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Introduction and motivation

A School friendship network

- School network extracted from Add Health
- School has 150 students, 58.7% females, All grades 7-12.
- Control vbls: race, gender, grade, income of parents

White = Caucasians 42%

Blue = African-Americans 45.3%

Yellow = Asians 0.7%

Green = Hispanics 10.7%

Red = Other race 1.3%
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Introduction and motivation

What I have in mind: Mean Girls’ cafeteria

- Cliques
- Unobserved heterogeneity
- Hierarchical social system
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Introduction and motivation

Stylized facts about social networks

1 Social networks display homophily
⇒ similar people more likely to link

1 Preferences
2 Opportunities to meet
3 Unobserved factors

2 Social networks are usually sparse
⇒ # links ∝ # people

3 Social networks display clustering
⇒ people with common friend(s), link with high probability

Need model that matches these facts
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Introduction and motivation

Exponential Random Graphs (ERGM)

P (g) =
exp [θ1t1(g, x) + θ2t2(g, x) + ...+ θP tP (g, x)]∑

ω∈G exp [θ1t1(ω, x) + θ2t2(ω, x) + ...+ θP tP (ω, x)]

g: network

x: observable characteristics of people

θp: parameters

tp(g, x): sufficient statistics of the network

1 t1(g, x) =
∑
ij gij = # links

2 t2(g, x) =
∑
ijk gijgjkgki = # triangles

3 t3(g, x) =
∑
ij gij1{xi=xj=white} = # links among same race

4 t4(g, x) =
∑
ij gij |xi − xj | = links weighted by difference in incomes
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Introduction and motivation

This paper

1 Model generates sparse networks

2 Equilibrium networks exhibit homophily and clustering

3 Unobserved heterogeneity: latent community structure

4 Estimation: Bayesian approach using exchange algorithm

5 Application to school networks

6 Model replicates properties of the observed network
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Introduction and motivation

Related literature

Model → Weak dependence ERGM (Schweinberger- Handcock 2015)

Unobserved heterogeneity without clustering (Graham 2017, Dzemski 2017);
with clustering (Boucher-Mourifie 2017, Leung 2015)

Latent community structure without microfoundations (Breza et al

2017, Airoldi et al 2008, Schweinberger-Handcock 2015)

Exploit subnetworks for computation (Sheng 2016, DePaula et al 2017,

Chandrasekhar-Jackson 2016)

Sparsity and good statistical properties (DePaula et al 2017,

Chandrasekhar-Jackson 2016, Menzel 2016)

Homophily bias in preferences and/or meetings (Currarini et al 2009,

Boucher 2015, Mayer-Puller 2008, DePaula 2017, Menzel 2016, Sheng 2016, Ridder-Sheng 2015)

Peer effects and Lucas critique: (Carrell-Sacerdote-West 2013, Badev 2013,

Goldsmith-Pinkham-Imbens 2013, Hsieh-Lee 2015)
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Model

Setup and notation

n players

K communities

Player i:
gi = {gi1, ..., gin}: links

gij = 1 if i and j are friends
gij = 0 otherwise

xi = {xi1, ..., xiM}: observable attributes (e,g, race, gender)

zi = {zi1, ..., ziK}: unobservable communities

Aggregate:

g = {g1, .., gn}: network (adjacency matrix)

x = {x1, ..., xn}: observables

z = {z1, .., zn}: communities

No self loops: gii = 0 for all i
Undirected network: gij = gji
Directed network can be modeled too (Mele 2017)
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Model

Communities and sequential network formation

Time is discrete: t = 0, 1, 2, 3, ....

At t = 0 Nature assigns communities

Zi
iid∼ Multinomial(1; η1, ..., ηK) (1)

Remark: a community contains max B < n people
Remark: each person belongs to one community only

(extensions to multiple communities possible as in Airoldi et al 2008)

Conditional on Z = z, network g is formed sequentially. here

In each period t
1 Two players i and j meet
2 Players receive random matching shock εij
3 Players decide whether to form/cut/keep link gij
→ maximize surplus generated by gij
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Model

How people meet

Players meet people of same community more often

ASSUMPTION 1 Meeting process is i.i.d. over time.

Prob. i and j meet =

 ρw(g−ij , xi, xj , n) if zi = zj ,

ρb(g−ij , xi, xj)n
−δ otherwise

(2)

0 < ρb(g−ij , xi, xj) ≤ ρw(g−ij , xi, xj , n) ≤ 1 for any n and (i, j)

δ > 0

The sum of ρ over all pairs (i, j) is 1.
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Model

Preferences

Players care about direct and common friends (locally)

ASSUMPTION 2. Payoff of player i

Ui(g, x, z; θ) =

n∑
j=1

giju(xi, xj , zi, zj ;α, β)︸ ︷︷ ︸
payoff direct friends

+

n∑
j=1

gij

n∑
r 6=i,j

gjrgriv(zi, zj , zr; γ)︸ ︷︷ ︸
payoff common friends

1 Symmetry: u(xi, xj , zi, zj ;α, β) = u(xj , xi, zj , zi;α, β)

2 Local transitivity: v(zi, zj , zr; γ) =

{
γk if i, j, r belong to k
0 otherwise

Angelo Mele Homophily, Clustering and Latent Community Structure 11 / 44



Model

Matching shocks

Shocks shift preferences and give a logistic model

ASSUMPTION 3
Players receive a matching shock (εij,0, εij,1) before updating their
links, i.i.d. over time and across pairs.

εij,1 ∼ Gumbel(a, b) εij,0 ∼ Gumbel(a, b) (3)
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Model

Equilibrium: Stationary distribution

PROPOSITION
Under Assumptions 1-3 and conditional on z, the sequence of networks
generated by the model is a Markov chain with unique stationary
distribution π(g, x, z; θ):

π(g, x, z; θ) =
exp [Q(g, x, z; θ)]∑
ω∈G exp [Q(ω, x, z; θ)]

=
exp [Q(g, x, z; θ)]

c(θ, x, z)
(4)

where

Q(g, x, z; θ) =
n∑

i=1

n∑
j=1

giju(xi, xj , zi, zj ;α, β) +
1

6

n∑
i=1

n∑
j=1

n∑
r 6=i,j

gijgjrgriv(zi, zj , zr ; γ)

Computational issue: (Mele 2017)
The set G contains 2n(n−1)/2 networks
If n = 20, then 290 ≈ 1027 terms
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Model

Equilibrium: Potential function

Potential function Q summarizes incentives of players
(net of the matching shock)

Q(g, x, z; θ)−Q(g′, x, z; θ) = Ui(g, x, z; θ) + Uj(g, x, z; θ)

−
[
Ui(g

′, x, z; θ) + Uj(g
′, x, z; θ)

]
g is network where gij = 1;

g′ is network where g′ij = 0 and g′−ij = g−ij .

Maxima of Q are pairwise stable (with transfers) networks
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Model

Equilibrium properties

PROPOSITION. Equilibrium networks are sparse.

PROPOSITION. Likelihood factorizes into

π(g, x, z; θ) =

K∏
k=1

exp
[
Qk,k(gk,k, x

(k), z; θ)
]

ck,k(Gk,k, x(k); θ)

×

 K∏
l>k

∏
i∈Ck

∏
j∈Cl

exp [2giju(xi, xj , zi, zj ;α, β)]

1 + exp [2u(xi, xj , zi, zj ;α, β)]



REMARK.Model’s equilibrium ⇒ HERGM
(ERGM with weak dependence, Schweinberger-Handcock 2015)
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Empirical Strategy

Model specification

Ui(g, x, z; θ) =

n∑
j=1

gij
[
αzizj (5)

+ βwhite,white1{racei=racej=white} + βblack,black1{racei=racej=black}

+ βhisp,hisp1{racei=racej=hispanic} + βgrade7,grade71{gradei=gradej=7}

+ βgrade8,grade81{gradei=gradej=8} + βgrade9,grade91{gradei=gradej=9}

+ βgrade10,grade101{gradei=gradej=10} + βgrade11,grade111{gradei=gradej=11}

+ βgrade12,grade121{gradei=gradej=12} + βmale,male1{genderi=genderj=male}

+ βfemale,female1{genderi=genderj=female}

+ β|incomei−incomej ||incomei − incomej |

+
∑
r

gjrgrjγ(zi, zj , zr)
]
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Empirical Strategy

Model specification: Parsimony

If the model has K communities:

α has K(K − 1)/2 parameters

γ has K parameters

β has P parameters

⇒ At least K(K + 1)/2 + P parameters to estimate

Potentially K = n ⇒ n(n+ 1)/2 + P parameters.

αzizj =

{
αk if zi = zj and zik = 1, for k = 1, 2, ...,K
αb otherwise

(6)
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Empirical Strategy

Statistical Properties

PROPOSITION. If meeting parameter δ > 3, asy. normal sufficient
stats

Sp(g, x, z)√
V [Sp(g, x, z)]

d−→ N(0, 1) as K →∞

where V [Sp(g, x, z)] = variance of sufficient stats Sp(g, x, z)

Sufficient stats concentrate around their mean
This is good if you want to do maximum likelihood estimation

tp(g, x) = Eθ0 [tp(ω, x)] (7)
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Empirical Strategy

Panel data

K fixed; n fixed.

We observe the network over time: g(1), g(2), ..., g(T )

Conditioning on z, log-likelihood is

log `(α, γ, g) =

T∑
t=1

K∑
k=1

(αkekt + γktkt) + αbebt − T log(c(α, γ)

ekt = number of links of community k at time t;
ebt = number of links across communities at time t;
tkt = number of triangles of community k at time t.

MLE is consistent and asymptotically normal under standard
regularity condition as T →∞
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Empirical Strategy

One network observation

Suppose you only observe one network

Asymptotics is more complicated

Let (αk, γk) = (α, γ) for all k = 1, ...K

MLE is asymptotically normal under usual regularity conditions
and K →∞.

Some quibbles: communities should not too different in size
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Empirical Strategy

Estimation: Complete likelihood

The likelihood of the model can be written as

L (g, Z; θ, η, x) =
∑
z∈Z

Pθ (G = g|X = x, Z = z)Pη (Z = z)

=
∑
z∈Z

K∏
k=1

exp
[
Qk,k(gk,k, x

(k), z)
]

ck,k(Gk,k, x(k); θ)

[
K∏
l>k

exp
[
Qk,l(gk,l, x

(k), x(l), z)
]

ck,l(Gk,l, x(k), x(l); θ)

]
Pη (Z = z)
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Empirical Strategy

Estimation: Communities

Probability Pη (Z = z) is i.i.d. multinomial for i = 1, ..., n

Zi|η1, ..., ηK
iid∼ Multinomial (1; η1, ...ηK)

Priors for ηk

η1 = V1

ηk = Vk

k−1∏
j=1

(1− Vj) k = 2, 3, 4, ...

Vk|φ
iid∼ Beta(1, φ) k = 1, 2, 3, ...

φ > 0 and

∞∑
k=1

ηk = 1 w.p.1

See Ishwaran and James (2001) and Schweinberger and Handcock (2015)
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Empirical Strategy

Estimation: Prior truncation

Mumber of communities is at most Kmax:

η1 = V1 (8)

ηk = Vk

k−1∏
j=1

(1− Vj) k = 2, 3, 4, ...,Kmax (9)

Vk|φ
iid∼ Beta(1, φ) k = 1, 2, 3, ...,Kmax − 1 (10)

VKmax = 1 (11)

φ > 0 and

Kmax∑
k=1

ηk = 1 w.p.1 (12)
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Empirical Strategy

Estimation: Priors for payoffs

Priors for payoffs are multivariate normals

αb|µb,Σb ∼ MVN (µb,Σb)

(αk, γk)|µw,Σw ∼ MVN (µw,Σw) for k = 1, ..,Kmax

β|µβ,Σβ ∼ MVN (µβ,Σβ)
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Empirical Strategy

Estimation: Posterior

The posterior distribution can be written as follows

p(φ, µw,Σw, µb,Σb, µβ ,Σβ , η, α, β, γ, z|g, x) ∝

∝ p(φ, µw,Σw, µb,Σb, µβ ,Σβ , η, α, β, γ) · Pη (Z = z) · Pθ (G = g|X = x, Z = z)

(prior) (communities) (network likelihood)

Posterior Sampling algorithm

Exchange algorithm: samples from posterior by sequentially

1 sampling communities

2 sampling parameters

3 sampling networks

In this scheme, z is like a parameter to estimate
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Empirical Strategy

Identification and Label Switching Problem

Likelihood invariant to permutations of community labels

1 Use nonparametric priors
⇒ posterior not invariant to permutations of labels

2 Use relabeling algorithm of Stephens 2000 and
Schweinberger-Handcock 2015 to relabel posterior simulation
output algorithm

- Alternative: ad hoc restrictions that are equivalent to prior
restrictions
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Results

Choosing number of communities

Try different Kmax = {2, 3, 4, 5, ...}
Check whether model replicate the number of links and triangles

RMSE Posterior predictions for number of triangles
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Results

Structural estimates

Parameter Post. Post. Posterior quantiles
mean s.d. 2.5% 50% 97.5%

A. Cost of link

α1 -4.070 0.464 -4.888 -4.086 -3.091
α2 -3.854 0.587 -4.883 -3.895 -2.589
α3 -2.527 1.049 -4.385 -2.609 -0.316
αb -5.754 0.455 -6.636 -5.763 -4.837
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Results

Structural Estimates

Parameter Post. Post. Posterior quantiles
mean s.d. 2.5% 50% 97.5%

B. Payoff from covariates

βwhite,white 1.002 0.246 0.500 1.017 1.420
βblack,black 0.923 0.252 0.424 0.938 1.364
βhisp,hisp 1.965 0.628 0.789 1.920 3.128
βgrade7,grade7 1.371 0.290 0.685 1.409 1.831
βgrade8,grade8 1.321 0.311 0.627 1.327 1.892
βgrade9,grade9 1.203 0.332 0.568 1.172 1.883
βgrade10,grade10 1.140 0.446 0.207 1.127 1.929
βgrade11,grade11 1.241 0.433 0.249 1.291 1.973
βgrade12,grade12 1.029 0.281 0.435 1.033 1.562
βmale,male -0.061 0.297 -0.689 -0.029 0.450
βfemale,female -0.170 0.254 -0.725 -0.135 0.294
β|incomei−incomej | -0.588 0.278 -1.208 -0.568 -0.136
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Results

Structural Estimates

Parameter Post. Post. Posterior quantiles
mean s.d. 2.5% 50% 97.5%

C. Payoff from common friends

γ1 0.969 0.149 0.644 0.977 1.244
γ2 1.573 0.562 0.508 1.561 2.738
γ3 0.995 0.948 -0.889 0.969 2.920
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Results

Model fit: links and triangles

posterior prediction of edges

number of edges in network
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Results

Model fit: Racial homophily

Figure: Posterior predictions for racial homophily
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Results

Summary

Summary

Equilibrium model with community structure

Equilibrium networks are sparse

Equilibrium networks display homophily and clustering

Model can replicate features of real-world networks

In progress

Bayesian estimation not practical for large networks
→ Approximate Maximum Likelihood methods

Variational approx (Mele-Zhu 2017) + simulations (Mele 2017)

Applications: patent collaborations, Venture Capital syndicates
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Results

THANK YOU!

More of this at:
web: http://www.meleangelo.com
email: angelo.mele@jhu.edu
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Results
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Results

back

Z1 ∼Multinomial(1; η1, η2, η3)

Z2 ∼Multinomial(1; η1, η2, η3)
Z3 ∼Multinomial(1; η1, η2, η3)
Z4 ∼Multinomial(1; η1, η2, η3)
Z5 ∼Multinomial(1; η1, η2, η3)
Z6 ∼Multinomial(1; η1, η2, η3)
Z7 ∼Multinomial(1; η1, η2, η3)
Z8 ∼Multinomial(1; η1, η2, η3)
Z9 ∼Multinomial(1; η1, η2, η3)
Z10 ∼Multinomial(1; η1, η2, η3)
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Results

back

5 and 10 meet

5 and 10 form link
3 and 8 meet
3 and 8 form link
2 and 5 meet
2 and 5 do not form link
5 and 10 meet
5 and 10 cut their link
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Results

Relabeling Algorithm

back

Get MCMC posterior simulation {θs, zs}Ss=1

Algorithm minimizes the loss function

L(ξ, ν(Z)) = min
ν
L0 [ξ, ν(Z)] (13)

where

L0 [ξ, ν(Z)] = − log

n∏
i=1

ξi,Ci (14)

ξ is n×K matrix
ξi,k = prob that i reported to be in k;
ν(Z) = permutation of the community structure Z.

Angelo Mele Homophily, Clustering and Latent Community Structure 40 / 44



Results

Relabeling Algorithm

back

Goal of relabeling: ξ that minimizes the posterior expectation of
L [ξ, ν(Z)].

In practice posterior expectation approximated by the MC

1

S

S∑
s=1

min
νs

[L0 [ξ, νs(z
s)]] = min

ν1,...,νS

[
1

S

S∑
s=1

L0 [ξ, νs(z
s)]

]
(15)

Iterations are:
1 choose ξ̂ to minimize

∑S
s=1 [L0 [ξ, νs(z

s)]] subject to the constraint∑Kmax

k=1 ξi,k = 1 for i = 1, ..., n;
2 for s = 1, ..., S choose νs to minimize L0 [ξ, νs(z

s)]

Step 2 infeasible unless Kmax very small.

Use Simulated Annealing to perform the S minimizations in
parallel (Stephens 2000, Schweinberger-Handcock 2015)
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Results

Posterior sampling

At each iteration: back

1 Sample (θ∗, z∗) from auxiliary distribution q(θ∗, z∗|η, θ, z, g)

2 Sample g∗ from π(ω, x, z∗; θ∗) using MH sampler (Mele 2017)

3 Accept swap (θ, z) to (θ∗, z∗) with prob min{1, exch}

exch =
Pη(Z = z∗)

Pη(Z = z)

q(θ, z|η, θ∗, z∗, g)

q(θ∗, z∗|η, θ, z, g)

× π(g, x, z∗; θ∗)

π(g, x, z; θ)

π(g∗, x, z; θ)

π(g∗, x, z∗; θ∗)

∏Kmax
k=1 p(α∗k, γ

∗
k |µw,Σw)∏Kmax

k=1 p(αk, γk|µw,Σw)

Pη(Z = z) : community structure,

π(g, x, z; θ): network likelihood

p(αk, γk|µw,Σw): priors.
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