
Learning about the Neighborhood∗

Zhenyu Gao† Michael Sockin‡ Wei Xiong§

March 2018

Abstract

We develop a model of neighborhood choice to analyze information aggregation and

learning in housing and commercial real estate markets. In the presence of pervasive

informational frictions, housing prices serve as important signals to households and

commercial developers about the economic strength of a neighborhood. Through this

learning channel, noise from housing market supply and demand shocks can propagate

from housing prices to the local economy, distorting not only migration into the neigh-

borhood, but also supply of commercial facility. Our analysis also provides testable,

nuanced implications on how the magnitudes of these noise effects vary across neigh-

borhoods with different elasticity of housing supply and degree of complementarity of

their industries.

∗We are grateful to Itay Goldstein and seminar participants of 2018 AEA Meetings and Fordham Uni-
versity for helpful comments.
†Chinese University of Hong Kong. Email: gaozhenyu@baf.cuhk.edu.hk.
‡University of Texas, Austin. Email: Michael.Sockin@mccombs.utexas.edu.
§Princeton University and NBER. Email: wxiong@princeton.edu.



Widespread optimism is recognized as an important driver of the U.S. housing cycle in

the 2000s that led to the subsequent financial crisis and the Great Recession, e.g., Cheng,

Raina and Xiong (2014) and Kaplan, Mitman, and Violante (2017). How was the optimism

developed? The literature has emphasized the importance of accounting for home buyers’

expectations, in particular extrapolative expectations, in understanding dramatic housing

boom and bust cycles, e.g., Case and Shiller (2003), Glaeser, Gyourko, and Saiz (2008),

Piazzesi and Schneider (2009), and Glaeser and Nathanson (2017). However, much of the

analyses and discussions are made in the absence of a systematic framework that anchors

home buyers’expectations to their information aggregation and learning process. In this

paper, we help fill this gap by developing a model for analyzing information aggregation

and learning in housing markets, and its spillover to other investment decisions such as

development of commercial real estate.

Specifically, we develop a model to analyze how information frictions affect the learning

and beliefs of households and developers about a neighborhood, which in turn drives both

housing market dynamics and investment decisions in the neighborhood. The model features

a continuum of households in an open neighborhood, which can be viewed as a county.

Each household has a choice of whether to move into the neighborhood by purchasing a

house, and has a Cobb-Douglas utility function over its consumption of its own good and

its aggregate consumption of the goods produced by other households in the neighborhood.

This complementarity in households’consumption motivates each household to learn about

the unobservable economic strength of the neighborhood, which determines the common

productivity of all households and, consequently, their desire to live in the neighborhood.

Each household requires both labor, which it supplies, and commercial facility, to produce its

good according to a Cobb-Douglas production function of these two inputs. Since the price of

commercial facility depends on its marginal product across households in the neighborhood,

competitive commercial developers must also form expectations about the economic strength

of the neighborhood when determining how much commercial facility to develop.

The local housing market provides a useful platform for aggregating private information

about the economic strength of the neighborhood. It is intuitive that the traded housing

price reflects the net effect of demand and supply factors, in a similar spirit of the classic

models of Grossman and Stiglitz (1980) and Hellwig (1980) for information aggregation in

asset markets. Different from the linear equilibrium in these models, our model features
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an important neighborhood selection, through which only households with private signals

above a certain equilibrium cutoff choose to live in the neighborhood. This selection makes

our model inherently non-linear, which posts a great challenge to households’learning and

information aggregation. Nevertheless, we are able to derive the equilibrium in analytical

forms, building on the cutoff equilibrium framework developed by Goldstein, Ozdenoren,

and Yuan (2013) and Albagli, Hellwig, and Tsyvinski (2014, 2015) for asset markets.

There are two key features contributing to the tractability. First, despite the equilibrium

housing price being a non-linear function, its information content about the neighborhood

strength can nevertheless be summarized by a linear suffi cient statistic, which keeps house-

holds’learning from the housing price tractable. Second, despite each household’s housing

demand being non-linear, the Law of Large Numbers allows us to aggregate their housing

demand, and to derive a cutoff equilibrium for the housing market. In our setting, each

household possesses a private signal regarding the neighborhood common productivity. By

aggregating the households’housing demand, the housing price aggregates their private sig-

nals. The presence of unobservable supply shocks, however, prevents the housing price from

perfectly revealing the neighborhood strength and acts as a source of informational noise in

the housing price.

Our model allows us to analyze how informational frictions affect not only the housing

price but also the households’neighborhood, labor and production choices, which, in turn,

determine their demands for housing and commercial facility. The housing price plays a key

role in affecting agents’expectations. Through this learning channel, noise in the housing

price, originated from either demand or supply side of the housing market, may affect the

housing price and the local economy. That is, by pushing up the housing price, a noise factor

may lead to more households moving into the neighborhood, a more pronounced housing

cycle, and, interestingly, greater over-supply of commercial facility and a more pronounced

commercial real estate cycle in the neighborhood.

Our analysis highlights how the magnitudes of these noise effects may vary across different

neighborhoods along two dimensions: 1) elasticity of housing supply in the neighborhood and

2) the degree of households’consumption complementarity. In particular, the noise effect

induced by agents’ learning on the housing price is hump-shaped with respect to housing

supply elasticity, due to the following reason. At one end with housing supply being infinitely

inelastic, the housing price is fully determined by housing demand and thus perfectly reveals
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the strength of the neighborhood; at the other end with housing supply being perfectly

elastic, housing price is fully determined by housing supply and is thus not affected by

household expectations. At both ends, learning does not distort the housing price. As a

result, the noise effect on housing price is strongest at intermediate supply elasticties. This

insight reflects that supply-side characteristics of the local housing market may interfere with

the informativeness of the housing price about housing demand and neighborhood strength,

leading to nuanced empirical predictions.

In particular, our analysis shows that the distortionary effects induced by learning on

population inflow and housing and commercial real estate cycles are most pronounced in

areas with intermediate supply elasticties, rather than areas with the most inelastic housing

supply. This result helps explain why areas like Las Vegas and Pheonix with relatively more

elastic housing supplies had more dramatic housing cycles than New York and San Francisco,

as documented in, for instance, Davidoff (2013), Glaeser (2013), and Nathanson and Zwick

(2017). Our analysis also shows that these distortionary effects induced by learning tend to

increase with households’consumption complementarity because greater complementarity

makes learning about the neighborhood strength a more important part of household deci-

sions. These results give rise to testable hypotheses in the cross-section when sorting areas

by supply elasticity or the degree of complementarity of their industries.

Our analysis also highlights a learning externality in that when making housing choices,

households do not internalize the subsequent effects on the expectations of commercial devel-

opers. To the extent that any overbuilding of offi ces and commercial infrastructure is diffi cult

to reverse in the short or medium-term, the excess supply can have prolonged, overhang ef-

fects on the local economies. Gao, Sockin, and Xiong (2017), for instance, find consistent

evidence that supply overhang in housing markets helped transmit the adverse impact of

housing speculation to the real economy during the recent bust.

Our work features a tractable cutoff equilibrium framework, similar to that in Goldstein,

Ozdenoren, and Yuan (2013) and Albagli, Hellwig, and Tsyvinski (2014, 2015). Goldstein,

Ozdenoren, and Yuan (2013) investigate the feedback to the investment decisions of a single

firm when managers, but not investors, learn from prices. Albagli, Hellwig, and Tsyvinski

(2014, 2015) focus on the role of asymmetry in security payoffs in distorting asset prices and

firm investment incentives when future shareholders learn from prices to determine their

valuations. These models commonly employ risk-neutral agents, normally distributed asset
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fundamentals, and position limits to deliver tractable nonlinear equilibria. In contrast, we

focus on the feedback induced by learning from housing prices to household neighborhood

choice and labor decisions in an equilibrium production setting with consumption comple-

mentarity and goods trading between households, and the spillover to investment decisions

of commercial developers. By showing that the cutoff equilibrium framework can be conve-

niently adopted to analyze learning effects in this complex setting, our model substantially

expands the scope of this framework.

Our model differs from Burnside, Eichenbaum, and Rebelo (2016), which offers a model of

housing market booms and busts based on the epidemic spreading of optimistic or pessimistic

beliefs among home buyers through their social interactions. Our learning-based mechanism

is also different from Nathanson and Zwick (2017), which studies the hoarding of land by

home builders in certain elastic areas as a mechanism to amplify price volatility in the recent

U.S. housing cycle. Glaeser and Nathanson (2017) presents a model of biased learning in

housing markets, building on current buyers not adjusting for the expectations of past buyers,

and instead assuming that past prices reflect only contemporaneous demand. This incorrect

inference gives rise to correlated errors in housing demand forecasts over time, which in turn

generate excess volatility, momentum, and mean-reversion in housing prices. In contrast

to this model, informational frictions in our model anchor on the interaction between the

demand and supply sides, and feed back to both housing price and real outcomes. This

key feature is also different from the amplification to price volatility induced by dispersed

information and short-sale constraints featured in Favara and Song (2014).

By focusing on information aggregation and learning of symmetrically informed house-

holds with dispersed private information, our study differs in emphasis from those that

analyze the presence of information asymmetry between buyers and sellers of homes, such

as Garmaise and Moskowitz (2004) and Kurlat and Stroebel (2014). Neither does our model

emphasize the potential asymmetry between in-town and out-of-town home buyers, which is

shown to be important by Chinco and Mayer (2015).

In addition, there are extensive studies in the housing literature highlighting the roles

played by both demand-side and supply-side factors in driving housing cycles. On the de-

mand side, Himmelberg, Mayer, and Sinai (2005) focus on interest rates, Poterba, Weil,

and Shiller (1991) on tax changes, Mian and Sufi (2009) on credit expansion, and DeFusco,

Nathanson, and Zwick (2017) and Gao, Sockin and Xiong (2017) on investment home pur-
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chases. On the supply side, Glaeser, Gyourko, Saiz (2008) emphasize supply as a key force in

mitigating housing bubbles, Haughwout, Peach, Sporn and Tracy (2012) provide a detailed

account of the housing supply side during the U.S. housing cycle in the 2000s, and Gyourko

(2009b) systematically reviews the literature on housing supply. By introducing informa-

tional frictions, our analysis shows that supply-side and demand-side factors are not mutually

independent. Supply shocks can affect housing and commercial real estate demand by act-

ing as informational noise in learning, and influence households’and commercial developers’

expectations of the strength of the neighborhood.

1 The Model

The model has two periods t ∈ {1, 2} . There are three types of agents in the economy: house-
holds looking to buy homes in a neighborhood or elsewhere, home builders, and commercial

real estate developers. Suppose that the neighborhood is new and all households purchase

houses from home builders in a centralized market at t = 1 after choosing whether to live

in the neighborhood. Households choose their labor supply and demand for commercial fa-

cilities, such as offi ces and warehouses, to complete production, and consume consumption

goods at t = 2. Our intention is to capture the decision of a generation of home owners

to move into a neighborhood, and we view the two periods as representing a long period in

which they live together and share amenities, as well as exchange their goods and services.

1.1 Households

We consider a pool of households, indexed by i ∈ [0, 1], each of which can choose to live in

a neighborhood or elsewhere. We can divide the unit interval into the partition {N ,O} ,
with N ∩ O = ∅ and N ∪ O = [0, 1] . Let Hi = 1 if household i chooses to live in the

neighborhood, i.e., i ∈ N , and Hi = 0 if it chooses to live elsewhere.1 If household i at t = 1

chooses to live in the neighborhood, it must purchase one house at price P. This reflects, in

part, that housing is an indivisible asset and a discrete purchase, consistent with the insights

of Piazzesi and Schneider (2009).

Household i in the neighborhood has a Cobb-Douglas utility function over consumption

of its own good Ci(i) and its consumption of the goods produced by all other households in

1See Van Nieuwerburgh and Weill (2010) for a systematic treatment of moving decisions by households
across neighborhoods.
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the neighborhood {Cj (i)}j∈N :

U
(
{Cj (i)}j∈N ;N

)
=

(
Ci (i)

1− ηc

)1−ηc
(∫
N/iCj (i) dj

ηc

)ηc

. (1)

The parameter ηc ∈ (0, 1) measures the weights of different consumption components in the

utility function. A higher ηc means a stronger complementarity between household i’s con-

sumption of its own good and its consumption of the composite good produced by the other

households in the neighborhood. As we will discuss later, this utility specification implies

that each household cares about the strength of the neighborhood, i.e., the productivities of

other households in the neighborhood. This assumption leads to strategic complementarity

in each household’s housing demand, as motivated by the empirical findings of Ioannides

and Zabel (2003).2

The production function of household i is also Cobb-Douglas eAiKα
i l

1−α
i , where li is the

household’s labor choice and Ai is its productivity. Different from the usual production

function of having capital as an input, we introduce another factor Ki as commercial facility

with a share of α ∈ (0, 1) in the production function. We broadly interpret the commer-

cial facility as offi ce space, infrastructure, or other investment households can use for their

productive activities in the neighborhood. As we describe later, the households buy com-

mercial facility from commercial developers. When households are more productive in the

neighborhood, the marginal productivity of commercial facility is higher, and consequently

commercial develops would be able to sell more commercial facility at higher prices. Intro-

ducing commercial facility allows us to discuss how learning affects price and supply of not

only residential housing but also commercial real estate and other related investment in the

neighborhood.3

Household i’s productivity Ai is comprised of a component A, common to all households

in the neighborhood, and an idiosyncratic component εi:

Ai = A+ εi,

where A ∼ N
(
Ā, τ−1

A

)
and εi ∼ N (0, τ−1

ε ) are both normally distributed and independent

of each other. Furthermore, we assume that
∫
εidΦ (εi) = 0 by the Strong Law of Large

2There are other types of social interactions between households living in a neighborhood, which are
explored, for instance, in Durlauf (2004) and Glaeser, Sacerdote, and Scheinkman (2003).

3One can extend our analysis to consider K to be a public good, in which case its price is the tax a local
government that faces a balanced budget can raise to offset the cost of construction. Our model then has
implications for how housing markets impact local government fiscal policy.
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Numbers. The common productivity, A, represents the strength of the neighborhood, as

a higher A implies a more productive neighborhood. As A determines the households’

aggregate demand for housing, it represents the demand-side fundamental. One can view τ ε

as a measure of household diversity.

As a result of realistic informational frictions, A is not observable to households at t = 1

when they need to make the decision of whether to live in the neighborhood. Instead, each

household observes its own productivity Ai, after examining what it can do if it chooses to

live in the neighborhood. Intuitively, Ai combines the strength of the neighborhood A and

the household’s own attribute εi. Thus, Ai also serves as a noisy private signal about A at

t = 1, as the household cannot fully separate its own attribute from the opportunity provided

by the neighborhood. The parameter τ ε governs both the diversity in the neighborhood,

or dispersion in productivity, and the precision of this private signal. As τ ε → ∞, the
households’signals become infinitely precise and the informational frictions about A vanish.

Households care about the strength of the neighborhood because of complementarity in

their demand for consumption. Consequently, while a household may have a fairly good

understanding of its own productivity when moving into a neighborhood, complementarity

in consumption demand motivates it to pay attention to housing prices to learn about the

average level A for the neighborhood.

We start with each household’s problem at t = 2 and then go backwardly to describe its

problem at t = 1. At t = 2, we assume that A is revealed to all agents. Furthermore, we

assume that each household experiences a disutility for labor l1+ψ
i

1+ψ
, and that a household in

the neighborhood N maximizes its utility at t = 2 by choosing labor li, commercial facility

Ki, and its consumption demand {Cj (i)}j∈N :

Ui = max
{{Cj(i)}j∈N ,li,Ki}

U
(
{Cj (i)}j∈N ;N

)
− l1+ψ

i

1 + ψ
(2)

such that piCi (i) +

∫
N/i

pjCj (i) dj +RKi = pie
AiKα

i l
1−α
i ,

where pi is the price of the good it produces, P is the housing price in the neighborhood,

and R is the unit price of commercial facility. Households behave competitively and take

the prices of their goods as given.

At t = 1, before choosing its consumption, commercial facility usage, and labor supply, a

household needs to decide whether to live in the neighborhood. In addition to their private
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signals, all households and commercial developers observe a noisy public signal Q about the

strength of the neighborhood A:

Q = A+ τ
−1/2
Q εQ,

where εQ ∼ N (0, 1) is independent of all other shocks. As τQ becomes arbitrarily large, A

becomes common knowledge to all agents.

In addition to the utility flow Ui at t = 2 from final consumption, we assume that

households have quasi-linear expected utility at t = 1, and incur a linear utility penalty

equal to the housing price P if they choose to live in the neighborhood and thus have to

buy a house. Given that households have Cobb-Douglas preferences over their consumption,

they are effectively risk-neutral at t = 1, and their utility flow is then the value of their

final consumption bundle less the cost of housing.4 Households make their neighborhood

choice subject to a participation constraint that their expected utility from moving into the

neighborhood E [Ui|Ii] − P must (weakly) exceed a reservation utility, which we normalize

to 0. One can interpret the reservation utility as the expected value of getting a draw of

productivity from another potential neighborhood less the cost of search. Household i makes

its neighborhood choice:

max {E [Ui|Ii]− P, 0} (3)

The choice of neighborhood is made at t = 1 subject to each household’s information set

Ii = {Ai, P,Q} , which includes its private productivity signal Ai, the public signal Q, and
the housing price P.5

1.2 Commercial Developers

In addition to households, there is a continuum of risk-neutral commercial developers that

develop commercial facility at t = 1, and sells them to households for their production at

t = 2. The representative developer cares about R, the price of commercial facility at t = 2,

which depend on the marginal productivity of the facility. This, in turn, depends on the

4For simplicity, our model does not incorporate resale of the housing after t = 2. As a result, we cannot
simply deduct the housing price P as the housing cost from the household’s budget constraint at t = 2.
Instead, we separately treat the housing cost as a utility cost proportional to the housing price at t = 1.
This utility cost is suffi cient to capture the notion that a higher housing price implies a greater housing cost
to the household without explicitly accounting for different components of the housing cost, such as initial
cost of purchase, cost of mortgage loan, and resale value later.

5We do not include the volume of housing transactions in the information set as a result of a realistic
consideration that, in practice, people observe only delayed reports of total housing transactions at highly
aggregated levels, such as national or metropolitan levels.
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strength of the neighborhood, and which households choose to live in the neighborhood. The

housing price in the neighborhood serves as a useful signal to the developer when deciding

how much commercial facilities to develop at t = 1.

To simplify our analysis and distinguish our mechanism from that of Rosen (1979) and

Roback (1982), we decouple the supply of residential housing from the supply of commercial

real estate. We assume that commercial developers can develop K units of commercial

facility by incurring a convex effort cost 1
λ
Kλ, where λ > 1.

We assume that households buy commercial facilities from commercial developers when

production occurs at t = 2, and that commercial developers must forecast this demand

when choosing how much commercial facility K to develop at t = 1. The representative

commercial developer takes the commercial facility price R as given, and chooses K to

maximize its expected profit:

Πc = sup
K
E

[
RK − 1

λ
Kλ

∣∣∣∣ Ic] (4)

where Ic = {P,Q} is the public information set, which includes the housing price P and

the public signal Q. It then follows that the optimal choice of commercial facility sets the

marginal cost, Kλ−1, equal to the marginal benefit, E [R| Ic] :

K = E [R| Ic]
1

λ−1 .

The choice of commercial facility is influenced by the expectation of the commercial developer

about future neighborhood productivity, which is affected by the realization of the housing

price P . Market-clearing in the market for commercial facility at t = 2 requires that∫
N
Kidi = K

∫
N
di, (5)

where
∫
N di represents the population of households that live in the neighborhood.

The commercial developers’decision to develop commercial facility at t = 1 gives another

source of amplification for informational frictions. In addition to distorting neighborhood

choice of potential household entrants, informational frictions in housing markets also distort

local investment in the neighborhood.

1.3 Home Builders

There is a population of home builders, indexed on a continuum [0, 1] , in the neighborhood.

Home builders also face uncertainty about the aggregate strength of the neighborhood and
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the ability of the supply side to respond to the demand. Specifically, builder i builds a single

house subject to a disutility from labor:

e−
1

1+k
ωiSi,

where Si ∈ {0, 1} is the builder’s decision to build and

ωi = ξ + ei

is the builder’s productivity, which is correlated across builders in the neighborhood through

ξ. We assume that ξ = kζ, where k ∈ (0,∞) is a constant parameter, and ζ represents an

unobserved, common shock to building cost in the neighborhood. From the perspective of

households and builders, ζ ∼ N
(
ζ̄ , τ−1

ζ

)
. Then ξ = kζ can be interpreted as a supply shock

with normal distribution ξ ∼ N
(
ξ̄, k2τ−1

ζ

)
with ξ̄ = kζ̄. Furthermore, ei ∼ N (0, τ−1

e ) such

that
∫
eidΦ (ei) = 0 by the Strong Law of Large Numbers.

Builders in the neighborhood at t = 1 maximize their revenue:

Πs (Si) = max
Si

(
P − e−

1
1+k

ωi
)
Si. (6)

Since builders are risk-neutral, it is easy to determine the builders’optimal supply curve:

Si =

{
1 if P ≥ e−

kζ+ei
1+k

0 if P < e−
kζ+ei
1+k

. (7)

The parameter k measures the supply elasticity of the neighborhood. A more elastic neigh-

borhood has a larger supply shock, i.e., the supply shock has greater mean and variance. In

the housing market equilibrium, the supply shock ξ not only affects the supply side but also

the demand side, as it acts as informational noise in the price signal when the households

use the price to learn about the common productivity A.

1.4 Noisy Rational Expectations Cutoff Equilibrium

Our model features a noisy rational expectations cutoff equilibrium, which requires clearing

of the two real estate markets that is consistent with the optimal behavior of households,

home builders and commercial developers:

• Household optimization: each household chooses Hi at t = 1 to solve its maximization

problem in (3), and then chooses
{
{Cj (i)}i∈N , li, Ki

}
at t = 2 to solve its maximization

problem in (2).
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• Commercial developer optimization: the representative developer chooses K at t = 1

to solve its maximization problem in (4).

• Builder optimization: each builder chooses Si at t = 1 to solve his maximization

problem in (6).

• At t = 1, the residential housing market clears:∫ ∞
−∞

Hi (Ai, P,Q) dΦ (εi) =

∫ ∞
−∞

Si (ωi, P,Q) dΦ (ei) ,

where each household’s housing demand Hi (Ai, P,Q) depends on its productivity

Ai, the housing price P, and the public signal Q, and each builder’s housing supply

Si (ωi, P,Q) depends on its productivity ωi, the housing price P, and the public sig-

nal Q. The demand from households and supply from builders are integrated over the

idiosyncratic components of their productivities {εi}i∈[0,1] and {ei}i∈[0,1] , respectively.

• At t = 2, the market for each household’s good clears:

Ci (i) +

∫
N/i

Cj (i) dj = eAiKα
i l

1−α
i , ∀ i ∈ N ,

and the market for commercial facility clears:∫
N
Kidi = K

∫
N
di.

2 Equilibrium

In this section, we analyze a symmetric cutoff equilibrium, in which the choice of each

household to live in the neighborhood is monotonic with respect to its own productivity Ai.

2.1 Choices of Households and Commercial Developers

We first analyze household choices. At t = 2, households need to make their production

and consumption decisions, after the strength of the neighborhood A is revealed to the

public, and home builders and commercial developers have also made their choices at t =

1. Household i has eAiKα
i l

1−α
i units of good i for consumption and trading with other

households. It maximizes its utility function given in (2). The following proposition describes

the household’s consumption, labor, and commercial facility choices. Its marginal utility of

goods consumption also gives the equilibrium goods price.
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Proposition 1 Households i’s optimal goods consumption at t = 2 are

Ci (i) = (1− ηc) (1− α) eAiKα
i l

1−α
i , Cj (i) =

1

Φ
(√

τ ε (A− A∗)
)ηc (1− α) eAjKα

j l
1−α
j ,

and the price of its produced good is

pi = e
1+ψ

(1−α)ψ+(1+αψ)ηc
ηc(A−Ai)+ 1

2
ηc

(
1+ψ

(1−α)ψ+(1+αψ)ηc

)2
τ−1
ε

Φηc

(
1+ψ

(1−α)ψ+(1+αψ)ηc
τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φηc

(√
τ ε (A− A∗)

) .

Its optimal labor and commercial facility choices are

log li =
1

1− α
1 + ψ

(1− α)ψ + (1 + αψ) ηc

ηc
ψ
A+

1− ηc
(1− α)ψ + (1 + αψ) ηc

Ai −
α

1− α
1

ψ
logR

+
1

1− α
ηc
ψ

log
Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
) + l0,

logKi =
1

1− α
1 + ψ

(1− α)ψ + (1 + αψ) ηc

1 + ψ

ψ
ηcA+

(1 + ψ) (1− ηc)
(1− α)ψ + (1 + αψ) ηc

Ai

− 1

1− α
ψ + α

ψ
logR +

1

1− α
1 + ψ

ψ
ηc log

Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
) + h0,

with constants l0 and h0 given in the Appendix. Furthermore, the expected utility of household

i at t = 1 is given by

E

[
U
(
{Cj (i)}j∈N ;N

)
− l1+ψ

i

1 + ψ

∣∣∣∣∣ Ii
]

= (1− α)
ψ

1 + ψ
E
[
pie

AiKα
i l

1−α
i

∣∣ Ii] .
Proposition 1 shows that each household spends a fraction 1−ηc of its wealth (excluding

housing wealth) on consuming its own good Ci (i) and a fraction ηc on goods produced by

its neighbors
∫
N/iCj (i) dj. When ηc = 1/2, the household consumes its own good and the

goods of its neighbors equally. The price of each good is determined by its output relative to

that of the rest of the neighborhood. One household’s good is more valuable when the rest

of the neighborhood produces more, and thus each household needs to take into account the

labor decisions of the other households in its neighborhood when making its own decision.

The proposition demonstrates that the labor chosen by a household is determined by not

only its own productivity eAi but also the aggregate productivities of other households in the

neighborhood. This latter component arises from the complementarity in the household’s

utility function.

Proposition 1 also reveals that the optimal choice of labor for each household is log-linear

with the strength of the neighborhood A, its own productivity Ai, and the logarithm of the
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commercial real estate price logR. The final (nonconstant) term reflects selection, in that

only households with productivity above A∗ enter the neighborhood. Since A is the mean of

the distribution of household productivity, it shows up in this truncation. This proposition

also demonstrates that household i’s optimal choice of commercial facility has a similar

functional form. The household’s optimal labor choice and demand for commercial facility

are both increasing in the strength of the neighborhood A because a higher A represents

improved trading opportunities with its neighbors, while they are both decreasing in the

price of commercial facility logR.

We now discuss each household’s decision on whether to live in the neighborhood at

t = 1 when it still faces uncertainty about A. As a result of Cobb-Douglas utility, the

household is effectively risk-neutral over its aggregate consumption, and its optimal choice

reflects the difference between its expected output in the neighborhood and the cost of living

in the neighborhood, which is the price P to buy a house. Then, household i’s neighborhood

decision is given by

Hi =

{
1 if (1− α) ψ

1+ψ
E
[
pie

AiKα
i l

1−α
i

∣∣ Ii] ≥ P

0 if (1− α) ψ
1+ψ

E
[
pieAiKα

i l
1−α
i

∣∣ Ii] < P
.

This decision rule for neighborhood choice supports our conjecture to search for a cutoff

strategy for each household, in which only households with productivities above a critical

level A∗ enter the neighborhood. This cutoff is eventually solved as a fixed point in the

equilibrium.

Given each household’s equilibrium cutoff A∗ at t = 1 and optimal choices at t = 2,

we can impose market-clearing in the market for commercial facility to arrive at its price

R at t = 2. Commercial developers forecast this price when choosing their optimal stock of

commercial facility to develop at t = 1. These observations are summarized by the following

proposition.

Proposition 2 Given K units of commercial facility developed by commercial developers at

t = 1, the price of commercial facility R at t = 2 takes the log-linear form:

logR =
1 + ψ

ψ + α
A− (1− α)

ψ

ψ + α
logK +

1 + ψ

ψ + α
ηc log

Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
)

+ (1− α)
ψ

ψ + α
log

Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
) + r0,

13



with constant r0 given in the Appendix. The optimal supply of commercial facility by com-

mercial developers at t = 1 is given by

logK =
1

λ− α 1+ψ
ψ+α

logE

e 1+ψ
ψ+α

A

Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
)


1+ψ
ψ+α

ηc

(8)

·

Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
)


ψ(1−α)
ψ+α

∣∣∣∣∣∣∣∣ I
c

+ k0,

with constant k0 given in the Appendix.

Proposition 2 reveals that the commercial real estate price at t = 2 is increasing in the

strength of the neighborhood A with the last two (nonconstant) terms reflecting selection

by households into the neighborhood, and is decreasing in the supply of commercial facility

K. It also demonstrates that the optimal supply of commercial facility reflects expectations

over not only the strength of the neighborhood A, but also the impact of truncation from

the neighborhood choice of households on the expected price of commercial facility at t =

2. The expectation term captures not only the expected productivity from the terms-of-

trade (relative prices of household goods) in the first ratio, but also the dispersion in labor

productivity in the second ratio.

2.2 Perfect-Information Benchmark

With perfect information, all households, home builders, and commercial developers observe

the strength of the neighborhood A when making their respective decisions. It is straight-

forward to show that the optimal choice of commercial facility K simplifies to

logK =

1+ψ
ψ+α

λ− α 1+ψ
ψ+α

A+

1+ψ
ψ+α

λ− α 1+ψ
ψ+α

ηc

log

Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
)


+ (1− α)

ψ

1 + ψ

1+ψ
ψ+α

λ− α 1+ψ
ψ+α

log

Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
)

+ k0,

where k0 is given in the Appendix and
1+ψ
ψ+α

λ−α 1+ψ
ψ+α

> 0 since λ− α 1+ψ
ψ+α

> λ− 1 > 0.

Similar to the labor choice of households from Proposition 1, the supply of commercial

facility is log-linear with respect to the strength of the neighborhoodA, with a correction term
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for the truncation in the household population that occurs because of household selection

into the neighborhood. This truncation term reflects two forces. The first is that a smaller

population implies less demand for a given choice of commercial facility per household, while

the second reflects that the price at which households charge each other for their goods pi is

also affected by this truncation.

We now characterize the neighborhood choice of households and the housing price. House-

holds will sort into the neighborhood according to a cutoff equilibrium determined by the net

benefit of living in the neighborhood, which trades off the opportunity of trading with other

households in the neighborhood with the price of housing. Despite the inherent nonlinearity

of our framework, we derive a tractable, unique cutoffequilibrium that is characterized by the

solution to a fixed-point problem over the endogenous cutoff of entry in the neighborhood,

A∗. This is summarized in the following proposition.

Proposition 3 In the absence of informational frictions, there exists a unique cutoff equilib-

rium, in which the following hold: 1) household i follows a cutoff strategy in its neighborhood

choice such that

Hi =

{
1 if Ai ≥ A∗

0 if Ai < A∗
,

where A∗ (A, ξ) solves equation (21) in the Appendix; 2) the cutoff productivity A∗ (A, ξ) is

monotonically decreasing in ξ and increasing (hump-shaped) in A if ηc < (>) η∗c , where η
∗
c

is given in the Appendix; 3) the population that enters the neighborhood is monotonically

increasing in both A and ξ; 4) the housing price takes the following log-linear form:

logP =
1

1 + k

(√
τ ε
τ e

(A− A∗)− ξ
)

; (9)

and 5) the housing price P, and consequently the utility of the household with the cutoff

productivity A∗, is increasing and convex in A.

Proposition 3 characterizes the cutoff equilibrium in the economy in the absence of in-

formational frictions, and confirms the optimality of a cutoff strategy for households in

their neighborhood choice. Households sort based on their individual productivity into the

neighborhood, with the more productive, which expect more gains from living in the neigh-

borhood, entering and participating in production at t = 2. This determines the supply of

labor at t = 2, and, through this channel, the price of commercial facility at t = 2.
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The proposition also provides comparative statics of the equilibrium cutoff household

A∗ (A, ξ) . This cutoff is decreasing in ξ, since a lower house price causes more households

to enter the neighborhood for a given neighborhood strength A, and consequently a higher

population enters the neighborhood as ξ increases. The cutoff, in contrast, is increasing in

neighborhood strength A, since a higher A implies a higher housing price, and can also raise

the price of commercial facility, depending on the supply response of commercial developers.

This dominates the countervailing force that a higher A also signals more gains from trade

due to complementarity in household consumption. Though the cutoffproductivity increases,

more households ultimately enter the neighborhood because a higher A shifts right (in the

sense of first order stochastic dominance) the distribution of households more than it moves

the cutoff.

Given a cutoffproductivity A∗ (A, ξ) , the housing price P positively loads on the strength

of the neighborhood A, since a higher A implies stronger demand for housing, and loads

negative on the supply shock ξ, reflecting that a discount is needed to ensure that a positive

shift in housing supply is absorbed by a larger household population. As one would expect,

the cutoffA∗ enters negatively into the price since households above the cutoff sort into the

neighborhood. The higher the cutoff, the fewer the households that enter the neighborhood,

and the lower the housing price that is needed to clear the market with the lower housing

demand. Despite its log-linear representation, the housing price is actually a generalized

linear function of
√

τε
τe
A− ξ, since A∗ is an implicit function of A and logP.

As a result of endogenous selection into the neighborhood, the productivity of the neigh-

borhood is determined by which households choose to live there. The aggregate productivity

of the neighborhood AN is given by:

AN = log

∫ ∞
A∗

eAjdΦ (εj) = A+
1

2
τ−1
ε + log Φ

(
τ−1/2
ε +

A− A∗

τ
−1/2
ε

)
.

The first two terms would be what one would expect without neighborhood choice, while

the third term reflects that productivity is truncated by selection. Importantly, since A∗ =

A∗ (A, ξ) , it follows that A∗ depends on the housing price in the neighborhood, introducing

feedback from housing price to real decisions. Similar aggregation results exist for total

income
∫
N e

AjpiK
αl1−αj dΦ (εj) and labor supply

∫
N ljdΦ (εj) as well.
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2.3 Cutoff Equilibrium with Informational Frictions

Having characterized the perfect-information benchmark equilibrium, we now turn to the

equilibrium at t = 1 in the presence of informational frictions. With informational frictions,

households and developers must now forecast the strength of the neighborhood A, and the

realized price of commercial facility R, when choosing whether to live in the neighborhood,

and when deciding the amount of commercial facility to develop. Each household’s type

Ai serves as a private signal about the strength of the neighborhood A. Since types are

positively correlated with this common productivity, higher types also have more optimistic

expectations about A. As such, we anticipate and conjecture that households will again

follow a cutoff strategy when deciding whether to live in the neighborhood.

Due to the cutoffstrategy used by households, the equilibrium housing price is a nonlinear

function of A, which posts a challenge to our derivation of the learning of households and

developers. It turns out that the equilibrium housing price maintains the same function form

as in (9) for the perfect-information case. As a result, the information content of the publicly

observed housing price can be summarized by a suffi cient statistic z (P ) that is linear in A

and the supply shock ξ:

z (P ) = A−
√
τ e
τ ε
ξ. (10)

In our analysis, we shall first conjecture this linear suffi cient statistic and then verify that it

indeed holds in the equilibrium. This conjectured linear statistic helps to ensure tractability

of the equilibrium despite that the equilibrium housing price is highly nonlinear.

By solving for the learning of households and commercial developers based on the con-

jectured suffi cient statistic from the housing price, and by clearing the aggregate housing

demand of the households with the supply from home builders, we derive the housing mar-

ket equilibrium. The following proposition summarizes the housing price, each household’s

housing demand, and the supply of commercial facility in this equilibrium.

Proposition 4 There exists a cutoff equilibrium in the presence of informational frictions,

in which the following hold: 1) the housing price takes the log-linear form:

logP =
1

1 + k

(√
τ ε
τ e

(A− A∗)− ξ
)

=
1

1 + k

√
τ ε
τ e

(z − A∗) ; (11)

2) the posterior of household i after observing housing price P, the public signal Q, and its
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own productivity Ai is Gaussian with the conditional mean Âi and variance τ̂A given by

Âi = τ̂−1
A

(
τAĀ+ τQQ+

τ ε
τ e
τ ξ

(√
τ e
τ ε

(
(1 + k) logP + ξ̄

)
+ A∗

)
+ τ εAi

)
,

τ̂A = τA + τQ +
τ ε
τ e
τ ξ + τ ε,

and the posterior of commercial developers is also Gaussian with the conditional mean Âc

and variance τ̂ cA given by

Âc = τ̂ c−1
A

(
τAĀ+ τQQ+

τ ε
τ e
τ ξ

(√
τ e
τ ε

(
(1 + k) logP + ξ̄

)
+ A∗

))
,

τ̂ cA = τA + τQ +
τ ε
τ e
τ ξ;

3) household i follows the cutoff strategy in its neighborhood choice:

Hi =

{
1 if Ai ≥ A∗

0 if Ai < A∗
,

where A∗ (z,Q) solves equation (23) in the Appendix; 4) the supply of commercial facility

takes the form:

logK =
1

λ− α 1+ψ
ψ+α

logF
(
Âc − A∗, τ̂ cA

)
+

1+ψ
ψ+α

λ− α 1+ψ
ψ+α

A∗ + k0,

where F
(
Âc − A∗, τ̂ cA

)
is given in the Appendix, and logK is increasing in the conditional

belief of commercial developers Âc; and 5) the equilibrium converges to the perfect-information

benchmark in Proposition 3 as τQ ↗∞.

Proposition 4 confirms that in the presence of informational frictions, each household

adopts a cutoff strategy. Informational frictions make the household’s equilibrium cutoff

A∗ (z,Q) a function of z (P ) = 1 + k
√

τe
τε

logP + A∗,which is a summary statistic of the

publicly observed housing price P, and the public signal Q, rather than A and ξ as in the

perfect-information benchmark. This equilibrium cutoff is a key channel for informational

frictions to affect the housing price, as well as commercial developers’decision to develop

commercial facility.

In the presence of informational frictions, the demand-side fundamental A and the supply-

side shock ξ are not directly observed by the public and, as a result, do not directly affect the

housing price and other equilibrium variables. Instead, their equilibrium effects are bundled

together in the housing price P through the specific form in z. Similarly, their effects on
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other equilibrium variables are also bundled through z. Thus, we can examine the impact

of a shock to either A or ξ by analyzing a shock to z. The equilibrium housing price in (11)

directly implies that
∂ logP

∂z
=

1

1 + k

√
τ ε
τ e

(
1− ∂A∗

∂z

)
.

That is, depending on the sign of ∂A
∗

∂z
, the equilibrium cutoffA∗ may amplify or dampen the

housing price effect of the fundamental shock z. Specifically, if ∂A
∗

∂z
< 0, there is an amplifi-

cation effect. This amplification effect makes housing prices more volatile, as highlighted by

Albagli, Hellwig, and Tsyvinski (2015) in their analysis of the cutoff equilibrium in an asset

market. This interesting feature also differentiates our cutoff equilibrium from other type

of non-linear equilibrium with asymmetric information, such as the log-linear equilibrium

developed by Sockin and Xiong (2015) to analyze commodity markets. In their equilibrium,

prices become less sensitive to their analogue of z in the presence of informational frictions.

This occurs because households, on aggregate, underreact to the fundamental shock in their

private signals because of noise.

In the perfect-information benchmark, the public signal Q has no impact on neither the

equilibrium cutoffA∗ nor the housing price because both the demand-side fundamental /A and

the supply-side shock ξ are publicly observable. In the presence of informational frictions,

Q affects the equilibrium as it affects agents’expectations. The equilibrium housing price in

(11) shows that
∂ logP

∂Q
= − 1

1 + k

√
τ ε
τ e

∂A∗

∂Q
.

In other wrods, by affecting the households’expectations of A and subsequently their cutoff

productivity to enter the neighborhood, the noise in the public signalQ affacts the population

in the neighnorhood and the equilibrium housing price logP . Subsequently, Q also affects

the price of commercial facility, as well as commercial developers’ optimal choice of how

much commercial facility to develop.

The complementarity between households reinforces the effects of informational frictions.

Without complementarity, a stronger neighborhood, i.e., higher A, is bad news for house-

holds, because a higher A raises not only the housing price, but also the price of commercial

facility. With complementarity, however, a stronger neighborhood could be good news for

households, because it means that other households in the neighborhood are more productive,

and thus a better opportunity for trade. In the presence of informational frictions, comple-

mentarity gives each household a stronger incentive to learn about A and thus strengthens
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the potential distortionary effects from such learning.

Supply elasticity also plays an important and nuanced role in the distortionary effects of

learning. It is instructive to consider two polar cases for supply elasticity. When supply is

infinitely inelastic (i.e., k → 0), housing prices are only determined by the strength of the

neighborhood A, and prices are fully revealing to households and commercial developers.

As a result, there is not any distortion from the learning when supply is infinitely inelas-

tic. On the other hand, when supply is infinitely elastic (i.e., k → ∞), prices converge to
logP = −ζ, which is driven only by the supply shock.6 In this case, prices contain no infor-
mation about demand, and therefore no information about the strength of the neighborhood.

Consequently, the learning from housing price and the potential distortion of such learning

both dissipate as supply elasticity approaches infinity. These two polar cases demonstrate

that the distortion caused by learning on housing price has a humped shape with respect to

supply elasticity.

3 Model Implications

We now investigate several implications of our model regarding how informational frictions

affect the dynamics of housing and commercial real estate markets. We provide comparative

statistics to illustrate how several key aspects of the neighborhood and its real estate markets

vary across two dimensions: 1) supply elasticity k, and 2) the degree of consumption comple-

mentarity in household utility ηc. Supply elasticity is a natural candidate for classifying the

cross-section of housing markets. It has been emphasized in the literature, in work including

Malpezzi and Wachter (2005) and Glaeser, Gyourko, and Saiz (2008), to help explain certain

features of housing cycles, such as housing price volatility. Similarly, the degree of comple-

mentarity captures the agglomeration and spillover effects that lead to coordination among

firms and industries that locate in one area, such as the financial industry in New York City,

the technology sector in San Francisco, the Research Triangle in North Carolina, and the oil

industry in Houston. As emphasized, for instance, by Dougal, Parsons, and Titman (2015),

employers and/or workers can benefit from locating in close proximity to competitors, either

from knowledge spillovers or from the implicit insurance in labor markets.

While we have analytical expressions for most equilibrium outcomes, the key equilibrium

6It is straightforward to see from equation (23) that A∗ remains finite a.s. as k →∞, allowing us to take
the limit.
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cutoffA∗ needs to be numerically solved from the fixed-point condition in equation (23). We

therefore analyze the equilibrium properties of A∗ and other variables through a series of

numerical illustrations. The benchmark parameters we choose for the numerical examples

are provided in Table 1. For the share of commercial facility in households’production, we

treat it as being similar to capital, and select the typical estimate of α = 0.33. For the Frisch

elasticity of labor supply, we choose ψ = 2.5, which is within the typical range found in the

literature. We set τ ζ to be four-fold larger than τA to ensure that with perfect information,

the log housing price variance is monotonically declining in supply elasticity, as is observed

empirically. We set λ = 1.1 to have commercial facility be in elastic supply, and avoid

having convexity in its production function. We choose for the neighborhood fundamentals

A = ζ = −0.5, though the qualitative patterns we highlight hold more generically for a wide

range of shock values. In addition, we set the public signal Q to 0.

τA 0.50 τ ζ 2.00 τ ε 0.20
τQ 1.00 ηc 0.50 α 0.33
ψ 2.50 k 0.50 λ 1.10
A 0 ζ 0

Table 1: Benchmark Parameters for Numerical Illustrations

3.1 Equilibrium Cutoff

Our model features an equilibrium cutoff productivity for the marginal household to enter

the neighborhood, which hinges on the households’learning process about the neighborhood.

This, in turn, determines the population flow into the neighborhood, and the dynamics

of both housing and commercial real estate markets. As a consequence, the equilibrium

productivity cutoffserves as a channel for informational frictions to impact the local economy.

Figure 1 illustrates how the cutoff responds to random shocks. We focus on two types of

shocks, a noise shock Q and a fundamental shock z. The first row considers a random shock

to the public signal Q, by computing the partial derivative of A∗ with respect to Q across

different values of supply elasticity k in the left panel and degree of complementarity ηc in the

right panel. Q has no impact on the equilibrium in the perfect-information benchmark. In

the presence of informational frictions, however, the shock affects households’expectations

about A, as they use the public signal to infer the value of A. By making households more

optimistic about A, a positive shock to Q raises each household’s utility, and this lowers the
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Figure 1: The Response of the equilibrium cutoff productivity to a noise shock Q (the first row)
and a fundamental shock z (the second row) across housing supply elasticity (left) and degree of
complementarity (right).

cutoff productivity of the marginal household that enters the neighborhood. This induces a

greater population flow to the neighborhood.

Interestingly, this learning effect is stronger when supply elasticity is greater (the upper-

left panel of Figure 1), or when the households’consumption elasticity is greater (the upper-

right panel of Figure 1). The former result results from the fact that greater supply elasticity

makes the housing price more dependent on supply-side factors, and therefore less informa-

tive of the neighborhood productivity. Consequently, households place a greater weight on

the public signal Q in their learning about A, and this amplifies the effect of the noise

shock to Q. The latter result is driven by the greater role that household learning plays as

consumption complementarity increases, as a higher complementarity makes each household

more concerned about the neighborhood’s productivity.

The second row of Figure 1 considers a fundamental shock to z. As we discussed earlier,

this shock can be a demand-side shock to A or a supply-side shock to ξ, which are bundled

together in z according to (10). Interestingly, the left panel shows that ∂A∗

∂z
has a U-shape

with respect to supply elasticity and is particularly negative when supply elasticity is in

an intermediate value around 0.5. It turns positive when supply elasticity rises roughly
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above 1.8. This U-shape originates from the monotonic learning effect of the housing price.

As households use housing price as a key source of information in their learning of the

neighborhood strength A and this learning effect has a particularly strong effect when supply

elasticity has an intermediate value, making the equilibrium cutoff particularly sensitive

to the z shock. The negative value of the effect implies that in response to the better

neighborhood fundamental, households reduce their cutoff, resulting in more households in

the neighborhood, despite the higher housing price. The right panel further shows that
∂A∗

∂z
decreases monotonically with the degree of complementarity. Specifically, ∂A

∗

∂z
is positive

when complementarity is low and becomes more negative as complementarity rises. This

pattern confirms our earlier discussion that the learning effect from housing price strengthens

with complementarity.

Relating the model to empirical predictions, the noise shock to Q represents a non-

fundamental shift in housing demand. One may broadly interpret this non-fundamental

demand shock, in practice, as originating from different sources. For instance, it can be noise

in public information, as featured in Morris and Shin (2002) and Hellwig (2005), housing

market optimism, as in Ferreira and Gyourko (2011), Gao, Sockin and Xiong (2017), and

Kaplan, Mitman, and Violante (2017), or credit expansion from the banking sector, as in

Mian and Sufi(2009). Our analysis illustrates a mechanism for these non-fundamental shocks

to induce greater population flow into the neighborhood through the households’learning

channel. One may be able to test this effect across different regions with properly designed

measures of these non-fundamental shocks. Housing supply elasticity can be measured,

for instance, as in Saiz (2010), while complementarity in an area can be measured by its

industry complementarity, as suggested by Dougal, Parsons, and Titman (2015). One can

consequently directly test the cross-sectional implication of our model that non-fundamental

shocks, such as the noise shock, have a greater impact in inducing stronger population inflow

to areas with greater industry complementarity and intermediate supply elasticities.

3.2 Housing Cycle

We now examine the reaction of the housing market to the noise shock Q and a fundamental

shock. For the sake of clarity, we explicitly consider a negative shock to housing supply,

rather than the generic z shock, which can be either a demand-side shock to A or a supply

shock.
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Figure 2: Housing responses to a noise shock to the public signal Q across supply elasticity (left)
and degree of complementarity (right).

Figure 2 illustrates the impacts of the noise shock to Q on the housing price and housing

stock in the neighborhood, by computing their partial derivatives with respect to Q across

different values of supply elasticity k in the two left panels, and across different values of the

degree of consumption complementarity ηc in the two right panels. As we discussed earlier,

in the absence of informational frictions, this shock has no effect on the housing market. In

the presence of informational frictions, the noise shock raises both housing price and housing

stock relative to the perfect-information benchmark, because the shock boosts the agents’

expectations about the neighborhood’s productivity. Interestingly, the upper-left panel shows

that this effect on housing price is hump-shaped with respect to supply elasticity, and peaks

at an intermediate value. This results from the non-monotonicity of the distortionary effect

of learning that we discussed earlier. When housing supply is infinitely inelastic, the noise

shock has a muted effect on households’expectations because the price is fully revealing.

When housing supply is infinitely elastic, the housing price is fully determined by supply

shock and is immune from the households’learning of A. As a result, the price distortion

caused by household learning is strongest when supply elasticity is in an intermediate range.

The upper-right panel of Figure 2 shows that the effect of the noise shock on the housing
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Figure 3: Housing responses to a negative supply shock across supply elasticity (left) and degree
of complementarity (right).

price is increasing with the complementarity. As complementarity rises, each household cares

more about trading goods with other households. This makes households’ expectations

about the neighborhood’s productivity a greater determinant of the equilibrium housing

price, since the housing price is equal to the utility of the marginal household with the cutoff

productivity. This, in turn, causes the noise shock to have a greater effect on the housing price

as complementarity increases. That the growth in housing stock is hump-shaped reflects that

near perfect complementarity, almost all households are already entering the neighborhood

and the marginal effect of the increase in equilibrium cutoff on neighborhood population

diminishes.

We now consider a negative shock to the building cost shock ζ. Figure 3 displays the re-

sponses of the housing price and housing stock to this shock across different values of supply

elasticity k in the two left panels, and across different degrees of consumption complemen-

tarity ηc in the two right panels. In the perfect-information benchmark, the housing price

increases with a negative supply shock, and the price increase rises with supply elasticity.

In contrast, the housing stock falls with the negative supply shock since the higher housing

price discourages more households from entering, and the supply drop is greater when supply

elasticity is larger.
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In the presence of informational frictions, the negative supply shock is, in part, interpreted

by households as a positive demand shock when they observe a higher housing price. This

learning effect, in turn, pushes up the housing price and housing stock, relative to the perfect-

information benchmark, as shown in the left panels of Figure 3. Across supply elasticity,

these distortions are hump-shaped because the impact of learning from the housing price

is most pronounced at intermediate supply elasticities, and, consequently, the response of

the housing price and housing stock also peak at an intermediate range. As consumption

complementarity increases, the learning effect from the negative supply shock is amplified,

since households put more weight on the neighborhood’s strength when determining whether

to enter the neighborhood. This is shown in the upper-right panel of Figure 3. Similar to the

noise demand shock, the impact on the housing stock is hump-shaped, since most households

are already entering the neighborhood as ηc nears perfect complementarity.

While our model is static and cannot deliver a boom-and-bust housing cycle across peri-

ods, one may intuitively interpret the deviation of housing price induced by the noise demand

shock and the supply shock from its value in the perfect-information benchmark in Figures

2 and 3 as a non-fundamental driven price boom, which would eventually reverse. Then,

we have a testable implication for housing cycle– non-fundamental shocks, such as the noise

demand shock and the supply shock, can lead to a more pronounced housing cycle in areas

with greater industry complementarity and intermediate housing supply elasticities. This

implication helps to explain why during the recent U.S. housing cycle, Las Vegas and Phoenix

experienced more pronounced housing price boom and bust cycles than San Francisco and

New York, which have more inelastic housing supply.

3.3 Commercial Real Estate Cycle

By affecting agents’expectations, informational frictions not only distort the housing price

and housing stock but also other investment decisions related to the neighborhood. The

commercial real estate market featured in our model allows us to analyze such effects. We

first analyze in Figure 4 how the price and stock of commercial facilities react to the noise

shock Q across different values of supply elasticity k in the three left panels, and across

the degree of consumption complementarity ηc in the three right panels. While households

acquire commercial facility only at t = 2 at the price R, we can also compute the shadow

price of commercial facility at t = 1 as the commercial developers’marginal development cost
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Figure 4: Neighborhood responses to a noise shock to the public signal Q across supply elasticity
(left) and degree of complementarity (right).

Kλ−1 when they develop the facility. This shadow price reflects the developers’expectations

about the price that will prevail at t = 2. We depict this shadow price of the commercial

facility at t = 1 in the first row of Figure 4, its market price R at t = 2 in the second row,

and the stock of commercial facility K built by the developers at t = 1 in the third row.

As we discussed before, in the perfect-information benchmark, the noise shock Q has

no impact on agents’expectations, and consequently no impact on the price and stock of

commercial facility. In the presence of informational frictions, however, the noise shock

boosts agents’expectations about A. As a result, it pushes up both the shadow price and

supply of commercial facility at t = 1, relative to the perfect-information benchmark. When

the households come to buy the commercial facility at t = 2, the market price is determined

by their realized productivity, and thus falls to reflect that A had been overestimated at

t = 1. As a result, the noise shock causes a boom in the market for the commercial facility

at t = 1, in terms of both price and supply, and a bust at t = 2 when the price reverses.

Interestingly, the magnitude of this boom-and-bust cycle, measured by the deviation of

the price response at either t = 1 or t = 2 from the perfect-information benchmark, is

monotonically increasing with supply elasticity. As we discussed before, as supply elasticity

rises, the housing price is driven more by supply side factors, and is thus less informative
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Figure 5: Neighborhood responses to a negative supply shock across supply elasticity (left) and
degree of complementarity (right).

about the neighborhood productivity A. Consequently, the public signal Q gets a greater

weight in the agents’learning process about A, giving the noise shock to Q a larger impact

on the market for commercial facility. With respect to consumption complementarity, the

demand shock has the largest impact on commercial real estate at lower levels of comple-

mentarity. This occurs because the price of commercial facilities at t = 2 is less sensitive

to the neighborhood strength A when there is more coordination among households in their

production decisions, and because the average marginal product of commercial facility is

lower the more households that enter the neighborhood. In contrast to the housing market,

the largest boom and bust in the shadow price and the subsequent market price R occurs at

low levels of complementarity.

We now analyze how the commercial real estate market reacts to a negative supply shock

ζ to the housing market in Figure 5, which shows the responses of the commercial facility’s

shadow price at t = 1 in the first row, its market price at t = 2 in the second row, and its

supply at t = 1 in the third row, across housing supply elasticity in the three left panels and

across households’consumption complementarity in the three right panels.

In the perfect-information benchmark, the negative supply shock only impacts the hous-

ing price, and, through this channel, the cutoff productivity of the households that enter the
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neighborhood. As is apparent, this direct effect has only a modest impact on the commercial

real estate market. In the presence of informational frictions, its impact on the commercial

real estate market is substantially larger. This occurs because the negative supply shock is

partially interpreted by the agents as a positive shock to the neighborhood productivity when

they learn from the housing price about the neighborhood productivity A. Consequently,

it distorts the agents’expectations about A upwardly, leading to overoptimism about the

local economy. This results in both a higher shadow price and more supply of commercial

facilities at t = 1, and a greater price reversal at t = 2. Interestingly, the magnitudes of

these effects are all hump-shaped with respect to housing supply elasticity, as a result of the

hump-shaped distortion to agents’expectations caused by their learning from the housing

price. Similar to the noise demand shock, the negative supply shock distorts the commercial

real estate market by leading to overoptimism about A, and it is most pronounced at low

levels of consumption complementarity.

Our analysis shows that non-fundamental shocks to the housing market lead to not only

a housing cycle, but also to a boom and bust in the market for commercial facilities. This is

consistent with Gyourko (2009a), who highlights that the recent U.S. housing cycle was ac-

companied by a similar boom and bust in commercial real estate. Though also characterized

by a dramatic run-up and collapse in prices, this second boom and bust, and its relation to

local economic outcomes, have received less attention. It is diffi cult to simply attribute this

commercial real estate boom to the subprime credit expansion that had played an important

role for the housing boom, as the credit expansion was mainly targeting households. One

may attribute it to widespread optimism, and our model provides a coherent explanation

for the shared optimism in both housing and commercial real estate markets. Specifically,

our model shows that non-fundamental shocks may lead to joint cycles in housing and com-

mercial real estate markets, especially in areas with intermediate values of housing supply

elasticity.

4 Conclusion

In this paper, we introduce a model of information aggregation in housing and commercial

real estate markets, and examine its implications for not only housing prices, but also eco-

nomic outcomes such as neighborhood choice and the supply of commercial real estate. We

provide empirical predictions for the expected response of neighborhoods to noise from both
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demand and supply sides across supply elasticity and the degree of consumption comple-

mentarity, and offer a rationale for the synchronized boom and bust cycles observed in the

U.S. housing and commercial real estate markets during the 2000s.
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Appendix Proofs of Propositions

A.1 Proof of Proposition 1

The first order conditions of household i’s optimization problem in (2) respect to Ci (i) and

Cj (i) at an interior point are:

Ci (i) :
1− ηc
Ci (i)

U
(
{Ck (i)}k∈N ;N

)
= θipi, (12)

Cj (i) :
ηc∫

N/iCjdj
U
(
{Ck (i)}k∈N ;N

)
= θipj, (13)
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where θi is the Lagrange multiplier for the budget constraint. Rewriting (13) as

ηcCj∫
N/iCjdj

U
(
{Ck (i)}k∈N ;N

)
= θipjCj

and integrating over N , we arrive at

ηcU
(
{Ck (i)}k∈N ;N

)
= θi

∫
N/i

pjCjdj.

Dividing equations (12) by this expression leads to ηc
1−ηc

=
∫
N/i pjCj(i)dj

piCi(i)
, which in a symmetric

equilibrium implies pjCj (i) = 1
Φ(
√
τε(A−A∗))

ηc
1−ηc

piCi (i) . By substituting this equation back

to the household’s budget constraint in (2), we obtain:

Ci (i) = (1− ηc) (1− α) eAiKα
i l

1−α
i .

The market-clearing for the household’s good requires thatCi (i)+
∫
N/iCi (j) dj = (1− α) eAiKα

i l
1−α
i ,

which implies that Ci (j) = 1
Φ(
√
τε(A−A∗))ηc (1− α) eAiKα

i l
1−α
i .

The first order condition in equation (12) also gives the price of the good produced by

household i. Since the household’s budget constraint in (2) is entirely in nominal terms, the

price system is only identified up to θi, the Lagrange multiplier. We therefore normalize θi
to 1. It follows that:

pi =
1− ηc
Ci (i)

U
(
{Cj (i)}j∈N ;N

)
=
(
eAil1−αi Kα

i

)−ηc ( 1

Φ
(√

τ ε (A− A∗)
) ∫
N/i

eAj l1−αj Kα
j dj

)ηc

.

(14)

Furthermore, given equation (1), it follows since Ci (i) = (1− ηc) (1− α) eAiKα
i l

1−α
i and

Cj (i) = 1
Φ(
√
τε(A−A∗))ηc (1− α) eAjKα

j l
1−α
j that:

U
(
{Ck (i)}k∈N ;N

)
= (1− α)

(
eAil1−αi Kα

i

)1−ηc

(
1

Φ
(√

τ ε (A− A∗)
) ∫
N/i

eAjKα
j l

1−α
j dj

)ηc

= (1− α) pie
AiKα

i l
1−α
i ,

from substituting with the household’s budget constraint at t = 2.

The first-order conditions for household i’s choice of li at an interior point is:

lψi = (1− α) θipie
Ai

(
Ki

li

)α
. (15)

from equation (12). Substituting θi = 1 and pi with equation (14), it follows that:

log li =
1

ψ + α + (1− α) ηc
log(1−α)+

1

ψ + α + (1− α) ηc
log

((
eAiKα

i

)(1−ηc)
( ∫

N/i e
AjKα

j l
1−α
j dj

Φ
(√

τ ε (A− A∗)
))ηc

)
.

(16)
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The optimal labor choice of household i, consequently, represents a fixed point problem over

the optimal labor strategies of other households in the neighborhood.

Noting that Ki =
(
αpie

Ai l1−αi

R

) 1
1−α

, we can substitute in the price function pi to arrive at:

logKi =
1

1− (1− ηc)α
log

((
eAil1−αi

)1−ηc

(
1

Φ
(√

τ ε (A− A∗)
) ∫
N/i

eAj l1−αj Kα
j dj

)ηc
)

− 1

1− (1− ηc)α
logR +

1

1− (1− ηc)α
logα, (17)

which is a fixed-point problem for the optimal choice of commercial facility.

Given the optimal labor supply of household i li and optimal demand for commercial

land Ki jointly satisfy the functional fixed-point equations (16) and (17), let us conjecture

for i for which Ai ≥ A∗, so that i ∈ N is in the neighborhood, that:

log li = l0 + lAA+ lsAi + lR logR + lΦ log
Φ
(

(1 + (αhs + (1− α) ls)) τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
) ,

where R is the rental rate of commercial land, and that capital satisfies:

logKi = h0 + hAA+ hsAi + hR logR + hΦ log
Φ
(

(1 + (αhs + (1− α) ls)) τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
) ,

Substituting these conjectures into the fixed-point recursion for labor, equation (16), we

arrive, by the method of undetermined coeffi cients, at the coeffi cient restrictions:

cons : (ψ + α) l0 = log (1− α) + αh0 +
1

2
ηc (1 + αhs + (1− α) ls)

2 τ−1
ε ,

A : (ψ + α) lA = αhA + (1 + αhs + (1− α) ls) ηc,

Ai : (ψ + α + (1− α) ηc) ls = (1− ηc) (1 + αhs) ,

logR : (ψ + α) lR = αhR,

Φ : (ψ + α) lΦ = ηc + αhΦ.

Similarly, substituting these conjectures into the fixed-point recursion for commercial land,

equation (17), we arrive at the coeffi cient restrictions:

cons : (1− α)h0 = (1− α) l0 +
1

2
ηc (1 + αhs + (1− α) ls)

2 τ−1
ε + logα,

A : (1− α)hA = (1− α) lA + ηc (1 + αhs + (1− α) ls) ,

Ai : (1− (1− η)α)hs = (1− ηc) (1 + (1− α) ls) ,

logR : (1− α)hR = (1− α) lR − 1,

Φ : (1− α)hΦ = (1− α) lΦ + ηc.
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We consequently have ten linear equations and ten coeffi cients, from which follows that:

l0 =
1

2

1

1− α
ηc
ψ

(
1 + ψ

(1− α)ψ + (1 + αψ) ηc

)2

τ−1
ε +

α

1− α
1

ψ
logα +

1

ψ
log (1− α) ,

lA =
1

1− α
1 + ψ

(1− α)ψ + (1 + αψ) ηc

ηc
ψ
,

ls =
1− ηc

(1− α)ψ + (1 + αψ) ηc
,

lR = − α

1− α
1

ψ
,

lΦ =
1

1− α
ηc
ψ
,

and

h0 =
1

2

1

1− α
1 + ψ

ψ
ηc

(
1 + ψ

(1− α)ψ + (1 + αψ) ηc

)2

τ−1
ε +

1

1− α
ψ + α

ψ
logα +

1

ψ
log (1− α) ,

hA =
1

1− α
1 + ψ

(1− α)ψ + (1 + αψ) ηc

1 + ψ

ψ
ηc,

hs =
(1 + ψ) (1− ηc)

(1− α)ψ + (1 + αψ) ηc
,

hR = − 1

1− α
ψ + α

ψ
,

hΦ =
1

1− α
1 + ψ

ψ
ηc,

which confirms the conjectures.

Consequently, we find that, for Ai ≥ A∗ :

log li =
1

2

1

1− α
ηc
ψ

(
1 + ψ

(1− α)ψ + (1 + αψ) ηc

)2

τ−1
ε +

α

1− α
1

ψ
logα +

1

ψ
log (1− α)

+
1− ηc

(1− α)ψ + (1 + αψ) ηc
Ai +

1

1− α
1 + ψ

(1− α)ψ + (1 + αψ) ηc

ηc
ψ
A

− α

1− α
1

ψ
logR +

1

1− α
ηc
ψ

log
Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
) ,

and:

logKi =
1

2

1

1− α
1 + ψ

ψ
ηc

(
1 + ψ

(1− α)ψ + (1 + αψ) ηc

)2

τ−1
ε +

1

1− α
ψ + α

ψ
logα +

1

ψ
log (1− α)

+
(1 + ψ) (1− ηc)

(1− α)ψ + (1 + αψ) ηc
Ai +

1

1− α
1 + ψ

(1− α)ψ + (1 + αψ) ηc

1 + ψ

ψ
ηcA

− 1

1− α
ψ + α

ψ
logR +

1

1− α
1 + ψ

ψ
ηc log

Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
) .
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Substituting this functional form for the labor supply and commercial labor demand of

household i into equation (14), the price of household i′s good then reduces to:

pi = e
1+ψ

(1−α)ψ+(1+αψ)ηc
ηc(A−Ai)+ 1

2
ηc

(
1+ψ

(1−α)ψ+(1+αψ)ηc

)2
τ−1
ε

Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
)

ηc

.

Finally, that U
(
{Ck (i)}k∈N ;N

)
= (1− α) pie

AiKα
i l

1−α
i , implies:

E

[
U
(
{Cj (i)}j∈N ;N

)
− l1+ψ

i

1 + ψ

∣∣∣∣∣ Ii
]

= (1− α)
ψ

1 + ψ
E
[
pie

AiKα
i l

1−α
i

∣∣ Ii] .
A.2 Proof of Proposition 2

Substituting the optimal demand for commercial land Ki into the market-clearing condition

for the commercial facility in (5) reveals that the price R is given by:

logR =
1 + ψ

ψ + α
A− (1− α)

ψ

ψ + α
logK +

1 + ψ

ψ + α
ηc log

Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
)

+ (1− α)
ψ

ψ + α
log

Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
) + r0,

where K is the total amount of commercial facility developed by commercial developers at

t = 1, and

r0 = logα+
1− α
ψ + α

log (1− α)+
1

2

(
1 + ψ

ψ + α
ηc + (1− α)

ψ

ψ + α
(1− ηc)

2

)(
1 + ψ

(1− α)ψ + (1 + αψ) ηc

)2

τ−1
ε .

Since market-clearing in the market for commercial facility imposes that K
∫
i∈N di =∫

i∈N Kidi, it follows from equation (4) that the optimal choice of how much commercial

facility commercial developers create is given by equation (8) with constant k0 is given by

k0 =
logα + 1−α

ψ+α
log (1− α) + 1

2

(
1+ψ
ψ+α

ηc + (1− α) ψ
ψ+α

(1− ηc)
2
)(

1+ψ
(1−α)ψ+(1+αψ)ηc

)2

τ−1
ε

λ− α 1+ψ
ψ+α

.

A.3 Proof of Proposition 3

When all households and builders observe A directly, there are no longer information frictions

in the economy. By substituting for prices, the optimal labor and commercial facility choices

of household i, the realized commercial facility price R, and commercial facility demand
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Ki from Proposition 2, the utility of household i at t = 1 from choosing to live in the

neighborhood is

E [Ui|Ii] = (1− α)
ψ

1 + ψ
e
u0+uAA+

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

Ai .

Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
)

uΦ

×

Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
)

(1−λ)
α

1+ψ
ψ+α

λ−α 1+ψ
ψ+α

,

where

u0 =
1

2

1

1− α
1 + ψ

ψ

(
ληc

1− α 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

− α (λ− 1)

λ− α 1+ψ
ψ+α

ψ (1− α)

ψ + α
(1− ηc)

2

)(
1 + ψ

(1− α)ψ + (1 + αψ) ηc

)2

τ−1
ε

+
1

ψ

1− α 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

(
α

1− α (1 + ψ) logα + λ log (1− α)

)
,

uA =
1

1− α
1 + ψ

ψ

(
1 + ψ

(1− α)ψ + (1 + αψ) ηc
ηc − (λ− 1)

α 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

)
,

uΦ =
λ 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

ηc > 0.

Since the household with the critical productivity A∗ must be indifferent to its neighbor-

hood choice at the cutoff, it follows that Ui − P = 0, which implies:

e
(1+ψ)(1−ηc)

(1−α)ψ+(1+αψ)ηc
Ai

Φ
(

(1+ψ)τ
−1/2
ε

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
)

uΦ
Φ

(
(1+ψ)(1−ηc)τ

−1/2
ε

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
)


(1−λ)α

1+ψ
ψ+α

λ−α 1+ψ
ψ+α

=
1 + ψ

ψ (1− α)
e−u0−uAAP, with Ai = A∗ (18)

which implies the benefit of living with more productive households is offset by the higher

cost of living in the neighborhood.

Fixing the critical value A∗ and price P, we see that the LHS of equation (18) is increasing

in monotonically in Ai, since
1+ψ

(1−α)ψ+(1+αψ)ηc
(1− ηc) > 0. This confirms the optimality of

the cutoff strategy that households with Ai ≥ A∗ enter the neighborhood, and households

with Ai < A∗ choose to live somewhere else. Since Ai = A+εi, it then follows that a fraction

Φ
(
−√τ ε (A∗ − A)

)
enter the neighborhood, and a fraction Φ

(√
τ ε (A∗ − A)

)
choose to live

somewhere else. As one can see, it is the integral over the idiosyncratic productivity shocks

of households εi that determines the fraction of households in the neighborhood.
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From the optimal supply of housing by builder i in the neighborhood (7), there exists a

critical value ω∗ :

ω∗ = − (1 + k) logP, (19)

such that builders with productivity ωi ≥ ω∗ build houses. Thus, a fractionΦ
(
−√τ e (ω∗ − ξ)

)
build houses in the neighborhood. Imposing market-clearing, it must be the case that

Φ (−√τ ε (A∗ − A)) = Φ (−√τ e (ω∗ − ξ)) .

Since the CDF of the normal distribution is montonically increasing, we can invert the above

market-clearing conditions, and impose equation (19) to arrive at

logP =
1

1 + k

(√
τ ε
τ e

(A− A∗)− ξ
)
. (20)

By substituting for P in equation (18), we obtain an equation to determine the equilibrium

cutoff A∗ = A∗ (A, ξ):

e

(
(1+ψ)(1−ηc)

(1−α)ψ+(1+αψ)ηc
+

√
τε/τe
1+k

)
A∗

Φ
(

(1+ψ)(1−ηc)τ
−1/2
ε

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
ε

)
Φ
(
A−A∗
τ
−1/2
ε

)


(1−λ)α
1+ψ
ψ+α

λ−α 1+ψ
ψ+α Φ

(
(1+ψ)τ

−1/2
ε

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
ε

)uΦ

Φ
(
A−A∗
τ
−1/2
ε

)uΦ

=
1 + ψ

ψ (1− α)
e(

1
1+k

√
τε
τe
−uA)A− 1

1+k
ξ−u0 . (21)

Taking the derivative of the log of the LHS of equation (21) with respect to A∗ gives

d logLHS

dA∗

= uΦ
1

τ
−1/2
ε

φ
(
A−A∗
τ
−1/2
ε

)
Φ
(
A−A∗
τ
−1/2
ε

) − φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
+

(1 + ψ) (1− ηc)
(1− α)ψ + (1 + αψ) ηc

+
1

1 + k

√
τ ε
τ e
− 1

τ
−1/2
ε

(λ− 1)α 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

φ
(
A−A∗
τ
−1/2
ε

)
Φ
(
A−A∗
τ
−1/2
ε

) − φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
 .

The term in parentheses are nonnegative by the properties of the normal CDF. The last

term is nonpositive, since λ > 1, and attains its minimum at A∗ → ∞, from which follows,

substituting for uΦ, that

As A∗ →∞, d logLHS

dA∗
→ 1

1 + k

√
τ ε
τ e

+
λ 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

> 0.

Consequently, since d logLHS
dA∗ > 0 when the last term attains its (nonpositive) minimum,

it follows that d logLHS
dA∗ > 0. Therefore, logLHS, and consequently LHS, is monotonically
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increasing in A∗. Since the RHS of equation (21) is independent of A∗, it follows that the

LHS and RHS of equation (21) intersect at most once. Therefore, the can be, at most, one

cutoff equilibrium. Furthermore, since the LHS of equation (21) tends to 0 as A∗ → −∞,
and the RHS is nonnegative, it follows that a cutoff equilibrium always exists. Therefore,

there exists a unique cutoff equilibrium in this economy.

It is straightforward to apply the Implicit Function Theorem to (21) to obtain

dA∗

dA
=

1
1+k

√
τε
τe
− d logLHS

dA
− uA

d logLHS
dA∗

dA∗

dξ
= − 1

1 + k

1
d logLHS
dA∗

< 0,

where

d logLHS

dA
= −uΦ

1

τ
−1/2
ε

φ
(
A−A∗
τ
−1/2
ε

)
Φ
(
A−A∗
τ
−1/2
ε

) − φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)


+
1

τ
−1/2
ε

(λ− 1)
α 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

φ
(
A−A∗
τ
−1/2
ε

)
Φ
(
A−A∗
τ
−1/2
ε

) − φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
 .

Note that the nonpositive term in d logLHS
dA

achieves its minimum at A→ −∞, at which

d logLHS

dA
→ ((λ− 1)α (1− ηc)− ληc)

1+ψ
ψ+α

λ− α 1+ψ
ψ+α

1 + ψ

(1− α)ψ + (1 + αψ) ηc
.

Then, as A→ −∞, the numerator of dA∗
dA

converges to

1

1 + k

√
τ ε
τ e
− d logLHS

dA
− uA → A→−∞ −

(1 + ψ)

(
((λ−1)α(1−ηc)−ληc)

1+ψ
ψ+α

λ−α 1+ψ
ψ+α

+ 1
1−α

1+ψ
ψ
ηc

)
(1− α)ψ + (1 + αψ) ηc

+
1

1− α
1 + ψ

ψ

(λ− 1)α 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

+
1

1 + k

√
τ ε
τ e
,

which is positive. Consequently dA∗

dA

∣∣
A∗=−∞ > 0. In contrast, as A∗ →∞, one has that

1

1 + k

√
τ ε
τ e
− d logLHS

dA
− uA

→ A→∞
1

1 + k

√
τ ε
τ e
− 1

1− α
1 + ψ

ψ

(
1 + ψ

(1− α)ψ + (1 + αψ) ηc
ηc − (λ− 1)

α 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

)
,
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which is negative if

ηc > η∗c = (1− α)
ψ

1 + αψ

ψ
1+ψ

1−α
1+k

√
τε
τe

+ (λ− 1)
α 1+ψ
ψ+α

λ−α 1+ψ
ψ+α

1+ψ
1+αψ

− ψ
1+ψ

1−α
1+k

√
τε
τe
− (λ− 1)

α 1+ψ
ψ+α

λ−α 1+ψ
ψ+α

.

We can rewrite equation (21) as:

e
−
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

+ 1
1+k

√
τε
τe

)
s

Φ
(

(1+ψ)(1−ηc)τ
−1/2
ε

(1−α)ψ+(1+αψ)ηc
+ s

τ
−1/2
ε

)
Φ
(

s

τ
−1/2
ε

)


(1−λ)α
1+ψ
ψ+α

λ−α 1+ψ
ψ+α Φ

(
(1+ψ)τ

−1/2
ε

(1−α)ψ+(1+αψ)ηc
+ s

τ
−1/2
ε

)uΦ

Φ
(

s

τ
−1/2
ε

)uΦ

=
1 + ψ

ψ (1− α)
e
−λ 1

1−α
1+ψ
ψ

1−α 1+ψ
ψ+α

λ−α 1+ψ
ψ+α

A− 1
1+k

ξ−u0

,

where s = A−A∗ determines the population that enter the neighborhood. It is straightfor-
ward to show that

d logLHS

ds
= −d logLHS

dA∗
< 0.

Consequently, we have

ds

dξ
= −

1
1+k

d logLHS
ds

> 0,

ds

dA
= −

λ 1
1−α

1+ψ
ψ

1−α 1+ψ
ψ+α

λ−α 1+ψ
ψ+α

d logLHS
ds

> 0.

Thus, the population that enters, Φ
(√

τ εs
)
, is increasing in A and ξ. Furthermore, it follows

from (20) that
d logP

dA
=

1

1 + k

√
τ ε
τ e

ds

dA
> 0,

and therefore the log housing price is increasing in A.

Finally, we recognize that:

d2P

dA2
=

(
ds

dA

)2

P +
d2s

dA2
P =

(
ds

dA

)2

P +
λ 1

1−α
1+ψ
ψ

1−α 1+ψ
ψ+α

λ−α 1+ψ
ψ+α(

d logLHS
ds

)2

ds

dA

d2 logLHS

ds2
P,

where λ 1
1−α

1+ψ
ψ

1−α 1+ψ
ψ+α

λ−α 1+ψ
ψ+α

ds
dA

> 0 by the above arguments. It follows that from calculating

d2 logLHS
ds2

that:

lim
s→−∞

d2 logLHS

ds2
= (λ (α− ηc)− α)

1+ψ
ψ+α

λ− α 1+ψ
ψ+α

1

τ−1
ε

,
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and therefore, as P →∞, from the expression for d2P
dA2 one has that d2P

dA2 →∞. Furthermore,
as s→ −∞,

d logLHS

ds
→ −

(
1

1 + k

√
τ ε
τ e

+
λ 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

)
,

and

lim
s→∞

d2 logLHS

ds2
= 0,

and P → 0 at an exponential rate. Consequently, as s → −∞, d2P
dA2 → 0. Since d2P

dA2 is

continuous, it follows that d2P
dA2 ≥ 0. Consequently, P is convex in A. Since, in equilibrium,

the housing price is equal to the utility of the household with the cutoff productivity, it

follows that this utility is also convex and increasing in A.

A.4 Proof of Proposition 4

Given our assumption about the suffi cient statistic in housing price, each household’s pos-

terior about A is Gaussian A |Ii ∼ N
(
Âi, τ̂

−1
A

)
with conditional mean and variance of

Âi = Ā+ τ−1
A

[
1 1 1

]  τ−1
A + τ−1

Q τ−1
A τ−1

A

τ−1
A τ−1

A + z−2
ξ τ−1

ξ τ−1
A

τ−1
A τ−1

A τ−1
A + τ−1

ε

−1  Q− Ā
z (P )− Ā
Ai − Ā


= τ̂−1

A

(
τAĀ+ τQQ+ z2

ξ τ ξz (P ) + τ εAi
)
,

τ̂A = τA + τQ + z2
ξ τ ξ + τ ε.

Note that the conditional estimate of Âi of household i is increasing in its own produc-

tivity Ai. Similarly, the posterior for commercial developers about A is Gaussian A |Ic ∼
N
(
Âc, τ̂ c−1

A

)
, where

Âc = Ā+ τ−1
A

[
1 1

] [ τ−1
A + τ−1

Q τ−1
A

τ−1
A τ−1

A + z−2
ξ τ−1

ξ

]−1 [
Q− Ā

z (P )− Ā

]
= τ̂ c−1

A

(
τAĀ+ τQQ+ z2

ξ τ ξz (P )
)
,

τ̂ cA = τA + τQ + z2
ξ τ ξ.

This completes our characterization of learning by households and commercial developers.

We now turn to the optimal decision of commercial developers. Since the posterior

for A − A∗ of households is conditionally Gaussian, it follows that the expectations in the
expression of K in Proposition 2 is a function of the two conditional moments, Âc −A∗ and
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τ̂ cA. Let

F
(
Âc − A∗, τ̂ cA

)
= E


 e(A−A∗)Φ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
τ
−1/2
ε + A−A∗

τ
−1/2
ε

)ηc
Φ
(
A−A∗
τ
−1/2
ε

)ηc+ψ(1−α)
1+ψ

Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)−ψ(1−α)
1+ψ


1+ψ
ψ+α

∣∣∣∣∣∣∣∣∣ I
c

 .
Define z = A−A∗

τ
−1/2
ε

and the function f (z) :

f (z) = eτ
−1/2
ε z

Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

)ηc
Φ (z)ηc

Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

)
Φ (z)


ψ

1+ψ
(1−α)

,

which is the term inside the bracket in the expectation. Then, it follows that

1

f (z)

df (z)

dz
= τ−1/2

ε + ηc

φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

)
Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

) − φ (z)

Φ (z)


+

ψ

1 + ψ
(1− α)

φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

)
Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

) − φ (z)

Φ (z)

 .

Notice that
φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε +z

)
Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε +z

) − φ(z)
Φ(z)

achieves its minimum as z → −∞. Applying

L’Hospital’s Rule, it follows that the minimum of 1
f(z)

df(z)
dz

is given by

lim
z→−∞

1

f (z)

df (z)

dz
= τ−1/2

ε + lim
z→−∞

ηc

 d
dz
φ
(

1+ψ
ψ+α+(1−α)ηc

τ
−1/2
ε + z

)
φ
(

1+ψ
ψ+α+(1−α)ηc

τ
−1/2
ε + z

) − d
dz
φ (z)

φ (z)


+

ψ

1 + ψ
(1− α)

 d
dz
φ
(

(1+ψ)(1−ηc)
ψ+α+(1−α)ηc

τ
−1/2
ε + z

)
φ
(

(1+ψ)(1−ηc)
ψ+α+(1−α)ηc

τ
−1/2
ε + z

) − d
dz
φ (z)

φ (z)


= α

1 + ψ

ψ + α + (1− α) ηc
(1− ηc) τ−1/2

ε

> 0

from which follows that 1
f(z)

df(z)
dz
≥ 0 for all z, and therefore df(z)

dz
≥ 0, since f (z) ≥ 0.

Consequently, since f (z)
1+ψ
ψ+α is a monotonic transformation of f (z) , it follows that dF

dx
(x, τ̂A)

≥ 0 since this holds for all realizations of A−A∗. This establishes that the optimal choice of
commercial facility is increasing with Âc, since f (z) is increasing for each realization of z.

The optimal choice of K then takes the following form:

logK =
1

λ− α 1+ψ
ψ+α

logF
(
Âc − A∗, τ̂ cA

)
+

1+ψ
ψ+α

λ− α 1+ψ
ψ+α

A∗ + k0.
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By substituting the expressions for Ki and li into the utility of household i given in Propo-

sition 1, we obtain

E [Ui|Ii]

= (1− α)
ψ

1 + ψ
e

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

Ai+
α

1+ψ
ψ+α

λ−α 1+ψ
ψ+α

(logF(Âc−A∗,τ̂cA)+ 1+ψ
ψ+α

A∗)+ 1
1−α

1+ψ
ψ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
ηc−α

1+ψ
ψ+α

)
A∗+u0

·E


e

1
1−α

ψ+α
ψ

(
(1+ψ)ηc

(1−α)ψ+(1+αψ)ηc
−α 1+ψ

ψ+α

)
(A−A∗)

Φ
(

(1+ψ)τ
−1/2
ε

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
ε

)ηc
Φ
(
A−A∗
τ
−1/2
ε

)ηc−α
Φ
(

(1+ψ)(1−ηc)τ
−1/2
ε

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
ε

)α


1+ψ
ψ+α

∣∣∣∣∣∣∣∣ Ii
 ,

where u0 is given in the proof of Proposition 3.

Since the posterior for A − A∗ of household i is conditionally Gaussian, it follows that
the expectations in the expressions above are functions of the first two conditional moments

Âi − A∗ and τ̂A. Let

G
(
Âi − A∗, τ̂A

)
= E


e

1
1−α

ψ+α
ψ

(
(1+ψ)ηc

(1−α)ψ+(1+αψ)ηc
−α 1+ψ

ψ+α

)
(A−A∗)

Φ
(

(1+ψ)τ
−1/2
ε

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
ε

)ηc
Φ
(
A−A∗
τ
−1/2
ε

)ηc−α
Φ
(

(1+ψ)(1−ηc)τ
−1/2
ε

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
ε

)α


1+ψ
ψ+α

∣∣∣∣∣∣∣∣ Ii


Define z = A−A∗
τ
−1/2
ε

, and the function g (z)

g (z) = e
1

1−α
ψ+α
ψ

(
(1+ψ)ηc

(1−α)ψ+(1+αψ)ηc
−α 1+ψ

ψ+α

)
τ
−1/2
ε z

Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

)ηc
Φ (z)ηc

·
Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

)
Φ (z)−α

−α

,

as the term inside the bracket. Then, it follows that:

1

g (z)

dg (z)

dz
=

1

1− α
ψ + α

ψ

(
1 + ψ

(1− α)ψ + (1 + αψ) ηc
ηc − α

1 + ψ

ψ + α

)
τ−1/2
ε

−ηc

φ (z)

Φ (z)
−
φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

)
Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

)


+α

φ (z)

Φ (z)
−
φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

)
Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

)
 .

Note that
φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε +z

)
Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε +z

) − φ(z)
Φ(z)

achieves its minimum as z → −∞. Applying
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L’Hospital’s Rule, it follows that the minimum of 1
g(z)

dg(z)
dz

is given by

lim
z→−∞

1

g (z)

dg (z)

dz
=

1

1− α
ψ + α

ψ

(
1 + ψ

(1− α)ψ + (1 + αψ) ηc
ηc − α

1 + ψ

ψ + α

)
τ−1/2
ε

+ηc lim
z→−∞

 d
dz
φ
(

1+ψ
ψ+α+(1−α)ηc

τ
−1/2
ε + z

)
φ
(

1+ψ
ψ+α+(1−α)ηc

τ
−1/2
ε + z

) − d
dz
φ (z)

φ (z)


+α lim

z→−∞

 d
dz
φ (z)

φ (z)
−

d
dz
φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

)
Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

)


=
1

1− α
ψ + α

ψ

(
1 + ψ

(1− α)ψ + (1 + αψ) ηc
ηc − α

1 + ψ

ψ + α

)
τ−1/2
ε

+ ((1− ηc)α− ηc)
1 + ψ

(1− α)ψ + (1 + αψ) ηc
τ−1/2
ε .

With some manipulation, the above expression is collapsed to

lim
z→−∞

1

g (z)

dg (z)

dz
= 0,

and it follows that 1
g(z)

dg(z)
dz
≥ 0, and therefore dg(z)

dz
≥ 0, since g (z) ≥ 0. Consequently, since

g (z)
1+ψ
ψ+α is a monotonic transformation of g (z) , it follows that dG

dx
(x, τ̂A) ≥ 0, since this

holds for all realizations of A− A∗.
Since the household with the critical productivity A∗ must be indifferent to its neighbor-

hood choice at the cutoff, it follows that Ui − P = 0, which implies

e

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

Ai+
α

1+ψ
ψ+α

λ−α 1+ψ
ψ+α

(logF(Âc−A∗,τ̂cA)+ 1+ψ
ψ+α

A∗)+ 1
1−α

1+ψ
ψ

(
(1+ψ)ηc

(1−α)ψ+(1+αψ)ηc
−α 1+ψ

ψ+α

)
A∗+u0

·G
(
Âi − A∗, τ̂A

)
=

1 + ψ

ψ (1− α)
P, Ai = A∗ (22)

which does not depend on the unobservedA or the supply shock ξ.As such, A∗ = A∗ (logP,Q) .

Furthermore, since Â∗i is increasing in Ai and G
(
Â∗i − A∗, τA

)
is (weakly) increasing in Âi, it

follows that the LHS of equation (22) is (weakly) monotonically increasing in Ai, confirming

the cutoff strategy assumed for households is optimal. Those with the RHS being nonnega-

tive enter the neighborhood, and those with it being negative choose to live elsewhere.

It then follows from market-clearing that

Φ (−√τ ε (A∗ − A)) = Φ (−√τ e (ω∗ − ξ)) .

Since the CDF of the normal distribution is montonically increasing, we can invert the above

market-clearing condition, and impose equation (19) to arrive at

logP =
1

1 + k

(√
τ ε
τ e

(A− A∗)− ξ
)
,
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from which follows that

z (P ) =

√
τ e
τ ε

(1 + k) logP + A∗ = A−
√
τ e
τ ε
ξ,

and therefore zξ =
√

τε
τe
. This confirms our conjecture for the suffi cient statistic in housing

price and that learning by households is indeed a linear updating rule.

As a consequence, the conditional estimate of household i is

Âi = τ̂−1
A

(
τAĀ+ τQQ+

τ ε
τ e
τ ξ

(√
τ e
τ ε

(
(1 + k) logP + ξ̄

)
+ A∗

)
+ τ εAi

)
,

τ̂A = τA + τQ +
τ ε
τ e
τ ξ + τ ε,

and the conditional estimate of commercial developers is

Âc = τ̂ c−1
A

(
τAĀ+ τQQ+

τ ε
τ e
τ ξ

(√
τ e
τ ε

(
(1 + k) logP + ξ̄

)
+ A∗

))
,

τ̂ cA = τA + τQ +
τ ε
τ e
τ ξ.

Substituting for prices, and simplifying A∗ terms, we can express equation (22) as

e

(
λ

1+ψ
ψ+α

λ−α 1+ψ
ψ+α

+

√
τε/τe
1+k

)
A∗

G
(
Â∗ − A∗, τ̂A

)
F
(
Âc − A∗, τ̂ cA

) α
1+ψ
ψ+α

λ−α 1+ψ
ψ+α =

1 + ψ

ψ (1− α)
e

1
1+k

√
τε
τe
z−u0 ,

(23)

where

Â∗i = τ̂−1
A

(
τAĀ+ τQQ+

τ ε
τ e
τ ξ

(√
τ e
τ ε

(
(1 + k) logP + ξ̄

)
+ A∗

)
+ τ εA

∗
)
,

Âc = τ̂ c−1
A

(
τAĀ+ τQQ+

τ ε
τ e
τ ξ

(√
τ e
τ ε

(
(1 + k) logP + ξ̄

)
+ A∗

))
.

Notice that the LHS of equation (23) is continuous in A∗. As A∗ → −∞, the LHS of equation
(23) converges to

lim
A∗→−∞

LHS = 0.

Furthermore, by L’Hospital’s Rule and the Sandwich Theorem, one also has that

lim
A∗→∞

LHS =∞.

Since the RHS is independent of A∗, it follows that the LHS and RHS intersect once. There-

fore, a cutoff equilibrium in the economy with informational frictions exists.

Finally, notice that, as τQ ↗∞, that Âc and Âi converge to A a.s., since τ̂ cA, τ̂ iA ↗∞.
Taking the limit along a sequence of τQ, it is straightforward to verify that equation (22)
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converges to equation (21), and therefore A∗ converges to its perfect-information benchmark

value. Taking similar limits for the expressions for capital and labor supply verify that they

also converge to their perfect-information benchmark values, and therefore the noisy rational

expectations cutoff equilibrium converges to the perfect-information benchmark economy as

τQ ↗∞.
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