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Abstract

Truancy predicts many risky behaviors and adverse outcomes. We use detailed
administrative data to construct social networks based on students who miss class
together. We simulate these networks to show that certain students systematically
coordinate their absences in the observed data. Leveraging a parent-information
intervention on student absences, we find spillover effects from treated students
onto peers in their network; excluding these effects understates the intervention’s
cost effectiveness by 19%. We show there is potential to use these networks to im-
plement costly interventions more efficiently. We develop an algorithm that incor-
porates spillovers and treatment-effect heterogeneity identified by machine-learning
techniques to target interventions more efficiently given a budget constraint.
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1 Introduction
There is concern that the risky behaviors of teenage children negatively influence the behaviors of other

children through their social networks. This influence could occur if, for instance, children learn behaviors

from other children, or if they derive utility from undertaking behaviors jointly (Akerlof and Kranton 2000;

Austen-Smith and Fryer 2005; Bénabou and Tirole 2011; Bursztyn et al. 2014). Such mechanisms may be

particularly relevant to school absenteeism, which predicts a number of adverse outcomes including high

school dropout, substance abuse, and criminality (Kearney 2008; Goodman 2014; Aucejo and Romano 2016;

Rogers and Feller 2016; Cook et al. 2017; Gershenson et al. 2017). Attendance is also an important metric

for schools because it is frequently tied to state funding and many state proposals use chronic absenteeism

as an indicator for accountability under the new Every Student Succeeds Act.1

Assessing the influence of social networks on risky behaviors such as absenteeism has important impli-

cations. Many interventions that aim to attenuate these behaviors can be expensive for school districts to

implement. For instance, Check and Connect, which uses student mentors to significantly reduce student

absences, costs $1,700 per child per year (Guryan et al. 2016).2 Though difficult to assess, the benefits of

this and other interventions may be understated if there are spillover effects. Moreover, if these spillovers

occur along a measurable network, it may be possible to target the intervention more cost effectively by

incorporating the potential for spillovers. Nonetheless, this possibility is muted if the networks are expensive

to estimate or imperfectly measured, for instance via labor-intensive surveys or proxying a student’s social

network using students in the same grade.

In this paper, we show how administrative data can be used to construct social networks around truancy,

and how treatment effects spill over along these networks. We use student-by-class-by-day attendance data

to construct networks of who misses class with whom. The strength of each tie (or edge) between students

is given by the number of times they miss the same class together. We assess the features of this network

and test whether students systematically miss class with other students. We then leverage the random

assignment from an automated-text message alert experiment, which includes alerts to parents for each time

a student misses a class, to test if the effects of the alerts spill over to other students in the network and

how these spillovers interact with the characteristics of the network. Lastly, we examine to what extent we

can use the network information to target potentially costly attendance interventions, subject to a budget

constraint, to increase their cost effectiveness.

We find that students are more likely to miss an individual class than a full day of school, and that
1cf. This article describing proposed state policies.
2There have been several experiments studying Check and Connect, including studies by Sinclair et al. (1998, 2005) and

Maynard et al. (2014).
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students systematically miss classes together. In fact, students are 4.7 times more likely to skip class

with a specific student (whom we identify as their “closest peer”) than with another of their peers. The

networks also exhibit strong homophily: students tend to miss class with other students who have GPAs,

behaviors, and racial characteristics that are predictive of their own characteristics. However, the latter

could be due to correlated shocks or omitted contextual factors that induce apparent homophily. We show

this explanation cannot fully account for the observed homophily in the network in certain characteristics

by comparing simulated moments of the data to their observed counterparts. These tests provide evidence

that the observed homophily is not entirely due to contextual factors. To demonstrate the relevance of these

networks, we show that the text-message alert intervention exhibits spillovers onto individuals with whom

treated students have strong network ties. In contrast, Bergman and Chan (2017) find that a common

alternative measure of a student’s network—students in the same grade as other students—exhibits weak,

statistically insignificant spillovers. Lastly, we show evidence that joint absences are, in part, due to utility

derived from missing class jointly with a specific student rather than deriving general utility missing class.

We also provide a targeting algorithm designed to maximize the total effect of an intervention considering

heterogeneous spillovers. Given a budget restriction (the overall number of students that can be treated),

this algorithm shows the potential to target other, more-expensive attendance interventions cost effectively.

By identifying different types of students and their connections within the network, we show that it would

be more efficient to first allocate the treatment to students who have higher rates of absenteeism and have

a peer with whom they miss class. We find that using the social networks to target the treatment further

reduces the number of chronically absent students by an additional 15 percentage points relative to the

original allocation of the treatment.

This paper contributes to a large literature on the interaction between social networks and risky youth

behaviors.3 The influence of peers on individuals’ behaviors is difficult to estimate, in part, due to the

reflection problem (Manski 1993). In the context of social influence on risky behaviors, a number of papers

overcome this difficulty by structurally estimating peer interactions, as in Card and Giuliano (2013) and

Richards-Shubik (2015), or by using quasi-random or random variation in the assignment of peers to indi-

viduals as in Imberman et al. (2012) and Carrell and Hoekstra (2010), and Duncan et al. (2005) and Kremer

and Levy (2008) respectively. The latter two examples use the random assignment of roommates to identify

peer effects and find significant effects of peer drug and alcohol consumption on own use in college. Imberman

et al. (2012) and Carrell and Hoekstra (2010) find that exposure to students who exhibit behavior problems

leads to increased behavioral issues for their peers. Card and Giuliano (2013) and Richards-Shubik (2015)
3While we focus on social-networks effects on risky behaviors, Sacerdote (2011) reviews the broader literature on peer effects

in educational contexts, such as Hoxby (2000), Sacerdote (2001), and Angrist and Lang (2004).
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structurally estimate models of peer interactions around sexual initiation using self-reported networks.

Card and Giuliano (2013) write that one limitation of studies focusing on the random assignment of

peers to individuals is that, because these peer relationships are formed primarily due to exogenous factors,

any resulting peer effects on risky behaviors might not reflect those found in friendships that form more

organically. Paluck et al. (2016) overcome this by surveying the entire student bodies of 56 schools to assess

students’ social networks and randomize an anti-bullying intervention. They find that highly-connected

students had outsize effects on changing social norms in schools.

Our network measure sits somewhere between these research designs and has several advantages and

disadvantages. First, in terms of the former, using administrative data on truancy has the advantage of re-

flecting networks based on the exhibited behavior of interest, which may be more pertinent to risky behaviors

than general friendship networks, randomly assigned peers, or measures based on self-reported behaviors.

Second, collecting secondary administrative data is typically lower cost than primary-data collection. Finally,

Marmaros and Sacerdote (2006) show that proximity and repeated interactions, which is likely to occur for

students who share the same classes, are strong predictors of long-term friendships. The disadvantages are

that we place restrictions on how we define social networks by using class schedules, and we cannot be certain

students are actually coordinating their absences. To test the latter, we simulate random networks under the

null hypothesis that students do not coordinate their absences. We find that our observed measures of joint

absences occur more frequently than what would be expected by chance under our chosen data-generating

process. Lastly, we show that the randomly-assigned intervention exhibits meaningful spillovers along the

observed networks. In this way, our paper relates to the study of peer influence in the context of a random-

ized intervention, as in the adoption of health and agricultural technologies (Foster and Rosenzweig 1995;

Kremer and Miguel 2007; Conley and Udry 2010; Foster and Rosenzweig 2010; Duflo et al. 2011; Oster and

Thornton 2012; Dupas 2014; Kim et al. 2015), the role of social interactions in retirement plan decisions (Du-

flo and Saez 2003), the adoption of microfinance Banerjee et al. (2013), and education technology adoption

(Bergman 2016).

Another literature considers the optimal allocation of treatment assignments (cf. Bhattacharya and Dupas

2012) and the assignment of peers to individuals in the presence of potential peer effects (Bhattacharya 2009;

Carrell et al. 2013; Graham et al. 2014). Carrell et al. (2013) use insights from Bhattacharya (2009) and

Graham et al. (2014) to optimally assign peer groups in the United States Air Force Academy. Their

findings suggestion caution when optimally assigning peers; their intervention actually reduced performance,

which was likely due to subsequent, endogenous peer-group formation. Our paper is related, but rather

than optimally assigning peer groups, we consider the targeting of an intervention across existing peer

groups. Nonetheless, caution is warranted as individuals could substitute joint absences with one friend with
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coordinated absences among their other friends.

Finally, our paper also contributes to an emerging literature on partial-day absenteeism by estimating

direct and spillover effects of an intervention on class attendance in contrast to full-day attendance. Similar

to Whitney and Liu (2017), we show that partial-day absences are more common than full-day absences.

This makes estimating the effects of interventions on attendance at the class-level of particular relevance;

relatedly, Liu and Loeb (2017) show that teachers can impact class attendance as well.

The rest of the paper proceeds as follows. Section 2 details the background of the original experiment

and the data used for constructing the spillover analysis. Section 3 describes the social networks in each

school and its measurements, whereas Section 4 shows the results for the spillover analysis. Section 5 refers

to the allocation algorithm for optimal targeting, and finally, Section 6 concludes.

2 Background and Data
The experiment, which describes the original study of the direct effects of parent alerts. took place in 22

middle and high schools during the 2015-2016 school year in Kanawha County Schools (KCS), West Virginia.4

West Virginia ranks last in bachelor degree attainment and 49th in median household income among US

states and the District of Columbia.5 KCS is the largest school district in West Virginia with over 28,000

enrolled students in 2016. The district’s four-year graduation rate is 71% and standardized test scores are

similar to statewide proficiency rates in 2016. In the school year previous to the study, 2014-2015, 44% of

students received proficient-or-better scores in reading and 29% received proficient-or-better scores in math.

At the state level, 45% of students were proficient or better in reading and 27% were proficient in math.

83% of district students are identified as white and 12% are identified as Black. 79% of students receive free

or reduced-priced lunch compared to 71% statewide.6

The district has a gradebook system for teachers. Schools record by-class attendance and teachers mark

missed assignments and grades using the same web-based platform. The Bergman and Chan (2017) study

used data from this platform to create and test a text-message alert system to inform parents about their

child’s academic progress. That study tested three types of parent alerts: Low-grade alerts, missed as-

signment alerts, and by-class attendance alerts. On Mondays parents received a text-message alert on the

number of assignments their child was missing (if any) for each course during the past week. These assign-

ments included homework, classwork, projects, essays, missing exams, tests, and quizzes. On Wednesdays

parents received an alert for any class their child had missed the previous week. Lastly, and normally on the

last Friday of each month, parents received an alert if their child had a cumulative average below 70% in
4This description closely follows that of Bergman and Chan (2017).
5American Community Survey one-year estimates and rankings by state can be found here.
6These summary statistics come from the state education website, which can be found here.
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any course during the current marking period. Each alert was sent at 4:00 P.M. local time and the text of

each alert is provided in Table 1. The text messages also included a link to the website domain of the parent

portal, where the parent could obtain specific information on class assignments and absences if necessary.

2.1 Original Experimental Design

The sample for the original experiment began with approximately 11,000 households with roughly 14,000

students who were enrolled in grades five through eleven during the end of the 2014-2015 school year. The

parent or guardian of 1,137 students consented to participate in the experiment studying the effects of the

alerts during the following school year, 2015-2016.

Among consenting families, random assignment was at the school-by-grade level. The data were collapsed

at the grade-by-school level and randomization was subsequently stratified by indicators for below-median

grade point average (GPA) and middle versus high school grades. The intervention began in late October

2015 and continued through the remainder of the school year.

Parents in the control group received the default level of information that the schools and teachers

provided. This included report cards that are sent home after each marking period every six to nine weeks

along with parent-teacher conferences and any phone calls home from teachers. As discussed above, all

parents had access to the online gradebook.

The parent alerts caused significant (40%) reductions in course failures and increases (17%) in by-class

attendance. For further details on the experiment and the direct effects of the intervention, see Bergman

and Chan (2017).

2.2 Data

Data for this study come from the electronic gradebook described above and baseline administrative data for

students enrolled in grades 6 through 12 during the 2015-2016 school year. The administrative data record

students’ race and gender as well as their suspensions and English language status from the previous school

year. We code baseline suspensions as an indicator for any suspension in the previous school year.

The gradebook data were available at baseline and endline, and record students’ grades and class-level

attendance by date. We use these data to construct measures of how many classes students attended after

the intervention began as well as the number of courses they failed in the second semester of the year and

their GPA. Lastly, we define retention as an indicator taking any courses post treatment.
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3 Network Measurement and Descriptive Statistics
In this study, we define the pertinent social network as the ties between students in the same school who miss

the same class on the same day.7 The strength of the tie (or edge) between students is given by the number

of times they have missed the same class together. We can formulate this network as follows. Consider a

table of students’ class attendance in one school over the course of the year in which students’ attendance

by class, by day, is indicated by a ‘1’ or ‘0’ as follows

Class 1 Class 2 Class 1 Class 2 . . .

Student day 1 day 1 day 2 day 2

Student A 1 1 0 1 · · ·

Student B 1 0 0 1 · · ·

Student C 1 1 0 0 · · ·

Student D 1 1 1 1 · · ·
...

...
...

...
... · · ·

We use these data to create a matrix of student attendance:

AN×C =



1 1 0 1 · · ·

1 0 0 1 · · ·

1 1 0 0 · · ·

1 1 1 1 · · ·
...

...
...

... · · ·


Here, N is the number of students and C is the total number of classes times days in a year. We can then

formulate a matrix of who skips class with whom by multiplying A by A′:

AA′N×N =



1 1 0 1 · · ·

1 0 0 1 · · ·

1 1 0 0 · · ·

1 1 1 1 · · ·
...

...
...

... · · ·





1 1 0 1 · · ·

1 0 0 1 · · ·

1 1 0 0 · · ·

1 1 1 1 · · ·
...

...
...

... · · ·



′

AA′ is an N × N matrix where each cell aij represents how many times student i skipped class with

student j. This number represents the strength of the tie or edge between students.
7We do not have information whether these students missed class together coordinately or randomly.
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Figure 1 shows an example of this network for one of the schools during the pre-intervention period. In

this figure each node (or vertex) represents a student, and the edges between vertexes represent the bond

between students: The thicker the edge the stronger the bond, which means students have missed more

classes together. In this network we can also observe a certain level of clustering, which indicates a group of

students primarily skipping classes with other students in the group.

The main advantage of this network approach is that we have complete administrative attendance data

at a disaggregated level, which allows us to construct all the connections between students with respect to

attendance. However, we do not have information on the reason for the students’ absences, which makes

connections occurring from a random shock a concern. We describe how we address this concern below.

For simplicity we focus attention on the peer in students’ networks with whom they skip the most class (if

there exists such a peer) and their associated characteristics and spillover effects. Given that their strongest

peer is the one with whom a student skipped the most classes simultaneously, we expect that spillovers would

be larger through this connection than through other weaker ties. All results that follow generally become

much weaker and more imprecise when we explore weaker ties (results available upon request).

3.1 Descriptive Statistics and Testing for Coordination

To analyze the social networks in each school in the absence of the intervention, we use baseline data from

the beginning of August until the treatment began at the end of October to construct the networks in each

school. Table 2 and 3 shows baseline summary statistics of the sample. Most students in KCS identify as

white and 13% of students identify as Black. Additionally, 50% of students identify as female. Reflecting the

student population, few students (2%) are classified as English-Language Learners, and 19% of the sample

had at least one suspension in the past year. 4% of the sample was treated and 3% has a peer who was

treated.

We also present several network-level measures: size of the network, clustering coefficients and degrees

of centrality (Table 4). The size of the network relates to the number of nodes that are in the network,

on average, which is this case corresponds to the average number of students by school that skip class

with another student. The average clustering coefficient refers to the number of closed triplets over the

total number of triplets in a network (Jackson 2008).8 Due to the fact that edges have different weights

in our network, which represent the number of absences between students, we use a weighted average of

the clustering coefficient using both an arithmetic and geometric mean to consider the weights of a triplet

(Opsahl and Panzarasa 2009).

Degrees of centrality refer to the number of edges between nodes or vertexes. In our case, the degree of
8A triplet is defined by three nodes connected by two (open) or three (closed) edges. A closed triplet refers to three nodes

that are directly connected by three edges.
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centrality of a student is the number of connections with other students, while the eigenvector centrality is

the measure of centrality proportional to the centrality of their neighbors (Jackson 2008). Table 4 shows

estimates of clustering and centrality in the observed school-level networks.

To assess the extent of homophily within the networks—whether students tend to skip class with other

students who have similar characteristics to themselves—we regress students’ own characteristics on the

characteristics of the peer with whom they skip the most class. Specifically, we estimate the following:

characteristici = β0 + β1characteristicij + εi

In which j is a peer of i, and j indexes the rank of this peer in terms of joint absences. For instance, j equal

to 1 indicates the student with whom i has missed the most class. We focus on j equal to 1 for this analysis.

Table 5 shows the results of this analysis. Across measures, the characteristics of students strongly

correlate with the characteristics of their peers. GPA, gender, race, and suspensions all strongly predict

these characteristics in their peers.

We benchmark these results by constructing placebo networks or randomly generated networks. These

networks are constructed for each school by randomly generating absences for each student i according to

their probability pijd of absence during the baseline period for class j and day of the week d9; each student’s

absent rate by class and day of the week is independent of each other and uniformly distributed according

to their predicted baseline probability of absence pijd. We ran 100 simulations per school to create random

networks for the pre-intervention period where students randomly skipped classes based on their predicted

probability from the observed baseline attendance data. With these data, we generate a distribution of the

measures of the network.

Table 6 shows the average size of the network by school and measures of clustering, in addition to average

degree of centrality for the nodes in the random networks. From Table 6 we can observe that the randomly

generated networks have a slightly lower number of nodes (i.e. students that skip class with someone else), on

average, but the level of clustering is very similar between the observed network and the simulated random

networks.

Estimating the same measures on the simulated data, we observe that the level of homophily in the

random network is smaller compared to that in the observed networks for baseline GPA and gender, and

somewhat larger for race and ever suspended status. This indicates that contextual factors, such as tracking

students by previous performance or clustering by behavior and race in specific classes, could drive a share of

the observed homophily we found in the previous regressions. However, this is less true for student gender.
9Predicted probabilities pijt are obtained using a linear probability model including fixed effects by student, class id, and

day of the week.
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Students in the observed networks are more likely to skip class with another student of the same gender, but

the simulated networks show otherwise (Table 5 and 7).

In terms of discerning whether these networks are meaningful or are simply artifacts of district tracking

policies and correlated shocks within networks, the results found here are somewhat mixed. Aggregate

network characteristics actually match well compared to those from our randomly generated network, but

certain measures of homophily substantially differ. We test the significance of the correlations derived from

the regressions more formally by using the 100 simulations to compute placebo regression coefficients. This

parametric bootstrap approach allow us to discern whether the empirically observed coefficient is significantly

different from that found in the distribution from the simulated data, by comparing the distribution of the

simulated coefficients to the observed one. We find that we can reject the null hypothesis for two of the

four characteristics, with a p-value < 0.01. The observed coefficients for GPA and gender characteristics are

larger than the maximum value obtained from the simulations, however we find no significant difference in

terms of race or ever suspended status. Figure 2 shows the distributions for the simulated coefficients, as

well as the coefficient obtained from the observed data.

Additionally, we test whether students systematically coordinate their absences in a similar fashion. We

examine the number of times students miss class with their strongest peer and compare this to the distribution

of absences for this student pair in the simulated data. For each simulated network, we constructed the joint

absences for each pair of students, which gives us a distribution under the null hypothesis of uncoordinated

absences holding each students’ individual absence rate by class and day of the week constant. We then

calculate the p-value for the test that absences are uncoordinated based on the observed number of classes

that student pairs skip together compared to that found under the null distribution. If students skip class

randomly and do not coordinate their absences, we should not be able to reject the null hypothesis. However,

if student i coordinates their absences with student j, then the observed joint absences would be on the right

tail of the distribution, allowing us to reject the null hypothesis for that particular student pair.

Table 8 shows the total number of students who have a strongest peer, and the number of those students

who coordinate their absences according to our parametric bootstrap approach using different thresholds.

Almost 50% of the students who have a strongest peer coordinate their absences (at a 90% threshold level)

compared to our simulated networks. This share is well above what we would expect by chance.

Lastly, to get a sense of the magnitude of coordination, we compare the share of a student’s absences

with their closest peer to the average share of absences across their other peers. Students are absent 4.7

times more often with their the closest relative to the average across their other peers.

Overall, we find significant evidence that students coordinate their absences as well as evidence of ho-

mophily within the networks. To further assess the importance of networks and attendance, in the following
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section we analyze whether treatment effects from the alert intervention spill over onto peers within a stu-

dent’s baseline attendance network.

4 Network Spillovers

4.1 Treatment effect spillovers from strongest peer on attendance

To assess spillovers, we use the baseline attendance data to construct school-level networks. The key char-

acteristic that we use from these networks is an indicator for whether a student’s strongest peer, which we

define as the peer with the strongest tie to an individual, referred to as Peer 1, was treated or not. This helps

answer the question: if the person you skipped the most with is treated, does this affect your attendance as

well?

We estimate the following equation to examine peer effects:

yi = β0 + β1P1Treati1 + β2Peersi + γiXi + εi (1)

In this equation, the key outcome of interest, yi, is the number of classes attended after the intervention

began, though we also check for effects on other gradebook outcomes such as course failures and GPA.

P1Treati1 is an indicator for whether the strongest peer is treated. All regressions control for the variable

Peersi, which is the number of peers with whom student i has skipped class. This variable is important

as it determines the probability of treatment.10 All regressions also include the original strata from the

treatment assignment, as well as an indicator variable for whether the student was in the original sample of

the experiment and whether he or she was directly treated. TheXi include additional controls specified in the

original experiment’s pre-registered analysis plan. These variables are indicators for race, gender, suspension

in the past year and IEP status, as well as baseline attendance and GPA. Our preferred specification shows

results with school fixed effects as these greatly improve precision. Standard errors are clustered at the

school-by-grade level, which is the original unit of treatment assignment.11

To test for heterogeneous peer effects, we interact the P1Treati1 with baseline covariates of student i and

their peer. Similarly, we also examine heterogeneity by measures of centrality of the strongest peer as well,

such as eigenvector centrality and the number of absences that a student shares with their strongest peer.

Lastly, if this research design is valid, we should see that P1Treati1 is uncorrelated with baseline charac-

teristics of students conditional on the Peersi variable. Table 9 shows the result of estimating equation (1)
10As a robustness check, we also incorporated flexible interactions of this variable with the P1Treati1 treatment variable, and

our results are extremely similar (available upon request).
11Moreover, students’ own grade level is a near one-to-one predictor of their strongest peer’s grade level; the coefficient on a

regression of own grade level on their strongest peer’s grade level is 0.96.
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with baseline covariates as the dependent variable. The magnitudes are all small and statistically insignifi-

cant, particularly around baseline absence measures, which provides reassurance that peer treatment status

is randomly assigned.

4.2 Results

Attendance

Given the networks are constructed based on class absences, we focus on whether there are spillover effects

of the treatment on students’ by-class attendance and the robustness of these effects to different measures

of peers. To test whether there are spillover effects on attendance for students whose strongest peer was

treated, we estimate three models that build upon each other: (1) a simple regression between P1Treat1

and attendance controlling for the size of the network;12 (2) we then add controls for the set of predefined

covariates described above; and (3) we add fixed effects by school.

Table 10 shows the results. All three models yield a significant and positive spillover effect of treated

students onto their strongest peer. The standard errors are more than 40% smaller when including fixed-

effects by school and the magnitude of the effect is smaller relative to the other specifications as well. The

fixed-effect specification is both more precise and more conservative, so for parsimony we focus on discussing

results from this specification for the remainder of the analyses. The estimated spillover effect is 11 more

attended classes. For comparison, this is 20% of the direct treatment effect of the intervention on classes

attended found in Bergman and Chan (2017), and 3.6% of the mean for control students, those who were

not treated nor had their closest peer treated.

We also analyze how the joint attendance between a student and their strongest peer changes during

the post-intervention period. Table 11 shows the results of these analyses. If students derive utility from

a joint absence or a joint attendance with a particular peer, we could observe that joint attendance with

their strongest peer increases if that peer is treated. Students may also reallocate their attendance to be

spend more time with their closest peer and less time with other, less-connected peers. Panel A shows the

effect of having a student’s strongest peer treated on the number of classes attended with that peer. Panel

B shows the effect of having a student’s strongest peer treated on the number of classes attended with all

other students, excluding the strongest peer. The results show the substitution pattern described above:

an increase in joint attendance with their strongest peer and a decrease in attendance with other peers.

This is consistent with the idea that students derive utility from jointly attending (or missing) class with a

particular peer. If spillover effects stemmed entirely from learning about the benefits and costs of attendance

from peers as opposed to the experiential value of attending or missing class jointly, we may not see this
12The size of the network is defined as the number of peers with whom a student skipped classes.
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substitution pattern occur.

Robustness

In the appendix, we consider the robustness of our spillover measure to a stricter definition of coordinated

absences. We generate an indicator that equals one if the strongest peer measure is significant at the 10%

level according to our parametric bootstrap.13 While more than 40% of the sample have joint absences that

pass this test, very few of these students are treated, so the estimates are much less precise than before.

Table A.1 shows the results of spillovers for peers that are treated and coordinate their absences according to

our bootstrap sampling.14 Despite larger standard errors, we find that the point estimates are slightly larger

than before. The effects are statistically significant across all specifications, however because the standard

errors are much larger we cannot reject that the coefficients are larger than those found in our previous

specifications above.

Lastly, if a handful of students miss many classes, this may generate some extreme baseline values for

the Peersi variable, which is the number of individuals with whom a student missed class. We examine the

robustness of our effects by dropping observations whose Peersi value is more than three standard deviations

away from the mean. Table A.2 shows the effects are still significant and very similar in magnitude. Removing

the outliers also creates more consistency in the magnitude of the effects across specifications, which converge

closer to our preferred, more precise estimate that uses school fixed effects.

These results contrast to results using another measure commonly used as a proxy for networks in

clustered-randomized controlled trials. This alternative strategy for measuring spillovers compares the un-

treated students in a treated cluster to another cluster that is completely untreated. This occurs, for instance,

if fractions of a classroom are treated and some classrooms are untreated. This strategy can be effective

in settings where students may change classrooms during the day but they do so with the same group of

students.15 In the United States, many high-school and middle-school students change classrooms and the

student composition of the classrooms may change as well. Students do remain within grades however, and

Bergman and Chan (2017) analyze within-grade spillovers using this design, but find no evidence spillover

effects.

These findings show that our network measures are meaningful not only in the sense that students

coordinate absences, as shown in the previous section, but also because there are meaningful spillover effects

that occur along this network as well.
13We also constructed the same variable for a 5% threshold.
14We used a p-value of 10% for this definition of coordination, but results are consistent when using a lower threshold on 5%

as well, but less precise.
15For instance, Avvisati et al. (2013) use this measure in an experiment aimed to involve parents in their education, and they

find evidence of spillover effects.
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Heterogeneity

We examine how these treatment effects vary by network and demographic characteristics. In general, given

the effect size and precision, it is difficult to detect significant heterogeneous effects. We analyze potential

heterogeneous effects by gender, race, academic performance, suspension status, baseline absences,16 cen-

trality in the network.17, and joint absences18 Table 12 shows the results are too imprecise or small to detect

significant heterogeneity. Qualitatively, the results are larger for Black students, students who were ever

suspended, and students whose strongest peer is central in the network.

Lastly, we follow Athey and Imbens (2016) to identify potential heterogeneity in the spillover effects but

mitigate the threat of “data mining.” Athey and Imbens (2016) use machine learning techniques to identify

groups of students within the data who experience differential spillovers. Table A.3 shows the results for

the spillover effects under heterogeneity. We find that one subgroup, those with a low baseline absence rate,

have a higher spillover effect than others in the sample (significant at the 10% level).

In results not shown, we also analyzed whether there are second-degree spillovers. If peer 1 is a student’s

strongest peer, we define second-degree spillovers as spillovers stemming from whether or not the strongest

peer to peer 1 is treated or not. We find no significant effects.

4.2.1 GPA, Course Failures and Retention

Finally, we also analyze whether spillovers from treated peers extend beyond attendance to other measures

of academic performance: GPA, number of failed courses, and dropout. Table 13 shows the results for these

outcomes.

In terms of GPA, we do not find strong evidence of spillover effects. We do observe a small reduction in

the number of failed courses, but it is not significant at conventional levels (p-value = 0.12). The coefficient

of -0.10 means that students whose closest peer was treated failed 0.08 fewer courses than students whose

closest peer was not treated. We also find a marginally-significant, negative effect on dropout rates. In

general, the effects on these outcomes are suggestive but too imprecise to detect reasonably-sized effects

with much power. However, the directions of these effects are consistent with improved academic behaviors

and outcomes as a result of the spillovers.
16A student is considered to have a high percentage of baseline absences if it is higher than the median for all students with

at least one absence.
17We define a student as “central” if, according to their eigenvector centrality, they are on the top 50% of the distribution.
18We define a binary variable to identify students who share above the median absences (3 absences) with their strongest

peer.
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5 Targeting of treatment and Cost Effectiveness
We show the implications of these spillovers for targeting the intervention and a basic accounting exercise to

measure cost effectiveness. For the latter, the cost of the learning management software, training, and text

messages is $7 per student. Without accounting for spillovers, the cost per additional class attended given

the number of students treated and the intent to treat effects found in Bergman and Chan (2017) is $0.21.

Incorporating the average spillover effect given the number of students with their closest peer treated, the

cost per additional class attended falls by 19% to $0.17.

We next assess the extent which we can leverage the social network information to target the treatment

more cost effectively. This is primarily a conceptual exercise, as this particular treatment has low marginal

cost, but other evidence-based absence interventions cited above (e.g. Check and Connect) cost thousands

of dollars per treated student. We solve for an optimal allocation of the intervention given the direct effects

and spillovers previously estimated, subject to a cost restriction. We represent the budget restriction as a

maximum number of students that can be treated. Given that most policy-relevant interventions are subject

to a budget constraint, we aim to find the maximum impact on class attendance subject to the number of

possible students who can be treated. We consider a second object as well in which we aim minimize the

number of chronically absent students, which could be an appealing objective for schools and policymakers.

We make the following assumptions to simplify this problem:

1. No general equilibrium effects. We assume that the direct and spillover effects do not change with the

share of treated students. This assumption is plausible when small shares of students are treated, but

could be violated when the proportion of treated students increases.

2. Homogeneous effects within types of students. To simplify our model and make it computationally

feasible, we consider heterogeneous effects on a particular set of characteristics (specified below), and

assume the effects and spillovers are constant with respect to other individual and school characteristics

not considered in the optimization model. This assumption may not hold in all settings, and other

relevant characteristics should be included in the analysis depending on the context, increasing the

‘types’ of students considered.

3. Spillover effects only occur through a student’s closest peer. Empirically, we did not find significant

spillover effects beyond a student’s closest tie, so we assume that peers that have weaker ties to a

student have a negligible spillover effect on that student’s attendance.19 Formally, let PTreati be a

vector indicating the treatment statuses of student i’s J peers, where J is ordered by the strength of
19We previously defined ties between peers as the number of joint absences.
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ties to student i such that j = 1 indicates with whom student i skips the most class. We assume that

PTreati = PTreati1

4. No school-boundary considerations. For simplicity, we present the optimization model for the total

population of the 22 schools in our sample, without considering allocation restrictions within schools.

Adding restrictions within schools for student allocations is straightforward and can be implemented

by either solving the same model for each school, or adding a school variable interacted with the type

of student characteristic.

Maximizing the Effect of the Intervention

We begin by setting up the objective function as the maximization of the effect of the intervention on class

attendance, irrespective of the distribution of this effect across students. Let I = {1, 2, .., n} be the set of

students that could potentially be treated, and, as defined by Sviatschi (2017), let A be a n× n matrix for

effects and spillovers. In this case, each off-diagonal cell (i, j), where i 6= j, contains the spillover effect of

student i on student j, and the elements on the diagonal, (i, i), represent the direct effect of the treatment

of student i plus the spillovers of their treated peers onto that same student i.

In this case, the decision variables are zi (i ∈ I) andmij (i, j ∈ I; i 6= j), where zi is a binary allocation

variable that indicates whether the treatment is assigned to student i, and mij is an indicator variable for

treatment assigned to student i but not student j (mij = zi(1 − zj)). We can re-write the previous mij

variable in terms of the allocation variables as following:

2mij ≤ 1 + zi − zj ∀ i, j ∈ I, i 6= j

mij ≥ zi − zj ∀ i, j ∈ I, i 6= j

The objective function we maximize corresponds to the function that optimizes the allocation of the

treatment, given the direct effects and spillovers we estimated, subject to the budget restriction of treating

at most b students.
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max
z,m

∑
i∈I

aiizi +
∑
i∈I

∑
j∈I;i 6=j

aijmij

s.t. 2mij ≤ 1 + zi − zj ∀i, j ∈ I; i 6= j

mij ≥ zi − zj ∀i, j ∈ I; i 6= j∑
i∈I

zi ≤ b

zi ∈ {0, 1} ∀i ∈ I

mij ∈ {0, 1} ∀i, j ∈ I; i 6= j

However, this individual-allocation problem is computationally difficult to solve due to the large number

of students in the sample. To address this issue, we simplify the problem by defining types of students

according to their relevant characteristics. This allows us to capture the heterogeneity of spillovers and

treatment effects, and, at the same time, solve a large integer-programming problem in a reasonable amount

of time.

To illustrate how we implement this simplification, Figure 4 shows a brief example of a reduced network

with 5 students and 3 ‘types’ of students. The directions of the arrows point to each student’s closest peer.

Panel 4a shows the original networks that we have, which is the basis of the previous optimization problem.

To simplify the network, we group students by type, which reduces the number of nodes and edges as shown

in Panels 4b and 4c. Our reduced network helps us solve the allocation problem more easily by focusing on

the relevant characteristics for effects and spillover heterogeneity.

Thus, we can re-write the previous optimization problem as the following:

max
x,y

∑
t∈T

dtntxt +
∑

t∈T p

∑
k∈T p

stntkytk

s.t. ∑
t∈T

ntxt ≤ b∑
k∈T p

ntkytk = ntxt ∀t ∈ T p

xt ∈ [0, 1] ∀t ∈ T

ytk ∈ [0, 1] ∀t ∈ T p, k ∈ T p

where xt defines the proportion of each student type t that is treated, nt is the number of students of type

t, ntk is the number of connections from type t students to type k students (with t, k ∈ T p, where T p ⊂ T

represents the types of students who have a closest peer), and ytk is the proportion of treated students of

type t who have a closest peer of type k. The budget restriction is given by b, which represents the maximum

number of students that can be treated given our budget constraint. Vectors d and s represent the direct
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effects and spillovers for each type of student. Thus, the objective function sums the direct effect of the

treatment in terms of the number of present days with the spillover effects that the treatment has on other

students.

To illustrate this algorithm, we consider the following groups of students: students who do not have

a closest peer (i.e. have not missed class with another student), referred to as NP , and the subgroups

identified by the machine-learning analysis described above: students with baseline absence rates less than

4% (Group 1) and students with baseline absence rates greater than 4% (Group 2). This analysis could

easily be extended to more groups if they are relevant in other contexts. These characteristics define three

different types of students, T = {NP,P1, P2}. In this example, nt represents the number of students of

type t; the subset T p ⊂ T is defined as the types of students who have a close peer (types P1 and P2 in this

example). Each of these types of students connect to other types of students, which reduces the complexity

of the network by clustering individuals according to type. The types of students can be created considering

other relevant characteristics that affect the magnitude of the effects or spillovers, or students whom the

district would otherwise like to target. The same logic above would apply as well.

For our particular example, we define our objective function as the maximization of the overall effect on

our population. Given that all types of students have the same direct effect and that students with lower

baseline absenteeism rates have higher spillover effects, we first treat students in Group 1.

Figure 5a shows the proportional allocation of treatment by types of students (y axis) conditional on the

budget restriction b (x axis). Note that the denominator for these proportions is not the total number of

students, but the number of students of a given type. If the restriction b (i.e. number of students we can

treat) is less than nP 1,P 1, then we only treat a portion of type P1 students connected to type P1 students.

After we treat all of the students of this type, if the budget allows it, we treat type NP students.

Figure 5b shows the total effect of the treatment when targeted, as well as the total effect of the inter-

vention (given our model) for the observed experiment. We can see that when the intervention is targeted to

604 students (the number of students treated in our sample), targeting the intervention increases the overall

effect by an additional 49%. If there is substantial heterogeneity in the effect of the treatment, targeting the

treatment to those who would benefit the most (subject to our overall objective) can substantially improve

the results of an intervention.

This analysis can be further extended to different types of students following the same optimization

algorithm and given other relevant characteristics that might affect the magnitude of the spillovers, direct

effects, or otherwise prioritized students.
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Minimizing the Number of Chronically Absent Students

As described above, many state education-policymakers would like to use the rate of chronic absenteeism

(often measured as the share of students missing 10% or more of their classes) in a school as a measure of

accountability. This creates an incentive for schools and districts to reduce the number of chronically absent

students. To that point, we re-arrange the previous optimization problem to reduce the number of students

who miss more than 10% of classes. Following the same logic as before, we create different types of students

according to their chronic-absentee status, but also, within those students, we identify likely to no longer be

chronically absent if directly treated and those who would change their chronic-absence status by treating

their closest peer, and not the student directly.20 As an example, consider student i who would need to

increase their attendance by q days to no longer be considered chronically absent. Then, if the direct effect

is d ≥ q, then student i would change status if treated. In the same fashion, if the spillover s is so that

s ≥ q, student i would no longer be considered chronically absent if their closest peer is treated. Thus, we

identify seven types of students analogous to the previous types, T = {NP,P1, Ch −NP,P3, P4, P5, P6},

where NP (Ch−NP ) represents students with no closest peers and not chronically absent (are chronically

absent), and P1 represents students that are not chronically absent and have a closest peer. P3 comprises

a small group of students that, even if they were directly treated as well as their closest peer, would most

likely remain chronically absent. Groups P4, P5, and P6 represent chronically absent students that could

change status if they and their closest peer were treated (d+ s > q), if they were directly treated (d > q), or

if they only were affected by a spillover effect (s > q), respectively.

Given that direct effects are larger than spillovers, the chronically absent students belonging to type P4

are farther from the 10% threshold than those who are in category P6.

For the previous case, our optimization problem is:

min
w,z

∑
t=T Ch−NP

nt − ntwt +
∑

t=T C

nt −
∑

k∈T p

ztkntk

s.t. ∑
t∈T

ntwt ≤ b∑
k∈T p

ntkztk = ntwt ∀t ∈ T p

wt ∈ [0, 1] ∀t ∈ T

ztk ∈ [0, 1] ∀t ∈ T p, k ∈ T p

Where wt represents the proportion of type t of students that are treated, and ztk represents the treated
20For simplicity, we assume a constant spillover effect on students, but the extension to include heterogeneity in the effects

can be easily implemented by expanding the “types” of students used in the analysis.
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proportion of type t students who have a type k closest peer. For simplicity, and given that we are only

focused on minimizing the number of chronically absent students, we have defined appropriate subsets of

T , such as TCh−NP = {Ch − NP}, which encompasses chronically absent students with no closest peer,

but that could change their status if treated. The set TC = {P3, P4, P5, P6} represents chronically absent

students who have a closest peer, and, again T p represents all students who have skipped class with someone.

Figure 6a shows the targeted allocation of the treatment in order to minimize the number of chronically

absent students. In this case, we observe that chronically absent students are treated first with priority given

to those who are farther from the threshold. Figure 6b shows the reduction of this type of students according

to the number of students treated. The red line represents the number of students originally treated in the

study, which shows a reduction of 604 chronically absent students from the original 3182 students if the

treatment had been targeted. The latter is a 19% reduction in the number of chronically absent students. In

the experiment with random allocation, the potential reduction was 164 students, which is a 5.2% reduction.

If school districts aim to reduce the number of chronically absent students, targeting the treatment to

those students with lower attendance rates as well as their closest peers could generate fewer chronically

absent students relative to random allocation, under budget constraints.

Overall, our results shows there are potentially substantial gains in the reduction of absenteeism if the

intervention is targeted as described above. However, our results do not take into account the possible

reformation of networks in response to a large-scale allocation of the intervention.

6 Conclusion
In this paper, we demonstrate a straightforward way to estimate meaningful social networks around a

student’s risky behavior, truancy. Our method is based on detailed, student-by-class-by-day attendance

information for every student, which we use to construct a matrix of attendance for every student within a

school.

Our study has several advantages and limitations compared to previous research studying social network

effects on risky behaviors. First, one branch of the literature uses the exogenous assignment of peer groups

to identify peer effects on risky behaviors, as opposed to naturally occurring friendships. In contrast, Card

and Giuliano (2013) use self-reported friendship networks and estimate a structural model to discern peer

effects on risky behaviors. Our paper sits somewhat in between these strategies. We use administrative data

on the risky behavior, truancy, to construct social networks and combine that with a randomly assigned

text-messaging intervention to identify social network effects. This strategy has the advantage of being low

cost because it relies on existing data and it is less subject to bias arising from self-reporting. However, the

disadvantage is that we cannot be certain students are actually coordinating their absences. We overcome
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the latter by simulating random networks under the null hypothesis that students do not coordinate their

absences. We find that our observed measures of joint absences occur more frequently than what would be

expected by chance under our chosen data-generating process. Lastly, we show that a randomly-assigned

attendance intervention exhibits meaningful spillovers along our estimated networks.

We show that these spillover effects are meaningful in terms of their implications for measuring cost

effectiveness and targeting to improve efficiency. By accounting for the spillovers, the intervention is 19%

more cost effective than not accounting for these effects. Moreover, we show that leveraging baseline network

information could help target the intervention and increase its overall effectiveness under different objective

functions. Future research could test this targeting via a randomized controlled trial.
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7 Figures

Figure 1: Social Network for School 1 (pre-intervention period)

Notes: Each circle corresponds to a student, and each interconnecting line or edge corresponds to the number
of absences between two students.
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Figure 2: Distribution of simulated coefficients (100 simulations) and observed coefficient for homophily
analysis

Notes: Distribution obtained from the coefficients of regressions using only strata fixed effects and clustered
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1

2

3

4

5

Figure 3: Social Network for School 1 (pre-intervention period) with quintiles of eigenvector degrees
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(a) 5 students and 3 types (b) Clustering by type of student (c) Reduced social network (by types)

Figure 4: Example of Network by Type
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8 Tables

Table 1: Text messages sent to parents

Alert Frequency Message

Low Class Average Alert monthly “Parent Alert: [Student Name] has a [X]% average
in [Class Name]. For more information, log in to
[domain]”

Absence Alert weekly “Parent Alert: [Student Name] has [X] absence(s)
in [Class Name]. For more information, log in to
[domain]”

Missing Assignment Alert weekly “Parent Alert: [Student Name] has [X] missing as-
signment(s) in [Class Name]. For more information,
log in to [domain]”

Notes: This figure shows the script for each of the three types of alerts sent via text messages: low class average, absence,
and missing assignments.

Table 2: Treated students and sample size

Variable Percentage

Treated students 0.04
Students with closest peer 0.87
Students with closest peer treated 0.03

Observations 14,653

Notes: Closest peer is constructed using the by-class atten-
dance data.
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Table 3: Baseline characteristics for the sample

Variable Mean Observations

Female 0.50 13,641
Black 0.13 13,641
English Language Learner 0.02 12,955
IEP 0.15 12,955
Baseline GPA 2.54 14,653
Ever suspended last year 0.19 14,586
Percent of classes absent pre-intervention 0.14 14,621
Percent of days missed (2014-2015) 0.06 14,653

Notes: Mean characteristics consider only non-missing observations. Demo-
graphic information, IEP status, English Language Learner status and suspen-
sion data are from district administrative data. Attendance and GPA are from
the gradebook data.

Table 4: Observed network features

Characteristic Observed

Average size 664.6
Weighted clustering coefficient

Arithmetic mean 0.41
Geometric mean 0.41

Centrality
Average number of edges 36.40
Eigenvector centrality 0.12

Notes: These statistics are constructed using by class
attendance data.
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Table 5: Homophilly in the observed network

Baseline Variable GPA Female Black Suspended

GPA peer 0.25***
(0.02)

Female peer 0.07***
(0.01)

Black peer 0.13***
(0.02)

Suspended 0.11***
(0.01)

Observations 11,666 10,483 11,873 11,669

Notes: Standard errors in parenthesis. Specification of the models include
fixed effects by strata. Peer represents the person with whom a student
missed the most class and is constructed using by class attendance data.
GPA is from the gradebook data. Demographic information and suspensions
are from school administrative data.
* Significant at 10%; ** significant at 5%; *** significant at 1%

Table 6: Average simulated (random) network features

Characteristic Random

Average size 608.8
Weighted clustering coefficient

Arithmetic mean 0.40
Geometric mean 0.40

Centrality
Average number of edges 38.47
Eigenvector centrality 0.13

Notes: These statistics are constructed using simu-
lated network data, with 100 simulations per schools.
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Table 7: Homophilly in the simulated networks

Baseline Variable GPA Female Black Suspended

GPA peer 0.216***
(0.005)

Female peer -0.008
(0.021)

Black peer 0.187***
(0.035)

Suspended 0.135***
(0.015)

Observations 1,174,492 1,046,513 1,193,405 1,174,731

Notes: Standard errors in parenthesis (clustered by grade-school and student).
Specification of the models include fixed effects by strata and simulation. Regres-
sions are estimated using the simulated network data, with 100 simulations per
schools.
* Significant at 10%; ** significant at 5%; *** significant at 1%

Table 8: Students with coordinated absences for different thresholds

Variable N Total Number of Peer1 Treated

Students in sample (Total) 14,653 433
Students with a closest peer 12,740 433
Students with coordinated absences:
90% threshold 5,777 239
95% threshold 4,145 172
99% threshold 1,821 70

Notes: Results obtained from parametric bootstrap using 100 simulations of random net-
works. Data are from the by-class attendance data in the pre-intervention period.

33



Table 9: Balance between students with a treated peer and without a treated peer

Variable Control Mean Treatment-Control Difference P-value Observations

Female 0.43 0.03 0.316 13,641
Black 0.16 0.00 0.856 13,641
English Language Learner 0.01 -0.00 0.579 12,955
IEP 0.23 -0.03 0.052* 12,955
Baseline GPA 2.18 0.04 0.359 13,641
Ever suspended last year 0.15 0.03 0.281 13,641
Percent of classes absent 0.13 -0.01 0.534 13,609
Percent of days missed 0.05 -0.00 0.911 13,641

Notes: Specification of the models include fixed effects by strata and clustered standard errors. In the regressions,
demographic information, IEP status, English Language Learner status and suspension data are from district administrative
data. Attendance and GPA are from the gradebook data.
* Significant at 10%; ** significant at 5%; *** significant at 1%

Table 10: Effect of treated peer on attendance

Variable Classes present Classes present Classes present

P1Treat 17.44** 15.85* 11.01**
( 8.32) ( 8.10) ( 4.97)

Controls Strata All All
Fixed Effects No No Yes
Observations 12776 12774 12774

Notes: Cluster-robust standard errors shown in parenthesis. The model from
column (1) includes includes fixed effects for strata, an indicator for sample and
treatment, and no additional controls. Column (2) includes fixed effects by strata
and controls by GPA baseline, IEP, ELL, missed days (previous year), gender,
black, and ever suspended, in addition to a sample and treatment indicator. Col-
umn (3) includes all the previous controls plus fixed effects by school. In the
regressions, demographic information, IEP status, English Language Learner sta-
tus and suspension data are from district administrative data. Attendance and
GPA are from the gradebook data.
* Significant at 10%; ** significant at 5%; *** significant at 1%
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Table 11: Effect of treated peer on joint attendance (classes) post-intervention

Classes present with P1
Variable (1) (2) (3)

P1Treat 31.14*** 30.80*** 31.95***
(6.43) (6.31) (6.22)

Controls Strata All All
Fixed Effects No No Yes
Observations 12657 12653 12653

Classes present not with P1
Variable (1) (2) (3)

P1Treat -21.02** -22.38** -25.75***
(9.86) (9.74) (7.55)

Controls Strata All All
Fixed Effects No No Yes
Observations 12185 12184 12184

Notes: Top panel shows effect of having Peer 1 treated
on joint attendance; bottom panel shows effect of having
Peer 1 treated on attendance with other peers that are not
Peer 1. Cluster-robust standard errors shown in parenthesis.
The model from column (1) includes includes fixed effects
for strata, an indicator variable for sample and treatment,
and no added controls. Column (2) includes fixed effects
by strata and controls by GPA baseline, IEP, ELL, missed
days (previous year), gender, black, and ever suspended, in
addition to a sample and treatment indicator. Column (3)
includes all the previous controls plus fixed effects by school.
In the regressions, demographic information, IEP status, En-
glish Language Learner status and suspension data are from
district administrative data. Attendance and GPA are from
the gradebook data.
* Significant at 10%; ** significant at 5%; *** significant at
1%
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Table 12: Heterogeneity of effect of treated peer on attendance

Variable
Classes present

(1)
Classes present

(2)
Classes present

(3)
Classes present

(4)
Classes present

(5)
Classes present

(6)
Classes present

(7)

Peer Treat 11.61 8.46 21.65** 6.45 15.44*** 5.83 27.45***
( 8.01) ( 5.46) ( 9.09) ( 6.50) ( 5.26) ( 7.39) ( 9.28)

Peer Treat × female -1.29
( 11.27)

Peer Treat × black 20.94
( 18.62)

Peer Treat × below med GPA -14.34
( 13.43)

Peer Treat × suspended 23.14
( 15.42)

Peer Treat × below med absences -6.47
( 11.54)

Peer Treat × central peer 11.62
( 9.46)

P1 Treat × > 3 abs together -13.02
( 16.99)

Controls All All All All All All All
Fixed Effects Yes Yes Yes Yes Yes Yes Yes
Observations 12774 12774 12774 12774 12774 12774 12774

Notes: Cluster-robust standard errors shown in parenthesis. All models include fixed effects by strata and controls by GPA baseline, IEP, ELL, missed days (previous year), gender, black,
and ever suspended, as well as fixed effects by schools and a sample and treatment indicator. In the regressions, demographic information, IEP status, English Language Learner status and
suspension data are from district administrative data. Attendance and GPA are from the gradebook data.
* Significant at 10%; ** significant at 5%; *** significant at 1%
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Table 13: Effect of treated peer on other outcomes

GPA

P1Treat -0.02 -0.02 -0.02
( 0.04) ( 0.04) ( 0.03)

Controls Strata All All
Fixed Effects No No Yes
Observations 12146 12146 12146

Courses failed

P1Treat -0.08 -0.09 -0.08
( 0.05) ( 0.06) ( 0.05)

Controls Strata All All
Fixed Effects No No Yes
Observations 12146 12146 12146

Drop out

P1Treat -0.02 -0.02 -0.02*
( 0.01) ( 0.01) ( 0.01)

Controls Strata All All
Fixed Effects No No Yes
Observations 13609 13598 13598

Notes: Clustered standard errors shown in paren-
thesis (). The model from column (1) includes in-
cludes fixed effects for strata, an indicator for sample
and treatment, and no added controls. Column (2)
includes fixed effects by strata and controls by GPA
baseline, IEP, ELL, missed days (previous year),
gender, black, and ever suspended, in addition to
a sample and treatment indicator. Column (3) in-
cludes all the previous controls plus fixed effects by
school. In the regressions, demographic informa-
tion, IEP status, English Language Learner status
and suspension data are from district administrative
data. Attendance and GPA are from the gradebook
data.
* Significant at 10%; ** significant at 5%; *** sig-
nificant at 1%
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Appendix A

Table A.1: Effects of treated peer for peers that coordinate absences according to parametric bootstrap

Variable Days present Days present Days present

P1Treat (CA) 26.03* 24.42* 20.57**
( 13.57) ( 13.47) ( 8.66)

Controls Strata All All
Fixed Effects No No Yes
Observations 12808 12806 12806

Notes: Cluster-robust standard errors shown in parenthesis. The model
from column (1) includes includes fixed effects for strata, an indicator for
sample and treatment, and no additional controls. Column (2) includes
fixed effects by strata and controls by GPA baseline, IEP, ELL, missed days
(previous year), gender, black, and ever suspended, in addition to a sample
and treatment indicator. Column (3) includes all the previous controls plus
fixed effects by school. P T reat(CA) is the interaction between the closest
peer being treated and the students coordinating their absences according to
our parametric bootstrap, using a 90th-percentile threshold with respect to
simulations (described in the text) to define coordination. In the regressions,
demographic information, IEP status, English Language Learner status and
suspension data are from district administrative data. Attendance and GPA
are from the gradebook data.
* Significant at 10%; ** significant at 5%; *** significant at 1%

Table A.2: Effect of treated peer on attendance removing outliers (>3 SD)

Variable Days present Days present Days present

P1Treat 15.25* 14.02* 10.52**
( 8.14) ( 7.89) ( 5.15)

Controls Strata All All
Fixed Effects No No Yes
Observations 12458 12456 12456

Notes: Cluster-robust standard errors shown in parenthesis. Outliers with
joint absences larger than 3 standard deviations from the mean are removed
from the sample. The model from column (1) includes includes fixed effects
for strata, an indicator for sample and treatment, and no added controls.
Column (2) includes fixed effects by strata and controls by GPA baseline,
IEP, ELL, missed days (previous year), gender, black, and ever suspended,
in addition to a sample and treatment indicator. Column (3) includes
all the previous controls plus fixed effects by school. In the regressions,
demographic information, IEP status, English Language Learner status
and suspension data are from district administrative data. Attendance
and GPA are from the gradebook data.
* Significant at 10%; ** significant at 5%; *** significant at 1%
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Table A.3: Direct and spillover effects for optimal allocation problem

Variable Effect

Treatment 48.46**
P1Treat × Fraction of absences < 0.04 40.67*
P1Treat × Fraction of absences ≥ 0.04 × GPA baseline < 2.90 0.05
P1Treat × Fraction of absences ≥ 0.04 × GPA baseline ≥ 2.90 -34.74

Controls All
Notes: Treatment coefficient is obtained from the original experiment (Bergman and Chan
2017). Spillover coefficients are obtained using Athey and Imbens (2016) approach using
the following covariates: GPA baseline, IEP, ELL, missed days (previous year), gender,
black, and ever suspended.
* Significant at 10%; ** significant at 5%; *** significant at 1%
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