the class of orthogonal series estimators (see Sun (2013) for a 

discussion and references). To the order of the expansions used here, ˆ EWC  is asymptotically 

equivalent to ˆ EWP  (LLS).7 

 

2.2 Fixed-b distributions  

Fixed-b distributions of ̂  are commonly expressed as functionals of Brownian motions 

(e.g. Kiefer and Vogelsang (2002, 2005) and Sun (2014)). Here, we provide a simpler expression 

as a finite weighted average of chi-squareds for an important class of kernel estimators, those 

                                                            
7 Phillips (2005) shows that the Type II sine transform has the same mean and variance 
expansion as EWP. We expect that his calculations could be modified to cover Type II cosines. 
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with frequency domain representations with nonzero weights on the first B/2 periodogram 

ordinates, a class that includes EWP and QS. This derivation shows that the fixed-b asymptotic 

distribution of EWP is a t distribution. This derivation draws on classical results in spectral 

analysis, and our exposition amounts to a sketch of the solution to, and minor generalization of, 

Brillinger’s (1975) exercise 5.13.25. To keep things simple, we focus on the case m = 1 and a 

single stochastic regressor, where both y and x have mean zero, and zt = xtut. The arguments here 

go through for testing the mean of y (regression with an intercept only) and for regression with 

additional regressors, where (by Frisch-Waugh) they are projected out.  

In large samples, ˆˆ (2 / ) d
zzI j T  (0)z js   for fixed integer j > 0, where sz(0) is the 

spectral density of zt at frequency 0 and 2
2~ / 2j  . This is true jointly for a fixed number of 

periodogram ordinates, where the orthogonality of sines and cosines at harmonic frequencies 

imply that their limiting distributions are independent. Because Ω = 2πsz(0), it follows that, for a 

kernel estimator with frequency domain weights that are nonzero for only the first B/2 

periodogram ordinates, 

̂  
/2

,
1

B

T j j
j

K 


 
 

 
 , where j  are i.i.d. 2

2 / 2 ,  j = 1,…, B/2 ,   (11) 

where KT,j = K(2πj/T); see Brillinger (1981, p.145) and Priestley (1981, p. 466). In addition, let 

1
0 01

( )
T

tt
z T z 


  , where 0 0( ) ( )t t t tz x y x   ; then 0 (0, )dT z N   under the null. 

Because the sine and cosine weights in the periodogram integrate to zero at harmonic 

frequencies, { ˆˆ (2 / )zzI j T }, j = 1,…, B/2 are asymptotically independent of 0z . Thus, under the 

null for fixed B, 

t =  
*

0

/2

1
ˆ

d

B

j jj

T z z

K 



 

,      (12) 

where z* is a standard normal random variable that is distributed independently of the 2
2 / 2  

random variables { j }. The limiting distribution in (12) is the fixed-b distribution of the HAR t 

statistic, because fixing b = ST/T is equivalent to fixing B in the frequency domain (for the EWP 

estimator, B = b-1).  

d
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 For the EWP estimator (Brillinger’s exercise), Kj = (B/2) -1 so  
/2

1

B

j jj
K 

  = 

  /21

1
/ 2

B

jj
B 

  ~ 2 /B B , so the t-ratio in (12) is distributed tB. With unequal weights, however, 

the limiting distribution of the t-ratio in (12) is nonstandard. 

Tukey (1949) recognized that the distribution in (11) is not in general chi-squared, but 

can be approximated by a chi squared with what is called the “Tukey equivalent degrees of 

freedom,” 

  1
2 ( )b k x dx




   .        (13) 

For EWP, 2 ( )k x dx


 = 1 so ν = b-1 = B, and Tukey’s approximation is exact. See Sun (2014) 

for additional discussion. When discussing EWP (and EWC, which is asymptotically equivalent 

to EWP), we therefore refer to the number of included series as ν, which is also the degrees of 

freedom of the HAR fixed-b t-test. 

In the case of m > 1 restrictions, the usual test statistic is FT = 1
0 0

ˆ /Tz z m . For the EWC 

and EWP estimators, mFT  has a fixed-b asymptotic Hotelling T2(m,B) distribution. To turn this 

into a conventional F distribution, we consider the rescaled version of FT, 

*
TF   = 

1
T

B m
F

B

 
,        (14) 

 (cf. Rao (1973, Section 8.b.xii), Müller (2004), Sun (2013), and Hwang and Sun (2017)). When 

FT is evaluated using ˆ EWC ,  *
TF d   Fm,B-m+1. 

We denote the fixed-b critical value for a given kernel by ( )mc b , for a test with nominal 

level α. 

 

3. Choice of b in the Gaussian Location Model 

 

Although our interest is in HAR inference in the time series regression model (1) with 

stochastic regressors, the theoretical expressions we need are available only for the Gaussian 

location model. Under appropriately chosen sequences of b that tend to zero as T increases, 

kernel HAR tests are asymptotically equivalent to first order, yet as discussed in the introduction, 

simulation results show that they can have quite different performance in finite samples. The 
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workhorse tool for comparing higher-order properties of tests that are first-order asymptotically 

equivalent tests is the Edgeworth expansion. Rothenberg (1984) surveys early work on 

Edgeworth expansions with i.i.d. data. Edgeworth expansions for HAR tests in the Gaussian 

location model date to Velasco and Robinson (2001), as extended by Sun, Phillips, and Jin 

(2008), Sun (2013, 2014a), and others. We first reprise these results, then use them to obtain 

loss-minimizing bandwidth rules. 8 

The Gaussian location model is, 

yt =  + ut.         (15) 

where yt and ut are m1,  is the m-vector of means of yt, and ut is potentially serially correlated. 

When m = 1 and Xt = 1, the location and regression models coincide. For the location model, zt = 

ut = yt – β; the t-ratio is t = 0
ˆT z   as in (12); and the F-statistic is given in (14). 

 

3.1 Small-b approximate size distortions and size-power frontier  

The expansions for kernel HAR tests depend on the kernel through its so-called Parzen 

characteristic exponent, which is the maximum integer such that  

k(q)(0) =  <  .      (16) 

The term k(q)(0) is called the qth generalized derivative of k, evaluated at the origin. For the 

Bartlett (Newey-West) kernel, q = 1, while for the QS and Daniell kernels, q = 2. 

The expansions also depend on the Parzen generalized derivative of the spectral density 

at the origin: 

ω(q) = 1 1| |q j
j

tr m j


 



 
  

 
 .      (17)  

When m = 1 and q = 2, ω(2) is the negative of the ratio of the second derivative of the spectral 

density of zt at frequency zero to the value of the spectral density of zt at frequency zero. If zt 

follows a stationary AR(1) process with autoregressive coefficient ρ, then ω(1) = 
22 / (1 )   

and ω(2) = 
22 / (1 )  .  

                                                            
8 Work on expansions in the GMM setting includes Inoue and Shintani (2006), Sun and Phillips 
(2009) and Sun (2014b). 

0

1 ( )
lim

| |x q

k x

x
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Higher-order size distortion. Let ΔS denote the size distortion of the test, that is, the 

rejection rate of the test minus its nominal level α. Drawing on results from the Edgeworth 

expansion literature, Sun (2014a) shows that, for kernel HAR tests using fixed-b critical values, 

 * ( ) ( )
0Pr ( ) ( ) (0)( ) ( ) ( )q q q q

S T m m m mF c b G k bT o b o bT                 (18) 

where Gm is the chi-squared distribution with m degrees of freedom, mG  is its derivative, and m
  

is its 100(1-) percentile.  

Higher order size-adjusted power loss. For a comparison of the rejection rates of two 

tests under the alternative to be meaningful, the two tests need to have the same rejection rate 

under the null. To illustrate this point, consider the following exact finite-sample example. 

Suppose yt is i.i.d. N(β,1), t = 1,…, T. Consider two one-sided tests of β = 0 v. β > 0: φ1 is a 5% 

test that rejects if  1/2

1

T

tt
T y

  > 1.645, and φ2 is the 10% test that rejects if 
.91/2

1
(.9 )

T

tt
T y

  > 

1.28, so φ1 uses all the data and φ1 uses only 90% of the observations. For small values of β – 

specifically, for β <    1.645 1.28 / .9T T   – the test φ2 rejects more frequently than φ1 

under the alternative. But this does not imply that the statistic used to compute φ2, which 

discards 10% of the data, is the preferred test statistic, because the power comparisons is 

between two tests with different sizes. To determine which statistic should be used, the tests 

must have the same size, which is accomplished by adjusting the critical values. This size-

adjustment would change the critical value for φ1 to 1.28, or alternatively would change the 

critical value for φ2 to 1.645. In either case, once the tests use size-adjusted critical values and 

have the same null rejection rate, the test using all the data has a uniformly higher power 

function than the test that discards 10% of the data, so the preferred statistic – the statistic with 

the greater size-adjusted power – is the sample mean using all the data. 

Standard practice in the literature on higher-order comparison of tests that are equivalent 

to first order is to make two tests comparable, to higher order, by using size-adjusted critical 

values based on the leading higher-order term(s) in the null rejection probability expansion (e.g., 

Rothenberg (1984, Section 5)). In our case, the size-adjusted critical value, , ( )m Tc b , is an 

adjusted version of the critical value ( )mc b  such that the leading term on the right hand side of 

(18) vanishes, that is,  *
0 ,Pr ( ) ( ) ( ) q

T m TF c b o b o bT        . LLS show that, 
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, ( )m Tc b  = ( ) ( )1 (0)( ) ( )q q q
mk bT c b    .     (19) 

This adjusted critical value depends on ω(q) and thus is infeasible, however it allows the power of 

two tests with different second-order sizes to be compared. 

Following LLS, we compare the power of two tests by comparing their worst-case power 

loss, relative to the infeasible (oracle) test using the unknown Ω, using size adjusted critical 

values.9 Let δ = 1/2 1/2 1/2
XXT     be the local alternative (in the location model, ΣXX = I). Using 

results in Sun, Phillips, and Jin (2008) and Sun (2014), LLS show that the worst-case power loss 

max
P  against all local alternatives is,  

 
 

 

2

2

max *
,,

2
1

2,

max 1 ( ) Pr ( )

max ( ) ( ) ( )
2

P m T m Tm

q
m mm

G F c b

G o b o bT

 
  

 
 



     


         

 
   

 

     (20) 

where 2,m
G


 is the noncentral chi-squared cdf with m degrees of freedom and noncentrality 

parameter δ2, 2,m
G


  is its first derivative, and ν is the Tukey equivalent degrees of freedom (13). 

The worst-case power loss occurs for the value of delta against which the oracle test has a 

rejection rate of 66% (a numerical finding that appears not to depend on m). Thus, the worst-case 

power can instead be thought of as power against this particular point alternative. This 

alternative seems reasonable to us and is in the range typically considered when constructing 

point-optimal tests. Two different strategies would be to consider power against an alternative 

much closer to the null, or instead a very different alternative. Doing so would produce different 

constants in the rules (3) and (4). 

Size-power tradeoff. One definition of an optimal rate for b is that it makes ΔS and max
P  

vanish at the same rate; this condition is an implication of minimizing the loss function (5). This 

rate is (1 )q qb T    or equivalently (1 )q qT  , for which ΔS and max
P  are both  /(1 )q qO T    . It 

                                                            
9 In general, the higher-order terms in Edgeworth expansions can result in power curves that 
cross, so that the ranking of the test depends on the alternative, see Rothenberg (1984). Here, 
however, the higher order size-adjusted power depends on the kernel only through ν (see (20)) so 
the power ranking of size-adjusted tests is the same against all alternatives. Thus using, say, an 
average power loss criterion, would not change the ranking of tests, although it would change the 
constant in (20). 
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follows that, asymptotically, size distortions and power losses for all q = 2 kernels dominate all q 

= 1 kernels. 

For sequences with this optimal rate, the leading terms in (18) and (20) map out the 

tradeoff between absolute value of the size distortion and power loss, which LLS show is given 

by,  

1/
( )

q

p S   =  1/ 1/( ) 2 ( ) 1
, , ( ) (0) ( )

q qq q
m qa k k x dx T  

 



 
   ,    (21) 

where , , ( )m qa   =  2

1/2

2,

1
( ) ( )

2 m m m

q

mm mG G  


   

  . Note that the absolute value of ΔS can be 

replaced by ΔS if zt is persistent (ω(q) > 0). The asymptotic rate for this tradeoff is better for q = 2 

(the largest value consistent with psd kernels) than for q = 1. Thus the best-possible tradeoff for 

all psd kernels minimizes ( ) 2(0) ( )qk k x dx


 , which is done by the QS kernel. Among tests 

with fixed-B distributions that are exact tν, LLS show that the best-possible tradeoff is achieved 

by the EWP and EWC tests. 

 

3.2 Loss function approach to choosing b 

Choosing a bandwidth sequence amounts to choosing a point on the tradeoff curve (21). 

We make that choice by minimizing the quadratic loss function (5).  

Specifically, consider sequences b = (1 )
0

q qb T   , and minimize (5) over the constant b0, 

where ΔS and max
P  are respectively given by their leading terms in (18) and in the final line of 

(20). Because the spectral curvature ω(q) enters (18), minimizing the loss requires either 

knowledge of ω(q) or an assumption about ω(q). In either case, let ( )q  denote the value of ω(q) 

used in the minimization problem. 

Minimizing the quadratic loss function (5) with ω(q) = ( )q  yields the sequence, 

 
1/(1 )

( )
1/(1 )/(1 ) ( )

0 0 , , 2

(0)
* ,  where 

q
q

qq q q
q m q

k
b b T b d

k
 



 
 
  
 
 

 ,   (22) 

where  
1

2(1 )(1 ) q
q q      and  2

1/(

,
2

2,

1 )

, ) max )2 ( (m m m

q

q mmd G G
 

  



 

    (see the online 

Supplement for the derivation). The minimum-loss equivalent degrees of freedom (13) implied 

by (22) is, 
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/(1 )1/ 1/(1 )/(1 ) 1 1 ( ) 2 ( )

0 0 , ,* ,  where (0)
q qq qq q q q

q m qT d k k    
            .  (23) 

Table 2 evaluates the constants collectively multiplying T-q/(1+q) in (22) for various values 

of κ and ( )q  for NW and EWC. In the table, the assumed curvature is parameterized by the 

curvature for an AR(1) with autoregressive coefficient  , a representation we find more directly 

interpretable. As can be seen from (22), (23), and the table, b* is increasing and ν* is decreasing 

in both   and  κ.  

The size distortions and power losses along the optimal sequence, which are obtained by 

substitution of (22) and (23) into (18) and (20), are  

    
/(1 )( )/(1 )1/ 1/(1 )( ) 2 ( ) /(1 )

. . ( )
* (0)

q qqq qq qq q q q q
q m q qS a k k T

 



    

   
 

 , and  (24) 

    
/(1 )1/ 1/(1 )( ) 2 ( ) /(1 )

.
max*

. (0)
q qq qq q q q

q mP qa k k T 
      .    (25) 

The rule choice parameters enter the size distortion and power loss expressions in opposite ways. 

Larger values of κ and/or   lead to larger optimal values of b, less size distortion, and more 

power loss for a given true value ρ. 

Figure 2 plots the theoretical size distortion and power loss in (24) and (25) for selected 

values of κ and  . The preference parameters considered all place more weight on size than 

power, and the size distortion curves in these plots all lie below the power curves. The rates of 

the EWC curves are T-2/3 and the rates of the NW curves are slower, T-1/2, which is evident in 

Figure 2(b). A striking feature of these figures is that NW in Figure 2(b) has essentially the same 

size distortion, but lower power loss, than EWC (both using the proposed rules and fixed-b 

critical values) through T ≈ 300. This is another manifestation of the crossing of the EWC and 

NW tradeoffs in Figure 1, and indicates that the asymptotic theoretical dominance of EWC and 

QS implied by the rates does not imply theoretical dominance at moderate, or even fairly large, 

values of T.  

The choice of a specific constant from Table 2 requires choosing values of   and κ. 

Consistent with our focus on the problem of moderate persistence, we propose to use the spectral 

curvature corresponding to an AR(1) with   = 0.7. Concerning κ, we adopt a value that weights 
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size control much more heavily than power loss, and suggest κ = 0.9. The corresponding rule 

constants are bolded in Table 2 and produce the rules (3) and (4). 

The theoretical performance of these rules is examined in Figures 2(c) and 2(d), for 

various true values of ρ. As the true ρ gets smaller, the size of each of the two tests improves. 

The power loss, however, depends on   but not on ρ so does not improve as ρ diminishes. 

The constant in the optimal rule also depends on the number of restrictions being tested, 

m. Table 3 provides these constants for 1 ≤ m ≤ 10 (the values for m = 1 are those in bold in 

Table 2). For both tests, the optimal value of b decreases with m (recall that for EWC, ν = b-1). 

For NW, the optimal S decreases by one-fourth from m = 1 to m = 5; for EWC, the optimal ν 

increases by one-fifth from m = 1 to m = 5. In practice, there are substantial advantages to 

producing a single estimate of Ω instead of using different tuning parameters for tests with 

different numbers of restrictions. Because the most common use of HAR inference is for a single 

restriction and confidence intervals for a single coefficient, we adopt b0 and ν0 for m = 1. 

 

4. Monte Carlo Results I: ARMA/GARCH DGPs 

 

The Monte Carlo results presented in this and the next section have two purposes. The 

first is to assess how well the theoretical tradeoffs characterize the finite-sample tradeoff 

between size and power. The second is to assess the finite-sample performance of the EWC and 

NW tests using proposed rules (3) and (4), including comparing their performance to each other 

and to the textbook NW test. In this section, the pseudo-data are generated from AR models, in 

some cases with GARCH errors and in some cases with non-Gaussian errors. (The online 

Supplement shows results for selected ARMA models.) In the next section, the pseudo-data are 

generated according to a data-based design.  

We first consider the location model, then turn to results for regressions. In all, we 

consider 11 DGPs in this section. Here, we provide illustrative results and high-level summaries; 

detailed results are provided in the online Supplement. 

 

4.1. ARMA/GARCH DGPs 

Location model. The disturbance ut is generated according to the AR model ρ(L)ut = ηt, 

with i.i.d. disturbances ηt with mean zero and variance 1, potentially with GARCH errors. The 
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disturbance distribution includes Gaussian and non-Gaussian cases, where the non-Gaussian 

distributions are normal mixture distributions 2-5 from Marron and Wand (1992). The skewness 

and kurtosis of the innovations is summarized in the first two numeric columns of Table 4. The 

final two columns of Table 4  provide the skewness and kurtosis of the AR(1) process for ut with 

ρ = 0.7, which has less departure from normality than do the innovations. The null hypothesis is 

β0 = 0. Data were generated under the local alternative δ by setting yt = β + ut, where β = σuT-1/2δ. 

The size-adjusted critical values, which are used to compute max
P , are  computed as the 

100(1-α) percentile of the Monte Carlo distribution of the test statistic under the null for that 

design. 

Regressions. Here, we consider regressions with a single stochastic regressor, that is, yt = 

β0 + β1xt + ut, where xt and ut follow independent Gaussian AR(1)’s. Results for additional 

ARMA/GARCH designs are reported in the online Supplement; in general, the results for the 

more complicated designs give the same conclusions as the results for the independent AR(1) 

design here. Under the null, β1 = 0, so yt and xt are two independent AR(1)’s. 

We examine LRV estimators computed under the null (the restricted case) and under the 

alternative. In both cases the intercept is estimated. Thus the restricted LRV estimator uses 

  0 0( )t t t tz x x y x y x      , and the unrestricted LRV estimator uses   ˆˆt t tz x x u  , 

where ˆtu  is the OLS residual. Sample autocovariances for the restricted NW estimator are 

computed as    1
t t t tt

T z z z z       ; the QS estimator, which we compute in the frequency 

domain, and the EWC estimator are invariant to the mean of  tz  so do not require demeaning. 

To compute size-adjusted power, data on y under the alternative were generated as yt = 

β1xt + ut, for some nonzero alternative value of β1, given x and u. Thus changing β1 under the 

alternative changes the value of y for a given draw of x and u, but does not change zt, the OLS 

residuals ˆtu , the true long-run variance, or its unrestricted estimate based on ˆtz . However, 

changing β1 for a given draw of x and u does change tz  and therefore changes the restricted 

estimate of the LRV (because the null is no longer true). The size-adjusted critical value is 

computed as the 95% percentile of the (two-sided) test statistic under the null, and the size-

adjusted power is the rejection rate under the alternative using the size-adjusted critical value. 
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4.2. Results for the Location Model 

Figure 3 presents the size-power tradeoff (ΔS v. max
P ) for six DGPs. The first figure 

presents results for Gaussian innovations to an AR(1) process with ρ = 0.7 and T = 200; these 

results also appear in Figure 1. As in Figure 1, the symbols are Monte Carlo results and the lines 

are the theoretical tradeoffs (21). The next four figures show results using Marron-Wand 

distributions 2-5 for the innovations, and the final figure shows results for GARCH errors with 

high GARCH persistence.  

The results in Figure 3, combined with additional results in the Supplement, suggest two 

conclusions. First, under Gaussianity, the theoretical approximations are numerically close to the 

Monte Carlo results for EWC but not for NW, where the finite-sample performance of NW is 

substantially worse than predicted by theory. The remainder terms in the expansion are 

/(1 )( )q qo b 
, which is o(T-1/2) for NW but o(T-2/3) for EWC, so the remainder terms could be larger 

for NW than EWC – as appears to be the case in Figure 3. Nevertheless, the Monte Carlo points 

trace out a tradeoff with a similar shape to the theoretical tradeoff, just shifted to the northeast. 

Second, although we would not expect the Gaussian tradeoffs to hold for non-Gaussian 

innovations (Velasco and Robinson (2001)), the findings for Gaussianity seem to generalize to 

moderate departures from Gaussianity (Marron-Wand distributions 2 and 4), and even to heavily 

skewed distributions (Marron-Wand 3). Interestingly, in the cases of heavy-tailed distributions 

(Marron-Wand 5 and GARCH), the EWC Monte Carlo tradeoffs lie below the theoretical 

Gaussian tradeoffs. 

Performance of proposed rules as a function of T. Figure 4 examines the performance 

of the proposed rules (3) and (4) as a function of T, for a Gaussian AR(1) DGP with ρ = 0.7. The 

theoretical tradeoffs are the same as in Figure 2; in finite samples, however, EWC performs 

better than NW. For EWC, the Monte Carlo size distortion and power loss are close to the 

theoretical predictions, but for NW they exceed the theoretical predictions, even for large values 

of T. 

 

4.3. Results for Regressions 

Figure 5 and Figure 7 are the same as Figure 3 and Figure 4, but now for the regression 

model. Figure 5 and Figure 7 presents Monte Carlo tradeoffs for the regression model with a 

single stochastic regressor, in which ut and xt are independent Gaussian AR(1)’s with AR 
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coefficients ρu = ρx = 0.7 . Figure 8 summarizes size distortion and power loss results for the 

Gaussian AR(1) design with different values of ρu = ρx  (.53, .64, .73, 0.80, which yield values of  

ω(2) of 5, 10, 20, and 40); this figure shows results when S and ν are selected by rules (3) and (4) 

as well as values of b and ν that are half and twice as large as the proposed rule. The results for 

this AR(1) case are representative of those for other designs described in the online Supplement. 

These results suggest four conclusions. First, because the marginal distribution of xtut is 

heavy tailed, one would expect the Gaussian location model tradeoff to be an imperfect 

approximation to the regression model tradeoff even if the null is imposed (i.e. the restricted 

LRV estimator is used). In fact, the Monte Carlo tradeoff in Figure 5 for the restricted LRV 

estimator is closer to that for the Marron-Wand outlier distribution than it is to the Gaussian 

frontier.  

Second, the performance of EWC is almost always better than, and only rarely worse 

than, NW for a given design. 

Third, for a given b, the size is improved, with a slight power loss, by imposing the null 

for estimating the LRV. Often this size improvement is large. In Figure 5, if the restricted LRV 

estimator is used, the performance of the regression test is comparable to the location model, but 

if the unrestricted estimator is used, the tradeoff shifts far to the northeast, for both NW and 

EWC. The improvements from imposing the null persist with large sample sizes, and the Monte 

Carlo tradeoff for the test using the restricted estimator dominates that for the unrestricted 

estimator. This outward shift indicates that there are potentially large gains to testing by 

imposing the null, at least in some designs. 

Fourth, the results in Figure 7 suggest that the tests based on the proposed rules provide a 

reasonable balance between size distortions and power loss, consistent with the intuition of 

Figure 1. Doubling S (halving ν) results in somewhat better size control but much worse power 

loss, while halving S (doubling ν) has the opposite effect. The textbook rule represents an 

extreme case of low power loss but high size distortion. 

 

5. Monte Carlo Results II: Data-based DGP 

 

In this section, we examine the finite-sample performance of the proposed tests in a 

design that aims to reflect the time series properties of typical macroeconomic data. To this end, 
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we fit a dynamic factor model (DFM) to a 207-series data set comprised of quarterly U.S. 

macroeconomic time series, taken from Stock and Watson (2016). We then simulate data from 

the estimated DFM and, with these data, test a total of 24 hypotheses, the location model plus 23 

different time series regression tests that require HAR inference. Of the 23 regression tests, 9 test 

a single restriction (m = 1) and 14 test a joint hypothesis. Because the DFM parameters are 

known, we know the true value of the parameter(s) being tested and the true long-run variance, 

and can therefore compute the null rejection rate, size-adjusted critical values, power of the 

oracle test, and size-adjusted power loss for each of the tests. 

 

5.1. Data base and Dynamic Factor Model DGP 

The data set is taken from Stock and Watson (2016). The data are quarterly, 1959Q1-

2014Q4, and include NIPA data, other real activity variables, housing market data, prices, 

productivity measures, and interest rates and other financial series. The series were transformed 

to be approximately integrated of order zero, for example real activity variables were typically 

transformed using growth rates. Some outliers were removed, and to eliminate low frequency 

trends, the series were then filtered using a low-frequency biweight filter (bandwidth 100 

quarters). For additional details, see Stock and Watson (2016). 

These transformed series were then used to estimate a 6-factor DFM, where the factors 

follow a first-order vector autoregression and the idiosyncratic terms follow an AR(2). Let Xt 

denote the vector of 207 variables and let Ft denote the factors. The DFM is, 

Xt = ΛFt + et        (26) 

Ft = ΦFt-1 + ηt        (27) 

δi(L)eit = νit        (28) 

where Λ and Φ are coefficient matrices, δi(L) is an AR(2) lag polynomial, t tE       and  

2
iit jtE     for i = j and = 0 for i ≠ j. 

The estimated DFM was then used as the DGP for generating pseudo-data using serially 

uncorrelated draws of ηt (with covariance matrix Ση) and νit.  

The disturbances (ηt, νt) were drawn in two ways: from an i.i.d. Gaussian distribution, and 

from the empirical distribution using a time reversal method that ensures that the disturbances 

are serially uncorrelated but preserve higher moment time series structure (such as GARCH). We 

describe this here for drawing from the joint distribution of two series, i and j, this extends to 
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drawing from the joint distribution of additional series. Let TDFM denote the number of 

observations used to estimate the DFM, let ̂  = 1 2ˆ ˆ ˆ DFMT
      denote the 6×TDFM matrix of 

factor VAR residuals, let ˆR  = 11
ˆ ˆ ˆDFM DFMT T
  
    denote the 6×TDFM matrix of time-

reversed factor VAR residuals, and similarly let î  and ˆR
i  denote the 1×TDFM matrices of the ith 

idiosyncratic residual and its time-reversal. Also let ,r T  denote the r×T random matrix with 

elements that are ±1, each with probability ½, where T is the number of observations used in the 

Monte Carlo regressions. The two methods of drawing the disturbances are, 

(i) Gaussian disturbances: ηt ~ i.i.d. N(0,Ση), νit ~ i.i.d. N(0, 2
i ), νjt ~ i.i.d. N(0, 2

j ), 

where  ηt , νit, and νjt are mutually independent. 

(ii) Empirical disturbances: Randomly select a 6×(T+500) segment    from the 

matrix [… ˆR  ̂  ˆR  ̂  …] and randomly draw a matrix 6, 500T  ; the factor VAR 

innovations for this draw are 6, 500T    . Similarly, draw i  as a randomly 

chosen 1×(T+500) segment of [… ˆR
i  î  ˆR

i  î  …] and randomly draw 1, 500T  ; 

the idiosyncratic innovations for series i are 1, 500T
i

   . The idiosyncratic 

innovations for series j are constructed in the same way as for series i.10 

In both cases, we generated time series of length T+500 from the disturbances, which were used 

to generate the data, initializing the pre-sample values of F and e with zeros. The first 500 

observations were discarded to approximate a draw from the stationary distribution. 

The scheme for sampling from the empirical disturbances has three desirable properties. 

First, because of multiplication by the random matrices  , the disturbances are serially 

uncorrelated. Second, it preserves all even moments of the residuals (thus preserves outliers). 

Third, it preserves univariate time series structure in the second moments, that is, the fourth-

order spectrum of the sampled series is the same as the fourth-order spectrum of the residuals. 

This approach draws on the concepts in MacKinnon (2006). 

                                                            
10 The sampling scheme is described here as drawing from an infinite dimensional matrix. In 
practice it is implemented by randomly selecting a starting date, randomly selecting whether to 
start going forward or backwards in time, then obtaining the first T observations of the sequence 

1 2ˆ ˆ ˆ, , ,...      , with the direction of time reversed upon hitting t = 1 or T. 



24 
 

To compute power, data on y under the alternative were generated using values of β1 that 

depart from the null, given x and u, where u is the (known) error term under the null. 

Specifically, consider the case m = 1, yt = β1xt + γwt + ut, where wt are additional regressors 

(possibly just the intercept), and let β1,0 denote the known true values of β1. For a given draw of 

(yt, xt, wt), we use Frisch-Waugh and use the residuals of the regression on wt, ty  and tx , to 

compute the error under the null, 1,0t t tu y x    . Thus, given a draw of (x, w, u), a draw of ty  

under the alternative is computed as  1,0t t ty x u      , where δ is a departure from the null. 

This mirrors the generation of (y, x) data under the alternative in the AR design in Section 5. 

Thus changing β1 under the alternative does not change zt (= t tx u  ), the OLS residuals ˆtu , the 

true long-run variance, or its unrestricted estimate based on ˆtz ; however, changing β1 for a given 

draw of x and u does change tz  and therefore changes the restricted estimate of the LRV 

(because the null is no longer true). 

For all the Monte Carlo results in this section we use T = 200. 

 

5.2. Design and Computation 

Because there are 207 series, there are 207 distinct DGPs for the location model, and we 

evaluate the performance of the tests in the location model for all 207 series.  

For regressions with a single regressor (possibly including lags), there are a total of 

207×206 = 42,642 bivariate DGPs. This is more than we could analyze computationally, so we 

sampled from all possible DGPs using a stratified sampling scheme. Specifically, each regression 

design involves a pair of variables (y, x) and possibly additional stochastic regressors w.  For 

each design, each of the 207 variables was used as y along with a randomly selected variable for 

x (and w as needed); each of the 207 variables was also used as x with a randomly selected 

variable y (and w as needed).  This yielded 414 DGPs for each regression design. Each design 

was implemented with Gaussian errors, then with empirical errors, for a total of 828 DGPs for 

each of the 23 designs. 

Regressions. The regressions are summarized in Table 5. The 23 regression 

specifications include 3 distributed lag regressions (regressions 1-3), 11 single-predictor direct 

forecasting regressions (4-15), 4 local projection regressions (16-19), and 4 multiple-predictor 
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direct forecasting regressions. In the table, a generic error term ut is included so that the 

regressions appear in standard form, however the error term is not used to generate the data, 

rather, the dependent variable and the regressors are jointly drawn from the DFM directly as 

described in the previous section and knowledge of the DFM parameters is used to compute the 

true values of the coefficients being tested. 

Eight of the specifications (regressions 12-19) include control variables, i.e., regressors 

whose coefficients are not being tested. The control variables are lagged dependent variables 

(12-15) and, additionally, lags of the variable of interest and two lags each of two additional 

regressors (16-19). 

The degree of persistence of zt is expected to vary substantially among these 

specifications, in particular including lags of the variable of interest is expected to reduce the 

mean trace spectral curvature ω (by Frisch-Waugh, the m regressors of interest can be expressed 

as innovations to a projection on the other included lags). The regressions with the most 

persistent zt would be expected to be 1-11 and 20-23, especially 7, 11, and 23, which have the 

additional persistence resulting from the overlap induced in the 12-step ahead direct forecasting 

regression. 

Guide to results. The results are summarized in Table 6, which has four parts, 

differentiated by whether the errors are Gaussian or empirical and by whether the variance 

estimator is restricted or unrestricted. The table aggregates over series and focuses on results for 

tests that choose b and ν using the rules (3) and (4). The online Supplement presents results for 

each y series individually and for other choices of b and ν. Each row of the tables corresponds to 

a different regression, using the numbering system of Section 6.3. In addition, Table 6(a) and (c) 

have a row 0, which summarizes results for the location model (for the location model, all 207 

series were used sequentially for the DGP). 

For many DGPs, ω(q) is negative, indicating anti-persistence. For these series, the tests 

are undersized in theory and, in most cases, in the finite sample simulations as well. The size 

entries in Table 6 are therefore signed, not absolute values of size distortions. To be precise, for 

the location model results in row 0 in Table 6(a), the EWC size distortion is 0.01. Thus, for 95% 

of the 207 series, the rejection rate of the EWC test under the null hypothesis was at most 0.06; 

for some of the series (DGPs), the null rejection rate was less than .05. Whether the test is under- 

or over-sized, the size-adjusted power loss is computed the same way as the maximum power 
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loss, compared to the oracle test, using finite-sample size-adjusted critical values (the 5% 

percentile of the Monte Carlo distribution of the test under the null). 

 

5.3. Results for the Location Model 

Before discussing the results in Table 6, we begin by plotting the size-power tradeoffs for 

the six of the data-based DGPs. Specifically, Figure 8 is the counterpart of Figure 3, for Monte 

Carlo simulations based on the data-based design. Figure 8 shows results for six series: GDP 

growth, government spending, average weekly hours in manufacturing, housing prices (OFHEO 

measure), the VIX, and the 1 year-90 day Treasury spread. The first two of these series are in 

growth rates and have low persistence, as measured by their AR(1) coefficients. The final four 

are in levels. Average weekly hours is dominated by business cycle movements, house prices 

exhibits volatility clustering, and the VIX has large outliers (volatility events). The figures show 

results for simulations using the empirical errors. Comparable plots for all 207 series, for both 

Gaussian and empirical errors, are given in the online Supplement; the six series used here were 

chosen because the results for these series are representative. 

Four of the six plots look like those in Figure 1 and are unremarkable, but two merit 

discussion. The Monte Carlo tradeoff for average weekly hours in manufacturing is substantially 

better than the theoretical tradeoff for EWC, but is worse than the theory for NW. This pattern is 

consistent with the series having heavy tails, at least at low frequencies. More noticeable is the 

plot for GDP, for which the tradeoff slopes the opposite direction. This reversal of the tradeoff 

arises because, for this DGP, ω(1) and ω(2) are negative, that is, the series is anti-persistent at low 

frequencies (recall that we preprocessed the series to remove very low frequency trends). Despite 

the reversal of slope, the Monte Carlo results approximately align with the theoretical line.  

The main conclusion from Figure 8 is that the behavior of the tests in the data-based 

design is generally similar to that found in the AR designs in Figure 3. As in Figure 3, for most 

of the series the finite-sample EWC results are close to the theoretical tradeoff and the finite-

sample NW results are above the tradeoff, with the exception of manufacturing hours just 

discussed. In all cases, the Monte Carlo EWC tradeoff is below the NW tradeoff. 

The results for all 207 series (DGPs) are summarized in row 0 of Table 6(a) and (c) (as 

discussed above, the location tests are invariant to whether the null is imposed). For both EWC 

and NW (using the proposed rules), 95% of the DGPs have small size distortions, respectively 
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less than .02 and .03 using either Gaussian or empirical errors. As discussed above, the size 

distortions in Table 6 are signed, and in some of these 95% of DGPs, the tests are undersized (for 

example, for GDP as seen in Figure 8(a)). 

Looking across the results for the location model, for the vast majority of DGPs, the size 

distortions are small using the EWC and NW tests with the proposed rules, and are much smaller 

than the textbook test in the final column. The maximum power losses, compared to textbook 

NW are modest: 0.08 v. 0.03 for both Gaussian and empirical errors. These findings accord with 

those for the DGPs discussed in Section 4 and in the online Supplement. 

 

5.4. Results for Regressions 

The results in Table 6, along with those in the Supplement, suggest five main 

conclusions.  

First, in many cases the unrestricted textbook NW test has large size distortions. In the 23 

regressions with empirical errors and the unrestricted NW estimator using the textbook rule, the 

95th percentile of size distortions range from .04 to .14, with a mean of .077. 

Second, in the cases in which unrestricted textbook NW has large size distortions, those 

can be reduced substantially, often with little loss in power, by using the unrestricted EWC or 

NW tests with the proposed rules and fixed-b critical values. For example, in regression 7 (a 

regression with persistent zt) with empirical errors, the textbook NW size distortion is 0.11, but 

using the proposed rules the size distortion is only 0.06 for NW and 0.05 for EWC. In this same 

case, the increase in the maximum power loss is only 0.05. In regressions with low persistence 

(e.g., regressions 16-19), the textbook NW size distortion is less (e.g., .05 for regression 19 with 

empirical errors), as is the improvement in size (to .04 in regression 19 for EWC and NW with 

the proposed rules), albeit still with a small power cost.  

Third, the ranking of the EWC and NW estimator depends on the number of restrictions 

and, to a lesser extent, the persistence. When m = 1, the EWC estimator typically has slightly 

lower size distortion with nearly the same power. For m =3, the EWC estimator tends to have 

slightly better size, but at a somewhat greater cost in power. For m = 5 or 10, the cost in power 

from using EWC is large. The reason for this cost is that the EWC F-statistic in (14) has 

denominator degrees of freedom that declines linearly with m, resulting in very large critical 

values, a feature not shared by the NW test. These results suggests that for large values of m, it 
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could be worth using the larger values of ν for EWC, and possibly the smaller values of b for 

NW, given in Table 3. 

Fourth, these broad patterns hold for the DGPs with Gaussian errors as for empirical 

errors. The main difference in the two sets of results is that the empirical error DGPs tend to 

have larger size distortions than the Gaussian error DGPs. After size-adjusting, however, the 

tests have similar maximum power losses for the Gaussian and empirical errors. 

Fifth, consistent with Table 1, using the restricted LRV estimator results in substantial 

improvements in size; however, those improvements come at the cost of decreases in power that, 

depending on the design and regression, can be considerable. In the 23 regression designs with 

empirical errors, the largest size distortion for EWC with the proposed rule using the restricted 

estimator is .03, and in 7 regressions it is .01 or less. The size improvements for NW using the 

proposed rule are almost as good. However, the maximal power loss increases are typically in 

the range of .05 to .20 when the restricted estimator is used, with the larger increases occurring 

when m is larger. This is consistent with the standard result that the LM test typically has worse 

power against moderate to distant alternatives than the Wald test, because the LM test estimates 

the variance under the null. 

 

6. Discussion and Conclusions 

 

Taken together, the theoretical and extensive Monte Carlo results in this paper indicate 

that using the NW test with the proposed rule (3) or the EWC test with the proposed rule (4), 

both with fixed-b critical values, can provide substantial improvements in size, with only modest 

costs in size-adjusted power, compared to the textbook NW test. Although the EWC test 

frequently dominates (in size-power space) the NW test in the location model, in the regression 

model there is no clear ranking between the two tests. When the number of restrictions being 

tested is low, EWC tends to outperform NW, but with multiple restrictions, NW tends to 

outperform EWC. For m ≤ 3, these finite-sample performance differences between NW and 

EWC are small, especially compared with the frequently large improvements that both provide 

over the textbook NW test. 

A surprising finding in our simulations is that large size improvements are possible by 

imposing the null when estimating Ω, that is, by using the restricted estimator. However, these 
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large size improvements come at a substantial cost in power. The size-power loss plot in Figure 5 

suggest that the unrestricted tradeoff dominates the restricted tradeoff, however for the proposed 

rules, neither dominates. This suggests that perhaps a different rule could retain at least some of 

the size improvements of the unrestricted estimator while substantially reducing the power cost. 

Obtaining such a rule is beyond the scope of this paper; indeed, the proper starting point for such 

an investigation would be to develop reliable Edgeworth (or other) approximations for the 

regression case. To this end, we offer some thoughts. The expansions under the null of the mean 

and variance of the unrestricted LRV estimator have additional terms that are not present for the 

restricted estimator. These additional terms arise from the estimation of the regression coefficient 

and introduce a term involving the spectral density at frequency zero of 2
tx , 2x

  . For example, 

the leading terms in the bias of the unrestricted estimator in the case of independent x and u is 

2

( ) ( ) 1 4(0) ( )q q q q q
xx

k b T bT       , whereas the term in 2x
   is not present for the restricted 

estimator.11 This term is of an order smaller than those appearing in the expansion (18), and 

numerical investigation suggests that it can explain perhaps half the difference between the 

Monte Carlo tradeoffs for the restricted and unrestricted EWC estimator in Figure 5. Obtaining a 

better understanding of the merits, or not, of using the restricted estimator in HAR testing would 

be an interesting and potentially informative research project. 

Based on these results, we recommend the use of either the NW test with the proposed 

rule (3) or the EWC test with the proposed rule (4), in both cases using the unrestricted estimator 

of Ω and fixed-b critical values. The rules (3) and (4) provide what we consider to be reasonable 

compromises between size distortions and power loss, both in theory and in the simulations. 

These sequences provide a compromise between the extreme emphasis on power loss of the 

textbook NW test, and the extreme emphasis on size of the KVB test. The relatively good size 

control of the NW and EWC tests with the proposed rules implies that confidence intervals 

                                                            
11 As discussed by Hannan (1958), Ng and Perron (1996), Kiefer and Vogelsang (2005), and 
Sun (2014a), in the location model, estimating the mean produces downward bias in the NW 
LRV estimator. This bias is accounted for by fixed-b critical values in the case of the location 
model (and thus these terms do not appear in the higher-order expansions in LLS and this paper), 
but it is not accounted for in the textbook NW case with standard critical values. This issue does 
not arise with EWP or EWC, or with QS if it is implemented in the frequency domain, because 
as discussed above these estimators are invariant to location shifts in zt. 
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constructed as ± the critical value, times the unrestricted standard error, will have better finite-

sample coverage rates with little cost to accuracy than the textbook NW intervals.  

Given their comparable performance, the decision about which test to use is a matter of 

convenience. The EWC test is not currently a standard software option, but it has simple-to-use 

standard t and F critical values; the NW estimator is widely implemented, but our proposal 

requires nonstandard fixed-b critical values. In both cases, the procedures could be conveniently 

integrated into conventional time series regression software without increasing computation 

time.   
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Table 1. Monte Carlo rejection rates for 5% HAR t-tests under the null.  
 

 Estimator Truncation rule Critical Values Null imposed? = 0.3  = 0.5 = 0.7 

1 NW S = 0.75T1/3 N(0,1) No 0.088 0.114 0.180 

2 NW S = 1.3T1/2 fixed-b (nonstandard) No 0.067 0.079 0.108 

3 EWC  = 0.4T2/3 fixed-b (tν) No 0.062 0.071 0.097 

4 NW S = 0.75T1/3 N(0,1) Yes 0.077 0.095 0.149 

5 NW S = 1.3T1/2 fixed-b (nonstandard) Yes 0.056 0.060 0.074 

6 EWC  = 0.4T2/3 fixed-b (t) Yes 0.052 0.053 0.063 

Theoretical bound based on Edgeworth expansions for the Gaussian location model 

7 NW S = 1.3T1/2 fixed-b (nonstandard) No 0.054 0.058 0.067 

8 EWC  = 0.4T2/3 fixed-b (t) N/A 0.051 0.054 0.064 

 
Notes: Tests are on the single stochastic regressor in (1) with nominal level 5%, T = 200. The single stochastic 
regressor xt and disturbance ut are independent Gaussian AR(1)’s, with AR coefficients ρX = ρu = ρ1/2, where ρ is 
given in the column heading. All regressions include an intercept. The tests differ in the kernel used for the standard 
errors (first column; NW is Newey-West/Bartlett kernel, EWC is equal-weighted cosine transform). The truncation 

rule for NW is expressed in terms of the truncation parameter S and for EWC as the degrees of freedom  of the test, 
which is the number of cosine terms included. The third and fourth columns describes the critical values used and 
whether the estimator of Ω is computed under the null or is unrestricted. For the EWC test in the location model, the 
test statistic is the same whether the null is imposed or not. 
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Table 2. Constants in loss-minimizing rules for b for different values of assumed AR(1) 
parameter   and loss function parameter κ, for m = 1. 

 
(a) NW: b = b0T-1/2, where b0 is: 
 

\   0.5 0.75 0.8 0.85 0.9 0.95 0.99 

0.1 0.20 0.27 0.29 0.31 0.35 0.43 0.64 

0.2 0.29 0.39 0.41 0.45 0.51 0.61 0.92 

0.3 0.37 0.48 0.52 0.57 0.64 0.77 1.16 

0.4 0.44 0.58 0.63 0.68 0.77 0.92 1.40 

0.5 0.52 0.69 0.74 0.81 0.91 1.09 1.65 

0.6 0.62 0.82 0.88 0.96 1.08 1.30 1.96 

0.7 0.75 0.99 1.06 1.16 1.30 1.57 2.37 

0.8 0.96 1.26 1.35 1.48 1.66 2.00 3.02 

0.9 1.40 1.84 1.97 2.15 2.42 2.92 4.40 

 
(b) EWC: ν = ν0T2/3, where ν0 is: 
 

\    0.5 0.75 0.8 0.85 0.9 0.95 0.99 

0.1 2.33 1.94 1.85 1.75 1.62 1.43 1.08 

0.2 1.71 1.43 1.36 1.28 1.19 1.05 0.80 

0.3 1.37 1.14 1.09 1.02 0.95 0.84 0.64 

0.4 1.12 0.93 0.89 0.84 0.78 0.69 0.52 

0.5 0.92 0.77 0.73 0.69 0.64 0.56 0.43 

0.6 0.75 0.62 0.59 0.56 0.52 0.46 0.35 

0.7 0.59 0.49 0.47 0.44 0.41 0.36 0.27 

0.8 0.43 0.36 0.34 0.32 0.30 0.26 0.20 

0.9 0.26 0.22 0.21 0.19 0.18 0.16 0.12 

 

Notes: For NW in part (a), entries evaluate b0 in Equation (22), where 
(1) 22 / (1 )    . For EWC in part (b), 

entries evaluate ν0 in Equation (23), where 
(2) 22 / (1 )    . The values corresponding to   = 0.7 and κ = 0.9 are 

bolded. 
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Table 3 Constants in loss-minimizing rules for different values of m using parameter   = 0.7, 

loss function parameter κ = 0.9, and  = 0.05.  Values of 0 for EWC and b0 for NW. 

 m 
 1 2 3 4 5 6 7 8 9 10 
NW: S = b0T1/2, where b0 = 1.30 1.15 1.07 1.01 0.97 0.93 0.90 0.88 0.86 0.84 

EWC:  = 0T2/3, where0 = 0.41 0.44 0.46 0.48 0.50 0.51 0.52 0.53 0.54 0.55 
 
Notes: Entries evaluate the constants in Equations (22) and (23); see the notes to Table 2.  
 
 
 
 
 
 
 

Table 4. Distributions of innovations and ut: skewness and kurtosis.  
 
Distribution skewness kurtosis skewness kurtosis 
 Innovations ut (AR(1), ρ = 0.7) 

N(0,1) 0 3 0 3 
Marron-Wand 2 -0.7 4.0 -0.4 3.4 
Marron-Wand 3 1.5 4.7 0.8 3.6 
Marron-Wand 4 0 4.6 0 3.5 
Marron-Wand 5 0 25.3 0 10.6 
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Table 5. Regressions Studied in the Data-Based Monte Carlo Simulation. 
 

 Description m Other Test 
coefficients: 

1 Distributed lag: 0 1
1

m

t i t i t
i

y x u   


     

 

1  β1 

2 5  β1,…, β5 

3 10  β1,…, β10 
4 Predictor relevance in h-step ahead direct 

forecasting regression: 

0 1 1
1 1

pm
h
t h i t i i t i t h

i i

y x y u       
 

      , where 

 (  is in levels)

 (first differences)

see note a (second differences)

t h
h
t h t h t

y y

y y y


 


 



   

1 h  = 1, p = 0 β1 
5 1 h  = 4, p = 0 β1 
6 1 h  = 8, p = 0 β1 
7 1 h  = 12, p = 0 β1 
8 3 h  = 1, p = 0 β1, β2, β3 

9 3 h  = 4, p = 0 β1, β2, β3 
10 3 h  = 8, p = 0 β1, β2, β3 
11 3 h  = 12, p = 0 β1, β2, β3 
12 3 h  = 1, p = 3 β1, β2, β3 
13 3 h  = 4, p = 3 β1, β2, β3 
14 3 h  = 8, p = 3 β1, β2, β3 
15 3 h  = 12, p = 3 β1, β2, β3 
16 Local projections with 8 control variables: 

2

0 1
1

2 2 2

1 1 1

h
t h t i t i

i

i t i ij jt i t h
i j i

y x x

y w u

  

 

 


  
  

   

  



 



 

1 h = 1 β1 
17 1 h = 4 β1 
18 1 h = 8 β1 
19 1 h = 12 β1 

20 Multiple predictor direct forecasting with 2 
additional predictors: 

0 1 1 2 2 3 3
h
t h t t t t hy x x x u          

3 h = 1 β1, β2, β3 
21 3 h = 4 β1 
22 3 h = 8 β1 
23 3 h = 12 β1 

Notes: ut denotes a generic error term and is not used to generate the data (y and x are drawn jointly using the 
dynamic factor model as explained in Section 6.1).  
aSome price indexes enter the DFM as second differences of logarithms. Let Pt denote the price series; then yt = 

Δln(Pt/Pt-1) (the change in the rate of inflation), and 1
1ln( / ) ln( / )h

t h t h t t ty P P h P P
      (the difference between 

the future h-period rate of inflation and the normalized 1-period rate of inflation from date t-1 to date t). 
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Table 6. Monte Carlo Results for Data-based DGP: 95% percentiles of signed size distortion 
and power loss using rules (3) and  (4) and using the textbook rule.  

A. Unrestricted variance estimator, Gaussian errors 
Design m EWC,  = 0.4T2/3 NW, S = 1.3T1/2 NW-TB, S = 0.75T1/3 

  Size 
Distortion 

Power Loss Size 
Distortion 

Power Loss Size 
Distortion 

Power Loss 

0 (mean)* 1 0.01 0.08 0.03 0.08 0.11 0.03 
1 1 0.02 0.10 0.03 0.09 0.04 0.05 
2 5 0.02 0.30 0.03 0.20 0.03 0.09 
3 10 0.02 0.56 0.05 0.28 0.07 0.15 
4 1 0.02 0.10 0.02 0.08 0.04 0.05 
5 1 0.03 0.11 0.03 0.10 0.05 0.07 
6 1 0.03 0.13 0.04 0.12 0.07 0.08 
7 1 0.03 0.12 0.04 0.11 0.09 0.07 
8 3 0.02 0.20 0.02 0.14 0.03 0.07 
9 3 0.02 0.20 0.02 0.12 0.02 0.04 
10 3 0.03 0.19 0.02 0.10 0.03 0.02 
11 3 0.03 0.17 0.01 0.09 0.03 0.01 
12 3 0.02 0.20 0.02 0.15 0.02 0.07 
13 3 0.02 0.17 0.02 0.11 0.03 0.02 
14 3 0.02 0.16 0.02 0.09 0.03 0.01 
15 3 0.02 0.16 0.02 0.09 0.03 0.01 
16 1 0.01 0.09 0.01 0.07 0.02 0.03 
17 1 0.02 0.09 0.02 0.08 0.02 0.04 
18 1 0.03 0.09 0.03 0.08 0.03 0.04 
19 1 0.03 0.10 0.03 0.08 0.04 0.05 
20 3 0.03 0.21 0.04 0.16 0.06 0.11 
21 3 0.04 0.22 0.05 0.18 0.09 0.13 
22 3 0.05 0.24 0.07 0.19 0.11 0.16 
23 3 0.05 0.22 0.07 0.18 0.13 0.16 

 
B. Restricted variance estimator, Gaussian errors 

Design m EWC,  = 0.4T2/3 NW, S = 1.3T1/2 NW-TB, S = 0.75T1/3 
  Size 

Distortion 
Power Loss Size 

Distortion 
Power Loss Size 

Distortion 
Power Loss 

1 1 0.01 0.13 0.01 0.11 0.03 0.06 
2 5 0.00 0.46 0.00 0.35 0.00 0.18 
3 10 0.00 0.71 0.00 0.45 0.00 0.26 
4 1 0.01 0.18 0.01 0.16 0.02 0.08 
5 1 0.01 0.18 0.02 0.17 0.04 0.10 
6 1 0.02 0.16 0.02 0.15 0.05 0.09 
7 1 0.02 0.13 0.02 0.11 0.06 0.07 
8 3 0.00 0.38 0.00 0.30 0.00 0.15 
9 3 0.01 0.39 0.00 0.30 0.00 0.12 
10 3 0.01 0.37 0.00 0.24 0.00 0.05 
11 3 0.00 0.34 0.01 0.18 0.00 0.03 
12 3 0.01 0.30 0.01 0.24 0.01 0.13 
13 3 0.00 0.29 0.00 0.21 0.00 0.06 
14 3 0.00 0.29 0.00 0.18 0.00 0.03 
15 3 0.00 0.27 0.00 0.15 0.00 0.02 
16 1 0.01 0.09 0.01 0.08 0.01 0.04 
17 1 0.01 0.10 0.01 0.08 0.02 0.04 
18 1 0.02 0.10 0.02 0.09 0.03 0.05 
19 1 0.02 0.10 0.03 0.09 0.03 0.05 
20 3 0.01 0.37 0.01 0.31 0.03 0.18 
21 3 0.01 0.39 0.02 0.33 0.04 0.19 
22 3 0.02 0.37 0.03 0.30 0.06 0.17 
23 3 0.02 0.29 0.03 0.23 0.07 0.14 
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C. Unrestricted variance estimator, empirical errors 
Design m EWC,  = 0.4T2/3 NW, S = 1.3T1/2 NW-TB, S = 0.75T1/3 

  Size 
Distortion 

Power Loss Size 
Distortion 

Power Loss Size 
Distortion 

Power Loss 

0 (mean)* 1 0.01 0.08 0.02 0.07 0.10 0.03 
1 1 0.08 0.14 0.08 0.13 0.10 0.08 
2 5 0.09 0.29 0.09 0.18 0.10 0.07 
3 10 0.07 0.54 0.10 0.23 0.13 0.09 
4 1 0.05 0.13 0.05 0.12 0.07 0.08 
5 1 0.05 0.15 0.06 0.13 0.08 0.09 
6 1 0.05 0.16 0.06 0.14 0.09 0.10 
7 1 0.05 0.14 0.06 0.13 0.11 0.09 
8 3 0.07 0.19 0.06 0.14 0.06 0.06 
9 3 0.08 0.22 0.05 0.11 0.04 0.03 
10 3 0.07 0.19 0.03 0.08 0.04 0.01 
11 3 0.06 0.16 0.02 0.07 0.04 0.01 
12 3 0.05 0.19 0.05 0.14 0.06 0.06 
13 3 0.05 0.17 0.04 0.09 0.04 0.01 
14 3 0.05 0.15 0.03 0.07 0.04 0.01 
15 3 0.05 0.14 0.02 0.06 0.04 0.01 
16 1 0.03 0.10 0.03 0.08 0.04 0.04 
17 1 0.04 0.09 0.04 0.08 0.05 0.04 
18 1 0.04 0.10 0.04 0.09 0.05 0.05 
19 1 0.04 0.10 0.04 0.08 0.05 0.05 
20 3 0.07 0.23 0.09 0.19 0.12 0.13 
21 3 0.08 0.25 0.09 0.19 0.12 0.15 
22 3 0.08 0.23 0.10 0.18 0.14 0.14 
23 3 0.07 0.20 0.09 0.16 0.14 0.13 

 
D. Restricted variance estimator, empirical errors 

Design m EWC,  = 0.4T2/3 NW, S = 1.3T1/2 NW-TB, S = 0.75T1/3 
  Size 

Distortion 
Power Loss Size 

Distortion 
Power Loss Size 

Distortion 
Power Loss 

1 1 0.05 0.22 0.04 0.21 0.07 0.11 
2 5 0.01 0.47 0.00 0.38 0.01 0.19 
3 10 0.00 0.77 -0.01 0.50 0.00 0.28 
4 1 0.02 0.23 0.03 0.21 0.04 0.11 
5 1 0.03 0.25 0.03 0.23 0.05 0.12 
6 1 0.03 0.21 0.03 0.20 0.06 0.12 
7 1 0.02 0.21 0.03 0.20 0.07 0.11 
8 3 0.01 0.39 0.00 0.33 0.01 0.18 
9 3 0.02 0.41 0.00 0.32 0.00 0.12 
10 3 0.02 0.39 0.01 0.28 0.00 0.08 
11 3 0.01 0.35 0.01 0.22 0.00 0.06 
12 3 0.01 0.37 0.01 0.31 0.01 0.15 
13 3 0.00 0.33 0.00 0.25 0.00 0.07 
14 3 0.00 0.31 0.01 0.20 0.00 0.04 
15 3 0.00 0.30 0.01 0.19 0.00 0.04 
16 1 0.02 0.20 0.02 0.18 0.02 0.07 
17 1 0.02 0.18 0.02 0.17 0.03 0.08 
18 1 0.02 0.18 0.03 0.18 0.03 0.08 
19 1 0.03 0.20 0.03 0.17 0.04 0.09 
20 3 0.02 0.42 0.03 0.36 0.05 0.23 
21 3 0.03 0.43 0.03 0.37 0.05 0.23 
22 3 0.03 0.37 0.04 0.32 0.07 0.19 
23 3 0.02 0.35 0.03 0.30 0.06 0.18 

 
Notes: Entries are the 95% percentiles of the distributions of size distortions, or of power losses, across the 207 
DGPs in the location case and the 414 DGPs in the regression case, for the regression model listed in the first 
column (or, for row 0, the location model), and for the test indicated in the header row. The size distortions are 
signed, so a size distortion entry of .02 means that 95% of the DGPs for that row have a null rejection rate of less 
than 0.07, and some of those tests could be (in general, are) undersized, with a null rejection rate less than 0.05. The 
regression designs enumerated in the first row are described in Section 5.1. 
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Figure 1.  Tradeoff between size distortion, ΔS, and maximum size-adjusted power loss relative 

to the oracle test, max
P , T = 200, in the Gaussian location problem, AR(1) with autoregression 

coefficient ρ = 0.7. 
 

 

Notes: Lines are the asymptotic frontier (green) and the theoretical tradeoffs for the NW test (dash) and EWP/EWC 
tests (solid); symbols are Monte Carlo values for NW (circle) and EWC (square); solid circle is NW using the 
Andrews rule S = 0.75T1/3, solid diamond is the Kiefer-Vogelsang-Bunzel (2000) test, ellipses are iso-loss curves 
((5) with κ = 0.90); stars are the loss-minimizing rule outcomes in theory (solid) and Monte Carlo (open). 
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Figure 2. Theoretical size distortion and size-adjusted power loss along optimal bandwidth 
sequences for various values of preference parameter κ and autoregressive parameter  .  

 

 
Notes: The plotted curves evaluate the size distortion ΔS in (24) and power loss max

P  in (25), based on the loss-

minimizing bandwidth sequence (22), for various values of loss parameter κ, rule parameter   , and true value ρ.  

  



43 
 

Figure 3. Size-power tradeoffs in the location model with Gaussian and non-Gaussian 
innovation distributions: Theoretical (lines) and Monte Carlo (symbols) for EWC (sold line & 
squares) and NW (dashed line & circles), T = 200, AR(1) with coefficient ρ = 0.7. 
 

Notes: The theoretical frontiers are from (21), the Monte Carlo frontiers (circles) are computed for different ARMA 
parameters and different error distributions. In the first five figures, ut follows an AR(1) with ρ = 0.7, with innovation 
distributions given in rows 1-5 of Table 4. For the final figure, the DGP is an AR(1) with coefficient 0.7, with errors that 
follow a highly persistent GARCH process. 
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Figure 4. Monte Carlo (symbols) and theoretical values (lines) of size distortions and size-
adjusted power losses for EWC (sold line & squares) and NW (dashed line & circles) tests in 
the Gaussian location model, Gaussian AR(1) with ρ = 0.7. 
 

 
Notes: NW is evaluated for the loss-minimizing rule (3), and EWC is evaluated for the loss-minimizing rule (4).  
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Figure 5. Monte Carlo size-power tradeoffs for the coefficient on a single stochastic regressor: 
unrestricted (open symbols) and restricted (solid symbols) LRV estimator, with theoretical 
tradeoff for Gaussian location model (line). 

 
Notes: Monte Carlo data on xt and ut are generated as independent Gaussian AR(1)’s with AR(1) parameters ρx = ρu 

= .7 . All regressions include an estimated intercept.  

 

Figure 6. Monte Carlo size distortions and size-adjusted power losses for EWC and NW tests 
for the coefficient on a single stochastic regressor, with theoretical lines for the Gaussian 
location model. 

 

 
 

Notes: Monte Carlo data on xt and ut are generated as independent Gaussian AR(1)’s with ρx = ρu = 7  . 
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Figure 7. Size distortion and power loss for NW and EWC tests in the regression model with 
independent Gaussian AR(1) xt and ut, for the rules (3) and (4) (second column), larger b (first 
column), smaller b (right column), and textbook NW rule (furthest right column). Open bars 
are restricted, shaded bars are unrestricted LRV estimators. T = 200. 
 

 
Notes: First row is EWC size distortion, second row is NW size distortion, third row is EWC power loss, fourth row 

is NW power loss. Within each figure, the four bars are for AR(1)s with   = (.53, .64, .73, 0.80), which give rise to 

(2) = (5, 10, 20, 40). The rule (4) selects ν = 14 for EWC, and the rule (3) selects S = 19 for NW. The test based on 
NW textbook rule, which yields S = 5, is shown in the final column. All regressions include an estimated intercept.  
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Figure 8. Size-power tradeoffs in the location model with data-based design and empirical 
errors: Theoretical tradeoff and Monte Carlo results for EWC (solid line & squares) and NW 
(dashed line & circles), T = 200.  
 

   

   
 
Notes: The DGPs are calibrated to the series in the figure captions, using the dynamic factor model design described 
in Section 5.1. 

 

 


