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SUMMARY

AI has achieved superhuman performance in

Chess: Deep Blue

Shogi: Bonanza

Go: AlphaGo

Each of these is a alternating play, two player, discrete choice game
with binary outcome; Win or Lose.



The econometric methods each uses are:

Deep Blue: Move at each play chosen to maximize (grandmaster)
calibrated value function; also select moves from opening or end game
libraries.

Bonanza: Move chosen to maximize value function estimated via
Rust (1987) nested fixed point algorithm.

AlphaGo: Deep neural net version of conditional choice probability
approach of Hotz and Miller (1993). Estimates conditional choice
probabilities by neural nets. Hotz, Miller, Sanders, Smith (1994)
simulation estimator of value function from conditional choice prob-
abilities.



COMMENTS

Machine learning methods good at prediction.

Not necessarily good for estimating objects of interest.

Seems remarkable how well methods have done has done in estimating
decision rule in the 3 games.

More precisely, how well methods have done in estimating a decision
rule that is superhuman.



Prediction versus estimation.

Good predictions are biased.

This can affect estimation; leads to bad confidence intervals.

Debias to correct.

Debiasing for estimating average treatment effect in Chernozhukov
et al. (2014), Farrell (2015), Athey, Imbens, Wager (2017), Cher-
nozhukov et al. (2018), Chernozhukov, Newey, Singh (2018):

Graphs: Distribution of plug-in estimator of regression coefficient of
interest with many covariates is very biased but can debias.
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Figure 1. Left Panel: Behavior of a conventional (non-orthogonal) ML estimator, θ̂0, in the partially
linear model in a simple simulation experiment where we learn g0 using a random forest. The g0 in this
experiment is a very smooth function of a small number of variables, so the experiment is seemingly
favorable to the use of random forests a priori. The histogram shows the simulated distribution of the

centered estimator, θ̂0 − θ0. The estimator is badly biased, shifted much to the right relative to the
true value θ0. The distribution of the estimator (approximated by the blue histogram) is substantively
different from a normal approximation (shown by the red curve) derived under the assumption that the

bias is negligible. Right Panel: Behavior of the orthogonal, DML estimator, θ̌0, in the partially linear
model in a simple experiment where we learn nuisance functions using random forests. Note that the
simulated data are exactly the same as those underlying left panel. The simulated distribution of the
centered estimator, θ̌0−θ0, (given by the blue histogram) illustrates that the estimator is approximately
unbiased, concentrates around θ0, and is well-approximated by the normal approximation obtained in
Section 3 (shown by the red curve).

Overcoming Regularization Biases using Orthogonalization. Now consider a
second construction that employs an “orthogonalized” formulation obtained by directly
partialling out the effect of X from D to obtain the orthogonalized regressor V = D −
m0(X). Specifically, we obtain V̂ = D − m̂0(X), where m̂0 is an ML estimator of m0

obtained using the auxiliary sample of observations. We are now solving an auxiliary
prediction problem to estimate the conditional mean of D given X, so we are doing
“double prediction” or “double machine learning”.

After partialling the effect of X out from D and obtaining a preliminary estimate of g0

from the auxiliary sample as before, we may formulate the following “debiased” machine
learning estimator for θ0 using the main sample of observations:3

θ̌0 =
( 1

n

∑
i∈I

V̂iDi

)−1 1

n

∑
i∈I

V̂i(Yi − ĝ0(Xi)). (1.5)

By approximately orthogonalizing D with respect to X and approximately removing the
direct effect of confounding by subtracting an estimate of g0, θ̌0 removes the effect of

3In Section 4, we also consider another debiased estimator, based on the partialling-out approach of
Robinson (1988):

θ̌0 =
( 1

n

∑
i∈I

V̂iV̂i

)−1 1

n

∑
i∈I

V̂i(Yi − ̂̀0(Xi)), `0(X) = E[Y |X].



DEBIASING

Straightforward, general, statistically good method for GMM estima-
tion of "averages," like parameters of dynamic discrete choice.

Debiased moments

= Identifying moments + Influence adjustment.

Hasminskii and Ibragimov (1979), Bickel and Ritov (1988), Newey,
Hsieh, Robins (1998, 2004), Robins et al. (2008), Chernozhukov et
al. (2018).

Making progress towards automating this, Chernozhukov, Newey,
Singh (2018).



Surprising that AlphaGo did so well without any explicit debiasing.

Perhaps some form debiasing implicit in the ways the decision rules
are estimated.

Does happen in some other settings: Debiasing is built in when first
step is obtained from maximizing the same objective function as ob-
ject of interest, i.e. when first step consists of concentrating out
(Newey, 1994).

"Under smoothing" (using richer specification than required for best
prediction) can be used to debias. Perhaps that was implicit in
method.



These interpretations are promising for structural estimation in other
economic problems with high dimensional state spaces.

Most structural estimation deals with much smaller state spaces though
the objective function and interactions among players more compli-
cated.

Confirms potential for machine learning to improve decision making;
also much revealed preference evidence on that.

Raises more speculative questions, like a structural methods "too
good," not really modeling well the way people behave.

Paper’s interpretation of success of the three games is excellent and
raises interesting questions.




