Do Intermediaries Matter for Aggregate Asset Prices?

Valentin Haddad

UCLA & NBER

Tyler Muir

May 2018

RESEARCH QUESTION

How much variation in aggregate risk premia can we ascribe to intermediaries rather than to households?

RESEARCH QUESTION

How much variation in aggregate risk premia can we ascribe to intermediaries rather than to households?

Example: 2008-09 Financial Crisis

- Intermediary risk-bearing capacity was impaired
- But aggregate risk aversion also likely moved
 - habits, sentiment, etc

WHAT WE DO

Intermediary risk appetite matters more for assets that are difficult to directly invest in, household risk appetite matters less

WHAT WE DO

Intermediary risk appetite matters more for assets that are difficult to directly invest in, household risk appetite matters less

- Overcomes identification issue of positive correlation of intermediary and household risk aversion
- Theoretically justified
 - A model that nests the simple version of two main views
 - Existing "intermediary tests" do not get at the question
- Across asset classes, we find:
 - Measures of financial sector health predict returns more strongly in asset classes that are difficult to invest in
 - Household measures have opposite pattern
 - Unrelated to observable variation in risk (vol, skewness, or beta)

WHAT WE DO

Intermediary risk appetite matters more for assets that are difficult to directly invest in, household risk appetite matters less

- Overcomes identification issue of positive correlation of intermediary and household risk aversion
- Theoretically justified
 - ► A model that nests the simple version of two main views
 - Existing "intermediary tests" do not get at the question
- Across asset classes, we find:
 - Measures of financial sector health predict returns more strongly in asset classes that are difficult to invest in
 - Household measures have opposite pattern
 - Unrelated to observable variation in risk (vol, skewness, or beta)
- ightarrow Intermediaries and households have a distinct, but sizable effect on risk premia

Main Result

$$\tilde{r}_{i,t+1} = a_i + b_i \hat{\gamma}_{I,t} + \varepsilon_{i,t+1}$$

LITERATURE

- Aggregate prices consistent with role of intermediaries: optimal decisions
 - Exposure to intermediary factor explains the cross-section of returns, e.g. Adrian Etula Muir (2014), He Kelly Manela (2017)
 - ► Intermediary balance sheet predicts future returns, e.g. Haddad Sraer (2016)
- Local evidence that intermediaries cause changes in prices
 - Arbitrage opportunities directly related to intermediation regulatory constraints, e.g. Du Tepper Verdelhan (2017), Lewis, Longstaff, Petrasek (2017)

OUTLINE

- 1 Model
- 2 Tests
- 3 EVIDENCE

OUTLINE

- 1 Model
- 2 Tests
- 3 EVIDENCE

Model

 \blacksquare Two periods, N assets with payoffs $\mathcal{N}(\mu,\Sigma)$

SETUP

- Household: invest directly or through intermediary
 - ightharpoonup CARA, risk aversion γ_H
 - Takes intermediary decisions as given
 - Friction 1: Assets differ in their ease of access for direct investment
 - quadratic cost of direct investment C

$$\max_{D_H} (D_H + D_I)' (\mu - p) - \frac{\gamma_H}{2} (D_H + D_I)' \Sigma (D_H + D_I)$$
$$- \frac{1}{2} D'_H C D_H.$$

SETUP

- Household: invest directly or through intermediary
 - ightharpoonup CARA, risk aversion γ_H
 - ► Takes intermediary decisions as given
 - Friction 1: Assets differ in their ease of access for direct investment
 - quadratic cost of direct investment C

$$\max_{D_H} (D_H + D_I)' (\mu - p) - \frac{\gamma_H}{2} (D_H + D_I)' \Sigma (D_H + D_I) - \frac{1}{2} D_H' C D_H.$$

Intermediary

- ► Friction 2: Intermediaries invest on behalf of household, but with different investment policies
- ightharpoonup CARA, risk aversion γ_I

$$\max_{D_I} D_I' (\mu - p) - \frac{\gamma_I}{2} D_I' \Sigma D_I.$$

Intermediary and Asset Prices

$$\mu - p = \gamma_H \Sigma \left(\Sigma + \frac{1}{\gamma_I} C \right)^{-1} \left(\Sigma + \frac{1}{\gamma_H} C \right) S$$

Intermediary and Asset Prices

$$\mu - p = \gamma_H \Sigma \left(\Sigma + \frac{1}{\gamma_I} C \right)^{-1} \left(\Sigma + \frac{1}{\gamma_H} C \right) S$$

Proposition: The intermediary matters for asset prices, that is $\partial (\mu-p)/\partial \gamma_I \neq 0$, if and only if

$$\gamma_I \neq \gamma_H$$
 and $C \neq 0$

- 1. Imperfect substitution
 - $ightharpoonup C>0 \Leftrightarrow rac{\partial D_H}{\partial D_I}
 eq -1$: Household doesn't undo intermediary decision.
- 2. Preference (mis)alignment
 - $ightharpoonup \gamma_I
 eq \gamma_H$: Intermediary isn't a veil who acts perfectly on behalf of household

OUTLINE

- 1 Model
- 2 Tests
- 3 EVIDENCE

Our Approach

$$\frac{1}{\mu_i - p_i} \frac{\partial(\mu_i - p_i)}{\partial \log(\gamma_I)} = \frac{c_i}{\gamma_I \sigma_i^2 + c_i} \ge 0$$
$$\frac{1}{\mu_i - p_i} \frac{\partial(\mu_i - p_i)}{\partial \log(\gamma_H)} = \frac{\gamma_H \sigma_i^2}{\gamma_H \sigma_i^2 + c_i} > 0$$

Our Approach

$$\begin{split} &\frac{1}{\mu_i - p_i} \frac{\partial (\mu_i - p_i)}{\partial \log(\gamma_I)} = \frac{c_i}{\gamma_I \sigma_i^2 + c_i} \ \geq 0, \ \uparrow \textbf{\textit{c}_i} \\ &\frac{1}{\mu_i - p_i} \frac{\partial (\mu_i - p_i)}{\partial \log(\gamma_H)} = \frac{\gamma_H \sigma_i^2}{\gamma_H \sigma_i^2 + c_i} \ > 0, \ \downarrow \textbf{\textit{c}_i} \end{split}$$

Our approach: Relative predictability

- The elasticity of risk premium to intermediary risk aversion γ_I is increasing in the cost of direct holding c_i , strictly if the intermediary matters for asset prices.
- ightharpoonup The elasticity to household risk aversion γ_H is decreasing in the cost of direct holding.

INTERMEDIARY RISK AVERSION

OUTLINE

- 1 Model
- 2 Tests
- 3 EVIDENCE

RISK APPETITE PROXIES

- Measures of intermediary risk aversion $\hat{\gamma}_{I,t}$:
 - Adrian Etula Muir (2014), He Kelly Manela (2016) factors
 - ★ Shown to proxy for health of financial sector
 - ► Take log annual change in variables as return predictors, standardize and average them together
- lacksquare Measures of household risk aversion $\hat{\gamma}_{H,t}$
 - ► Habit: surplus consumption ratio from Cochrane (2017)
 - cay from Lettau Ludvigson (2001)
 - Consumer sentiment from Michigan Survey

RETURNS

Returns $r_{i,t+1}$:

 Stocks, Treasury bonds, Sovereign bonds, Options on stocks (straddle), Commodities, FX (carry trade), CDS

Also look at returns to convertible bond arb, fixed income arb, other hedge fund strategies

RETURNS

Returns $r_{i,t+1}$:

 Stocks, Treasury bonds, Sovereign bonds, Options on stocks (straddle), Commodities, FX (carry trade), CDS

Also look at returns to convertible bond arb, fixed income arb, other hedge fund strategies

Normalization: different assets have different level of risk

- $r_{i,t+1}/E[r_i]$
- $r_{i,t+1}/\sigma[r_i]$

Cost Rankings

■ Create a ranking of direct investment costs c_i (low to high):

Stocks Bonds Options Sov. Com. FX CDS

Cost Rankings

■ Create a ranking of direct investment costs c_i (low to high):

	Stocks	Bonds	Options	Sov.	Com.	FX	CDS
FoF	Stocks	Bonds		Sov Bonds			
VaR	Stocks	Bonds			Comm	FX	
BIS		Bonds	Options		Comm	FX	CDS

Confirm using multiple sources

- ► Flow of funds: HH holdings / Total assets compared to broker dealers and other fin institutions
- ► Value-at-Risk: Take VaR for primary dealers (10K), normalize by asset class std dev, compare to size of each market
- ► *BIS* data on derivatives: Gross value, totals as well as accounted by fin institutions

Intermediaries and Risk Premium

$$r_{i,t+1}/E[r_i] = a_i + \frac{\mathbf{b_i}}{\hat{\gamma}_{I,t}} + \varepsilon_{i,t+1}$$

	Stocks	Bonds	Options	Sovereign	Commod	FX	CDS
γ_I	0.33	0.35	0.68	0.64	2.52	0.22	1.08
	(0.27)	(0.15)	(0.30)	(0.16)	(0.78)	(0.09)	(0.44)
$\begin{matrix} {\sf N} \\ R^2 \end{matrix}$	164 1.5%	145 2.7%	100 3.8%	62 26.2%	102 7.1%	113 3.4%	44 23.1%

Intermediaries and Risk Premia

Elasticity of risk premia to intermediary state variable

Alternative Scalings ($\times 100$, log scale)

Vol norm: $r_{i,t+1}/\hat{\sigma}(r_{i,t+1}) = a_i + b_i \gamma_{I,t} + \varepsilon_{i,t+1}$

Predictability Due to Intermediary

0.2

Stocks

Lower bound on the % of \mathbb{R}^2 which we can attribute to intermediary:

$$\left(\frac{(b_i - b_{stock})^2 var(x)}{var(r_i)}\right) / \left(\frac{b_i^2 var(x)}{var(r_i)}\right)$$

ightarrow Impact of intermediaries on predicting returns for an equal-weighted portfolio: 4.4% R^2

Sovbonds

Options

Commod

FX

cns

PANEL REGRESSIONS

$$r_{i,t+1}/s_i = a_i + b_1^I \gamma_{I,t} + 1_{INT} b_2^I \gamma_{I,t} + b_1^H \gamma_{H,t} + 1_{INT} b_2^H \gamma_{H,t} + \varepsilon_{i,t}$$

 Panel regression with INT dummies for more intermediated assets (test if coeffs different)

 Add Campbell Cochrane habit (similar using other HH risk aversion proxies)

Two Risk Premium Cycles

INT =	$1_{\neq Stock/Bond}$		$1_{\neq Stock/Bond/Opt}$		$Rank \in [0,1]$	
γ_I	0.33*	0.20	0.39**	0.31	0.36*	0.23
	(0.18)	(0.18)	(0.20)	(0.19)	(0.21)	(0.21)
$INT \times \gamma_I$	0.56**	0.76***	0.61**	0.77**	0.75**	1.04**
	(0.27)	(0.28)	(0.30)	(0.34)	(0.37)	(0.41)
γ_H		0.41**		0.29		0.40*
		(0.19)		(0.21)		(0.22)
$INT \times \gamma_H$		-0.61*		-0.53		-0.85*
		(0.36)		(0.37)		(0.45)
N	730	730	730	730	730	730
\mathbb{R}^2	0.0288	0.0335	0.0296	0.0330	0.0280	0.0320

LOWER BOUNDS OF VARIATION IN RISK PREMIA

Use panel to provide lower bound of variance due to each

ROBUSTNESS

- Different samples: Table 8
 - Exclude crisis
 - ► More balanced panel: start post 1990
- Alternative measures of intermediary risk aversion: Tables 5-6
 - Use two measures separately
 - Use long-term changes in AEM/HKM or levels
 - ▶ Use Gilchrist Zachrajsek (2010) spread, health of intermediaries

ROBUSTNESS

- Different samples: Table 8
 - Exclude crisis
 - ► More balanced panel: start post 1990
- Alternative measures of intermediary risk aversion: Tables 5-6
 - Use two measures separately
 - Use long-term changes in AEM/HKM or levels
 - ▶ Use Gilchrist Zachrajsek (2010) spread, health of intermediaries

Next:

■ Time-varying risk

TIME-VARYING RISK

■ Third main view: changes in risk drive changes in risk premium

■ Main concern:

More intermediated assets become more risky exactly when intermediary health is poor ...

- but this has nothing to do with intermediaries
- Measure and control for *observable* variation in risk

TIME-VARYING RISK

$$ln(\sigma_{i,t+1}^2) = a_i + b_i \gamma_{I,t} + \varepsilon_{i,t+1}$$

	Mkt	Bonds	Options	Sovereigns	Commodities	FX	CDS
γ_I	0.30***	0.05	0.23***	0.20	0.35***	0.06	0.13
	(0.09)	(0.10)	(0.09)	(0.14)	(0.10)	(0.11)	(0.21)
γ_H	0.12	0.50***	-0.02	0.27	0.20	-0.05	1.02***
	(0.07)	(0.12)	(0.11)	(0.16)	(0.13)	(0.07)	(0.23)
Ν	164	145	100	62	102	113	44
R^2	0.139	0.145	0.0441	0.123	0.141	0.00818	0.431

TIME-VARYING RISK

$$ln(\sigma_{i,t+1}^2) = a_i + b_i \gamma_{I,t} + \varepsilon_{i,t+1}$$

	Mkt	Bonds	Options	Sovereigns	Commodities	FX	CDS
γ_I	0.30***	0.05	0.23***	0.20	0.35***	0.06	0.13
	(0.09)	(0.10)	(0.09)	(0.14)	(0.10)	(0.11)	(0.21)
γ_H	0.12	0.50***	-0.02	0.27	0.20	-0.05	1.02***
	(0.07)	(0.12)	(0.11)	(0.16)	(0.13)	(0.07)	(0.23)
Ν	164	145	100	62	102	113	44
R^2	0.139	0.145	0.0441	0.123	0.141	0.00818	0.431

■ In addition: no differential effect for skewness, no difference when we control for time-varying betas or other risk meausres

Complex Strategies: Hedge Fund Returns

Convert bond arb and Merger arb (Mitchell and Pulvino (2001, 2012)): disruptions linked to capital scarcity, HF own 40+% of convertible bonds

■ Fixed income arbitrage: Hu Pan Wang (2013)

HF returns from DJCS: Equity LS, Mkt Neutral, Event Driven, Convert Bond, Fixed Income Arb, Total Index

HEDGE FUND RETURNS: INTERMEDIARY $(\hat{\gamma}_I)$

Note: pattern *not* there for γ_H

CONCLUSION

Do intermediaries matter for aggregate asset prices?

Yes, a lot. Households too.

- Intermediary risk appetite matters more for assets that are difficult to directly invest in
- Household appetite matters less

■ Both results are specific signature of models with financial frictions.

STATISTICAL PROPERTIES

Test if elasticity different?

$$r_{i,t+1}/\overline{(r_{i,t+1})} - r_{stock,t+1}/\overline{(r_{stock,t+1})} = a_i + b_i \gamma_{I,t} + \varepsilon_{i,t+1}$$

	Elasticity Difference											
	Bonds Options Sovereign Commodity FX CDS											
γ_I	0.26	-0.06	-0.01	-1.40	0.09	-0.08						
	(0.20)	(0.15)	(0.36)	(0.85)	(0.28)	(0.36)						
N	145	100	62	102	113	44						
R^2	0.016	0.003	0.002	0.028	0.050	0.002						

- \blacksquare Instability of estimate in smaller sample: $\overline{r_{i,t+1}}$ hard to estimate, blows up std errors
- Elasticity "ideal" from theory,difficult test with smaller samples

VARIANCE NORMALIZATION

Variance norm more stable (easier to estimate than ${\cal E}[r]$ in small sample)

$$r_{i,t+1}/\hat{\sigma}^2(r_{i,t+1}) - r_{stock,t+1}/\hat{\sigma}^2(r_{stock,t+1}) = a_i + b_i \gamma_{I,t} + \varepsilon_{i,t+1}$$

	Variance Normalization Difference											
	Bonds Options Sovereign Commodity FX CDS											
γ_I	-2.22*	-0.14	-3.11***	-0.87	-1.79**	-14.88**						
	(1.21)	(0.20)	(1.13)	(0.68)	(0.76)	(6.66)						
N	145	100	62	102	113	44						
R^2	0.013	0.004	0.191	0.011	0.139	0.238						

lacktriangle Variance normalization less pure from theory (e.g., need to assume diagonal Σ) but more stable empirically in subsamples

INTERMEDIARY RISK AVERSION: HKM AND AEM

Rather than combine HKM AEM measures, here split separately

	Stocks	Bonds	Options	Sovereign	Commod	FX	CDS
			Annı	ual Changes			
γ_I^{AEM}	-0.42	-0.22*	-0.90***	-0.50***	-3.44***	-0.26***	-0.79**
	(0.26)	(0.12)	(0.26)	(0.15)	(0.58)	(80.0)	(0.38)
γ_I^{HKM}	-0.04	-0.27	0.25	-0.39**	1.12	0.01	-0.71*
	(0.27)	(0.18)	(0.37)	(0.16)	(0.93)	(0.10)	(0.39)
NI	164	145	100	60	100	112	4.4
N	164	145	100	62	102	113	44
\mathbb{R}^2	0.020	0.029	0.094	0.262	0.201	0.056	0.234

INTERMEDIARY RISK AVERSION: HKM AND AEM

Rather than combine HKM AEM measures, here split separately

	Stocks	Bonds	Options	Sovereign	Commod	FX	CDS
				Levels			
γ_I^{AEM}	-0.01	0.31	-1.00**	-0.75*	-1.75	-0.22*	-0.80
	(0.39)	(0.20)	(0.49)	(0.39)	(1.49)	(0.12)	(0.76)
γ_I^{HKM}	-0.59	-0.32	-0.45	-0.63***	-0.23	0.42***	-0.78
	(0.37)	(0.22)	(0.54)	(0.20)	(1.52)	(0.16)	(0.49)
N	168	145	100	62	102	113	44
R^2	0.041	0.020	0.117	0.214	0.035	0.095	0.137
▶ Back							

▶ Back

INTERMEDIARY RISK AVERSION: LEVELS

- lacktriangle Replace changes in log AEM / HKM with levels to proxy for γ_I
 - ▶ Most theories: level matters, but there are large trends
 - ► Follow Adrian Moench Shin (2010), Schularick Taylor (2012), Baron Xiong (2016) using 1-3 year changes

		Stocks	Bonds	Options	Sovereign	Commodities	FX	CDS
	γ_I	-0.53**	-0.01	-1.29***	-1.16***	-1.72*	0.18	-1.40**
		(0.22)	(0.18)	(0.34)	(0.28)	(0.89)	(0.13)	(0.58)
	Ν	168	145	100	62	102	113	44
	\mathbb{R}^2	0.033	0.000	0.110	0.212	0.027	0.020	0.137
_								

Intermediary Risk Aversion: GZ Spread

Replace AEM / HKM with Gilchrist Zakrajsek (2012) excess bond premium spread

► GZ argue this captures health of intermediaries

Stocks

	SLOCKS	Donus	Options	Sovereign	Commodities	ГЛ	CD3
GZ	-0.01	-6.14***	0.86	-3.10***	0.83	-0.38	-12.35*
	(0.28)	(1.09)	(0.84)	(1.01)	(1.05)	(0.98)	(4.09)
N	156	145	100	62	102	113	44
\mathbb{R}^2	0.000	0.129	0.024	0.204	0.016	0.002	0.253

Coursian Commodition

ΓV

CDC

Subsample: Exclude Crisis

Dropping the crisis (Panel A), Post 1990 only (Panel B)

	Dropping 2007-2009										
	Stocks Bonds Options Sovereign Commodities FX CDS										
γ_I	-0.22 -0.26 -0.49* -0.73*** -2.74*** -0.25** -0.90										
	(0.30)	(0.17)	(0.27)	(0.18)	(0.75)	(0.11)	(0.15)				
N	141	126	81	46	79	90	21				
R^2	0.007	0.010	0.037	0.354	0.170	0.057	0.628				

▶ Back

Subsample: Post 1990

				Post 1990			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Stocks	Bonds	Options	Sovereign	Commodities	FX	CDS
γ_I	-0.42	-0.41***	-0.42	-0.64***	-4.25**	-0.23**	-1.07***
	(0.30)	(0.10)	(0.50)	(0.17)	(1.98)	(0.11)	(0.38)
N	84	80	80	62	84	84	44
R^2	0.025	0.163	0.008	0.254	0.038	0.035	0.231

▶ Back

HOUSEHOLD RISK AVERSION: CONSUMER

SENTIMENT

Proxy for $\gamma_{H,t}$ using consumer sentiment from Michigan survey

	Stocks	Bonds	Options	Sovereign	Commodity	FX	CDS
γ_I	-0.65	-0.51*	-1.32*	-1.17**	-3.86**	-0.55**	-3.04***
	(0.57)	(0.29)	(0.73)	(0.51)	(1.92)	(0.22)	(0.98)
γ_H	0.16	-0.10	-0.06	-0.26	-1.39	-0.47	-0.89
	(0.55)	(0.41)	(0.84)	(0.35)	(2.59)	(0.29)	(1.03)
N	167	148	103	65	105	116	47
\mathbb{R}^2	0.015	0.015	0.036	0.147	0.047	0.060	0.355