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Abstract

This paper examines the welfare incidence of across locations and demographic
groups for labor demand shocks featuring particular geographic and firm type com-
positions. LEHD data on the near universe of U.S. job transitions are used to estimate
a rich two-sided assignment model of the labor market featuring thousands of parame-
ters that is then used to generate simulated forecasts of many alternative local shocks.
These forecasts suggest that existing local workers account for only 0.1% (2.7%) of
total welfare (employment) gains, with 80% (56%) of welfare (employment) gains ac-
cruing to out-of-state workers. This is despite the fact that projected employment rate
increases from a typical positive shock are 7 times larger for existing workers in the
targeted Census tract than for workers from an adjacent tract, because workers in the
target tract are a minuscule share of the national labor market. Further, the projected
earnings incidence across local skill groups is highly sensitive to the shock’s firm type
composition.
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1 Introduction

How are the welfare impacts on workers of local labor demand shocks distributed across

geographic space and across skill categories? And how sensitive is this spatial and skill

incidence to the firm type composition of the demand shock?

Billions of dollars in local aid are spent each year by state, federal, and local agencies

to support city-level or county-level economic development initiatives that seek to enhance

labor market opportunities for workers in a particular skill or age class who live or work

within the local jurisdiction. These often take the form of local infrastructure spending,

discounted loans or subsidies aimed at startup companies, or tax breaks to lure firms to

relocate. In order to determine which types of firms or projects to support, federal, state,

and local policymakers must predict not only which types of workers from which locations

would be directly hired by the tax-supported firms, but also how the resulting ripple effects

that operate through vacancy chains and pressure on local wages would indirectly benefit

both local and more distant workers.

While a large literature in economics seeks to evaluate the incidence of place-based labor

demand policies and shocks, most reduced-form methods focus on quite local impacts, with

more distant towns, counties or states either excluded from the sample or used as control

groups. Furthermore, by virtue of their focus on particular policies or shocks occurring in

one or a small number of locations, these studies are usually ill-equipped to compare the

incidence of shocks featuring different demand compositions or to examine differential skill

incidence among local and less local areas (due to small samples of workers within a small

radius around the shock and/or a lack of detailed data on distant locations).

The primary difficulty is that either evaluating or predicting worker-level welfare in-

cidence across a variety of alternative local labor market shocks requires a spatial equi-

librium model that accommodates ripple effects by incorporating the network of spatial

linkages among overlapping local labor markets while simultaneously featuring heterogene-

ity in worker and firm preferences, search costs, and match productivities along a variety

of observable dimensions.
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Motivated by this challenge, this paper makes two central contributions. First, we

develop a theoretically-motivated empirical framework for assessing and forecasting welfare

incidence across location-by-demographic group categories of labor demand shocks featuring

alternative geographic and firm type compositions (or worker type compositions for labor

supply shocks). We do this by adapting to the local labor market setting the two-sided

assignment game analyzed originally by Koopmans and Beckmann (1957) and Shapley and

Shubik (1972) and whose empirical implications were highlighted in the marriage market

context by Choo and Siow (2006). Second, after estimating the parameters of the model,

we analyze a large set of model simulations that illustrate several general properties of local

labor markets in the United States that effectively create a useful national prior about which

types of workers are most sensitive to which types of local labor demand shocks.

Several key features of Choo and Siow (2006)’s version of the assignment game facilitate

these goals. First, it can accommodate multidimensional heterogeneity based on unordered

categorical characteristics for agents on both sides of the matching market. In particular,

this allows the model to accommodate arbitrary spatial links between different geographic

units, including geographic units of both very small and large sizes. It also permits anal-

ysis of incidence across demographic groups such as races, age groups, or industries (or

combinations thereof) without requiring any hierarchical ordering.

Second, the assignment game requires market clearing, optimizing behavior by all market

agents and explicit payoffs to each agent from each possible job match, making it well-suited

for forecasting welfare effects from exogenous shocks. Third, the key parameters of the

model (mean relative joint surpluses among matched pairs of workers and firms belonging

to observable types) can be identified from a single cross-sectional labor-market transition

between origin and destination states, and are sufficient to perform counterfactuals that

yield the allocation and impact on payoffs for all players (workers and firms) from any

arbitrary change in the composition of labor supply, labor demand, or both.

Finally, these counterfactuals do not require the specification of a more fundamental

structural model of utility, firm production, and moving costs, ensuring that none of the

heterogeneity present in the transition patterns is lost in paring down to a small number of
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interpretable structural parameters. The downside to such a “sufficient statistic” approach

is that the set of counterfactuals that can be performed is limited to those involving exoge-

nous changes in either the type composition of labor supply and/or demand or composite

“joint surplus” parameters. Furthermore, while the heterogeneity on both sides of the la-

bor market can be modeled much more richly than in other structural models, the housing

and product markets are not explicitly modeled (though their impact may nonetheless be

captured by the estimated surplus parameter through the way they affect job-to-job flows).1

We estimate the model and perform a variety of counterfactual simulations using matched

employer-employee data from the Longitudinal Employer-Household Dynamics database on

a subset of 17 U.S. states that provide data as of 1993. The data display three key prop-

erties that make it suitable for our forecasts. Namely, 1) they capture the (near) universe

of job matches from the participating states, mitigating selection problems, 2) they include

hundreds of millions of job matches, allowing precise estimates of the large number of pa-

rameters necessary to capture the complex two-sided multidimensional heterogeneity, and

3) workers’ establishments are geocoded to the census block level. These properties, when

combined, make it feasible to study incidence across worker types at the hyper-local level

necessary to make the estimates useful to local policymakers, while still allowing for com-

plex spatial ties between the local area and the surrounding towns, counties, and states that

make the estimates useful to state and federal policymakers.

The counterfactual simulations involve firm relocations or stimulus projects that create

new job positions in particular U.S. locations (census tracts) featuring alternative com-

binations of firm size, average pay, and industry supersector. We also consider “natural

disaster” simulations akin to a tornado or flood that eliminate a share of all jobs in a

particular geographic location.

We find that welfare gains or losses of very local shocks is widely distributed. For

example, our simulations suggest that as little as 0.1% of the utility gains and 2.7% of the

net employment gains from a stimulus project that creates 500 new jobs in a given census

tract accrue to workers already working (or seeking a job) in that tract at the beginning of

1Section 2.6 discusses scenarios in which ignoring the housing market would introduce minimal error into
incidence forecasts for the kinds of local labor demand shocks we consider.
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the year, while 50% (80%) of the utility (employment) gains accrue to workers beginning

the year outside the state.

Such geographic dispersion of welfare gains occurs despite the fact that the same simula-

tions suggest that a randomly chosen worker in the targeted census tract is about 7, 25 and

30,000 times more likely to fill one of the new vacancies than a randomly chosen worker in an

adjacent tract, 3-5 tracts away, and in a non-adjacent state, respectively. These seemingly

inconsistent results are the result of two mechanisms.

First, since many of the workers likely to join the incoming firms were already employed,

so that their transitions generate further openings for others, the share of the stimulus jobs

taken by more vs. less local workers dramatically overstates the local concentration of the

overall employment and welfare incidence of the labor demand shock. Second (and more

importantly), because a single census tract generally only features a few thousand workers,

its workforce makes up a very small share of the national labor market. Consequently,

even quite substantial and disproportionate welfare gains for the most local workers cannot

account for more than a tiny share of the aggregate welfare gains. Indeed, the predicted

utility and employment gains for an initially local worker are 2.5 (7), 3.1 (23), and 5.6 (302)

times as large as for a randomly chosen worker in an adjacent tract, 3-5 tracts away, and

in a non-adjacent state, respectively.

Averaging across simulations, the results suggest that among the most local workers,

the utility gains are largest among the initially non-employed ($896 in money-metric util-

ity units), but are otherwise smaller for initially low-paid ($396) than initially high-paid

workers ($545), where we use initial earnings as a proxy for worker skill. However, these

averages mask substantial heterogeneity in projected impacts across shocks featuring dif-

ferent firm compositions and across sites of simulated shocks. The average money metric

utility gains for the same three skill groups are $1051, $410, and $402 for stimuli consisting

of jobs at large, previously low paying firms vs. $671, $282, and $664 for stimuli featuring

small, previously high paying firms. We also find that demand shocks consisting of addi-

tional jobs at small, low-paying construction firms generate the most locally concentrated

employment impact, while small, high-paying information sector jobs generate the smallest
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local employment impact.

Interestingly, regardless of the firm composition, as the simulated shocks ripple outward,

they becomes less and less skill-biased: predicted differences in welfare (or employment)

gains among skill groups converge as we consider workers at initial locations further from

the site of the shock.

This paper builds primarily on three literatures. The first consists of evaluations of

particular place-based policies or local economic shocks. Most papers in this branch use

average wages or employment rates in the targeted location as the outcome of interest, seek

to define a control group of alternative locations, and evaluate the policy or shock’s impact

using a treatment effect framework. This literature is vast, and is thoroughly discussed by

survey articles such as Glaeser et al. (2008), Moretti (2010), Kline and Moretti (2013), and

Neumark and Simpson (2014).2 A few prominent papers in particular stand out.

Autor et al. (2014)’s evaluation of the worker-level impact of China’s accession to the

WTO is notable for its attention to heterogeneity in incidence across demographic and skill

groups. In line with our results, they find that the import competition shock particularly

affected the cumulative earnings of those with low initial earnings or limited labor force at-

tachment. However, because they consider local variation in the incidence of a national-level

shock and use commuting zone industry structure to define shock exposure, their estimates

do not provide much guidance on the geographic incidence of a small but geographically

concentrated demand shock. Greenstone et al. (2010) is notable for its focus on a relatively

large sample of sizable plant relocations (with a known set of counties with losing bids as

controls). They show that such plant relocations have a considerable impact on countywide

employment.

Finally, Busso et al. (2013)’s evaluation of the U.S. empowerment zone system also

stands out as one of the few quasi-experimental papers to explicitly evaluate social welfare

impact, which they accomplish by deriving a set of sufficient elasticity parameters that can

be cleanly identified. Interestingly, they find that while empowerment zones significantly

increase wages and employment of zone residents, they do not meaningfully affect rent

2More recent contributions include Gregory (2013), Freedman (2013), and LeGower and Walsh (2017).
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prices. This suggests that for very local shocks where commuting adjustments play a key

role in facilitating the shock response, the impact on rent need not be first-order.3

The paper also contributes to a fast-growing literature on structural spatial equilib-

rium models designed to forecast the incidence of economic shocks across spatially-linked

geographic areas. Four contemporaneous papers in particular deserve discussion.

Caliendo et al. (2015) (hereafter CDP) consider the geographic and sectoral incidence

of China WTO entry. They develop a full dynamic general equilibrium framework that in-

corporates input-output linkages in goods markets as well as labor market linkages among

a system of 50 U.S. states and 37 countries. They shows how counterfactual dynamic equi-

librium paths can be evaluated for alternative structural shocks (changes in trade costs,

mobility costs, productivities) without estimating all the primitives of the model. Our pa-

per relies on a very similar “sufficient statistics” approach, in that it evaluates the distribu-

tion of welfare impacts from demand shocks of alternative compositions without identifying

the fundamental utility, production function, and moving cost parameters of the structural

model. Like CDP, it relies heavily on the matrix of worker flows for identification of the key

parameters that govern these counterfactuals. This paper imposes much less structure on

the form of production and utility than CDP, but is also more limited in the set of coun-

terfactuals that can be evaluated. While our paper lacks the explicit housing and product

markets modeled in CDP, it features a much richer labor market that highlights existing firm

and worker multidimensional heterogeneity and the process by which heterogeneous work-

ers and firms are matched. Our model is thus better able to evaluate differential incidence

across skill/demographic groups from labor demand shocks of alternative compositions at

a very local level. 4

Monte et al. (2015) highlights the role of commuting vs. residential mobility in clearing

U.S. labor markets across geographic space and in determining the incidence of local labor

demand shocks. Like CDP, they also use a trade-theoretic approach to model the joint

3The authors point out that the limited rent price impact might be due to the particularly depressed
nature of the targeted locations, which could make them undesirable residential locations (or subject to rent
control).

4The CDP framework could accommodate such features, but at the cost of considerable computational
burden.
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choice of residential and work location, and incorporate commuting costs, local amenities,

and geographic trade costs. Using U.S. counties to define the system of locations, they

show that a richer structural model that incorporates the network of labor flows can better

predict the heterogeneity in incidence of the million dollar plant relocations evaluated by

Greenstone et al. (2010) (discussed further below). Their model is well-designed to gauge

the incidence of shocks to local productivity, housing demand, and commuting technology

shocks across locations and across landlords versus residents/workers. However, workers

only vary by initial location and unobserved tastes for amenities and locations, and location

is the only firm-level attribute that affects labor demand, making it less useful for examining

differential incidence across worker categories of different demand shock compositions. 5

Schmutz and Sidibe (2016) adapt a search and matching framework in the style of

McCall (1970) to model the importance of spatial linkages in determining the incidence of

local shocks. However, They focus on disentangling the relative importance of geographic

search frictions versus standard moving costs in generating spatial frictions in the labor

market. Based on worker flows between a system of French metropolitan areas, their results

suggest that search frictions play a greater role than moving costs in limiting worker mobility

suggesting the potential promise of efforts to disseminate information about distant jobs.

Because firm-level heterogeneity is absent in the job-posting framework they use and workers

are ex ante identical beyond initial location, their framework is not designed to evaluate

differential shock incidence across demographic groups by shock type.

Each of these papers aggregates locations to at least the county level, leaving consid-

erable room for an analysis of the geographic incidence of very local shocks of the type

considered by policymakers in particular towns or cities. Manning and Petrongolo (2017),

by contrast, represents the most notable attempt to determine the equilibrium incidence

across nearby areas of small scale shocks. Like Schmutz and Sidibe (2016), they propose a

search and matching model and derive from it an expression for the equilibrium net outflow

of vacancies by area. They fit the predicted geographic distribution of vacancy outflows

to data on changes in vacancy stocks from local job search centers in Britain. Like our

5Due to a lack of micro-level residential data, our paper does not consider whether the new jobs formed
by job-to-job transitions involve residential mobility.
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paper, they simulate the impact on the geographic distribution of unemployment of an ex-

ogenous increase in vacancies (new jobs) within particular census wards (similar in size to

the census tracts used here). They also find evidence that labor markets are quite local,

in the sense that moderate distance to vacancies substantially decreases the probability of

an application. Nonetheless, they also find that ripple effects from overlapping markets

cause the unemployment incidence to spread widely, with very little of the gain accruing

to the ward receiving the shock (less then we report here). However, their data sources are

the near complement to ours; they observe stocks of reported vacancies and unemployed

workers by ward, but have no information on the geographic patterns of either job-to-job or

nonemployment-to-job flows.6 They also do not consider heterogeneity in incidence across

skill types nor by the firm composition of vacancies created, which is a primary goal of this

paper.

Finally, this paper also builds upon and draws heavily from the theoretical literature

on the identification and estimation of two-sided assignment games. To our knowledge

this is the first large-scale labor market application of a two-sided assignment model, the

theoretical properties of such assignment games have been well-established for at least a

generation7. However, the empirical content of the model for contexts in which the universe

(or a large random sample) of all market entrants on both sides and their matches can be

observed has only recently attracted interest, with Choo and Siow (2006)’s pioneering paper

leading to contributions by Chiappori and Salani (2016), Menzel (2015), and Galichon and

Salanié (2015), among others. We make three contributions to this theoretical literature.

First, we consider implementation in a context with a very large number of match

observations and an even larger number of types on both the supply and demand side. We

address this problem by introducing a smoothing procedure designed to aggregate matching

patterns across “nearby” match types without smoothing away the heterogeneity the model

is designed to highlight.

Second, we consider the limits to identification in a context where the number of un-

6See Nimczik (2017) for an effort to define the boundaries of local labor markets based on job-to-job flows
rather than commuting patterns.

7See Koopmans and Beckmann (1957), Shapley and Shubik (1972), Roth and Sotomayor (1992), and
Sattinger (1993) among others
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matched partners of each type is either unobserved or only observed on one side of the

market: while nonemployment may be inferred with reasonable accuracy in the LEHD

data, unfilled vacancies are absent. The existing identification strategies employed by Choo

and Siow (2006) and Menzel (2015), among others, rely heavily on observing the number of

singles on both sides. In particular, we discuss conditions under which ignoring unmatched

partners would not affect the incidence of policy interventions among originally matched

agents.

Third, we investigate the impact of relaxing the assumption that agents on each side of

the market only have preferences for agent types on the opposite side, rather than particular

agents (so that unobserved heterogeneity at the job match level is introduced). We show

that such essential heterogeneity in matches does not undermine the ability to accurately

forecast welfare incidence from shocks to the composition and level of labor supply or

demand, though it does complicate the use of observed transfers to separately identify the

worker and firm pre-transfer surplus values from alternative matches.

The rest of the paper proceeds as follows. Section II describes the two-sided assignment

game that forms the theoretical basis for the empirical analysis, and illustrates how to apply

the insights of Choo and Siow (2006) to the context of labor market transitions to identify

a set of joint surplus parameters that are sufficient to perform counterfactual simulations

of labor demand shock incidence. Section III describes the LEHD database. Section IV

describes sample selection and the smoothing procedure used to eliminate disclosure risk and

minimize the sparsity of the large-scale transition matrix whose entries determine the surplus

parameters. In addition, Section IV also provides detail about the particular specifications

of labor demand shocks that we simulate, the procedure used to perform the simulations,

and the procedure used to aggregate the resulting counterfactual allocations of workers to

positions into interpretable statistics that effectively characterize variation in the incidence

of these shocks. Section V presents our main findings, and Section VI concludes the paper.
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2 Model

2.1 Model Overview

In this section we model the evolution of the labor market over time as a sequence of

static cooperative matching games played by workers and firms. Our model is based on

Choo and Siow (2006)’s model of the marriage matching market, but introduces a number

of features and extensions necessary to adapt the model to a labor market setting. The

exposition of the model closely mirrors Galichon and Salanié (2015), which generalizes Choo

and Siow (2006). Section 2.2 lays out the basics of the matching game. Section 2.3 provides

detail about how the workers and positions (the game’s agents) and the job matches that

determine the game’s payoffs are aggregated to types and groups, respectively. Section 2.4

imposes additional structure on the model that facilitates the identification and estimation

of the underlying group-level match surpluses that determine the observed frequencies of

particular kinds of job transitions. Section 2.5 shows how these estimated match surpluses

can be used to construct counterfactual simulations and forecasts of the incidence of labor

supply and demand shocks of varying worker and firm compositions.

2.2 Defining the Assignment Game

Suppose that in a given year y there are Ĩ potential workers in the labor market, with the

set of individual workers denoted Ĩ. Each worker begins the year in a job match with a

position j at firm m(j), determined in year y− 1, from the set of possible firm positions J̃ .

We let position j = 0 represent unemployment so that positing an initial “job” match for

each worker is without loss of generality.

Suppose that the value to worker i currently at position j of accepting a position k at

wage w the following year is given by:

U(i, j, k) = f i(A(j)) + wik − 1(m(j) 6= m(k))ci(m(j),m(k)) + βEk′ [U(i, k, k′)] (1)

In equation (1), each worker’s flow utility in the year following the job transition is assumed
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to be captured by a quasi-linear money-metric utility function ui(w,A(j)) = f i(A(j))+wik.

A(j) captures a vector of non-pecuniary amenities offered by position j, and f i(∗) reflects

worker i’s valuation of these amenities. These might include injury risk, schedule flexibility,

or the desirability of the geographic location of the position, and can be differently valued

by different individuals. wik captures worker i’s yearly earnings at position k (determined

in equilibrium).8 ci(j, k) captures the cost to the worker of relocating from a position at

establishment m(j) to one at establishment m(k), which could include search costs, moving

costs (which may be related to the geographic distance between establishments m(j) and

m(k)), or training costs borne by the worker.9 In this specification, these costs are only

borne by the worker if the worker changes establishments. βEk′ [U(i, k, k′)] captures the

discounted value of the worker’s job search in the following year, given that he/she will

begin the year at position k, which affects the future value by changing the distribution

of job switching/relocation costs for alternative positions. By combining the non-earnings

components of the worker’s valuation into a single index πlijk, we can rewrite the value

function U(i, j, k) as:

U(i, j, k) = πlijk + wik (2)

On the other side of the market there are K potential positions at establishments that

seek workers in year y that make up the set K̃. Note that the intersection of the sets K̃

and J̃ may be quite large, so that many of the end-of-period positions in K̃ can potentially

be “filled” by simply continuing a job match that already exists. We assume that each

establishment makes hiring decisions independently for each position, so that we can model

the preferences of positions over individual workers rather than modeling firm preferences

over collections of workers.10 Let the value of hiring (or retaining) a given worker i to a

8Since we have data on annual earnings but not wages or hours, for simplicity we assume that the hours
associated with a job match are fixed by contract and common across positions for a given worker, and focus
exclusively on earnings.

9The traditional assignment game does not feature any stochastic search frictions, so that each agent
might in principle match with any agent on the opposite side of the market. However, Menzel (2015) shows
that one can introduce a probability r(i, k) that i and k meet that is independent of other payoff determinants
and assign the utility from the match to −∞ if the pair does not meet, and use these alternative payoffs to
determine the stable matching. Alternatively, search costs might be modeled as a deterministic cost that
must be paid by an agent to an intermediary (e.g. a headhunter or a job matching website) to reveal/allow
contact with particular agents on the opposite side of the market (without which they cannot be found).

10One could explicitly propose a production process that is characterized by a set of necessary tasks that
are performed by independent job positions, where either the amount or quality of output generated by each
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particular position k in firm m(k) be given by:

V (i, j, k) = Rk(i)− wik − 1(m(j) 6= m(k))ck(i, j) + βEi′ [V (i′, j(i′), k)] (3)

Here, Rk(i) captures the contribution of worker i to firm k’s revenue in the coming year

and wik reflects the annual earnings paid to worker i. ck(i, j) captures any training costs,

search costs, and recruiting costs borne by firm m(k) in hiring worker i, which are only

incurred if worker i is not already filling a position at establishment m(k), so that m(j) 6=

m(k).11 βEi′ [V (i′, j(i′), k)] represents the discounted future value of position k. While

not made explicit by the notation, this future value incorporates the fact that worker i

would begin the following year at position k, so that retaining i would not require further

recruiting/training costs. As with the worker’s value, we can also form an index of the

non-pecuniary components of the firm’s valuation, πfijk, and rewrite the value function as:

V (i, j, k) = πfijk − wik (4)

Using the simplified worker and position value functions, we can define the joint surplus

from the transition of worker i to position k as the sum of the worker and position valuations

of the transition:

πijk ≡ U(i, j, k) + V (i, j, k) = πlijk + πfijk (5)

Note that by assuming money-metric value functions that impose additive separability of

current worker earnings in both the worker’s and firm’s payoffs, we have ensured that

position depends on the productivity of the worker who fills it but does not depend on the productivity of the
workers who fill the firm’s other positions(e.g. a factory with many independent sewing machine stations).
However, perhaps a better justification for treating positions as independent is that there are nontrivial
costs of coordinating multiple independent hires/retention decisions that outweigh the gains from better
exploiting the complementarities that do exist in the production process. See Roth and Sotomayor (1992)
for a detailed analysis of how the properties of the assignment game change when firms have preferences
over collections of workers.

11Note that imposing that the training/recruiting cost occurs at the establishment rather than the position
level suggests some dependence in hiring decisions across positions within an establishment, since a worker
hired for one position would not require a second search/recruiting cost if he/she transitioned to another
position within the establishment. This slight abuse of notation could be rectified by adding an extra term in
the continuation value internalizing this externality, but we omit this term to keep the specification simple.
While there may also exist position-level switching costs, our data do not allow us to identify transitions
among different positions within the same establishment.
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the assignment model exhibits transferable utility, with earnings representing the transfer.

Thus, once the payoffs are written in this form, one can see that the game has the exact

structure of the classic assignment game analyzed by Koopmans and Beckmann (1957) and

Shapley and Shubik (1972).

Importantly, note that while we specified particular subcomponents of the worker and

firm value functions in (1) and (3), this was done purely to provide intuition for the deeper

structural parameters that might enter into the group-level joint surplus values θg and the

idiosyncratic components εijk, and thus to better gauge when the assumptions necessary

for valid counterfactuals laid out in section 2.5 below are likely to be satisfied. Any value

function specifications in which current worker earnings are additively separable from other

payoff determinants and in which the combined idiosyncratic (i, k)-level payoff determinants

that constitute εijk are i.i.d across alternative matches will suffice, and the researcher need

not specify any of the subcomponents or the functions governing their links to payoffs in

order to construct the counterfactual simulations that form the primary contribution of the

paper.

A matching or market-wide transition in this labor market is an Ĩ× K̃ transition matrix

µ such that µi,j(i),k = 1 if worker i matches with position k at the end of the period, and

0 otherwise. As in Galichon and Salanié (2015), we focus on stable matchings, which have

the property that a division of joint surplus exists in each job match such that no currently

unmatched worker-firm pair can generate a joint surplus that features a division among the

pair that makes both the worker and firm strictly better off than they are under the proposed

matching. Shapley and Shubik (1972) showed that the set of stable matchings coincides

with both the core of the assignment game and with the set of competitive equilibria from

a decentralized labor market, and that in the presence of transferable utility there will

exist a unique assignment (or, equivalently, competitive equilibrium allocation) of origin

job matches to destination job matches as long as preferences are strict on both sides of

the market. This equilibrium allocation/stable assignment will maximize the aggregate

surplus
∑

i∈Ĩ
∑

k∈K̃ µi,kπij(i)k +
∑

i∈Ĩ µi,0πi0 +
∑

k∈K̃ µ0,kπk0. Thus, it can be found by

solving a linear programming problem in which µi,k is chosen to maximize this sum subject
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to the constraints that each worker and firm can be matched to at most one counterpart:∑
i′ µi′,k ≤ 1 ∀ k and

∑
k′ µi,k′ ≤ 1 ∀ i.

Equivalently, the unique stable assignment can also be found by solving the dual problem:

identifying a set of worker discounted utility values {ri} and firm discounted profit values

{qk} that minimize the total “cost” of all workers and firms, subject to the constraint that

these values cannot violate the underlying joint surplus values: ri+qk ≥ πij(i)k ∀ (i, k). The

optimal assignment can then be found via the following conditions (Galichon and Salanié

(2015)):

µij(i)k = 1 iff k ∈ arg max
k∈K̃∪0

πij(i)k − qk and i ∈ arg max
i∈Ĩ∪0

πij(i)k − ri (6)

These conditions, which are derived from the dual problem, are the ones we will aggregate

in the next section that will deliver identification of aggregate “type”-level surpluses. More-

over, Koopmans and Beckmann (1957) point out that only the set {ri} (or alternatively

{qk}) is necessary to construct the stable assignment, since the maximizing choices for the

position side of the market in (6) determine the full set of job matches, and the maximized

value for each position k is its qk value.

Finally, given reservation values {ri} and {qk} from the dual solution, Shapley and Shu-

bik (1972) show how to decentralize this optimal assignment via a set of earnings transfers

wik that appear in the worker and firm value functions above:

wik = πfik − qk (7)

Because ri + qk = πik ≡ πfik + πlik for any pair (i, k) that is matched in the unique stable

match, this also implies that:

wik = ri − πlik (8)

Then the conditions (6) can be rewritten as the standard requirements that worker and firm

choices must be utility- and profit-maximizing, respectively:

µij(i)k = 1 iff k ∈ arg max
k∈K̃∪0

πlij(i)k + wik and i ∈ arg max
i∈Ĩ∪0

πfij(i)k − wik (9)
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This shows that the market-clearing earnings amounts will in general be specific to worker-

position pairs (i, k). By contrast, the market-clearing reservation values ri and qk will

be worker-specific and position-specific, respectively, which is a property we will exploit

below. Importantly, while the stable assignment µik is generally unique, the reservation

values and wages are not: all {ri} values can generally be shifted either up or down by a

small increment δ (with offsetting decreases or increases for {qk}) without violating any of

the stability conditions.12 The exact reservation values/wages that emerge depend on the

particular process by which the decentralized labor market converges.

While our analysis does not require us to take a stand on a particular earnings determina-

tion process, it is nonetheless illuminating to present one candidate process: a simultaneous

ascending auction. In such an auction, positions are bidding on all workers simultaneously.

Each position may only be the highest bidder for a single worker (or for none, if it chooses

to remain vacant). Workers may set reservation utilities which will vary based on the value

different workers place on remaining nonemployed for a year. The position k that bids

the highest discounted utility ri to a worker i retains the worker and pays the worker an

annual earnings amount wik that, when combined with the non-pecuniary component πlik,

is sufficient to ensure the worker’s promised valuation Uik = ri. The auction ends when no

position wishes to outbid any other position for a worker. Some workers may remain nonem-

ployed, and some positions may remain unfilled. Importantly, under the quasi-linear utility

specification above, even though positions are bidding values of a one period commitment

Uik (which include continuation values), they each start at different baseline levels of πlik,

and changes in bidding can always take the form of earnings increases. Thus, when solving

for changes in the stable assignment of workers to firms following shocks to labor demand

composition below, we can compute the changes in reservation utilities ri that clear the

market, and we may scale these changes in terms of annual earnings gains (though in some

cases workers achieving utility gains will take an earnings cut to work at a firm offering

non-pecuniary values that more than offset the earnings decrease).

12Thus, when generating counterfactual allocations in the empirical work below, we will often normalize
changes in utility values for one type of worker to be zero, and analyze relative changes that are better
identified.
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Because we do not have data on unfilled positions, from this point forward we focus

attention only on the subset of positions J ∈ J̃ and K ∈ K̃ that match with workers in the

beginning and end of the period, respectively.13 As is shown by Choo and Siow (2006) and

Galichon and Salanié (2015), the estimation of the group match surpluses defined below

can easily accommodate unfilled positions if such data were available.

While ignoring unfilled positions is a drawback of our empirical work, note that each

subset of assignments within a stable matching must also be stable. Thus, stability among

the matrix of observed year-to-year transitions between dominant jobs based on Ĩ and K is

a necessary condition for stability of the full market transition matrix defined by Ĩ and K̃.

Therefore, the relationships between the transition surpluses {πijk} that we recover would

not be reversed if data were augmented with additional transitions and unmatched agents.

In principal, though, unfilled positions may put upward pressure on wages that affect

the division of surplus between workers and positions, even if they do not affect the final

assignment of workers to positions. Furthermore, unfilled positions might potentially be-

come filled in the wake of the potential labor supply and demand shocks that we simulate,

so that the incidence that we measure in our counterfactual simulations described below

may be slightly distorted. For example, a tornado that eliminates a number of local jobs

may depress local wage levels far enough for previously unfilled positions to become the

most desirable options for some local workers. To formally rule out such scenarios, we must

assume that no unfilled position is ever the second-best option for any worker who takes

a job in the destination period, both in our data and in our counterfactual simulations.14

This assumption implies that the unfilled positions do not affect either the allocation of

workers to positions nor the division of surplus among them. While the assumption is

likely to be violated, the consequences of such violations for most stimulus simulations is

13In our empirical application we also focus on a “dominant” job for each worker in each year (the job
that yields the highest earnings), so that positions that are filled by a worker for whom it is a secondary job
will also not be included during estimation.

14Instead, positions who eventually settle for other workers represent the best outside option for each
worker, in the following sense: for each worker, there exists a position that ends up being filled by another
worker that could increase its payoff by hiring the chosen worker at a wage yielding a higher utility to the
chosen worker than their utility at any wage any unfilled position would prefer to remaining unfilled. (Of
course, the filled position cannot increase its payoff by outbidding the position that actually hires the chosen
worker, since the observed matching is presumed to be stable).
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likely to be minimal, since positions that were unfilled at a lower level of labor demand are

unlikely to be filled when local labor demand increases. However, our most severe natural

disaster simulations may overstate the degree of welfare loss by local workers by ignoring

the existence of nearby vacancies that such workers could fill.

2.3 Modeling the Match Surpluses

Part of the joint transition surplus πik for worker-position pair (i, k) from transition (i, j(i))→

(i, k) (henceforth denoted (i, j, k)) is likely to be common to any transition (i′, j(i′)) →

(i′, k′) that shares certain salient characteristics of the worker, positions, origin or desti-

nation job matches, or even transition. For example, positions at larger firms may face

smaller per-position costs of recruiting distant workers due to economies of scale; highly

skilled workers may generate larger surplus at positions whose output is particularly sen-

sitive to worker skill. Thus, we assign each potential transition (i, j, k) to one of a set of

mutually exclusive groups g ∈ G (with G ≡ |G|), and use the notation g(i, j, k) to denote

the group to which transition (i, j, k) has been assigned. Importantly, these groups are

always defined by a combination of observable characteristics of the worker, firms, origin

(i, j(i)) or destination (i, k) job matches, or even the transition (i, j, k). The characteristics

that define the set of transition groups should be chosen to capture as comprehensively but

parsimoniously as possible the underlying (structural) preferences, productivities, moving

costs, and geographic search costs that enter into (1) and (3) and thus determine the relative

desirability of the job match for both the worker and the position.

Some subset of these observed characteristics may only relate to the worker i, the origin

position j(i), or the worker-origin position job match (i, j(i)), and will be common to all

destination positions k′ ∈ K. We use this subset of characteristics to assign each worker-

origin position job match (i, j) to an origin type o ∈ O, and use the notation o(i, j) to

capture the origin type to which (i, j(i)) has been assigned. In our empirical work below,

the origin types are defined by unique combinations of the following pair of characteristics:

the geographic location (either census tract, public-use micro area PUMA, or U.S. state) of

the establishment j at which worker i works in the origin period and the skill level of worker

18



i (proxied by the national earnings quintile associated with i’s earnings while at position j

(at time t)).15. In future versions we hope to add either the age category of worker i (at

time t) and/or the industry supersector of position j(i).

Analogously, another (mutually exclusive) subset of the observed characteristics defining

the transition group g may only characterize the destination position (i.e. they are common

to all origin jobs matches (i, j)). This subset is used to assign each destination position

k ∈ K to a destination type d ∈ D. In our empirical work, the destination types are

defined by unique combinations of the following characteristics: the geographic location

(U.S. census tract, PUMA, or state) of position k’s establishment, the firm size quartile

of the firm associated with position k(at time t+ 1) in the national firm-level employment

distribution, the quartile of average worker earnings at establishment m(k) at time t in

the national establishment-level average earnings distribution (intended to proxy for the

average required skill level of establishment m(k)), and the industry supersector of the firm

associated with position k.16

Finally, let z(i, j, k) capture the remaining subset of characteristics defining the tran-

sition group that depend on both (i, j(i)) and k. In our empirical work below, the single

z characteristic will be an indicator for whether the “transition” represents continued em-

ployment at the same establishment, 1(m(k) = m(j)), and is intended to capture the fact

that search, recruiting, and training costs do not have to be repaid by existing workers (as

reflected in the terms 1(m(j) 6= m(k))ci(j, k) and 1(m(j) 6= m(k))ck(i, j) in the value func-

tions (1) and (3) above). This allows us to place job stayers and job movers into different

groups, which in turn allows establishments to retain existing employees at different rates

than they hire other local workers (important for predicting which workers end up accepting

newly created jobs).

15Since the goal is to characterize the geographic scope of workers’ searches for jobs and firms’ searches for
employees, we would ideally use residential location to define the origin job type and establishment location
to define the destination job type. However, we do not have access to the residential location of the worker,
so we use establishment location in year t as a proxy for residential location in year t.

16Note that we interpret the earnings category of (i, j) at time t as a proxy for worker i’s skill, but are
interpreting the average earnings category of firm m(k) at time t + 1 as a proxy for the skill requirements
of position k. This seeming inconsistency can be rationalized if we assume that the worker, once hired,
develops the skills required by the job by the end of the year (perhaps incurring some training costs that
could be borne by either the worker or the firm and thus affect the surplus πijk).
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Thus, without loss of generality we can rewrite the mapping g(i, j, k) as g(o(i, j), d(k), z(i, j, k)) ≡

g(o, d, z). Importantly, while knowledge of g is sufficient to recover both o and d, knowledge

of o and d need not uniquely identify the group g (due to the presence of z). In a slight

abuse of notation, we will sometimes use o(g) = o(g(i, j, k)) = o(i, j) to refer to the origin

type associated with group g, and we will use d(g) = d(g(i, j, k) = d(k) to refer to the

destination type associated with group g.

Given these definitions, we can decompose the transition surplus πijk into the part that

is common to all transitions classified as group g(i, j, k), denoted θg, and an idiosyncratic

component εijk specific to the particular transition (i, j, k):

πijk = θg(i,j,k) + σεijk ≡ θodz + σεijk (10)

εijk might reflect, for example, the low psychic costs of a particular worker who is moving

back to the location where his family lives, or perhaps particular skill requirements of

position k that worker i uniquely possesses. We assume below that εijk is independent and

identically distributed across all alternative matches (i, k′) and (i′, k) ∈ Ĩ × K and follows

a Type 1 extreme value distribution. σ is a scaling parameter that captures the relative

importance of idiosyncratic components of the matching surplus compared to components

that are common among all transitions classified into the same group g in determining the

variation in match surpluses across potential pairs {(i, k) ∈ Ĩ × K}.

Our goal is to use the observed matching µ to recover the set of group mean surplus

values {θg}. As Galichon and Salanié (2015) emphasize, one way to do this is to impose

further structure on the production, utility, search cost, and recruiting cost functions in (1)

and (3), so that θg → θg(λ1) for some smaller set of structural parameters λ1, with the

distribution of εijk depending on a second parameter set λ2. Maximum likelihood can then

be used to relate the observed match µ to the parameters of the model.

Driven by a combination of computational considerations and an interest in being ag-

nostic about the various structural functions that underlie {θg}, we follow Choo and Siow

(2006) and leave the set {θg} unrestricted, achieving identification instead by assuming that

εijk is distributed Type 1 extreme value. Their model can be re-expressed in our notation
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as:

πijk = θod + ε1o(i,j)k + ε2ijd(k) (11)

where both ε1o(i,j)k and ε2ijd(k) are distributed Type 1 extreme value. Our formulation has

three advantages. First, we allow for the possibility that part of the match surplus is

truly idiosyncratic: the combined surplus from two transitions (ik) and (i′k′) would be

altered if the two workers swapped destination positions, even if (i, j(i)) and (i′, j(i′)) are

both associated with the same origin type (o(i, j(i)) = o(i′, j(i′))) and k and k′ are both

associated with the same destination type (d(k) = d(k′)). Given the coarseness of the

origin and destination types in our (and their) empirical work, such within-type-combination

heterogeneity in match quality is very likely to exist in the labor market. Allowing such

essential heterogeneity, however, comes at a cost: as discussed in Section 2.5 and Appendix

A4, we forfeit a straightforward way to use observed transfers to separate the group mean

surplus θg into group-level worker and firm subcomponents θlg and θfg analogous to the

transition-level surplus components πlijk and πfijk defined above. Fortunately, this further

decomposition is not necessary to perform an important class of counterfactual simulations

(discussed further below).

Second, we allow for multiple groups within origin/destination type combination (o, d),

so that θod → θodz. In our setting, allowing for job switching costs even within the same

local labor market is essential for making accurate predictions about how much reallocation

a given shift in labor demand or supply will cause.17

Third, we allow for a separate parameter, σ, that captures the relative importance

of idiosyncratic match-level factors versus group-level factors in determining the overall

surplus from a job transition. As we will see below, the introduction of σ will not change

the unique stable job assignments in our counterfactual simulations, but it will play a key

role in determining the size of changes in offered utility values ri for particular workers in

particular locations that are necessary to facilitate the reallocation that yields the stable

17In their marriage market setting, one could classify end-of-year matches among a given male type/female
type combination (o, d) with an additional variable z capturing whether the match is a continuing marriage
or a new marriage, or by the allocation of household work within the marriage. Data on attributes of the
match (beyond the attributes of the agents creating the match) often exist that can enrich our understanding
of how the terms of matches are negotiated or how they succeed/fail.
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assignment.

2.4 Identification of the Set of Group-Level Match Surpluses {θg}

Recall from section 2.2 that a necessary condition for a matching µ to be stable (and thus

sustainable as a competitive equilibrium) is that there exists a set of worker values {ri} such

that µik = 1 implies that i ∈ arg maxi∈Ĩ πij(i)k − ri for any potential match (i, k) ∈ Ĩ × K.

Given the Type 1 extreme value assumption for εijk in equation (10), Decker et al. (2013)

show that the probability that an existing position k is filled by hiring (or continuing to

employ) i is given by:

P (i|k) =
e
θg−ri
σ∑

i′∈I e
θg′−ri′

σ

(12)

where we have suppressed the dependence of g and g′ on (i, j(i), k) and (i′, j(i′), k), respec-

tively. We can then use equation (12) to derive an expression for the probability that a

randomly chosen position associated with destination type d hires a worker whose transition

to the position is classified into group g:

P (g|d) =
∑
k∈d

P (g|d, k)P (k|d) =
1

|d|
∑
k∈d

P (g|k)

=
1

|d|
∑
k∈d

∑
i:g(i,j(i),k)=g

P (i|k)

=
1

|d|
∑
k∈d

∑
i:g(i,j(i),k)=g

e
θg−ri
σ∑

i′∈I e
θg′−ri′

σ

=
1

|d|
∑
k∈d

(e
θg
σ )(

∑
i:g(i,j(i),k)=g e

−ri
σ )∑

i′∈I e
θg′−ri′

σ

(13)

Next, we make two assumptions that allow us to express this conditional probability ex-

clusively in terms of the group g and the types o, d. First, Assumption 1 imposes that,

among workers from the same origin type o defined by skill class and existing establish-

ment location, the mean exponentiated worker utility values e
−ri
σ vary minimally across

initial establishments, so that existing employees (potential stayers) and non-employees of

each firm have approximately the same mean value of ri. In other words, the outside op-
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tions of (or demand for) workers in the same skill class do not differ systematically across

establishments within a small local area. This becomes a better approximation the more

characteristics (such as occupation or education) are used to define an origin type o(i, j). To

formalize this assumption, recall that the only characteristic z that distinguishes transition

groups featuring the same combination of origin and destination types (o, d) is an indicator

for whether the worker i was already employed by k in the previous period, so that a given

(o, d) pair contains at most two groups, potential stayers and potential new hires. We can

thus write:

Assumption 1:
1

|gk|
∑

i:g(i,j(i),k)=g

e−
ri
σ ≈ 1

|o|
∑

i:o(i,j(i))=o(g)

e−
ri
σ = Co(g) ∀(g, k) (14)

where |o| and |gk| denote, respectively, the number of workers classified as origin type o

and the number of workers whose transition would be classified as group g (either stayers

or new hires among those in o) if hired by position k (a subset of the workers in o(g)). Co

denotes the mean value of e−
ri
σ for a given origin group o.

Second, Assumption 2 imposes that establishments in the same geographic area that are

in the same industry supersector and same establishment size and establishment average

pay categories have roughly the same number and skill composition of employees, so that

the number of potential stayers vs. new hires among workers from a given origin type o is

common across establishments assigned to the same destination type d. Formally:

Assumption 2: P (z(g)|o(g), k) ≈ P (z(g)|o(g), d(k)) ∀ k, ∀ g (15)

This implies:

|gk| ≡ P (z(g)|o(g), k)f(o(g))|I| ≈ P (z(g)|o(g), d(k))f(o(g))|I| (16)

These assumptions are necessary because the aggregate mean of e
−ri
σ , a non-linear function

of a random variable, depends on its entire distribution. Essentially, the probability of filling

a position with an existing employee depends on how many employees one already has, so
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that the group average depends on the firm size distribution among firms who are at risk of

creating a transition that could be classified into g. We are essentially hoping that Jensen’s

inequality, f(E[X]) ≈ E[f(X)], is close to equality after conditioning on the characteristics

that define our origin and destination types (most notably establishment size category).

Note that the set of conditional probabilities P (z(g)|o, d) ≡ P (z(i, j, k) = z(g|o, d) can

be assigned/estimated for each group g prior to the rest of estimation using the average

across all positions in group g of the fraction of candidates for the position that are existing

employees.

Combined, these two assumptions imply that

∑
i:g(i,j(i),k)=g

e−
ri
σ ≈ P (z(g)|o(g), d(k))f(o(g))|I|Co(g). (17)

Applying these assumptions to the last expression in (13), we obtain:18

P (g|d) =
∑
k∈d

(
1

|d|
)
e
θg
σ
∑

i:g(i,j(i),k)=g e
− ri
σ∑

i′∈I e
θg′−ri′

σ

(18)

=
∑
k∈d

(
1

|d|
)

e
θg
σ
∑

i:g(i,j(i),k)=g e
− ri
σ∑

o′∈O
∑

g′∈(o,d)
∑

i′:g(i′,j(i),k)=g′ e
θg′−ri′

σ

(19)

=
∑
k∈d

(
1

|d|
)

e
θg
σ P (z(g)|o, d)f(o)|I|Co∑

o′∈O
∑

g′∈(o,d) e
θg′
σ P (z(g′)|o′, d)f(o′)|I|Co′

(20)

=
e
θg
σ P (z(g)|o, d)f(o)|I|Co∑

o′∈O
∑

g′∈(o,d) e
θg′
σ P (z(g′)|o′, d)f(o′)|I|Co′

∑
k∈d

(
1

|d|
) (21)

=
e
θg
σ P (z(g)|o, d)f(o)Co∑

o′∈O
∑

g′∈(o,d) e
θg′
σ P (z(g′)|o′, d)f(o′)Co′

(22)

Let µ̂ denote an observed empirical matching. Since each observed transition can be

assigned to a unique group g, we can easily aggregate the empirical matching into a group-

18Note that in contrast to Choo and Siow (2006), the probability that a worker of a given origin type o is
chosen by a firm of destination type d depends on share of workers of type o in the population, f(o). This
difference stems from allowing an unobserved surplus component at the worker-position level. Menzel (2015)
derives a similar formula in his nontransferable utility assignment model based on an unobserved surplus
component at the agent pair level.

24



level empirical distribution of transitions. Specifically, we let P̂g denote the fraction of all

observed transitions that are assigned to group g; P̂g ≡ 1
|I|

∑
(i,j(i),k)∈I×K µ̂ik1(g(i, j(i), k) =

g). Similarly, f̂(o) denotes the empirical fraction of all job transitions whose origin job match

(i, j) can be classified as type o: f̂(o) = 1
|I|

∑
i∈I 1(o(i, j(i)) = o). Finally, ĥ(d) denotes the

empirical fraction of all job transitions whose destination position can be classified as type

d : h(d) = 1
|K|

∑
k∈K 1(d(k) = d).19 Based on these definitions, we can estimate the (year-

specific) conditional choice probability P (g|d) by simply calculating the observed fraction

of destination positions classified as type d that were filled via transitions assigned to group

g: P̂ (g|d) =
P̂g

ĥ(d)
. Consequently, as the number of observed transitions gets large, each

member of the set of empirical conditional choice probabilities {P̂ (g|d)} should converge to

the corresponding expression in (22).

We are now ready to investigate the extent to which these assumptions, combined with

the observed empirical choice probabilities {P̂ (g|d)}, can inform us about the mean match

surplus values {θg}. Consider the log odds between two conditional choice probabilities

involving an (arbitrarily chosen) destination type d1 and two (arbitrarily chosen) transition

group types g1 and g2:

ln(
P̂g1|d1

P̂g2|d1

) = ln(
e
θg1
σ P (z(g1)|o(g1), d1)f(o(g1))Co(g1)∑

o′∈O
∑

g′∈(o,d1)
e
θg′
σ P (z(g′)|o′, d1)f(o′)Co′

)

− ln(
e
θg2
σ P (z(g2)|o(g2), d1)f(o(g2))Co(g2)∑

o′∈O
∑

g′∈(o,d1)
e
θg′
σ P (z(g′)|o′, d1)f(o′)Co′

)

=
θg1

σ
+ ln(P (z(g1)|o(g1), d1)) + ln(f(o(g1))) + ln(Co(g1))−

θg2

σ
− ln(P (z(g2)|o(g2), d1))− ln(f(o(g2)))− ln(Co(g2)) (23)

Since the set {P (z(g)|o, d)} is either observed or directly estimable (depending on

whether a sample or the entire population is used), for the purposes of establishing identi-

fication we can treat ln(P (z(g1)|o(g1), d1)) and ln(P (z(g2)|o(g2), d1)) as known. Similarly,

f(o(g1)) and f(o(g2)) are observed/estimable. Bringing all these terms to the left side of

19Note that in our empirical work every transition will have both an origin and a destination because
we do not observe unfilled vacancies and we augment K to include a sufficient number of nonemployment
“positions”. As a result, |Ĩ| = |K|
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equation (23), we obtain:

ln(
P̂g1|d1

/(P (z(g1)|o(g1, d1))f(o(g1)))

P̂g2|d1
/(P (z(g2)|o(g2), d1)f(o(g2)))

) = (
θg1 − θg2

σ
) + (ln(Co(g1))− ln(Co(g2))) (24)

We see that the adjusted log odds only identifies the relative mean (re-scaled) surplus values

from transition groups g1 and g2, (
θg1−θg2

σ ), in the case where both groups are associated

with the same origin job type: o(g1) = o(g2). Otherwise, the difference in surplus values is

conflated with the log difference in mean exponentiated worker discounted utilities between

the two origin job types (ln(Co(g1))− ln(Co(g2))).

However, now consider two additional transition groups g3 and g4 that are both asso-

ciated with some destination type d2 such that o(g3) = o(g1) and o(g4) = o(g2).
20 Given

that the two destination match types and the two origin match types were arbitrarily cho-

sen, the four groups g1 − g4 can be chosen to represent the two pairs of transition groups

that would be created by the two ways to match a given pair of destination positions to a

given pair of workers. If we augment equation (24) by instead taking the log of the ratio of

the (appropriately re-scaled) odds of g3 and g4 (conditional on d2) and the (appropriately

re-scaled) odds of g1 and g2 (conditional on d1), we obtain:

ln((
P̂g3|d2

/(P (z(g3)|o(g3), d2)f(o(g3)))

P̂g4|d2
/(P (z(g4)|o(g4), d2)f(o(g4)))

)/(
P̂g1|d1

/(P (z(g1)|o(g1, d1))f(o(g1)))

P̂g2|d1
/(P (z(g2)|o(g2), d1)f(o(g2)))

))

= [(
θg3 − θg4

σ
) + (ln(Co(g3))− ln(Co(g4)))]− [(

θg1 − θg2

σ
) + (ln(Co(g1))− ln(Co(g2)))]

= (
θg3 − θg4)− (θg1 − θg2)

σ
) (25)

Thus, we see that the appropriate log odds ratio can identify the expected gain in mean

scaled surplus values from a swap among partners from any two end-of-year job matches.

Note that these difference-in-differences do not preserve information about the baseline

welfare of either worker types or firm types: the mean discounted value of each worker type

and each destination position type gets eliminated during the differencing/conditioning,

respectively.

20d2 could be (but need not be) the same destination type as d1.
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However, the set of difference-in-differences ΘD−in−D ≡ { (θg−θg′ )−(θg′′−θg′′′ )σ ∀ (g, g′, g′′, g′′′) :

o(g) = o(g′′), o(g′) = o(g′′′), d(g) = d(g′), d(g′′) = d(g′′′))} preserves the crucial information

about the relative efficiency of different matchings that exists in the observed transition

group frequencies.

Specifically, in the next subsection we show that identification of the set of surplus

difference-in-differences is sufficient to generate the unique assignment in counterfactual

simulations that forecast the aggregate distribution of transition types P (g) for any arbi-

trary change in either the marginal distribution of worker origin match types f(o) or the

marginal distribution of destination position types h(d) (or both). Furthermore, if more

than one observed matching is available, then σ can potentially be (roughly) estimated as

well, allowing for a proper welfare analysis that calculates the approximate mean utility

and profit gain for each worker origin type and firm destination type, respectively, from any

such shifts in labor supply or demand.

2.5 Counterfactual Simulations

This subsection demonstrates how to predict the way in which a set of workers (initially

matched with a set of positions) would be reallocated to a new set of positions, given a

particular job matching technology (i.e. collection of production functions, utility functions,

and search and recruiting cost functions). In our empirical work, such counterfactuals will

involve altering the distribution of destination positions by introducing labor demand shocks

of various forms.

We can characterize the set of workers to be reallocated using their distribution across

origin match types, fCF (o). The “CF” superscript indicates that this could potentially

be a counterfactual distribution (e.g. capturing a proposed influx of refugees). Similarly,

the set of counterfactual positions to be filled can be represented by its type distribu-

tion hCF (d), and the prevailing technology can be denoted {θCFg }. The values fCF (o),

hCF (d), and {θCFg } are all treated as inputs that are either observed or constructed by

the researcher/policymaker. The goal is to use these inputs to predict the equilibrium

distribution of transitions across transition groups, {g = 1, . . . , G}, as captured by PCF (g).
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Consider the case of a manufacturing plant considering relocation. The immediate

change in the location of a set of manufacturing and management positions that would

occur is known by a local development board, and the existing group mean surpluses {θCFg }

have been estimated; the board wishes to predict the extent to which the plant reloca-

tion will decrease the probability of nonemployment and more generally increase the utility

among existing workers/job seekers in the local area versus workers arriving from neighbor-

ing or distant locales (and perhaps the profits of other local firms relative to more distant

firms).

Just as we did when demonstrating identification of the set ΘD−in−D in the above

subsection, we assume that the unique counterfactual assignment also satisfies Assumptions

1 and 2 above, which implies that
∑

i:g(i,j(i),k)=g e
−rCFi ≈ PCF (g|o(g))fCF (o(g))|I|CCFo for

sets of group- and type-specific constants {PCF (z(g)|o(g), d(g))} and {CCFo }. We also

assume that the average share of workers of each origin type who are existing employees of

a random position in each destination type, {PCF (z(g)|o(g), d(g))}, is known, and treat it

as an input. In particular, when fCF (o) = fy
′
(o) and hCF (d) = hy

′
(d) for some observed

year y′, then the appropriate existing employee fractions can be obtained via PCF (g|o(g)) =

P y
′
(g|o(g)) ∀ g, which is observed. Maintaining the assumed Type 1 distribution for the

idiosyncratic component of the match surplus εijk, the counterfactual conditional choice

probability PCF (g|d) can be expressed as:

PCF (g|d) =
e
θCFg
σ PCF (z(g)|o(g), d)fCF (o(g))CCFo∑

o′∈O
∑

g′∈(o,d) e
θCF
g′
σ PCF (z(g′)|o′(g′), d)fCF (o′)CCFo′

(26)

The origin type-specific mean worker discounted utility values {CCF1 . . . CCFO } are equi-

librium objects that will be affected by the counterfactual changes in technology incorpo-

rated into {θCFg } and the counterfactual changes in the composition of both supply and

demand unknown incorporated into fCF (o) and hCF (d), and are thus unknown. As a re-

sult, each counterfactual conditional choice probability cannot be immediately constructed,

and thus must be treated as a function of the vector of type-specific mean worker exponen-

tiated discounted utility values. We assume that no position captured by hCF (d) chooses
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to remain vacant in any the equilibria we seek (as discussed above, unfilled positions may

be ignored if they do not affect the discounted utility values CCF ≡ {CCF1 . . . CCFO } that

clear the market). This implies that only relative prices of alternative origin types matter

in determining the equilibrium assignment, so that we can normalize CCF1 = 0 and write

PCF (g|d) ≡ PCF (g|d)(CCF).

However, if the counterfactual conditional choice probabilities {PCF (g|d)} represent the

group-level aggregation of an equilibrium (stable) assignment, they must be consistent with

type-level market clearing. In particular, the aggregate demand for each origin type o

implied by the (appropriately weighted) sum of conditional choice probabilities may not

exceed the supply, captured by fCF (o).

Furthermore, in Appendix A1 we show that if an extra, dummy “position” type is added

with mass equal to the share of workers who will be left unmatched (knowable in advance

given our assumption that the number of positions to be filled is perfectly inelastic with

respect to the vector {CCF1 . . . CCFO }), then the augmented “demand” (including “demand”

from nonemployment) will in fact equal supply for each type o.21 These dummy nonem-

ployment positions represent a computational mechanism for appropriately incorporating

the mean surpluses workers obtain from nonemployment, {πli0}.

Since the origin-type distribution fCF (∗) must sum to one, we obtain the following O−1

market clearing conditions:

∑
d∈D

hCF (d)(
∑

g:o(g)=2

PCF (g|d,CCF)) = fCF (2)

...∑
d∈D

hCF (d)(
∑

g:o(g)=O

PCF (g|d,CCF)) = fCF (O) (27)

21We formally prove this result as Proposition A1 in the appendix. The intuition behind the proof is
that the unique assignment could have been computed by aggregating the supply-side stability conditions
µij(i)k = 1 iff k ∈ arg maxk∈K̃∪0 πij(i)k − qk instead. This can be motivated via an assignment mechanism
where workers bid for positions instead of the reverse. But under the assumption that all positions will be
filled, “demand” for positions of each destination type d will exactly equal supply. We then show that the
group-level assignment that satisfies the resulting system of excess-demand equations (and is thus the unique
group-level assignment consistent with an individual-level stable matching) will also satisfy the corresponding
system of equations for the worker-side of the market, provided that the appropriate “demand” from dummy
nonemployment positions is added.
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These market clearing conditions represent a system of O−1 equations with O−1 unknowns,

{CCF2 , . . . , CCFO }. Given a solution to this system, one can then construct the counterfactual

transition probability for any transition group via PCF (g) =
∑

d h
CF (d)PCF (g|d,CCF).

Galichon and Salanié (2015) and Decker et al. (2013) each show that the probability

distribution over transition groups PCF (g) that satisfies the stability and market clearing

conditions is unique. Since any solution to this system also satisfies the stability and market

clearing conditions, it must be the unique aggregate counterfactual equilibrium assignment.

This line of reasoning reveals that we can construct a unique counterfactual transition

between labor market allocations given any marginal distributions of origin and destination

job matches (fCF (∗) and hCF (∗)) and any vector of mean group surplus values {θCFg } (and

any vector of existing employee shares {PCF (z(g)|o, d)}).

A final issue remains to be discussed. In our counterfactual labor demand shock simu-

lations below, we will treat the full set of group-level joint surpluses Θ ≡ {θg ∀ g ∈ G} as

known, despite the fact that our identification argument in section 2.4 suggests that only

the set of surplus difference-in-differences ΘD−in−D are identified. In Appendix A2, we

prove the following proposition:

Proposition 1:

Define the set ΘD−in−D ≡ { (θg−θg′ )−(θg′′−θg′′′ )σ ∀ (g, g′, g′′, g′′′) : o(g) = o(g′′), o(g′) =

o(g′′′), d(g) = d(g′), d(g′′) = d(g′′′))}. Given knowledge of ΘD−in−D, a set Θ̃ = {θ̃g ∀ g ∈ G}

can be constructed such that the unique group level assignment PCF (g) that satisfies the sys-

tem of excess demand equations (27) using θCFg = θ̃g ∀ g and arbitrary marginal PMFs for

origin and destination types fCF (∗) and gCF (∗) will also satisfy the corresponding system

of excess demand equations using θCFg = θg ∀ g ∈ G and arbitrary PMFs fCF (∗) and

gCF (∗). Furthermore, denote by C̃CF ≡ {C̃CF1 , . . . , C̃CFO } the market-clearing utility val-

ues that clear the market using θCFg = θ̃g, and denote by CCF ≡ {CCF1 , . . . , CCFO } the

market-clearing utility values that clear the market using θCFg = θg. Then C̃CF will satisfy

C̃CFo = CCFo e
−∆o
σ ∀ o ∈ O for some set of origin type-specific constants {∆o} that is in-

variant to the choice of fCF (∗) and gCF (∗).

30



Essentially, the proposition states that the identified set of surplus difference-in-differences

ΘD−in−D contains sufficient information to generate the unique counterfactual group-level

assignment PCF (g) that would be consistent with the corresponding true set of surpluses

Θ. Furthermore, the vector of utility premia C̃CF that clears the market using the ar-

tificial surpluses Θ̃ generated from the surplus difference-in-differences will always differ

from the “true” premia CCF that clear the counterfactual market under Θ by the same

o-type-specific constants regardless of the compositions of supply fCF (o) and hCF (d) used

to define the counterfactual.

While absolute levels of counterfactual mean utility by origin type are never uniquely

determined (even when Θ is fully known), the existence of the “bias” terms {∆o} in Propo-

sition 1 indicates that the relative levels of utility among origin types in counterfactual

allocations (including the true “counterfactual” that was observed) are not identified. One

cannot infer the level of relative utility among workers at different skill levels who start

the time period in different locations. This inability to determine the existing division of

surplus among workers and firms for any origin and destination type combination, which

does not appear in Choo and Siow (2006) or Galichon and Salanié (2015), stems from the

assumptions necessary to accommodate the lack of data on unfilled vacancies.

However, because the “bias” terms {∆o} are constant across counterfactuals featuring

different supply and demand compositions fCF (o) and hCF (d), the relative differences in

origin-type mean utilities, (
(rCF1
o −rCF2

o )−(rCF1
o′ −r

CF2
o′ )

σ ) among two counterfactuals across ori-

gin types can be identified. Note that such a pair of counterfactuals might include one

that features a stimulus package or natural disaster versus an otherwise identical counter-

factual that does not. For certain counterfactual scenarios, one might plausible restrict

utility gains for a particular origin type reference group to be known, thereby allowing

(scaled) utility gains or losses rCF1
o −rCF2

o
σ for other origin-type groups to be identified. In

our context, we assume that a plant relocation generates zero aggregate utility gains for

workers (since aggregate labor demand did not change), creating a natural reference group

(the population-weighted mean across all origin types) for whom the change is assumed
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to be zero. Alternatively, we assume that the small, very local stimuli and natural disas-

ters we consider generate zero utility gain or loss for workers on the opposite side of the

country. Such restrictions allow the share of total welfare gains (or losses) from a labor

demand (and/or supply) shock experienced by each origin worker type to be determined.

Furthermore, because the model is symmetric with respect to workers and positions, this

also implies that the mean changes in destination firm-type discounted profits
qCF1
k −qCF2

k
σ

can also be identified, so that the share of profit gains (or losses) can also be computed.

Thus, when combined with the available data, the model permits a reasonably complete

analysis of welfare incidence from labor supply and demand shocks.

While the share of welfare gains or losses for workers (or firms) can be identified without

knowledge of σ, σ is nonetheless a parameter of consider interest. Because both the money-

metric utility function (1) and the profit function (3) we adopted above are linear in worker

earnings, knowledge of σ would allow the estimated scaled utility gains rCF1
o −rCF2

o
σ for origin

worker types and scaled profit gains
qCF1
k −qCF2

k
σ to be re-scaled in dollar terms, making it

easy to understand whether the utility gains or losses from a given labor market shock are

economically meaningful.

Recall that σ captures the relative contribution of the idiosyncratic worker-firm com-

ponents εij(i)k versus systematic group-level components θg to the overall variance in joint

surpluses across all worker-position pairs. Intuitively, when one observes a given destina-

tion position type C choosing an origin worker type A much more often than origin worker

type B, it could be because θAC � θBC even though σ is moderately large, or because

θAC is marginally larger than θBC but σ is tiny. If the former is true, clearing the market

after a shift in destination firm composition could require large changes in the utility values

that must be promised to workers to engender sufficient substitution across worker types to

overcome strong tendencies for particular workers and positions to match. If the latter is

true, very small utility changes would suffice. Thus, σ is rather important in determining

the degree to which changes in labor demand composition cause substantial reallocation of

utility across skill types and geographic areas.

As Galichon et al. (2017) have noted, σ is not identified from a single observed matching.
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However, combining information from multiple matchings can potentially identify σ. Since

we observe national market-level matchings (transitions from a set of origin job matches to

a set of destination job matches) for each pair of years 1993-1994 to 2010-2011, we attempt

to calibrate a value of σ.

We exploit the fact that the composition of U.S. origin and destination job matches

fy(o) and hy(d) evolved across years y. Specifically, we estimate the set of group-level

surpluses {θ2007g } from the observed 2007-2008 matching. Then, holding these surplus values

fixed, we combine {θ2007g } with fy(o) and hy(d) from each other year y ∈ [1993, 2010] to

generate counterfactual assignments and changes in mean (exponentiated) scaled utility

values {CCF,yo } for each origin type. These counterfactuals predict how mean worker utilities

by skill/location combination could have been expected to evolve over the observed period

given the observed compositional changes in labor supply and demand had the underlying

surplus values Θ been constant and equal to Θ2007 throughout the period.

We then regress the actual mean annual earnings changes experienced by different origin

types o from origin periods t to destination periods t+ 1 on logs of the predicted changes in

mean scaled utility values {ln(CCF,yo )}, which approximately equal rCF,yo
σy if individual-level

utility changes rCFi are roughly similar within origin type o. To the extent that a) most of

evolution in the utility premia enjoyed by workers in particular locations and skill categories

was due primarily to changes in supply and demand composition rather than changes in

the moving costs, recruiting costs, tastes, and relative productivities that compose the joint

surplus values Θ, and b) mean utility gains for each origin type generally came from increases

in mean annual earnings in the chosen year rather than increases in non-wage amenities

or continuation values, the coefficient on rCF,yo
σy will approximately equal σy. Appendix A3

provides further detail on this procedure.

Clearly, given the additional strong assumptions required, this approach represents a

relatively crude attempt to calibrate σ. In practice, the estimates we obtain for σ are

surprisingly consistent across years. We used the mean estimate of σy across all sample

years, σ = 8, 430, to produce dollar values for all the results relating to utility gains presented

below.

33



As noted by Galichon and Salanié (2015), when match-level unobserved heterogene-

ity is assumed away as in Choo and Siow (2006), the observed earnings of the matches

between origin workers and destination positions can be further used to attempt to decom-

pose the group-level joint surplus θg into their worker and firm subcomponents (denoted

θlg and θfg respectively). In other words, one can determine the relative contributions of

amenities/future earnings opportunities versus current and future revenue contributions to

θg. However, in Appendix A4 we show that clean identification of θlg and θfg breaks down

without the particular structure Choo and Siow (2006) place on the unobserved match

component εijk unless further strong assumptions are imposed. We chose not to pursue

this path further in this paper, primarily because we have shown that this decomposition

is unnecessary to determine the incidence across worker and firm types of alternative local

labor demand shocks, which is the primary goal of the paper.

Note that by assuming additive separability of the mean choice-specific values and an

i.i.d type 1 extreme value distribution for the vector of idiosyncratic surpluses for particu-

lar worker/destination position combinations, we have implicitly placed restrictions on the

elasticities of labor demand for each destination establishment job match type with respect

to the mean utilities required by each origin job match type.22 However, note that assum-

ing away any correlation of unobserved components of surpluses across workers or positions

imposes weaker and weaker restrictions on elasticities of substitution in the model as the

share of surplus heterogeneity that is unobserved decreases (i.e. σ gets small). With a very

large market whose assignment is fully observed, one can allow groups to be defined by

several observed characteristics of workers, positions, and matches without overly straining

the data. If these characteristics are well chosen, so that they capture the bulk of the het-

erogeneity at the worker-position level, then substitution patterns will be primarily driven

by the distribution of the group-level surplus values Θ rather than the distribution of εijk.

22As shown by Menzel (2015), the identification argument and the counterfactual simulations are not
sensitive to the assumption of a type 1 extreme value distribution per se. Instead, the key assumption
is that the idiosyncratic worker/position surpluses are independently and identically distributed according
across all alternative worker/position matches, which leads choices by one side of the market to satisfy
the independence of irrelevant alternatives (IIA) property conditional on required values to be offered the
other side. As the relevant matching market gets large (as our national labor market most certainly is),
the counterfactual allocation associated with any joint distribution of idiosyncratic surpluses satisfying this
property will converge to a common, unique allocation.
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2.6 Interpreting the Counterfactual Simulations

The rest of the paper exploits the insights from the assignment model to conduct an analysis

of geographic labor market integration. The analysis involves constructing counterfactual

assignments that illustrate how a local development agency might attempt to forecast the

impact of alternative local labor demand shocks on the welfare of local (and less local)

residents. While our main focus for these simulations is the heterogeneity across alternative

shock compositions, future drafts also examine how the payoff to local development policy

might have changed over time by performing this calculation using mean group surplus

values from different generations.

However, there are several important caveats relating to the theoretical model as it

applies in the spatial labor market context that merit mentioning before proceeding to the

details of data and estimation.

First, when simulating shocks to the level and composition of labor demand below, we

will generally treat as fixed the job matching technology defined by the set of identified

joint surplus difference-in-differences, ΘD−in−D. However, for the simulated allocation and

incidence measures to be accurate, this implicitly assumes that relocating, adding, or sub-

tracting positions of different types from or to particular local areas does not itself change

the determinants of these joint surplus values. These include worker preferences for loca-

tions, the revenue that different types of workers generate for different types of firms, the

search, moving, and recruiting costs associated with changing positions, and even the con-

tinuation values associated with beginning the following period with a particular position

or a particular worker.

There are a couple of particularly plausible violations of this assumption. First, to the

extent that production agglomeration economies exist, the existence of a new firm nearby

might increase the demand for intermediate products produced by other local firms, thereby

raising the productivity of workers for such firms. Second, if the new jobs are thought to be

persistent and search/recruiting/moving costs increase with distance, then obtaining a job

at a different firm in the same local area as a newly relocated firm might now have greater

continuation value because future job searches will begin in a local area featuring a higher
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level of labor demand.

However, while both of these scenarios change the joint surpluses θg of transition groups

involving nearby firms, if the increased productivity of workers or the increased continuation

value for workers at such firms is common to all potential origin types o, then it will

not affect the surplus difference-in-differences that generate the counterfactual assignment.

Furthermore, the proof of Proposition 1 in Appendix A2 shows that such composition-

induced surplus changes also will not affect the equilibrium payoffs that capture the shock’s

incidence among groups of workers.23 Instead, any increase in joint surplus by a destination

position k that is common to all workers will be fully reflected in k’s profit payoff, either

through higher revenue for the same costs (agglomeration case) or through lower salaries

that offset the change in worker continuation value.24 Thus, bias in forecasted worker

incidence in counterfactuals from shock-induced changes in joint surpluses only stems from

differential changes in joint surplus among origin worker types for a given destination type.

Along the same lines, we also must assume that the labor demand shock does not induce

further changes in either firms’ location decisions or the number of positions they wish to fill.

To the extent that firm relocations or startups cause other firms to form, relocate, or expand,

these additional compositional changes would need to be anticipated and incorporated into

the simulated shock to capture the net change in destination type composition.

A second caveat relates to the permanence of the shock. For our stimulus packages we

generally assume that the new positions generate the same surplus values θg as existing

positions of the chosen destination type. Implicitly, this requires that they have the same

expected duration over time as any other position of their type. If one wished to simulate

a temporary construction stimulus, one would need to estimate a separate set of surplus

parameters for temporary versus permanent construction jobs. More generally, a more

precise distinction of differences in welfare effects between shocks of different expected

durations requires a fully dynamic assignment model along the lines of Choo (2015).

23Using the proof’s notation, such surplus changes will only change ∆2
d, which does not enter into equi-

librium mean payoffs for origin types {CCFo }.
24Note, though, that in these scenarios the profit gains among nearby firm types d will be understated.

The possibility of differential agglomeration effects for nearby firms across different shock compositions
(emphasized by Glaeser et al. (2008)) is one reason that we focus primarily on incidence among workers, for
whom differential agglomeration effects are likely to be of second order importance.
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Note that in principle, one could simulate how a given shock changes the a sequence

of year-to-year assignments over a longer horizon. This would involve using the simulated

assignment after one year to update the distribution of origin types for the following year,

then simulating a second year-to-year aggregate matching using the updated origin type dis-

tribution (and perhaps an updated destination type distribution, if one predicted additional

firm entry caused by the shock, as discussed above). Continuing this simulation process for

many years would yield an ergodic, steady-state joint distribution of job match observable

characteristics. One could then compare this distribution to the ergodic distribution that

would emerge in the absence of the shock.25 We do not pursue this approach in this paper,

in part because appropriate updating of the shares of workers in each origin earnings quin-

tile requires accurate predicted earnings gains, which relies heavily on the accuracy of the

estimate of σ, which is likely to feature some bias.

A final, important caveat relates to the absence of a housing market in the model (and

the corresponding absence of residential choices in the data). Standard models of spatial

equilibrium (e.g. Roback (1982) or Kline and Moretti (2013)) emphasize the critical role

of the housing market in determining incidence from place-based policies. In particular, if

housing supply is perfectly inelastic and workers are sufficiently mobile, the entire incidence

of a positive place based shock is enjoyed by landholders in the form of higher rents (which

fully offset the utility gains to workers from any wage increases). Thus, in principle failing

to model the housing market could result in highly biased estimates of shock incidence.

However, in contexts where housing supply is likely to be relatively elastic (such as

rural areas or areas with weak zoning laws) or where there exists excess housing supply due

to a declining population, housing prices may move little, and abstracting attention from

the housing market may produce little bias in incidence forecasts. Indeed, Gregory (2013)

find that neighborhoods receiving empowerment zone status, a local labor demand shock

similar to those we estimate, experienced negligible changes in rent but substantial wage

gains among residents, suggesting that omitting a housing market response might generate

minimal bias.26

25CDP adopt this approach in the context of their trade-centric dynamic spatial equilibrium model.
26The authors note that the neighborhoods receiving these shocks were often in locations experiencing
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Along the same lines, in contexts where tastes for particular neighborhoods is strong but

commuting between neighborhoods is fairly low cost, much of the adjustment to shocks may

take the form of changing commuting patterns, with very little change in demand for housing

across locations. Indeed, since commuting costs from job transitions that involve locational

changes already constitute a component of the joint surplus θg, they are appropriately

captured by the model; thus a scenario in which the true response to a labor demand

shock involves lots of small commuting adjustments that ripple out from the focal point of

the shock is likely to be closely matched by the model-based simulations, with potentially

accurate incidence estimates.27

3 Data

3.1 Overview

We construct a dataset of year-to-year worker job transitions (pairs of primary jobs in con-

secutive years) using the Longitudinal Employer-Household Dynamics (LEHD) database.

The core of the LEHD consists of state-level wage records collected for unemployment in-

surance purposes that contain quarterly worker earnings and unique worker and firm IDs

for a near universe of jobs in the state.28 The worker and firm IDs are then linked across

states, and the data are augmented with information on firm- and establishment-level char-

acteristics (notably establishment locations and firm-level detailed industry codes) from a

state-supplied extract of the ES-202/QCEW report and individual-level data from the So-

cial Security Administration (including age, race and sex but not including occupation nor

education for most of the sample). 29

recent decline that were unattractive residential options for many, so that the lack of impact on local rent
rates may not generalize to shocks to healthier locations.

27Note also that mobility frictions induced by housing markets are likely to be partly reflected in the log
odds ratios capturing the relative propensities with which different origin worker types make certain types
of job transitions that are used to identify the set ΘD−in−D. So differential willingness to pay high prices for
locational amenities will be captured by heterogeneity in {θg} across origin worker types for groups involving
positions in the same location, and thus will be reflected in our counterfactual simulations.

28The database does not include farm jobs or self-employed workers. We also exclude federal employees,
who must be merged in via a separate OMB database. This has little consequence given that our sample
does not contain Virginia, Maryland, and the District of Columbia.

29For further details about the contents and construction of the LEHD, see Abowd et al. (2009).
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3.2 Sample Selection

We restrict attention to a sample of 17 states that provide data to the LEHD system as of

1993: AZ, CA, CO, ID, IL, IN, KS, LA, MT, NC, OR, PA, WA, WI, WY.30 We chose this

sample so as to be able to illustrate how the geographic scope of labor markets has changed

over the last generations. While this draft focuses on simulations based on only 2010-2011

worker transitions between primary jobs, future versions of the paper will examine changes

in the projected geographic incidence of shocks over time.31 We also restrict the sample to

person-years featuring individuals with ages between 20 and 70. This restriction limits the

influence of “nonemployment” spells consisting of full-time education or retirement followed

by part-time work, so that parameters governing nonemployed workers would be identified

primarily from prime-aged workers who were unemployed or temporarily out of the labor

force. 32

We convert the resulting dataset from a job-quarter-year-level dataset to one whose

observation level is the combination of a person and a pair of primary jobs in consecutive

years (i.e. person-level job transition or retention). We do this by first identifying each

individual’s primary job in each year, then aggregating earnings from the primary job

across all quarters within the year, and then appending primary jobs from the following

year to the current observation to create a transition/retention observation. The primary

job for a worker is defined as the job with the highest earnings that exists for at least

one full quarter (a job is observed in a full quarter if the worker-firm pair reports positive

earnings in the preceding and following quarter as well). A worker who does not report

earnings above $2,000 at any job in any full-quarter in a given year in the sample of states

is designated nonemployed. An individual is included in the sample if he/she is ever observed

as employed in one of the sample states between 1993 and 2010. His/her first and last years

in the sample consist of his/her first and last years of observed employment. Thus, the

sample only includes spells of nonemployment that are bookended by spells of observed

30Alaska and Maryland also provide data as of 1993, but we exclude Alaska due to its geographic isolation
and Maryland due to difficulty in merging in records of federal employees (Maryland workers who became
federal employees would show up as non-employed).

31In future versions we also hope to expand the set of states considered.
32For computational reasons, the results in this draft are based on a 50% random sample of all transition-

level observations from the sample just defined.
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employment. We exclude nonemployment spells before the first year and after the last year

of observed employment for multiple reasons. First, we hope to minimize the incidence

of spurious nonemployment in which the worker is working out of the chosen sample of

states. Second, we want our counterfactual simulations measuring the incidence of shocks

on existing non-employed workers to be based on the relative tendencies of alternative firm

types to hire nonemployed workers rather than first time entrants, so that the interpretation

of such incidence measures is straightforward. We suspect that job applications of first-time

entrants and prime-age unemployed workers are treated very differently by employers.

The removal of nonemployment spells at the beginning and end of each worker’s em-

ployment history creates a bias toward including too few spells of nonemployment near the

beginning and end of the sample, because in the first (last) year any nonemployed worker

could not possibly have been observed as working in a prior (next) year. We address this by

imputing the missing nonemployment-to-employment, employment-to-nonemployment, and

nonemployment-to-nonemployment spells using the pattern of employment-to-employment

transitions during the sample (which our sample selection procedure does not affect) com-

bined with the relationship between the distribution of E-to-E transitions and NE-to-E,

E-to-NE, and NE-to-NE transitions, respectively, during the middle years of our sample

(when this sample selection bias should be minimal). The details of this imputation proce-

dure are presented in Appendix A6.

However, because we do not include job-to-job transitions into or from states outside

of our 17 state sample, our counterfactual simulations will likely overstate the geographic

concentration of demand shock incidence, since workers from the remaining states are ef-

fectively excluded from competing for the new positions. For the 2010-2011 labor market

transition used to estimate the surplus parameters that generate the simulations in this

draft, we can observe (and exclude from the sample) “nonemployment”-to-employment and

employment-to-“nonemployment” transitions that actually represent job-to-job transitions

into or out of a non-sample state. So the parameters governing the propensity for workers

to transition into and out of nonemployment should not be distorted.33 In future drafts, we

33However, we have lost access to the full set of transitions from all the states, so future drafts will not
be able to exclude such transitions.
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will examine sensitivity of our incidence estimates to excluding nearby states by considering

results from a subset of simulations featuring focal tracts in states where we observe all or

nearly all of the surrounding states. Given that the incidence results below already suggest

that a large share of the welfare gains accrue to out-of-state workers, we strongly suspect

that our qualitative conclusions will continue to hold.

3.3 Assigning Job Matches to Types and Job Transitions/Retentions to

Groups

For each pair of years (t, t + 1) ∈ {(1993, 1994), . . . , (2010, 2011)} we assign each job tran-

sition/retention observation to an origin type ot(i, j), and destination type dt+1(k), and a

transition group gt,t+1(i, j, k) (time superscripts will henceforth be dropped except where

necessary). Specifically, a worker i with primary year t work establishment j is assigned to

an origin type o(i, j) based on the combination of the location of the establishment j and

the earnings quintile at primary job j.34. The same worker i with primary year t+ 1 work

establishment k is assigned to a destination type d(k) based on the combination of the estab-

lishment’s geographic location, its size quartile (based the establishment employment distri-

bution), its quartile of average worker earnings (again using an establishment-level distribu-

tion), and the industry supersector of the firm associated with the establishment. The pair of

primary jobs for worker i, (i, j, k), is assigned to a group g(i, j, k) ≡ g(o(i, j), d(k), z(i, j, k))

based on the origin job type o(i, j), the destination job type d(k), and an indicator z(i, j, k)

for whether establishments j and k are the same (j = k).

34Earnings quintile cutoffs are defined relative to the distribution of primary job annual earnings for
workers in the state-year combination associated with the observation. One drawback of the LEHD database
is that a worker’s location must be imputed for multi-establishment firms. However, the Census Bureau’s
unit-to-worker imputation procedure assigns an establishment to a worker with a probability that decreases
in the distance between the worker’s residence and that establishment. Consequently, cases of significant
measurement error in true location are unlikely to occur, since most mistakes will misattribute the worker’s
job to an establishment within the same tract or perhaps a nearby tract
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4 Estimation

4.1 Defining the Local Labor Demand Shocks

We consider three categories of local labor demand shocks: stimulus packages, firm relo-

cations, and natural disasters. Each stimulus package shock consists of 500 jobs that are

added to the destination-year stock of jobs to be filled in a chosen census tract, combined

with the removal of 500 nonemployment “positions”. Given that census tracts have on

average around 5,000 jobs, this represents about a 10% percent increase in labor demand

for the average tract. For each chosen tract, we simulate 55 different stimulus packages,

each differing in the particular type of firm whose demand increases by 500 jobs, where

types here are defined by combinations of the remaining non-location firm attributes that

defined a destination type in the model above: firm size quartile, quartile of average worker

earnings, and industry supersector. The full list of the alternative firm compositions of the

simulated shocks is displayed in Figure 7. The compositions were chosen to highlight the

heterogeneity in incidence across different industry/firm size/firm earnings category cells.

The firm relocation shocks are nearly identical in structure to the stimulus packages.

Each relocation shock contains a 500 job increase assigned to a particular census tract,

and the same 55 shock compositions are considered as for the stimulus packages. The only

difference is that instead of subtracting 500 positions from the nonemployment destination

type, the 500 positions are instead subtracted from a sending destination type associated

with the same firm characteristics as the type receiving the jobs but located in a far away

state (at least two states away, so that locations near to the “winning” site are minimally

affected by the lost employment at the “losing” site). Unlike the stimulus package shocks,

which increase nationwide labor demand, the relocation packages merely redistribute ex-

isting demand across locations. If there were no spatial search frictions and workers could

move costlessly, then such shocks would merely cause the moving firm’s workers to follow

the firm, no additional reallocation would be necessary, and the “shock” would have zero

incidence for workers in all initial skill groups and locations. By contrast, if mobility costs

were so high as to eliminate mobility between small local labor markets, the impact on local
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workers of a stimulus package and a relocation with the same firm composition would be

identical.

Finally, we also consider “natural disaster” shocks in which a targeted census tract loses

a random 25%, a random 50%, or all 100% of its jobs in the destination year, with the

number of lost jobs being added as “positions” to the nonemployment destination type.

These simulations give us an opportunity to examine whether the skill incidence of negative

shocks is symmetric to positive shocks, as well as to consider the degree to which higher

skilled workers initially working in the targeted tract are able to capture a disproportionate

share of the remaining local jobs when only a share of jobs are eliminated. These disaster

simulations are also included to illustrate how the two-sided matching model could be

customized to handle any particular disaster scenario, including disasters such as hurricanes

that hit a number of contiguous tracts simultaneously (and perhaps with differential force).

To this point, we have used a census tract as the unit of aggregation at which to define

a geographic location. However, since 1) origin types consist of tract × Earnings Quin-

tile/Nonemployment cells, 2) destination types consist of tract × firm size quartile × firm

avg. earnings quartile × industry supersector cells, 3) origin-destination combination fea-

turing the same tract can have both job stayers and local job switchers, and 4) the chosen 17

states contain 32,837 census tracts, there are 32, 837×6×32, 837×4×4×11+32, 837×6×

4× 4× 11 = 1.13× 1012 groups in the initial group space. Even with upwards of 25 million

transitions for a given pair of adjacent years populating our estimate of the components

of the group-level distribution, we are still left with only 0.00002 observations per element

of the group-level distribution, so that the empirical group distribution ˆh(g) is too noisy

to use directly in place of the underlying distribution h(g) that might be observed with a

much larger population. We address this problem in two ways.

4.2 Collapsing the Type Space for Distant Geographic Areas

First, since we are particularly interested in the incidence of demand shocks of alternative

compositions across locations relatively near to the site of the shock, we combine groups that

are defined by the same worker and firm characteristics and are geographically proximate
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to each other but far from the site of the shock. Specifically, given our focus on carefully

measuring local incidence, we do not combine any origin or destination types featuring a

location within a five tract pathlength of the targeted tract for a given simulation. However,

we combine into a single origin (or destination) type any origin (or destination) types that

share the same worker (or firm) characteristics and feature tracts that are in the same state

as the targeted tract and in the same public-use microdata area (PUMA) as each other

(but not the same PUMA as the targeted tract). Thus, outside a 5-tract circle surrounding

the targeted tract, the geographic locations of types are defined by PUMAs rather than

tracts. Furthermore, for types featuring tracts outside the targeted state, we combine types

featuring the same worker (or firm) characteristics whose tracts are in the same state. Thus,

outside of the targeted state, the geographic locations of types are defined by states rather

than PUMAs.

Coarsening the type space for distant geographic locations dramatically decreases the

overall number of groups and the severity of the sparse matrix problem. In particular,

while many job-to-job transitions are between nearby tracts, there are very few transitions

between any chosen tract in California and a corresponding tract in Kansas, so that relative

surplus parameters for transition groups featuring tracts in different states would never be

well-identified without such coarsening. Note that this approach still incorporates all of the

transitions and all of the locations in our 17 state sample into each simulation, so that each

local labor market is still nested within a single national labor market.

However, this type aggregation procedure does imply that the origin and destination

type space will be different for each simulation that involves a different targeted tract.

Furthermore, disclosure restrictions imposed by the FSRDC system prevent the release

of any results that are specific to a particular substate geographic location. Thus, while

each simulation is performed with a particular tract level target, we only report averages

of incidence measures across 500 different simulations for each shock type, where each

simulation features a different randomly chosen target census tract from our sample.35

35We do impose that a census tract is only eligible to be a target tract in our simulations if it features
at least 100 jobs, so that the parameters governing the behavior of local firms and workers is reasonably
well-identified.
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Importantly, we use the same set of 500 randomly chosen target census tracts for each

of our alternative simulations, so as to facilitate fair comparisons between the alternative

stimulus packages, firm relocations, and natural disasters.

After the simulations have been run, in order to average simulation results across alter-

native targeted census tracts we must again redefine the space of transition groups. This

time, we replace origin and destination type locations with bins capturing distance to the

targeted census tract, and we report estimates of incidence for various distance rings around

the site of the shock. Note, though, that during the simulations themselves the spatial link-

ages between adjacent and nearby tracts are not restricted to follow a particular parametric

function of distance between locations. Thus, to this point no prior assumption about the

role of distance has been imposed during estimation.

5 Smoothing the Empirical Group-Level Distribution ˆP (g)

The second approach we use to overcome the sparsity of the empirical group-level distribu-

tion ˆP (g) involves smoothing this distribution prior to estimation by making each element’s

value a kernel-density weighted average of groups featuring “similar” worker and firm char-

acteristics. Such smoothing introduces two additional challenges. First, while such weighted

averages increase the effective sample size used to estimate each element of ˆP (g), excessive

smoothing across other transition groups erodes the signal contained in the data about the

degree of heterogeneity in the relative surplus from job transitions featuring different combi-

nations of worker characteristics, firm characteristics, and origin and destination locations.

Since highlighting the role of such heterogeneity is a primary goal of the paper, decisions

about the appropriate smoothing procedure must be made with considerable thought. A

second (but related) challenge consists of identifying which of the worker and firm charac-

teristics that defines other cells makes them “similar”, in the sense that the surplus {θg′} of

an alternative group g′ that shares particular observed characteristics with group g is likely

to closely approximate the surplus θg whose estimate we wish to make more precise.

We base our approach on the intuition that the geographic location of a destination

establishment is likely to be critical in determining the origin locations whose associated
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worker transitions generate the most surplus (i.e. least moving/search cost), while the

combination of non-location characteristics (firm size, firm average worker earnings, and

firm industry) is likely to be more important than location in determining the skill category

of worker (proxied by initial earnings quintile) that generates the most surplus.

Specifically, we use the fact that P (g) can be initially decomposed into a conditional

choice probability and a marginal destination type probability, P (g|d(g))h(d(g)), and fur-

ther decomposed into P (loc(o(g))|earn(o(g), z(g), d)P (earn(o(g), z(g)|d)h(d(g)). We then

construct separate kernel density estimators for P (loc(o(g))|earn(o(g), z(g), d) and for P (earn(o(g), z(g)|d).

The first term captures the probability that a hired worker’s initial location would

be loc(o(g), conditional on the prior earnings/nonemployment of the worker, whether the

worker is a new or retained employee, and the destination type of the firm (including the

firm’s location). Our estimator for this component only smooths among alternative groups

g′ featuring the same origin and destination location pair as g, and gives greater weight to

alternative groups featuring similar values of the other worker and firm characteristics that

define a group (worker earnings and firm size, average earnings, and industry).36

The second term captures the probability that a position of type d(g) would be filled

by a worker featuring a particular combination of prior earnings category and existing vs.

new employee status (irrespective of worker location). Our estimator of this term only

smoothes among alternative groups g′ featuring the same combination of firm size, average

earnings, and industry categories, and gives greater weight to groups whose destination

location loc(d(g′)) is closer to the chosen groups destination location loc(d(g)). Further

detail about the smoothing procedure is provided in Appendix A5.

This customized smoothing procedure has a number of desirable properties. First, by

requiring the same origin and destination locations as a necessary condition for non-zero

weight when estimating the propensity for particular destination types to hire workers

from each location, we can generate considerable precision in estimated conditional choice

36There are a very small number of destination or origin types are never observed in any transition. By
necessity, we put positive weight on groups featuring nearby origin or destination locations in such cases.
However, the surpluses associated with these groups have no impact on counterfactuals unless the simulation
generates new positions of the never-observed destination types or new origin workers of the never-observed
origin types. We choose our target census tracts in the simulations below to contain sufficient observed
employment to prevent this scenario.
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probabilities without imposing any assumption about the spatial links between locations.

Second, at the same time, we can still use information contained in the hiring and retention

choices of more distant firms to learn about the propensity for firms of different size, pay

level, and industry to hire workers at different skill levels and from nonemployment. Third,

the procedure places non-trivial weight on transition groups featuring less similar worker

and firm characteristics only when there are too few observed hires/retentions made by

firms associated with groups featuring very similar characteristics to yield reliable estimates.

Fourth, the estimate of each element of the smoothed group-level distribution P (g) places

non-zero weight on many different groups, so that no element of the smoothed group-level

distribution that results contains identifying information about any particular worker or

firm, eliminating any disclosure risk (a necessary condition for releasing results out of the

restricted FSRDC environment).

5.1 Standard Errors

While this draft uses a 50% subsample of all pairs of dominant jobs in adjacent years in

the population of 17 states we consider, the next draft will use the full 100%. Thus, it is

not obvious how to define the relevant population for the purposes of inference. Further-

more, since we estimate millions of surplus parameters θg ∈ Θ , and each counterfactual

incidence statistic depends on the full set Θ, we do not report estimates of any single pa-

rameter. Instead, any standard errors we might report ought to provide information about

the precision of our incidence forecasts. Given that each incidence statistics we provide in

the next section are based on averaging across 500 simulations featuring different randomly

chosen census tracts, a natural indicator of precision might be the standard deviation in the

chosen incidence statistic across the 500 tract-specific simulations. These standard devia-

tions have not yet passed through disclosure review, but will be available in the next draft

(no standard errors appear in the tables below). However, while these standard deviations

capture the variation in estimated θg parameters across geographic locations, they do not

provide information about the degree to which this variation is caused by sampling error

(relative to other possible U.S. labor markets drawn from the same data generating process)
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versus systematic differences in worker and firm productivities, moving costs, and non-wage

utilities driven by past sorting. We will continue to examine other alternatives.

6 Results

6.1 Stimulus Packages

6.1.1 Incidence by Distance to Focal Tract

Before comparing the impacts of stimulus packages featuring different firm compositions,

we focus first on characterizing the geographic scope of labor markets for a “typical” local

stimulus. We do this by averaging the predicted change in worker-employer allocations

produced by the stimulus packages across all 32 stimuli we simulated, effectively integrating

over the distribution of industry, firm size, and firm average pay composition. While we

focus attention on graphical representations of our results contained in a set of figures,

most figures have an accompanying Appendix table (listed in parentheses) that contains

the particular values that were plotted and are cited in the text.

Figure 1 (Table 1, Col. 1) illustrates the mean probability of receiving one of the 500

new stimulus jobs for randomly chosen individuals initially working at different distances

from the census tract receiving the stimulus. The figure reveals the sense in which U.S.

labor markets are still extremely local: the probability of obtaining one of the new jobs for

a worker initially working within the target tract (.032) is more than 6 times higher than

for a worker working in an adjacent tract (.005), 13 times higher than for a worker working

2 tracts away (.002), and 30 times higher than for a worker working 3 or more tracts away

with the same PUMA. Furthermore, additional distance from the focal tract continues to

matter at greater distances: the probability of obtaining one of the stimulus jobs for a local

(target tract) worker is 55 times higher than for a worker in an adjust PUMA, 123 and 241

times higher than for a worker two PUMAs away or 3 or more PUMAs away within the

same state, respectively, and 1,181 and 24,378 times more higher than for a random worker

one or two states away or 3 or more states away, respectively.

However, the vast differences in P (new job |distance from target) present a very mislead-
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ing guide to the overall incidence of new jobs across geographic locations. This is because

the target tract initially employs an extremely small fraction of the U.S. population defined

by the model to be at risk of obtaining the stimulus jobs. Figure 2 shows the share of

the workers in the simulation samples that are working in each distance bin relative to the

targeted census tract prior to the stimulus. Only 0.0039% of the workforce is composed of

workers initially working in the target tract. As expected, the shares get larger quickly as

we move toward distance bins defined by concentric circles with much larger radii: 0.02,

0.05, 0.2 percent of the workforce initially work 1, 2, or 3+ tracts away from the target

tract within the same PUMA, while 0.3%, 0.9% and 1.3% initially work 1, 2, or 3+ PUMAs

away, respectively, and 16% and 81% initially work 1-2 states or 3+ states away.

Consequently, if we swap the terms in the conditional probability and calculate the share

of stimulus jobs obtained by workers initially working in each of the distance bins listed

above, P (distance from target |new job), we obtain a very different impression of incidence.

Figure 3 (Table 2, Col. 1) displays the mean share of new jobs by distance bin across the

32 simulated stimulus packages. 7.5% of new jobs go to workers initially in the target tract,

another 28% are obtained by other workers in the PUMA, 33% are obtained by workers

in different PUMAs within the state, and 31% are obtained by out of state workers. So a

very large share of the new jobs are likely to be obtained by workers far outside the local

jurisdiction that is hosting the stimulus (and is likely lobbying for its local placement).

One could likely obtain similar forecasts of the shares of workers by distance bin who

would obtain jobs at a new firm simply by looking at the distance composition of workers

who obtained jobs from actual stimulus projects in the past. As emphasized in the introduc-

tion, though, the probabilities of obtaining the particular new jobs created by the stimulus

package may not be particularly informative about the true incidence of the shock. This is

because many of the workers who obtain the new jobs would have obtained other similarly

paying jobs in the absence of the stimulus, and nearby workers may now obtain the jobs

these workers would have accepted or retained, and so on, creating ripple effects through

vacancy chains that determine the true employment and wage incidence. This is where the

use of a flexible equilibrium model is particularly valuable.
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Figure 4 (Table 3, Col. 1) is analogous to Figure 1 (Table 1, Col. 1), except that

instead of the probability of obtaining a particular stimulus job, it captures the change

in the probability of any employment (or equivalently, the change in the probability of

nonemployment) due to the stimulus, relative to a no-stimulus counterfactual, for randomly

chosen workers initially working at different distances from the target census tract of the

stimulus.

The figure demonstrates that the change in employment probability is still quite locally

concentrated, though less so than the probability of obtaining a stimulus job. Workers

initially employed (or nonemployed) in the target tract are 1.2% more likely to be employed

at the end of the year than in the absence of the stimulus. This is 7, 13, and 22 times

greater than the corresponding changes in employment probabilities for workers 1, 2, or

3+ tracts away (within the same PUMA), 31, 53, and 78 times greater than for workers 1,

2, or 3+ PUMAs away (within the same state), and 273 and 3,068 times greater than for

workers 1-2 and 3+ states away, respectively. In particular, the relative odds of changes in

employment status for workers 3+ states away relative to workers in the local tract are 8

times higher than they were for the probability of obtaining a stimulus job.

The broader geographic incidence for general employment status is reflected in Figure 5

(Table 4, Col. 1), the analogue to Figure 3 (Table 2, Col. 1), which displays the share of the

aggregate 500 job increase in employment attributable workers initially employed in each

distance bin relative to the target tract. Only 2.7% of the net employment change redounds

to workers initially employed in the target tract, with 11% of the additional employment

going to workers in other tracts within the PUMA, 29% to workers in other PUMAs within

the target state, and a full 57% going to workers initially employed out of state.

Figure 6 (Table 3, Col. 2-9) illustrates how the change in employment probability

for random workers in different distance bins varies across stimulus packages featuring

new positions in different industry supersectors, while Figure 7 (Table 4, Col. 2-9) shows

how the share of the net employment change enjoyed by areas defined by distance to the

focal tract varies by the industry composition of the shock. Both figures show that the

employment incidence across distance bins is very similar across industries, indicating that
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the geographic scope of labor markets is not wildly different across supersectors. Some small

differences do exist: 15.7% and 45.2% of the change in net employment goes to workers

within PUMA and within state, respectively, in stimuli featuring positions in the other

services sector (which includes repair and maintenance, personal and laundry services, and

religious/civic organizations) sector, which is the sector featuring the most geographically

concentrated employment incidence. By contrast, the corresponding figures are 12.6% and

41.1% for stimuli featuring positions in the retail/wholesale trade supersector (among the

least geographically concentrated).

Figures 8 (Table 5) and 9 (Table 6) capture the corresponding heterogeneity in geo-

graphic incidence across stimulus simulations featuring positions at firms from different

firm size quartile/firm average pay quartile combinations (averaging over industry super-

sectors). On average, stimulus packages featuring positions at large firms (4th quartile)

with low average pay (2nd quartile) generate the most local incidence (2.9%, 15.4%, 46.0%

percent of net employment gains within tract, within PUMA, and within state), and small

firms (1st quartile) with high average pay (4th quartile) generate the least local incidence

(2.3%, 12.7%, 40.3%).37 Again, these differences are modest but nontrivial.

Our simulation procedure also generates counterfactual changes in worker mean utility

necessary to clear the market for each origin job type following the various stimuli. Recall,

though, that generating the market clearing allocation only requires computing standardized

utility premia
Cg−Cg′

σ . As discussed in section 2.5 and Appendix A3, we exploit the existence

of a longer panel of years to generate estimates of σ that, given our assumption of a money-

metric utility function, allow utility premia to be scaled in dollars of annual earnings.

However, the assumptions that underlie the estimate of σ are stronger than for the relative

joint surplus values (and are extremely unlikely to hold exactly). Thus, while proportional

earnings changes for different skill and location categories ought to be reasonably well

identified, the estimated dollar value of predicted welfare gains should be treated cautiously.

Furthermore, since only relative utility changes are identified, we normalize the estimated

37We chose the 2nd quartile of firm average pay to represent “low paying firms” rather than the 1st quartile
so that our stimulus packages would be considered desirable for the receiving tract (most local development
initiatives do not seek to increase the number of minimum wage jobs).
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utility impact on workers who are initially nonemployed 3 or more states away to be 0, so

that all estimated utility changes are relative to this origin type.

Figure 10 (Table 7, Col. 1) provides the average utility impact (scaled in annual earnings

equivalents) for random workers initially employed (or nonemployed) at different distances

from the target tract for the “typical” stimulus package (again averaging over all 32 simu-

lated stimuli featuring different firm compositions). The annual utility incidence is spread

far more evenly across geographic space than the employment incidence. Workers initially

working in the focal tract receive an estimated $512 increase (in 2011 dollars) in money

metric utility from the typical stimulus package (relative to workers 3+ states away), while

workers initially working 1, 2, and 3 or more tracts away receive expected utility gains of

$211, $164, and $153 respectively. Workers initially working 1,2, and 3+ PUMAs away

within the state receive the utility equivalent of $140, $115, and $111 in annual earnings

gains, while workers 1-2 states from the site of the shock receive gains of $92 relative to

workers 3 or more states away. Figure 11 (Table 8, Col. 1) plots the share of total utility

gains (relative to distant workers) that accrue to workers in each distance bin. Only 0.1%

of total worker welfare gains accrue to workers within the focal tract, while over 81% ac-

crue to workers initially employed out of state. Only about 2.5% of welfare gains accrue

to workers within the PUMA associated with the focal tract. Thus, examining incidence

from the perspective of welfare gains rather than employment gains suggests a far more

geographically integrated labor market.

Figures 12 (Table 7, Col. 2-9) and 13 (Table 9, Col. 2-9) illustrate the heterogeneity

in annual earnings incidence by distance bin across stimuli featuring different industry

supersectors and different firm size/firm average pay quartile combinations, respectively.

Shocks featuring positions in the other services supersector generate the largest local welfare

impact ($632), while shocks featuring positions in the education and health supersector

generate the smallest local impact ($411). Stimuli featuring low paying positions at small

firms generate the greatest local impact ($546), while high paying positions at small firms

generate the smallest local impact ($459).

Another feature of the model is the ability to capture heterogeneity in shock incidence
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across workers in different skill classes, as proxied by initial employment status and earnings

quintile. Figure 14 (Table 10, Col. 1) captures the share of the 500 job net employment

gain that is enjoyed by workers whose initial earnings fall in each quintile in the national

distribution, as well as workers who were nonemployed in the year prior to the simulated

stimulus shock. 43.3% of the employment gains accrue to those initially nonemployed, while

15.3%, 14.3%, 11.3%, 8.6%, and 7.2% accrue to those at the 1st through 5th quintiles of

the initial earnings distribution, respectively. The smaller values for initially high earning

workers reflect the fact that such workers were less likely to transition to nonemployment in

the absence of the shock. Figure 15 (Table 11) displays the share of the total worker welfare

gain enjoyed by workers in each initial earnings quintile (and initially nonemployed workers).

For the typical shock, 13.8% of utility gains accrue to initially nonemployed workers, while

the share accruing to each earnings quintile increases in the level of initial earnings: 11.8%,

16.5%, 17.7%, 18.7%, and 21.1% for quintiles 1-5, respectively. These results suggest that

existing high paid workers receive a disproportionate share of the welfare gains from a

typical shock.

Figure 16 (Table 10, Col. 2-9) shows that there is relatively little heterogeneity across

industry supersectors in the incidence of net employment gains among earnings quintiles;

education/health and construction stimuli produce the greatest employment gains for the

initially nonemployed, while retail/wholesale trade produces the least. Perhaps surprisingly,

the firm size and particularly firm average pay quartiles of the firms generating the new

positions (Figure 17, Table 12) are also predicted to have similar impacts on net employment

gains across initial earnings quintile/nonemployment groups. Around 42% versus 44-45%

of employment gains go to initially nonemployed workers from stimuli featuring jobs at

high paying versus low paying firms. By contrast, only ∼ 20-22% of stimulus jobs at

high paying firms are predicted to be obtained by initially non-employed workers versus

∼ 27 percent for low paying firms, and ∼ 35% versus 5% of jobs from high versus low

paying firms go to workers initially in the highest earnings quintile, suggesting that the skill

incidence of the actual stimulus jobs understates the employment gains that “trickle down”

to initially nonemployed workers from labor demand shocks featuring a bias toward high
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skilled workers.

Figures 18 (Table 11, Col. 2-9) and 19 (Table 13) illustrate the importance of industry

and firm size/firm pay heterogeneity for welfare incidence. There is very little heterogeneity

in incidence across stimuli featuring different firm composition; even shocks featuring high

paying jobs display only a slightly greater share of earnings gains (∼ 1%) going to existing

5th earnings quintile workers.

We can also examine the degree to which the geographic scope of labor markets depends

on the skill level. Figure 20 (Table 14) examines the change in employment probability

for a randomly chosen worker whose initial job (or nonemployment) places him/her in a

particular earnings quintile/distance bin combination. We see that nonemployed workers

who most recently worked in the focal tract enjoy a large decrease in nonemployment rate

of 6.2 percentage points, while the nonemployment decrease is only 0.5% and 0.3% for

workers initially employed one or two census tracts away, indicating that the employment

gains for existing nonemployed workers are particularly local. That said, employment gains

decline with distance in a relatively similar fashion for all initial earnings quintiles. Existing

nonemployed workers in the target district enjoy 2.1% of the total employment gains (Figure

12) despite only constituting 0.0005% of the population of potential workers.

Figure 21 (Table 15) displays the analogue to Figure 20 (Table 14) for welfare changes.

The largest changes in utility from a typical shock, equivalent to an annual earnings gain

of $896, accrue to initially nonemployed workers located in the focal tract. Welfare changes

are much smaller for local workers initially employed at the 1st quintile of earnings ($363),

and rise monotonically to $545 for the 5th initial earnings quintile. Welfare gains decrease

more quickly with distance from the focal tract for the higher income groups, however,

creating rapid convergence in welfare gains across different income quintiles with distance

from the focal tract. Thus, the results from Figure 15 (Table 11) that examined overall

earnings incidence across skill levels that averaged across all distance categories obscured

the much larger differences in earnings incidence between different skill levels that occurs

among workers local to the shock.

Moreover, aggregating across all distance categories also obscured substantial hetero-
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geneity across shocks featuring different firm composition in the welfare incidence among

initial earnings categories for workers in the focal tract. Figure 22 (Table 16, Col 2-9) shows

the money metric utility gains for only local workers by initial earnings quintile of the worker

and industry supersector of the stimulus. Typical construction and other services stimuli

yield welfare gains for existing nonemployed workers equivalent to $1,142 and $1,196 in an-

nual earnings, compared to $702 and $776 for stimuli featuring new jobs in the information

or state/local government sectors. Workers in the highest (5th) initial earnings quintile

reap expected utility gains of only $387 from stimuli featuring jobs in the education/health

supersector, while manufacturing and other services stimuli generate $693 and $649 for such

workers (as noted above, stimuli in the other services supersector feature particularly local

incidence for all skill levels).

Figure 23 (Table 17) shows the corresponding expected earnings gains for workers in

the focal tract by firm size/firm pay quartile combinations instead of industry. Stimuli

featuring positions at small, high paying firms generate the least payoff for low skilled

workers: $670, $282, and $291 for nonemployed, 1st earnings quintile, and 2nd earnings

quintile workers, respectively, while generating a substantial $663 for 5th quintile workers.

Large high paying firms (4th quartile of firm size) hire more locally for all skill levels, so

that every earnings quintile initially employed (or most recently employed) in the focal tract

earn substantially more from a shock featuring a large, high paying firm than a small, high

paying firm. Interestingly, among low paying firms, larger size often generates smaller local

gains. But stimuli featuring low paying firms (regardless of size) generate very large gains for

nonemployed workers most recently employed in the focal tract ($1,019 and $1,051 for small

and large low paying firms, respectively). The corresponding values for 1st and 2nd earnings

quintiles are ($433, $410) and ($466 and $443) for small and large low paying firms. Thus,

assuming similar impacts on rent price and feedback effects through the product market, it

appears that the skill level of the positions being created matters a lot for incidence among

skill classes for local workers, but much less for workers farther away.

Finally, the substantial heterogeneity in local skill incidence across industries and firm

size/firm pay quartile combinations still misses further heterogeneity operating at the three-
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dimensional supersector/firm size/firm pay cell level. Figure 24 (Tables available upon re-

quest) plots the forecasted earnings gains by initial earnings level among workers initially

in the focal tract for all 32 stimulus shock compositions that we simulated. There is a

huge range of predicted gains. Earnings gains for initially nonemployed workers range from

$281 (small, high paying government positions) to $1573 (small, low paying construction

positions). For 1st earnings quintile workers, they range from $184 (small, high paying

information positions) to $562 (small, low paying leisure/hospitality positions). For 5th

quintile workers, they range from $304 (large, low paying education/health positions) to

small, high paying manufacturing positions). For local governments whose concern is pri-

marily local incidence, these represent massive differences in the scale and skill intensity of

the earnings incidence.

As noted in the estimation section, we also simulated “plant relocation” shocks that

featured the same compositions of 500 new jobs as the stimulus packages but removed the

jobs from a distant state (at least two states away from the focal tract) rather than from the

stock of “nonemployment” positions. However, since the “losing” locations are so far away

from the “winning” tracts, and as shown above labor markets are still quite local and (to

a lesser extent) regional, the employment and earnings incidence of such relocation shocks

was virtually identical to their stimulus counterparts for locations within the winning state.

Thus, we do not undertake a separate incidence analysis for our plant relocation shocks.

6.2 Natural Disasters

Recall that our “natural disaster” simulations remove at random 25%, 50%, or 100% of

the destination jobs in the focal tract. Averaging over initial earnings categories, Figure

25 (Table 18) displays the increase in the probability of nonemployment for randomly cho-

sen workers within different distance bins from the focal tract for each disaster intensity.

Workers initially working (or nonemployed) in the focal tract experience increases in the

probability of nonemployment in the destination year of 3.9%, 9.1%, and 24.5% from the

25%, 50%, and 100% disasters, respectively. The share of new nonemployment that falls

upon workers initially in the local tract increases from 19.1% when 25% of local jobs disap-

56



pear to 27.9% when 100% of local jobs disappear, suggesting that the employment incidence

becomes increasingly geographically concentrated the more intense the local disaster (even

when the disaster itself is in each case still contained within the same census tract). As

with the stimulus shocks, in one sense these results suggest that labor markets remain very

local: if mobility among labor markets were truly frictionless (and workers/positions were

homogenous), so that the predicted employment incidence fell equally across all workers,

then the expected share of lost jobs borne by local workers would be their share of the total

workforce: 0.0039%. Thus, local workers experience a change in nonemployment probability

that is over 8,000 times larger than it would be in a frictionless, homogenous world.

Note also that the employment incidence of the simulated disaster is more locally focused

than for the stimulus packages, as measured by the local share of the total employment

change. In the case of stimulus packages, most of the local workers would have been working

(somewhere) in the absence of the shock (or are long-term nonemployed workers that would

produce little joint surplus from employment, due to either preferences or low productivity),

so that there was an effective limit to how local the employment incidence could be, thus

forcing much of the net employment gain to be distributed across more distant locations.

By contrast, the simulated disasters initially produce a greater geographic concentration

of nonemployed workers than existed nearly anywhere in the data; since most positions

retain their existing workers (appearing in the model as a large increase in joint surplus

from a match when the individual is an existing employee), it is very difficult for all of the

local workers to find jobs. Thus, the model estimates reveal a natural asymmetry in the

geographic scope of incidence between positive and negative local demand shocks.

Figure 26 (Table 19) shows the average utility losses by distance bin for each disaster

intensity. Expected utility losses (scaled as equivalent annual earnings losses) are severe

for workers initially in the focal tract: $-1,536, $-2,802, and $-4,653 for disasters featuring

25%, 50%, and 100% local job loss, respectively (relative to workers initially working 3+

states away). The welfare losses fall dramatically to $-77, $-147, and $278 for workers in

an adjacent tract, and then decrease slowly in magnitude to $-43, $-83, and $-151 for those

initially working 1-2 states away from the focal tract. The huge surplus of local labor gen-
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erated by the shock seems to create particularly locally concentrated welfare losses. That

said, because within-tract workers are such a small share of the working population, the

shares of aggregate worker welfare losses accounted for by the losses of workers initially em-

ployed in the focal tract are only 0.67%, 0.62%, and 0.57% for the three disaster intensities,

respectively (Figure 27, Table 20) While this local share is 6 times larger than the local

share of welfare gains for the stimulus packages, it is nonetheless trivial. As before, over

80% of the earnings incidence is predicted to fall on out-of-state workers. Again, we see

that local shocks can have substantial impacts for local workers while still generating an

overall incidence that is spread widely.

Figure 28 (Table 21) displays the share of all employment losses experienced by each

employment status/initial earnings quintile. For disasters featuring 25% local job loss, 33%

of lost net employment is experience by those already nonemployed, with the share falling

monotonically from 17.3% to 8.5% as one moves from the 1st to the 5th initial earnings

quantile. Thus, high skilled workers seem relatively well insulated from employment losses,

instead taking jobs from those at lower skill levels, creating a cascade of sorts. However, as

the disaster becomes more intense, the burden of employment loss becomes more equally

shared, with only 28% accounted for by initially nonemployed, and 11% accounted for by

those initially in the highest earnings quintile.

However, Figure 29 (Table 22), which examines employment incidence by distance and

initial earnings jointly, paints a richer picture. Among those initially employed in the focal

tract, the increase in the probability of nonemployment from the least severe (25%) disaster

is actually larger for employed workers than for initially nonemployed workers: initially

nonemployed workers experience a 1.8 percentage point increase in destination nonemploy-

ment, while workers at initial earnings quintiles 1-5 experience increases in nonemployment

rate of 5.9, 4.8, 4.2, 3.8, and 2.9 percentage points, respectively. This is primarily due to the

fact that initially nonemployed workers had the least to lose: they were fairly likely to be

nonemployed again in the absence of a disaster. However, among workers a tract away or

further, the employment losses are greatest among the existing nonemployed. As the disas-

ter becomes more severe, this pattern becomes even more pronounced. For the most severe
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(100% job loss) disaster, initially nonemployed local workers experience a 5.2 percentage

point increase in nonemployment rate, while local 1st and 5th earnings quintile workers

experience 30.4% and 23.9 percentage point increases, respectively (Figure 30 (Table 23).

Figure 31, Table 24) displays the share of all worker welfare losses experienced by each

employment status/initial earnings quintile. The shares are almost identical across disas-

ter intensities, with 14% falling on nonemployed workers, and 12%, 17%, 18%, 19%, and

21% falling on workers in earnings quintiles 1-5, respectively. As with employment inci-

dence, however, these numbers obscure substantial variation in the relative skill incidence

of disasters by distance from the focal site. For disasters involving a 25% job loss, workers

1-2 states away experience utility losses, relative to workers 3+ states away, equivalent to

between $-41 and $-43 in annual earnings regardless of initial skill incidence (Figure 32,

Table 25). The values are between $-145 and $-152 for the 100% job loss disasters (Figure

33, Table 26). Differences in welfare losses are similarly small for all distance bins except

workers initially employed (or nonemployed) in the focal tract. However, workers initially

nonemployed within the focal tract are predicted to lose the equivalent of $146 in utility

in the 25% disaster, while workers in earnings quintiles 1-5 are predicted to lose $-1,249,

$-1,552, $-1,746, $-1,961, and $-2,015, respectively. For the disasters featuring 100% local

job loss, these values rise to $-431 and $-3,618, $-4,526, $-5,148, $-6,150, and $-6,291 re-

spectively. Thus, welfare losses are particularly large among high skilled workers (who had

the most to lose), although smaller as a share of initial utility from annual earnings.

Finally, while quantifying the employment and utility incidence of disasters is important

for allocating relief funds, policymakers and local communities are also worried about being

inundated by flows of migrants away from disaster sites. Thus, Figure 34 (Table 27 displays,

for each disaster intensity, the change in the probability of being employed at firms in

each distance bin relative to the focal tract for workers who were initially employed (or

nonemployed) in the census tract hit by the natural disaster. First, note that for the

mildest disaster, the decrease in within-tract employment for workers initially at the focal

tract is only 10%, despite a 25% overall decrease in local positions. This is in part because

many of these workers would have moved to jobs away from the tract even in the absence
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of the shock, but also because existing local workers are able to retain a greater share of

the jobs that remain. Even when all local jobs are lost, the decrease in the share of local

workers staying in the tract is only 66.6%, revealing that 1/3 of such workers would have

moved out in absence of the disaster. Adjacent tracts absorb an extra 0.4%, 1.0%, and

2.5% of workers initially in the focal tract, respectively, in the 25%, 50%, and 100% job loss

scenarios, relative to a counterfactual in which no disaster occurs. Overall, an additional

1.8%, 4.3%, and 11.0% of the workers initially in the focal tract end up employed in other

tracts within the original PUMA after the 25%, 50%, and 100% job loss scenarios. Locations

outside the PUMA but within the state take on an additional 2.3%, 5.6%, and 15.4% of

those initially employed in the focal tract in the three disaster scenarios, while locations

outside the state take on an additional 2.3%, 5.6%, and 15.7% in the three scenarios, with

the remaining share of workers experiencing nonemployment. Thus, while a relatively small

share of employees find employment nearby, this share increases in the degree of initial

displacement.

Figure 35 (Table 28) displays separate distributions of destination employment locations

for target tract workers in each employment status/initial earnings quintile. Even in the

most severe disaster, only an additional 1.8% of initially nonemployed workers move away

from the focal tract, relative to the counterfactual. The few that would have gotten local

jobs remain unemployed instead. By contrast, the share moving to nearby locations is much

larger for initially employed workers, and is increasing in the skill level of the worker. Since

most high paid workers are retained or continue to work nearby in the absence of the shock

(only 16% would have transitioned away from the focal tract), the extreme 100% disaster

engenders a particularly large mobility response for such workers: an additional 14.2% move

to another tract within the PUMA (relative to the counterfactual), an additional 20.6%

move to a different PUMA within the state, and an additional 23.9% move to a different

state. For workers initially in the 1st earnings quintile, who were more mobile in the

counterfactual, the corresponding increases are only 9.2%, 13.1%, and 10.0%, respectively.

Relative to lower skilled workers, the mobility response for initially high earning workers

is disproportionately muted for lesser disasters, though, because they are better able to

60



capturing the remaining local jobs than less skilled workers (Figure 36, Table 29).

7 Conclusion

Building on the approach of Choo and Siow (2006), this paper models the transition of the

U.S. labor market across adjacent years as a large-scale assignment game with transferable

utility, and uses a very large set of estimated parameters from the model to simulate the

welfare incidence across locations and worker skill categories of a variety of alternative local

labor demand shocks designed to resemble different stimulus packages and natural disasters.

We show that a transferable utility assignment game that features unobserved hetero-

geneity at the fundamental worker-position match level (rather than each side only holding

preferences over types as in Choo and Siow (2006) and Galichon and Salanié (2015)) can

still be used to produce forecasts of welfare incidence on both sides of the market from

changes in agent type composition on either side of the market, even when singles are either

not observed or observed on only one side of the market. By basing simulations on millions

of composite joint surplus parameters rather than reducing the data to a much smaller

set of fundamental utility or production function parameters, our “sufficient statistics” ap-

proach can fully exploit the massive scale of the administrative LEHD database to capture

multidimensional heterogeneity on both sides of a two-sided market without placing undue

structure on the job matching technology.

Our method can be customized to forecast the incidence of any particular shock com-

position or magnitude in any location, and incidence can be determined across groups of

agents on either side of the market defined by any arbitrary combination of observed char-

acteristics, including categorical characteristics without a natural ordering such as race,

industry or location. Given appropriate administrative matching data, our approach could

also be easily adapted to the student-college matching or patient-doctor matching contexts,

among other applications.

We find that U.S. labor markets are still quite local, in that the per-worker welfare gains

from a locally targeted labor demand shock are substantially larger for workers in the focal
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census tract than even workers one or two tracts away. Nonetheless, because the workers

initially working within a very small radius of the local shock are such a small share of

the entire U.S. labor force competing for positions, we also find that in most specifications

greater than 80% of the welfare gain from a very local stimulus package, regardless of firm

composition, redounds to workers initially working out of state, with only about 0.1% of

the welfare gains going to existing workers in the focal census tract.

We also document a high degree of heterogeneity in skill incidence among very local

workers across demand shocks featuring different firm size, firm average pay, and industry

supersector composition, suggesting that the type of firm targeted by a local development

policy has major implications for the groups of workers most likely to benefit. That said,

as these alternative shocks ripple across space through a chain of job transitions, their

skill incidence becomes increasing similar, so that the overall skill composition of welfare

gains across all workers (not just local workers) is extremely similar across different types

of demand shocks.

Finally, we show that positive and negative shocks have asymmetric impacts, with neg-

ative shocks displaying a much greater geographic concentration of welfare losses than the

corresponding welfare gains from positive shocks. This is because negative shocks create

a (temporary) concentration of nonemployed workers that rarely exists in the absence of

such shocks, while workers already working or seeking employment near positive shocks

may often keep or find good jobs even in the absence of a positive shock.

Going forward, two extensions seem particularly worthwhile. First, following Caliendo

et al. (2015), rather than computing incidence over a one year horizon, the assignment game

could be played several times in a row, updating the initial assignments after each simulated

year-to-year transition, so that the long-run welfare incidence of labor demand and supply

shocks could be evaluated. Second, following Galichon and Salanié (2015) and Chiappori

et al. (2009), one could relax the assumption that the idiosyncratic job-match-level surplus

shocks are i.i.d. across worker and position types, enabling an even more flexible set of

substitution patterns to be incorporated than those featured in the model estimated here.
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Table 1: Specifications for Alternative Labor Demand Shocks Used in Counterfactual Sim-
ulations

Spec. Number of Jobs Firm Avg. Firm Size Industry Shock
No. (or % of Tract’s Jobs) Earn. Quartile Quartile Supersector Type

1 500 2 1 Information Stimulus
2 500 2 4 Information Stimulus
3 500 4 1 Information Stimulus
4 500 4 4 Information Stimulus
5 500 2 1 Manufacturing Stimulus
6 500 2 4 Manufacturing Stimulus
7 500 4 1 Manufacturing Stimulus
8 500 4 4 Manufacturing Stimulus
9 500 2 1 Trade/Trans./Utilities Stimulus
10 500 2 4 Trade/Trans./Utilities Stimulus
11 500 4 1 Trade/Trans./Utilities Stimulus
12 500 4 4 Trade/Trans./Utilities Stimulus
13 500 2 1 Other Services Stimulus
14 500 2 4 Other Services Stimulus
15 500 4 1 Other Services Stimulus
16 500 4 4 Other Services Stimulus
17 500 2 1 Education & Health Stimulus
18 500 2 4 Education & Health Stimulus
19 500 4 1 Education & Health Stimulus
20 500 4 4 Education & Health Stimulus
21 500 2 1 Leisure & Hospitality Stimulus
22 500 2 4 Leisure & Hospitality Stimulus
23 500 4 1 Leisure & Hospitality Stimulus
24 500 4 4 Leisure & Hospitality Stimulus
25 500 2 1 Government Stimulus
26 500 2 4 Government Stimulus
27 500 4 1 Government Stimulus
28 500 4 4 Government Stimulus
29 500 2 1 Construction Stimulus
30 500 2 4 Construction Stimulus
31 500 4 1 Construction Stimulus
32 500 4 4 Construction Stimulus
33 500 2 1 Information Relocation
34 500 2 4 Information Relocation
35 500 4 1 Information Relocation
36 500 4 4 Information Relocation
37 500 2 1 Manufacturing Relocation
38 500 2 4 Manufacturing Relocation
39 500 4 1 Manufacturing Relocation
40 500 4 4 Manufacturing Relocation
41 500 2 1 Trade/Trans./Utilities Relocation
42 500 2 4 Trade/Trans./Utilities Relocation
43 500 4 1 Trade/Trans./Utilities Relocation
44 500 4 4 Trade/Trans./Utilities Relocation
45 25% All All All Relocation
46 50% All All All Relocation
47 100% All All All Relocation1
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Figure 1: Probability of Obtaining Stimulus Job by Distance From Focal Tract: Average
across All Simulated Stimuli

Figure 2: Fraction of Workers in Each Distance Bin
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Figure 3: Share of Stimulus Jobs Obtained by Workers at Each Distance From Focal Tract:
Average across All Simulated Stimuli

Figure 4: Change in P(Employed) by Distance From Focal Tract: Average across All Sim-
ulated Stimuli
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Figure 5: Share of Additional Employment Obtained by Workers at Each Distance From
Focal Tract: Average across All Simulated Stimuli

Figure 6: Change in P(Employed) by Distance From Focal Tract and Industry of Stimulus
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Figure 7: Share of Additional Employment Obtained by Workers by Distance From Focal
Tract and Industry Composition of the Stimulus Package

Figure 8: Change in P(Employed) by Distance From Focal Tract and Firm Size/Firm
Average Pay Composition of the Stimulus Package
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Figure 9: Share of Additional Employment Obtained by Workers by Distance From Focal
Tract and Firm Size/Firm Average Pay Composition of the Stimulus Package

Figure 10: Annual Earnings Changes by Distance From Focal Tract: Average across All
Simulated Stimuli
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Figure 11: Share of Total Earnings Gains by Distance From Focal Tract: Average across
All Simulated Stimuli

Figure 12: Expected Annual Earnings Changes by Distance From Focal Tract and Industry
Composition of the Stimulus Package
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Figure 13: Expected Annual Earnings Changes by Distance From Focal Tract and Firm
Size/Firm Average Pay Composition of the Stimulus Package

Figure 14: Share of Additional Employment among Workers Initially Employed (or Nonem-
ployed) at Different Initial Earnings Quintiles (or Nonemployment): Average across All
Simulated Stimuli
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Figure 15: Share of Total Earnings Gains among Workers Initially Employed (or Nonem-
ployed) at Different Initial Earnings Quintiles (or Nonemployment): Average across All
Simulated Stimuli

Figure 16: Share of Additional Employment among Workers Initially Employed (or Nonem-
ployed) at Different Initial Earnings Quintiles (or Nonemployment) by Industry Composi-
tion of the Stimulus Package
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Figure 17: Share of Additional Employment among Workers Initially Employed (or Nonem-
ployed) at Different Initial Earnings Quintiles (or Nonemployment) by Firm Size/Firm Av-
erage Pay Composition of the Stimulus Package

Figure 18: Share of Total Earnings Gains among Workers Initially Employed (or Nonem-
ployed) at Different Initial Earnings Quintiles (or Nonemployment) by Industry Composi-
tion of the Stimulus Package
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Figure 19: Share of Total Earnings Gains among Workers Initially Employed (or Nonem-
ployed) at Different Initial Earnings Quintiles (or Nonemployment) by Firm Size/Firm
Average Pay Composition of the Stimulus Package

Figure 20: Change in P(Employed) Among Workers Initially Employed at Different Com-
binations of Initial Earnings Quintile (or Nonemployed) and Distance from Focal Tract:
Average across All Simulated Stimuli
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Figure 21: Expected Annual Earnings Changes Among Workers Initially Employed at Dif-
ferent Combinations of Initial Earnings Quintile (or Nonemployed) and Distance from Focal
Tract: Average across All Simulated Stimuli

Figure 22: Expected Annual Earnings Changes Among Workers Originally Working in the
Targeted Tract by Initial Earnings Quintile: By Industry Supersector
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Figure 23: Expected Annual Earnings Changes Among Workers Originally Working in the
Targeted Tract by Initial Earnings Quintile: By Firm Size Quartile/Firm Pay Quartile
Combination

Figure 24: Expected Annual Earnings Changes Among Workers Originally Working in the
Targeted Tract by Initial Earnings Quintile: All Stimulus Packages
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Figure 25: Change in P(Unemployed) from a Natural Disaster by Distance From Focal
Tract and Severity of the Disaster (25%/50%/100% Jobs Lost)

Figure 26: Expected Annual Earnings Loss from a Natural Disaster by Distance From Focal
Tract and Severity of the Disaster (25%/50%/100% Jobs Lost)
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Figure 27: Expected Share of Total Earnings Decreases Produced by a Natural Disaster
Among Geographic Areas Defined by Distances from the Focal Tract, by Disaster Severity
(25%/50%/100% of Jobs Lost)

Figure 28: Expected Share of Additional Nonemployment Produced by a Natural Disaster
among Workers Initially Employed (or Nonemployed) at Different Initial Earnings Quintiles
(or Nonemployment), by Disaster Severity (25%/50%/100% of Jobs Lost)
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Figure 29: Change in P(Employed) Produced by a Natural Disaster (25% Jobs Lost) for
Randomly Chosen Workers Initially Employed at Different Combinations of Initial Earnings
Quintile (or Nonemployed) and Distance from Focal Tract

Figure 30: Change in P(Employed) Produced by a Natural Disaster (100% Jobs Lost) for
Randomly Chosen Workers Initially Employed at Different Combinations of Initial Earnings
Quintile (or Nonemployed) and Distance from Focal Tract
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Figure 31: Expected Share of Earnings Losses Produced by a Natural Disaster among
Workers Initially Employed (or Nonemployed) at Different Initial Earnings Quintiles (or
Nonemployment), by Disaster Severity (25%/50%/100% of Jobs Lost)

Figure 32: Expected Decrease in Annual Earnings Produced by a Natural Disaster (25%
Jobs Lost) for Randomly Chosen Workers Initially Employed at Different Combinations of
Initial Earnings Quintile (or Nonemployed) and Distance from Focal Tract
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Figure 33: Expected Decrease in Annual Earnings Produced by a Natural Disaster (100%
Jobs Lost) for Randomly Chosen Workers Initially Employed at Different Combinations of
Initial Earnings Quintile (or Nonemployed) and Distance from Focal Tract

Figure 34: Change in Probability of Destination Employment (or Nonemployment) at Dif-
ferent Distances from Focal Tract after a Natural Disaster for Workers Initially Employed in
the Focal Tract (Averaging Across the Initial Earnings Distribution), by Disaster Severity
(25%/50%/100% of Jobs Lost)
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Figure 35: Change in Probability of Destination Employment (or Nonemployment) at Dif-
ferent Distances from the Focal Tract after a Natural Disaster (100% Jobs Lost) for Workers
Initially Employed in the Focal Tract by Initial Earnings Quintile

Figure 36: Change in Probability of Destination Employment (or Nonemployment) at Dif-
ferent Distances from the Focal Tract after a Natural Disaster (25% Jobs Lost) for Workers
Initially Employed in the Focal Tract by Initial Earnings Quintile
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Appendix

A1 Proof of Proposition A1

Proposition A1:

Suppose the following assumptions hold:

1’) The assumptions laid out in sections 2.3 and 2.4 continue to hold. Namely, each

joint surplus πijk is additively separable in the group-level and idiosyncratic components,

the vector of idiosyncratic components εij(i)k is independently and identically distributed,

and follows the type 1 extreme value distribution, and Assumptions 1 and 2 hold.

2’) The set of destination positions k ∈ K̃ that will be filled in the stable counterfactual

assignment are known in advance, and the set of destination positions k ∈ K̃ that will re-

main unfilled in the stable counterfactual assignment are ignorable, in the sense that their

existence does not change the assignment nor the division of surplus among the remaining

set of positions K and set of workers I.

3’) 1
|gi|

∑
k:g(i,j(i),k)=g e

− qk
σ ≈ 1

|d|
∑

k:d(k)=d(g) e
− qk
σ = Cd(g) ∀(g, i).

4’) P (g|i, d(g)) ≈ P (g|o(g), d(g)) ∀(g, i).

Then the group-level assignment PCF (g) that satisfies the following O−1 excess demand

equations represents the unique group-level equilibrium assignment PCF
∗
(g) consistent with
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the unique worker/firm level stable matching µCF :

∑
d∈D

hCF (d)(
∑

g:o(g)=2

PCF (g|d,CCF2 , . . . , CCFO ) = fCF (2)

...∑
d∈D

hCF (d)(
∑

g:o(g)=O

PCF (g|d,CCF2 , . . . , CCFO ) = fCF (O) (28)

where PCF (g|d,CCF2 , . . . , CCFO ) is given by:

PCF (g|d) =
e
θCFg
σ PCF (z(g)|o(g), d)fCF (o(g))CCFo∑

o′∈O
∑

g′∈(o,d) e
θCF
g′
σ PCF (z(g′)|o′(g′), d)fCF (o′)CCFo′

∀ d ∈ [1, . . . , D] (29)

Proof: Proposition A1 states that assignment PCF (g) implied by the vector of mean

utility values CCF = [1, C2, . . . , C
CF
O ] that solves the system of equations (28) in fact

represents the unique group-level stable (and equilibrium) assignment PCF
∗
(g).

First, note that if unfilled positions are ignorable for the counterfactual assignment,

then we can focus on finding a stable assignment of a restricted version of the assignment

game in which only remaining K positions need to be considered. As discussed in footnote

14, Assumption 2’ implicitly requires that no position that remains unfilled is ever the

second-best option for any worker who takes a job in the destination period.

Furthermore, Assumption 2’ imposes that each of the remaining positions will be filled

in any stable matching. Recall that stability in the individual-level matching µCF requires:

µCFij(i)k = 1 iff k ∈ arg max
k∈K̃∪0

πij(i)k − qCFk and i ∈ arg max
i∈Ĩ∪0

πij(i)k − rCFi (30)

Assumption 2’ allows us to replace i ∈ arg maxi∈Ĩ∪0 πij(i)k−r
CF
i with i ∈ arg maxi∈Ĩ πij(i)k−

rCFi . In other words, we assume in advance that the individual rationality conditions that

any proposed match yield a higher payoff to the firm than remaining vacant, πijk−ri > π0k

when µik = 1, are satisfied and can be ignored. Implicitly, this requires that the joint sur-

pluses to workers and firms from matching up are sufficiently large relative to both workers’
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and firms’ outside options.38 Imposing Assumption 2’ will probably cause utility losses

among local workers from negative local labor demand shocks to be overstated, since some

workers would likely find jobs at positions that were not willing to hire at the original wage

level but would enter the labor market at lower wage levels. Conversely, gains to local work-

ers from positive shocks may be understated, since some local firms that filled positions at

the original wage levels might choose to remain vacant (or move to other locations) when

competition for local workers becomes more fierce.

In our applications the number of positions that will be filled (which Assumption 2’

imposes will be known) is greater than the number of workers seeking positions (I). In

order to be able to consistently allocate workers to transition groups, even when they move

to (or remain in) nonemployment, we define a “nonemployment” destination type as the last

destination type D. Because the number of workers who end up nonemployed is assumed

to be known, we allocate enough “nonemployment” positions within type D, hCF (D), so

that the number of workers I equals the number of “positions” K, once K includes the

dummy nonemployment positions. We then normalize this common number of worker and

firm positions (assumed to be very large) to be 1, and reinterpret fCF (o) and hCF (d) as

probability mass functions providing shares of the relevant worker and position populations

rather than counts.

As discussed in Section 2.4, Assumption 1’, when combined with the stability conditions

(30), implies that the probability that a given position k will be filled by a particular worker

i is given by the logit form (12). When combined with Assumptions 1 and 2 (also cited

by Assumption 1’), this implies that the group-level conditional choice probability P (g|d)

takes the form (29) for any destination types d that are composed of positions k (as derived

in section 2.4).

However, note the statement of Proposition A1 makes it clear that the form (29) also

holds for the last type D, which contains the “dummy” nonemployment positions whose

“choices” will be workers moving to nonemployment. The stability conditions (30) do not

provide any justification for why these dummy nonemployment positions should be filled via

38This implicitly requires that the unobserved draws ε0k for firm vacancy values are taken from a bounded
distribution rather than the Type 1 extreme value distribution.
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the same logit form as the other destination types that consist of actual positions at firms.

Thus, the inclusion of these dummy positions, and the assumption that the probability

distribution over alternative groups representing different worker and job match character-

istics (o(g), z(g)) follows the logit form, are mere computational devices to calculate the

equilibrium assignment. That this computational device in fact yields the unique stable

assignment for the proposed counterfactual labor market is the primary reason Proposition

A1 requires a proof.

However, the stability conditions and Assumption 1’ imply that the probability that a

given worker i will choose a particular firm k (where k = 0 represents nonemployment) is

also given by the logit form (Decker et al. (2013)):

PCF (k|i) =
e
θCFg −qCFk

σ∑
k′∈K∪0 e

θCF
g′
−qCF
k′

σ

(31)

This can then be aggregated (using the same steps as in section 2.4) to provide an expression

for the probability that a randomly chosen worker from a given origin type o matches with

a position that yields a transition assigned to group g:

PCF (g|o) =
1

|o|
∑
i∈o

(e
θCFg
σ )(

∑
k:g(i,j(i),k)=g e

−qCFk
σ )∑

k′∈K∪0 e
θCF
g′
−qCF
k′

σ

(32)

Assumptions 3’ and 4’, which are analogues to Assumptions 1 and 2 in section 2.4, allow

us to simply this expression to the following:

PCF (g|o) =
e
θCFg
σ PCF (z(g)|o, d(g))hCF (d(g))C̃CFd∑

d′∈D
∑

g′∈(o,d′) e
θCF
g′
σ PCF (z(g′)|o′(g′), d)hCF (d′)C̃CFd′

∀ o ∈ [1, . . . , O] (33)

Assumption 3’ states that the discounted profits of alternative positions k assigned to the

same destination type d are roughly the same. This implies that the profit share that workers

must provide to the position in a stable matching is approximately the same for their existing

positions as for other positions in the same local area featuring the same industry and firm

size and firm average pay categories, and can be summarized by a parameter CCFd that is
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defined at the destination-type level.

Taken literally (given the characteristics we use to define groups), Assumption 4’ states

that every worker assigned to the same origin type starts the year in firms with the same

number of destination positions, which clearly does not hold. More broadly, though, As-

sumptions 3’ and 4’ allow us to replace the term
∑

k:g(i,j(i),k)=g e
−qCFk
σ that depends on the

individual i with an expression PCF (g|o, d(g))hCF (d(g))C̃CFd(g) that depends on only group

and destination-type level terms. Essentially, we are assuming that ignoring within-origin

type variation in the number of positions at which they would be stayers (due to different

firm sizes of initial job matches) when aggregating is not generating significant bias in the

counterfactual assignment and incidence estimates.39

Under Assumptions 1’ through 4’, the group-level stable matching must satisfy the

following market clearing conditions, which specify that supply must equal demand for

each destination position type d:

∑
o∈O

fCF (o)(
∑

g:d(g)=2

PCF
∗
(g|o, C̃CF) = hCF (2) (34)

... (35)∑
o∈O

fCF (o)(
∑

g:d(g)=D

PCF
∗
(g|o, C̃CF) = hCF (D) (36)

where C̃CF represents the D − 1 length vector = [1, C̃CF2 , . . . , C̃CFD ] and each conditional

probability PCF
∗
(g|o, C̃CF) takes the form in (33).

Note in particular that Assumption 2’ allows us to ignore the possibility that supply

might exceed demand for some destination position types (implying some vacant positions).

In this alternative position-side system of equations, the expressions for each conditional

probability PCF
∗
(g|o) do in fact stem directly from the necessary stability conditions. And

all of the feasibility conditions for a stable matching are incorporated into the zero-excess

demand equations (since PCF
∗
(g|o) sum to 1 by construction, the assignment PCF

∗
(g) that

satisfies this system necessarily sums to the origin-type PMF fCF (o)). Thus, the proof

39Note also that assumptions 3’ and 4’ may not be necessary conditions for Proposition A1. We are seeking
an alternative proof of Proposition A1 that does not require assumptions 3’ and 4’.
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by Decker et al. (2013) that there exists a unique group-level assignment that satisfies all

of the group-level feasibility and stability conditions (and is thus consistent with a stable

matching in the assignment game defined at the level of worker-position matches) applies

here.

If one wished, one could directly compute the unique group-level counterfactual assign-

ment PCF
∗
(g|o) by finding a D − 1 length vector C̃CF that solved this system, and con-

structing the implied assignment by plugging this vector into the conditional probability

expressions (33). However, when D � O, solving this system is considerably more compu-

tationally burdensome than solving the worker-side counterpart (28), which features O− 1

equations. Thus, the remainder of this proof is devoted to showing that any assignment

PCF (g) implied by a solution to (28) must equal the assignment PCF
∗
(g) implied by a so-

lution to (36). And since we know that the latter solution represents the unique group-level

matching consistent with stability in the assignment game, the former solution must also

be unique, and must also represent the group-level matching consistent with stability in the

assignment game. Essentially, this amounts to showing that the device of adding “dummy”

nonemployment positions present in (28) appropriately incorporates the surpluses πi0 that

workers obtain from staying single.

Consider an O length vector CCF = [1, CCF2 , . . . , CCFO ] that solves (28) and generates

assignment PCF (g). We wish to show that one can use CCF to construct an alternative

D length vector C̃CF = [1, C̃CF2 , . . . , C̃CFD ] that solves (36), and that the assignment it

generates, PCF
∗
(g), equals PCF (g).

We propose the following vector C̃CF:

C̃CFd =

∑O
o=1

∑
g′:(o(g′),d(g′))=(o,D) e

θg′
σ fCF (o)P (z(g′)|o,D)CCFo∑O

o=1

∑
g′:(o(g′),d(g′))=(o,d) e

θg′
σ fCF (o)P (z(g′)|o, d)CCFo

∀ d ∈ [1, . . . , D] (37)

Here, the numerator captures the inclusive value (as defined by Menzel (2015)) associated

with the nonemployment destination type D, while the denominator captures the inclusive

value for the chosen destination type d. This implies that C̃CFD = 1. While any destination

type could be chosen as the one whose mean exponentiated profit value is normalized,
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normalizing the nonemployment type is particularly appealing, since it implies “profit”

values of 0 for the dummy nonemployment destination type D (C̃CFD = eqD = e0 = 1).

To conserve notation, let λ represent the inclusive value associated with the nonemploy-

ment destination type D, the numerator in (42):

λ =

O∑
o=1

∑
g′:(o(g′),d(g′))=(o,D)

e
θg′
σ fCF (o)PCF (z(g′)|o,D)CCFo (38)

Note that λ is independent of destination type.

We begin by showing that the assignments implied by the vectors [CCF1 , . . . , CCFO ] and

[CCF1 , . . . , C̃CFD ] are identical: PCF (g) = PCF
∗
(g).

Note first that since CCF solves the worker-side system of excess demand equations (28),

we know that

∑
d′∈D

hCF (d′)
∑

g′∈(o,d′)

e
θCF
g′
σ PCF (z(g′)|o, d′)fCF (o)CCFo∑O

o′=1

∑
g′:(o(g′),d(g′))=(o′,d) e

θg′
σ fCF (o′)P (z(g′)|o′, d)CCFo′

= fCF (o) ∀ o ∈ [1, O]

⇒
∑
d′∈D

∑
g′∈(o,d′)

e
θCF
g′
σ PCF (z(g′)|o, d′)hCF (d′)∑O

o=1

∑
g′:(o(g′),d(g′))=(o,d) e

θg′
σ fCF (o)P (z(g′)|o, d)CCFo

=
1

CCFo
∀ o ∈ [1, O]

⇒
∑
d′∈D

∑
g′∈(o,d′)

e
θCF
g′
σ PCF (z(g′)|o, d′)hCF (d′)

λ
C̃CF
d′

=
1

CCFo
∀ o ∈ [1, O]

⇒
∑
d′∈D

∑
g′∈(o,d′)

e
θCF
g′
σ PCF (z(g′)|o, d′)hCF (d′)C̃CFd′ =

λ

CCFo
∀ o ∈ [1, O] (39)
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We can now proceed:

PCF
∗
(g) = fCF (o)PCF

∗
(g|o) = fCF (o)

e
θCFg
σ PCF (z(g)|o, d)hCF (d)C̃CFd∑

d′∈D
∑

g′∈(o,d′) e
θCF
g′
σ PCF (z(g′)|o, d′)hCF (d′)C̃CFd′

=
fCF (o)e

θCFg
σ PCF (z(g)|o, d)hCF (d)C̃CFd CCFo

λ

= hCF (d)
e
θCFg
σ fCF (o)PCF (z(g)|o, d)λCCFo

λ
∑O

o′=1

∑
g′:(o(g′),d(g′))=(o′,d) e

θg′
σ fCF (o′)P (z(g′)|o′, d)CCFo′

= hCF (d)PCF (g|d) = PCF (g) (40)

It remains to show that the chosen C̃CF vector (42) solves (36). Consider the left-hand

side of the excess demand equation for an arbitrarily chosen destination type d in the system

(36). We can write:

O∑
o=1

∑
g:(o(g),d(g))=(o,d)

fCF (o)PCF
∗
(g|o,ΘCF , C̃CF )

O∑
o=1

∑
g:(o(g),d(g))=(o,d)

hCF (d)PCF (g|d,ΘCF ,CCF )

hCF (d)
O∑
o=1

∑
g:(o(g),d(g))=(o,d)

PCF (g|d,ΘCF ,CCF )

= hCF (d)
∑

g:d(g)=d

PCF (g|d,ΘCF ,CCF )

= hCF (d) (41)

where the last line uses the fact that PCF (g|d) is a (conditional) probability distribution

and thus sums to one. Since we have proved that the implied “demand” by workers for

positions of an arbitrary destination type equals the “supply” hCF (d), we have thus proved

that C̃CF solves the system (36).

Notice that the expression for the proposed equilibrium mean ex post profit vector

(42) has value beyond its use in proving proposition A1. Once the O-vector of mean ex

post utilities {CCFo } for each origin type have been computed, we can use (42) to directly
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calculate the mean ex post profit vector for each destination position type d without having

to solve a system of D − 1 equations. This is quite valuable when D � O, as it is in

our application. Of course, the equivalent mapping can be inferred by symmetry for the

opposite case where O � D:

CCFo =

∑D
d=1

∑
g′:(o(g′),d(g′))=(O,d) e

θg′
σ hCF (d)P (z = z(g′)|O, d)C̃CFd∑D

d=1

∑
g′:(o(g′),d(g′))=(o,d) e

θg′
σ hCF (d)P (z = z(g′)|o, d)C̃CFd

∀ o ∈ [1, . . . , O] (42)

In section 2.5 we showed that these vectors are sufficient to determine both the worker and

firm type-level incidence of any counterfactual shocks to the composition or spatial distri-

bution of labor supply and/or labor demand. Thus, at least in cases where the proposed

model is a reasonable approximation of the functioning of the labor market (and housing

supply is sufficiently elastic and agglomeration effects and other product market spillovers

are second order), a proper welfare analysis of such shocks only requires solving at most

min{O,D} non-linear excess demand equations. Since an analytical Jacobian can be de-

rived and fed as an input to non-linear equations solvers, relatively large scale assignment

problems featuring thousands of types on one side of the market (and perhaps more on the

opposite side) can be solved within a matter of minutes.

A2 Proof of Proposition 1

Proposition 1:

Define the set ΘD−in−D ≡ { (θg−θg′ )−(θg′′−θg′′′ )σ ∀ (g, g′, g′′, g′′′) : o(g) = o(g′′), o(g′) =

o(g′′′), d(g) = d(g′), d(g′′) = d(g′′′))}. Given knowledge of ΘD−in−D, a set Θ̃ = {θ̃g} can be

constructed such that the unique group level assignment PCF (g) that satisfies the system of

excess demand equations (27) using θCFg = θ̃g ∀ g and arbitrary marginal distributions for

origin and destination types fCF (∗) and gCF (∗) will also satisfy the corresponding system

of excess demand equations using θCFg = θg ∀ g and arbitrary distributions fCF (∗) and

gCF (∗). Furthermore, denote by {C̃CF1 , . . . , C̃CFO } the market-clearing utility values that

clear the market using θCFg = θ̃g, and denote by {CCF1 , . . . , CCFO } the market-clearing utility
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values that clear the market using θCFg = θg. Then {C̃CFo } will satisfy C̃CFo ) = CCFo e
∆o
σ ∀ o

for some set of origin type-specific constants {∆o} that is invariant to the choice of fCF (∗)

and gCF (∗).

Proof: We prove Proposition 1 by construction.

Let z(i, j, k) = 1(m(j) = m(k)) represent an indicator that takes on the value of 1 if

the firms associated with positions j and k are the same, and 0 otherwise. Recall also that

all worker transitions assigned to the same transition group g share values of the worker

and firm characteristics that define the worker’s origin and firm’s destination types o and

d, respectively, as well as the value of the indicator z(i, j, k). Thus, we can write o(g), d(g)

and z(g) for any group g. Let the origin types be ordered (arbitrarily) from o = 1 . . . o = O,

and let the destination types be ordered (arbitrarily) from d = 1 . . . d = D. Let g(o, d, z)

denote the group associated with origin type o, destination type d, and existing worker

indicator z. Assume that the set ΘD−in−D = { (θg−θg′ )−(θg′′−θg′′′ )σ ∀ (g, g′, g′′, g′′′)} is known,

since a consistent estimator for each element of the set can be obtained via adjusted log

odds ratios, as described in Section 2.4.

Consider defining the following set of alternative group-level joint surplus values Θ̃ =

{θ̃g} as follows:

θ̃g′ = 0 ∀ g′ : (o(g′) = 1 and/or d(g′) = 1) and z(g′) = 0 (43)

θ̃g′ =
(θg′ − θg(1,d(g′),0))− (θg(o(g′),1,0) − θg(1,1,0))

σ
∀ g′ : (d(g′) 6= and o(g′) 6= 1) and/or z(g′) 6= 0

(44)

Under the definitions in (43) and (44), we have:

(θ̃g − θ̃g′)− (θ̃g′′ − θ̃g′′′)
σ

=
(θg − θg′)− (θg′′ − θg′′′)

σ

∀ (g, g′, g′′, g′′′) : o(g) = o(g′′), o(g′) = o(g′′′), d(g) = d(g′), d(g′′) = d(g′′′) (45)

Thus, the appropriate difference-in-differences using elements of Θ̃ match the corresponding
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difference-in-differences of true surpluses in ΘD−in−D, so that all of the information about

Θ contained in the identified set ΘD−in−D is retained. Furthermore, unlike the true set Θ,

the construction of Θ̃ only requires knowledge of ΘD−in−D.

Next, note that the elements of Θ̃ can be written in the following form:

θ̃g = θg + ∆1
o(g) + ∆2

d(g) ∀ g ∈ G, where (46)

∆1
o(g) = θg(o(g),1,0) − θg(1,1,0) (47)

∆2
d(g) = θg(1,d(g),0) (48)

where G is the set of all possible transition groups. In other words, each alternative surplus

θ̃g equals the true surplus θg plus a constant (∆1
o(g)) that is common to all groups featuring

the same origin type and a constant (∆2
d(g)) that is common to all groups featuring the

same destination type.

Next, recall that there exists a unique aggregate assignment associated with each com-

bination of marginal origin and destination type distributions fCF (o) and hCF (d) and set

of group-level surpluses, including Θ̃. Let P̃CF (∗) ≡ PCF (∗|Θ̃, C̃CF2 , . . . , C̃CFO )) represent

the unique counterfactual assignment that results from combining arbitrary marginal dis-

tributions fCF (o) and hCF (d) with the set Θ̃. C̃CF = [1, C̃CF2 . . . C̃CFO ] denotes the vector

of mean exponentiated utility values for each origin type o (with C̃CF1 normalized to 1) that

solves the system of excess demand equations below, and thus yields P̃CF (g) ∀ g ∈ G when

plugged into equation (26) along with the elements of Θ̃:

∑
d∈D

hCF (d)(
∑

g:o(g)=2

PCF (g|d, Θ̃, C̃CF)) = fCF (2)

...∑
d∈D

hCF (d)(
∑

g:o(g)=O

PCF (g|d, Θ̃, C̃CF)) = fCF (O) (49)

We wish to show that P̃CF (∗) ≡ PCF (∗|Θ̃, C̃CF) will be identical to the alternative unique

counterfactual equilibrium assignment PCF (∗|Θ,CCF) that combines the same arbitrary

marginal distributions fCF (o) and hCF (d) with the set Θ instead of Θ̃. Here, CCF =
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[1, CCF2 . . . CCFO ] denotes a vector of o-type-specific mean exponentiated utility values that

clears the market by satisfying the following alternative excess demand equations:40

∑
d∈D

hCF (d)(
∑

g:o(g)=2

PCF (g|d,Θ,CCF)) = fCF (2)

...∑
d∈D

hCF (d)(
∑

g:o(g)=O

PCF (g|d,Θ,CCF)) = fCF (O) (50)

Since all other terms are unchanged between the systems (49) and (50), it suffices to show

that PCF (g|d, Θ̃, C̃CF) = PCF (g|d,Θ,CCF)) ∀ g ∈ G for some vector CCF. Consider the

following proposed vector CCF:

CCFo = C̃CFo e
∆1
o
σ ∀ o ∈ [2, . . . , O] (51)

where ∆1
o is as defined in (47). For an arbitrary choice of g, we obtain:

PCF (g|d(g), Θ̃, C̃CF)

=
e
θ̃CFg
σ PCF (z(g)|o(g), d(g))fCF (o(g))C̃CFo∑

o′∈O
∑

g′∈(o,d) e
θ̃CF
g′
σ PCF (z(g′)|o′(g′), d(g))fCF (o′)C̃CFo′

=
e

(θCFg +∆1
o(g)

+∆2
d(g)

)

σ PCF (z(g)|o(g), d(g))fCF (o(g))CCFo e
−∆1

o
σ∑

o′∈O
∑

g′∈(o′,d) e
(θCF
g′

+∆1
o(g′)

+∆2
d(g′)

)

σ PCF (z(g′)|o′(g′), d(g))fCF (o′)CCFo′ e
−∆1

o′
σ

= e
∆1
o(g)
σ e

∆2
d(g)
σ e

−∆1
o(g)
σ

e
θCFg
σ PCF (z(g)|o(g), d(g))fCF (o(g))CCFo

e
∆2
d(g)
σ

∑
o′∈O e

∆1
o(g′)
σ e

−∆1
o(g′)
σ

∑
g′∈(o′,d) e

θCF
g′
σ PCF (z(g′)|o′(g′), d(g))fCF (o′)CCFo′

=
e
θCFg
σ PCF (z(g)|o(g), d(g))fCF (o(g))CCFo∑

o′∈O
∑

g′∈(o′,d) e
θCF
g′
σ PCF (z(g′)|o′(g′), d(g))fCF (o′)CCFo′

= PCF (g|d,Θ,CCF) (52)

40Note that we have suppressed the dependence of PCF (∗|Θ,CCF, fCF (o), hCF (d), P (z = z(g)|o, d)) on
fCF (o), hCF (d), and P (z(g)|o, d) because these are held fixed across the two alternative counterfactual
simulations.
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This proves that PCF (g|d,Θ,CCF) also satisfies the market clearing conditions (50) above,

and will therefore be the unique group-level assignment consistent with marketwide equi-

librium and stability. Thus, we have shown that the counterfactual assignment we recover

when using an alternative set of surpluses Θ̃ derived from the identified set ΘD−in−D will

in fact equal the counterfactual assignment we desire, which is based on the true set of

joint surplus values Θ. Furthermore, while origin-type specific mean utility values C̃CF

that clears the market given Θ̃ will differ for each origin type from the corresponding vector

CCF based on the true surplus set Θ, these differences are invariant to the marginal origin

and destination distributions fCF (o) and hCF (d) used to define the counterfactual. This

implies that differences in utility gains caused by alternative counterfactuals among origin

groups are identified, permitting comparisons of the utility incidence of alternative labor

supply or demand shocks. This concludes the proof.

A3 Estimating the Value of σ

We attempt to estimate σ, the standard deviation of the unobserved match-level component

εij(i)k, by exploiting the fact that the composition of U.S. origin and destination job matches

fy(o) and hy(d) evolved across years y. Specifically, we estimate the set of group-level

surpluses {θ2007g } from the observed 2007-2008 matching. Then, holding these surplus values

fixed, we combine {θ2007g } with fy(o) and hy(d) from each other year y ∈ [1993, 2010] to

generate counterfactual assignments and changes in scaled mean (exponentiated) utility

values {CCFo } for each origin type. These counterfactuals predict how mean worker utilities

by skill/location combination could have been expected to evolve over the observed period

given the observed compositional changes in labor supply and demand had the underlying

surplus values {θg} been constant and equal to {θ2007g } throughout the period.

To the extent that most of evolution in the utility premia enjoyed by workers in par-

ticular locations and skill categories was due primarily to changes in supply and demand

composition rather than changes in the moving costs, recruiting costs, tastes, and relative

productivities that compose the joint surplus values {θg}, these counterfactual predictions

will be reasonable approximations of the realized evolution of ex post utility over time by
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origin type. Recall that CCFo ≈ 1
|o|

∑
i:o(i,j(i))=o e

−rCFi
σ . Thus, if ex post utility rCFi does not

vary too much across individuals within an origin type, so that Jensen’s inequality is near

equality and 1
|oy |

∑
i:o(i,j(i))=o e

−rCF,y
i
σy ≈ e

r
CF,y
o
σy , then taking logs yields ln(CCF,yo ) ≈ rCF,yo

σy .

Next, we form the corresponding changes in observed annual earnings from origin to

destination match for each origin type in each year, Earn
y+1
o −Earnyo.41 We then run the

following regression at the o-type level for each year y ∈ [1993− 2011]:

Earn
y+1
o − Earnyo = βy0 + βy1 (ln(CCF,y+1

o )− ln(CCF,yo )) + νyo (53)

Recall that the rCF,yo values represent predicted money metric utility gains, and are thus

denominated in dollars. However, even if the surplus values {θg} are time invariant over the

chosen period (and the other assumptions of the assignment model specified above all hold,

including the approximations just described), dollar-valued mean utility gains would not

equal mean annual earnings gains for a given origin type if its workers systematically moved

to jobs featuring better or worse amenities (the term f i(A(j)) in the utility function (1)

above), avoided more moving/recruiting training costs ci(j, k), or moved to jobs featuring

better or worse continuation values. However, if such changes in other sources of utility

nearly cancel out among workers assigned to the same origin type (for all origin types),

then rCF,yo should approximately equal Earn
y+1
o − Earnyo. This implies that βy1 ≈ σy.

Clearly, given the additional strong assumptions required, this approach represents a

relatively crude attempt to calibrate σ. Indeed, further efforts could conceivably be taken

to exclude origin types o′ whose surplus values {θg : o(g) = o′} were known to be changing

over the chosen time period, or to allow θg to evolve in a particular parametric fashion.42

In fact, Galichon and Salanié (2015) discuss how a vector of σ values associated with differ-

ent types or combinations of types based on observed characteristics might potentially be

41Note that while worker earnings in origin job matches were used to assign workers to skill categories,
to this point we have not used observed worker earnings in destination positions to identify any other
parameters.

42In our actual implementation, we do allow the set of θg used to generate the counterfactual prediction to
evolve over time in an extremely restricted fashion: we allow the relative payoff of retaining existing workers
relative to hiring new workers to evolve over time to match the share of workers who stay at their dominant
jobs in each observed year. We do this because the well-chronicled decline in job-to-job mobility during this
time period is strongly at odds with the assumption that θg is completely time invariant.
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jointly estimated with other model parameters (thereby allowing heteroskedasticity across

types in the idiosyncratic match component). Since our focus is primarily on examining rel-

ative incidence across different origin types from shocks featuring different changes in labor

demand composition, we opted for the simpler, more transparent approach. In practice, the

estimates we obtain for σy are fairly consistent across years. We used the mean estimate

across all years, σ = 8, 430, to produce dollar values for all the results relating to utility

gains presented in the paper.

A4 Using Transfers to Decompose the Joint Surpluses {θg}

This appendix examines whether observing equilibrium transfers, denoted wik, allows the

identification of additional parameters of interest. In Choo and Siow (2006)’s assignment

model, the unobserved match-level heterogeneity is assumed to take the form εijk = ε1o(i,j)k+

ε2ijd(k), so that aggregate surplus is left unchanged when two pairs of job matches (i, k)

and (i′, k′) belonging to the same group g swap partners. The elimination of any true

(i, k) match-level surplus component implies that equilibrium transfers cannot vary among

job matches belong to the same group g, so that wik = wg(i,k) ∀ (i, k).43 Galichon and

Salanié (2015) show that under this assumption about the form of unobserved heterogeneity,

observing the (common) group-level transfers wg would be sufficient to decompose the

group-level mean joint surplus θg into the worker and position’s respective pre-transfer

payoffs, which we denoted θlg and θfg , respectively.

Because the model proposed in section 2.3 does not impose the additive separability

assumption εijk = ε1o(i,j)k+ε2ijd(k), equilibrium transfers will in general vary among (i, k) pairs

belonging to the same group g. Indeed, given that we observe substantial earnings variance

within observed groups g regardless of the worker, firm, and job transition characteristics

used to define g, the Choo and Siow (2006) restriction on the nature of unobserved match-

level heterogeneity would be strongly rejected in the labor market context.

However, we can still consider the value for identification of the observed transfers {wik}.
43If wik > wi′k′ for any two matched pairs (i, k) and (i′k′) such that g(i, k) = g(i′, k′), then (i′, k) would

form a blocking pair by proposing a surplus split between them featuring a transfer between wik and wi′k′ ,
thus undermining the stability of the proposed matching.
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Recall from section 2.2 that equilibrium transfers are related to equilibrium worker and firm

payoffs via:

wik = πfik − qk (54)

wik = ri − πlik (55)

Next, recall from equation (23) that under Assumptions 1 and 2 the log odds that a

randomly chosen position from arbitrary destination type d will choose a worker whose hire

would be assigned to group g1 relative to g2 are given by:

ln(
P (g1|d)

P (g2|d)
) = ln(P (g1|d))− ln(P (g2|d)) =

θg1

σ
+ ln(P (z(g1)|o(g1), d)) + ln(f(o(g1))) + ln(Co(g1))−

θg2

σ
− ln(P (z(g2)|o(g2), d))− ln(f(o(g2)))− ln(Co(g2)) (56)

Since ln(P (z(g1)|o(g1), d)), ln(P (z(g2)|o(g2), d)), ln(f(o(g1))), and ln(f(o(g2))) are all

observed (or, if a large sample is taken, extremely precisely estimated), we can instead form

adjusted log odds as in (24):

ln(
P̂g1|d/(P (z(g1)|o(g1, d))f(o(g1)))

P̂g2|d/(P (z(g2)|o(g2), d)f(o(g2)))
) = (

θg1 − θg2

σ
) + (ln(Co(g1))− ln(Co(g2))) (57)

Under Assumption 1, Co is the mean of exponentiated (and rescaled) equilibrium utility

payoffs owed to workers i : o(i) = o:

Co =
1

|o|
∑

i:o(i,j(i))=o(g)

e−
ri
σ ≈

∑
1
gk

∑
i:g(i,j(i),k)=g

e−
ri
σ ∀ k (58)

Plugging (55) into (58) and then (58) into (57) yields:

ln(
P̂g1|d/(P (z(g1)|o(g1, d))f(o(g1)))

P̂g2|d/(P (z(g2)|o(g2), d)f(o(g2)))
)

= (
θg1 − θg2

σ
) + (ln(

1

|o|
∑

i:o(i,j(i))=o(g1)

e−
wik+πlik

σ )− ln(
1

|o|
∑

i:o(i,j(i))=o(g2)

e−
wik+πlik

σ )) (59)

It is not immediately obvious how to use equation (61) to recover parameters of interest.
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Only when we add further assumptions that are at odds with the structure of the model

can we recover an expression that mirrors the one in Choo and Siow (2006). Specifically,

suppose the following assumptions hold:

ri ≈ ro(i) ∀ i : o(i, j(i)) = o ∀o ∈ O

πlik = πlg(i,k) ≡ θ
l
g ∀ (i, k) : g(i, k) = g ∀ g ∈ G

wik = wg(i,k)∀ (i, k) : g(i, k) = g ∀ g ∈ G (60)

We suspect that these assumptions will are extremely unlikely to hold in any stable matching

if there is meaningful variance in the unobserved match surplus component εij(i)k among

(i, k) pairs assigned to the same group g, whose extreme value distribution is the basis for

the logit closed-forms used for conditional choice probabilities above. Nonetheless, they

yield:

ln(
P̂g1|d/(P (z(g1)|o(g1, d))f(o(g1)))

P̂g2|d/(P (z(g2)|o(g2), d)f(o(g2)))
)

= (
θg1 − θg2

σ
) + (ln(e−ro(g1))− ln(e−ro(g2)))

= (
θg1 − θg2

σ
) +
−ro(g1) + ro(g2)

σ

= (
θg1 − θg2

σ
) + (

−(wg1 + θlg1
) + (wg2 + θlg2

)

σ
)

=
θfg1 − θ

f
g2 + (wg2 − wg1)

σ
(61)

Given an estimate of σ based on multiple markets (as described in Appendix A3) and data

on mean annual earnings for each transition group g ∈ G, one could identify the difference

in the position component of the joint surplus for arbitrary groups g1 and g2. This provides

information about the relative profit contributions of different types of workers for each

type of firm before such workers salaries are considered. Note that one could still not

separate the training cost, recruiting cost, current revenue contribution, and continuation

value components of θfg without additional data.

A similar progression using adjusted log odds based on the worker side conditional

probabilities P (g1|o1) and P (g2|o1) would yield an estimate of the corresponding difference
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in the worker components of the joint surplus θlg1
−θlg2

for any two groups featuring the same

origin worker type. Since one such group could represent nonemployment, this approach

would provide estimates of the desirability of working at various types of firms in various

locations for zero pay relative to nonemployment. These values identify the reservation

salary necessary to convince each origin worker type to take (or continue) a position of each

destination type. As with firms, one could not disentangle the moving cost, search cost,

non-wage amenity value, and continuation value components of the surplus without further

data.

Because 1) we deem the assumptions (60) to be antithetical to the spirit of the model

and at odds with the data, and 2) other than estimating σ, the use of transfers is not

necessary to fulfill the primary aim of the paper, evaluating the utility and profit incidence

across worker and position types of alternative local labor demand shocks, we do not make

further use of the observed annual earnings distributions in the destination period t+ 1 in

any aggregate labor market transition (t, t+ 1) in this paper.

A5 Smoothing Procedure

In this appendix we describe how we smooth the empirical distribution of transitions across

transition groups, P̂ (g), prior to estimation in order to generate accurate estimates of the

elements of the identified set of joint surplus difference-in-differences ΘD−in−D. We smooth

for two reasons. First, such smoothing serves as a “noise infusion” technique that removes

the risk that the identity of any particular individual or firm could be revealed by any of

the estimates presented in the paper, as required of any research results generated from

confidential microdata in Federal Statistical Research Data Centers (FSRDCs). Second,

smoothing is necessary because there are sufficiently few observations per transition group

that many transition groups are either rarely (or never) observed in a given cross-sectional

transition despite substantial underlying matching surpluses simply due to sampling error.

Essentially, P̂ (g) is only a consistent estimator of P (g) as the number of observed worker

transitions per group I/G approaches infinity.

We overcome this sampling error problem by assuming that the underlying frequency
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P (g) with which a randomly chosen transition belongs to a particular transition group is a

smooth function of the observed characteristics that define group g. This permits the use of

a kernel density estimator that computes a weighted average of the empirical probabilities

P̂ (g′) of “nearby” groups g′ that feature “similar” vectors of characteristics to generate a

well-behaved approximation of P (g) from the noisy empirical distribution P̂ (g).

Such smoothing introduces two additional challenges. First, excessive smoothing across

other transition groups erodes the signal contained in the data about the degree of het-

erogeneity in the relative surplus from job transitions featuring different combinations of

worker characteristics, firm characteristics, and origin and destination locations. Since high-

lighting the role of such heterogeneity in forecasting the incidence of labor market shocks

is a primary goal of the paper, decisions about the appropriate bandwidth must be made

with considerable thought. The second, related challenge consists of identifying which of

the worker and firm characteristics that defines other groups makes them “similar”, in the

sense that the surplus {θg′} is likely to closely approximate the surplus whose estimate we

wish to make more precise θg.

Recall that each group g ≡ g(o, d, z) is a combination of 1) the origin establishment

location (which we denote loc(o)) and workers’ initial earnings quintile (or nonemployment

status) at the origin establishment (denoted earn(o)); 2) the destination establishment’s

location (loc(d)), firm size category (f size(d)), firm average earnings category (f earn(d)),

and industry supersector (ind(d)); and 3) the indicator z(i, j, k) for whether establishment

j and establishment k are the same, so that worker i is a job stayer rather than a mover

(denoted stayer(g)).

Given our goal of accurate characterizing incidence at a very low level of geographic

aggregation, we wish to preserve as accurately as possible any signal in the data about the

structure of spatial ties between nearby local areas. Thus, wherever possible our kernel

estimator should place non-zero weight only on alternative groups g′ that share the same

origin and destination locations (loc(o(g)) = loc(o(g′)) and loc(d(g)) = loc(d(g′))). Sim-

ilarly, we suspect that the combination of the non-location characteristics firm size, firm

average worker earnings, and firm industry is likely to be more important than location in
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determining the skill category of worker (proxied by initial earnings quintile) that generates

the most surplus. To develop a smoothing approach that embodies these principles, we

exploit the fact that P (g) can be decomposed via:

P (g) = P (g|d(g))h(d(g)) = P ([o(g), d(g), z(g)]|d)h(d(g))

= P ([loc(o(g)), earn(o(g)), stayer(g)]|d)h(d(g))

= P (loc(o(g))|earn(o(g)), stayer(g), d)P ([earn(o(g)), stayer(g)]|d)h(d(g))

= 1(stayer(g) = 1)P (loc(o(g))|earn(o(g)), 1(stayer(g) = 1), d)P ([earn(o(g)), 1(stayer(g) = 1)]|d)h(d(g))

+ 1(stayer(g) = 0)P (loc(o(g))|earn(o(g)), 1(stayer(g) = 0), d)P ([earn(o(g)), 1(stayer(g) = 0)]|d)h(d(g))

= 1(stayer(g) = 1)1(loc(o(g)) = loc(d(g)))P ([earn(o(g)), 1(stayer(g) = 1)]|d)h(d(g))

+ 1(stayer(g) = 0)P (loc(o(g))|earn(o(g), 1(stayer(g) = 0), d)P ([earn(o(g)), 1(stayer(g) = 0)]|d)h(d(g))

(62)

where the first two lines use the law of total probability and the set of characteristics that

define o(g) and z(g), the third line uses the fact that the z(g) ≡ Stayer(g) only takes on

two values (0 for job movers and 1 for job stayers), and the last line uses the fact that

P (loc(o(g))|earn(o(g)), 1(stayer(g) = 1), d) = 1(loc(o(g)) = loc(d(g))), since a potential

stayer associated with a particular destination type must have already been working at the

same location in the origin period (by virtue of being a job stayer, since we treat firms that

switch locations as different firms for computational reasons).

We use separate kernel density estimator procedures to estimate each of

P (loc(o(g))|earn(o(g)), 1(stayer(g) = 0), d(g)), P (earn(o(g)), 1(stayer(g) = 0)|d(g)), and

P (earn(o(g)), 1(stayer(g) = 1)|d(g)).

Consider first the estimation of P (loc(o(g))|earn(o(g), 1(stayer(g) = 0), d(g)), the con-

ditional probability that a particular new hire would be originally located at location loc(o),

given the hired worker’s initial earnings category and the destination type d of the hiring

position. Let Kdist(g, g′) represent the metric capturing how similar an alternative group g′

is to g for the purpose of estimating the propensity for firms of type d to hire workers from

a particular location (conditional on skill level). As discussed above, wherever possible we
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only assign non-infinite distance Kdist(g, g′) < ∞ (which corresponds to non-zero weight)

to empirical conditional probabilities P (loc(o(g′))|earn(o(g′)), 1(stayer(g′) = 0), d(g′)) of

alternative groups g′ that feature both the same origin location loc(o(g′)) = loc(o(g)) and

the same destination location loc(d(g′)) = loc(d(g)).44

Kdist(g, g′) assigns the smallest distance to alternative groups g′ that also feature the

same destination type (d(g′) = d(g)), so that g and g′ only differ in the initial earnings

category of hired workers. The closer earn(o(g′)) is to earn(o(g′)), the smaller is the as-

signed distance Kdist(g, g′), but the profile flattens so that all groups g′ that differ from g′

only due to earn(o(g′)) contribute to the weighted average. Kdist(g, g′) assigns larger (but

still noninfinite) distance to groups g′ featuring destination types that also differ on firm

size, firm avg. earnings, or industry dimensions. The more different the firm composition

of the group, the smaller is its weight, with the profile again flattening so that all groups g′

featuring the same origin and destination locations receive non-zero weight. Thus, groups

with less similar worker and firm characteristics receive non-negligible weight only when

there are too few observations from groups featuring more similar worker and firm charac-

teristics to form reliable estimates. The weight assigned to a particular alternative group g′

also depends on the number of observed new hires made by d(g′) at a particular skill level

earn(o(g′)), denoted Ndist(g′) below, since this determines the signal strength of the empir-

ical conditional choice probability P (loc(o(g′)|earn(o(g′)), 1(stayer(g′) = 0), d(g′)). Thus,

we have:

P (loc(o(g))|earn(o(g)), 1(stayer(g) = 0), d(g)) ≈∑
g′

(
φ(Kdist(g′, g)Ndist(g′))∑
g′′ φ(Kdist(g′′, g)Ndist(g′′))

P̂ (loc(o(g′))|earn(o(g′)), 1(stayer(g′) = 0), d(g′)) (63)

where φ(∗) is the normal density function (used as the kernel density), and φ(Kdist(g′,g)Ndist(g′))∑
g′′ φ(K

dist(g′′,g)Ndist(g′′))

represents the weight given to a particular nearby transition group g′.

Next, consider the estimation of P (earn(o(g)), 1(stayer(g) = 1)|d) and P (earn(o(g)), 1(stayer(g) =

0)|d), the conditional probabilities that either a job stayer or mover originally paid at a par-

44There are a very small number of destination and origin types are never observed in any transition. By
necessity, we put positive weight on groups featuring nearby origin or destination locations in such cases.
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ticular earnings quintile (or possibly non-employed for movers) will be hired to fill a position

of destination type d. Let Kearn/move(g, g′) and Kearn/stay(g, g′) represent the metrics cap-

turing how similar alternative groups g′ are to g for the purpose of estimating the propensity

for firms of type d to hire (or retain) workers at particular skill levels.

Kearn/move(g, g′) and Kearn/stay(g, g′) each assign infinite distance (translating to zero

weight) to groups g′ featuring different combinations of firm size, average worker earn-

ings, or industry than the target group g. Kearn/move(g, g′) (Kearn/stay(g, g′)) assigns

small distances to the conditional probabilities associated with groups g′ representing hir-

ing new (retaining) workers from the same initial earnings (or nonemployment) category

earn(o(g)) = earn(o(g′)) among firms from the same destination type d(g) = d(g′) but

who are hiring workers from nearby locations. The distance metric increases in the tract

pathlength between loc(o(g′)) and loc(o(g′)), but flattens beyond a threshold distance, so

that groups featuring all origin worker locations (but same other characteristics) contribute

to the estimate.

Larger (but finite) distance values for Kearn/move(g, g′) and Kearn/stay(g, g′)) are as-

signed to conditional probabilities from groups g′ that feature different (but nearby) des-

tination locations (so d(g) 6= d(g′) but the same combination of firm size quartile, firm

average worker earnings quartile, and industry supersector. Again, the distance metric

increases in the pathlength between loc(d(g)) and loc(d(g′)), but eventually flattens at a

large but non-infinite value. As before, the weight given to a group g′ also depends on the

precision of its corresponding number of total hires made by firms of the destination type

d(g′), which is proportional to h(d(g′)).

Again, the motivation here is that targeted skill level and the decision to retain workers

vs. hire new workers (conditional on the utilities bids required by workers in different

locations) is likely to be driven to a greater extent by the type of production process (as

proxied by size, mean worker earnings, and industry) than by the location of the firm.

Nonetheless, since we still suspect that there is unobserved heterogeneity in production

processes conditional on our other firm observables that might be spatially correlated, we

place greater weight on the skill/retention decisions of geographically proximate firms. More
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distant firms receive non-negligible weight only when there are too few local observations

to form reliable estimates. The estimators for P (earn(o(g)), 1(stayer(g) == 1)|d) and

P (earn(o(g)), 1(stayer(g) == 0)|d) can thus be represented via:

P (earn(o(g)), 1(stayer(g) == 0)|d(g)) ≈∑
g′

(
φ(Kearn/move(g′, g)h(d(g′)))∑
g′′ φ(Kearn/move(g′′, g)h(d(g′′)))

P̂ (earn(o(g′)), 1(stayer(g′) = 0)|d(g′)) (64)

P (earn(o(g)), 1(stayer(g) = 1)|d(g)) ≈∑
g′

(
φ(Kearn/stay(g′, g)h(d(g′)))∑
g′′ φ(Kearn/stay(g′′, g)h(d(g′′)))

P̂ (earn(o(g′)), 1(stayer(g′) = 1)|d(g′)) (65)

Bringing the pieces together, this customized smoothing procedure has a number of

desirable properties. First, by requiring the same origin and destination locations as a

necessary condition for non-zero weight when estimating the propensity for particular des-

tination types to hire workers from each location, we can generate considerable precision in

estimated conditional choice probabilities without imposing any assumption about the spa-

tial links between locations. Second, at the same, we can still use information contained in

the hiring and retention choices of more distant firms to learn about the propensity for firms

of different size, pay level, and industry to retain and hire workers at different skill levels and

from nonemployment. Third, the procedure places non-trivial weight on transition groups

featuring less similar worker and firm characteristics only when there are too few observed

hires/retentions made by firms associated with groups featuring very similar characteristics

to yield reliable estimates. Fourth, overall the estimated probabilities P (g|d) place weight

on many different groups, so that no element of the resulting smoothed group-level distri-

bution contains identifying information about any particular worker or firm, eliminating

disclosure risk.
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A6 Imputing Missing NE-to-NE, E-to-NE, and NE-to-E Tran-

sitions

This appendix discusses the procedure used to impute missing nonemployment-to-nonemployment

(hereafter NE-to-NE) transitions, employment-to-nonemployment (hereafter E-to-NE) tran-

sitions, and nonemployment-to-employment (hereafter NE-to-E) transitions caused by the

combination of our decisions to drop new market entrants and retirees and the existence of

incomplete employment histories due to a limited number of available years of data.

As discussed in the main text, we drop from the sample the first NE-to-E transition in

each worker’s history on the basis that initial market entrants are likely to generate very

different surplus from their transitions than other non-employed workers, and we have no

way of determining how long the initial nonemployment spell that preceded their first jobs

lasted.45 Thus, if such transitions are left in the sample, we may overstate the propensity

for firms to hire nonemployed workers, thereby biasing the potential impact of local labor

demand shocks on nonemployed workers. However, in the early years of the sample, the

first NE-to-E transition observed may not be the worker’s initial labor market entry; rather,

their previous employment may have occurred prior to the first sample year. Indeed, in

the first year of the sample, any worker who was nonemployed in the first year will be

treated as a labor market entrant the second year. This problem dissipates as the sample

progresses, so that by the end the only improperly dropped NE-to-E transitions will be those

whose nonemployment spell between years with primary jobs lasted nearly twenty years.

Thus, we can use the prevalence of NE-to-E transitions in which the worker is previously

observed working in the later years of the sample to impute the number of inappropriately

dropped NE-to-E transitions in the early sample years in which the worker’s prior year

of employment is unobserved. We then account for true business cycle variation in the

frequency of NE-to-E transitions (as well as state-year combinations in which data are

incomplete) by incorporating the evolution of the frequency of employment-to-employment

45An alternative approach would be to simply define workers as potential employees during a particular
age window, say 18-70. This would remove the problem of not observing the unemployment spell associated
with the initial job search, but in the absence of data on worker education would still lump those with freshly
minted college degrees with less educated workers who had been unemployed the previous year, two groups
with very different job finding rates.
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(hereafter E-to-E) transitions (which are always included in the sample) across state-year

combinations.

In the same vein, we also drop from the sample the last E-to-NE transition in each

worker’s history, again on the basis that retirees are likely to generate different surplus

from their transitions than other newly nonemployed workers, and we have no way of de-

termining how many “retirees” actually were unemployed for multiple years prior to their

last job before giving up their job searches. The concern is that keeping retirees in the

sample artificially increases the frequency with which relatively high paid workers transi-

tion to non-employment, which may lead to an overstatement of the degree to which the

nonemployment incidence of a natural disaster falls on more skilled workers (for example).

However, as with labor market entrants, by dropping each worker’s final observed E-to-NE

transition, we risk labeling as retirees workers who are merely facing a temporary spell of

nonemployment, and who will return to employment in the years following the end of the

sample. The severity of this problem is greatest at the end of the sample, with all final year

nonemployed workers being treated as retirees. Our solution to this problem is analogous

to the one for labor market entrants: use the prevalence of E-to-NE transitions in which the

worker is later observed working in the early years of the sample to impute the number of

inappropriately dropped E-to-NE transitions in the later sample years in which the workers’

future years of employment are unobserved (augmented again with time series variation in

E-to-E transitions).

Finally, NE-to-NE transitions are only kept in the sample when a worker is observed

as employed at a qualifying primary job in both a prior and future year. Thus, truncated

employment histories at both the front and back ends of the sample contribute to understate-

ment of the frequency of NE-to-NE transitions. The prevalence of NE-to-NE transitions in

the middle of the sample is used to impute the number of NE-to-NE transitions that were

inappropriately dropped due to truncated employment histories.

Consider NE-to-E transitions first. We impute the number of inappropriately dropped

NE-to-E transitions associated with each relevant transition group g featuring nonemploy-

ment as part of the origin type and employment at some job as part of the destination type
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as follows:

1. Compute the number of NE-to-E and E-to-E transitions remaining in the sample for

each state-tract-age group-year combination.

2. Construct the ratio of (NE-to-E)/(E-to-E) transitions for each state-age-year combi-

nation, denoted Ratiosay.

3. For each state-age group combination, identify the maximum value of Ratiosay among

the sample years: Ratiopeaksa = maxy′∈[1990,2010]Ratiosay′ . We treat this year’s ratio as

the “true” ratio for the identified year for each state-age group combination.

4. Divide Ratiosay/Ratio
peak
sa to convert the NE-to-E/E-to-E ratio to a share of the peak

ratio for the given state-age group, denoted Sharesay. This effectively removes the

persistent variation in Ratiosay across state-age group combinations.

5. Regress Sharesay on a set of dummies indicating the combination of age group and

number of years between y and the last year of the sample (2010), 1(2010 − y =

x, agegroup = z), for (x, z) ∈ [0, 20] × [1, 10], and a set of dummies indicating the

combination of age group and number of years between y and the first year state

s enters the sample, 1(y − Firstyear(s) = x, agegroup = z, for (x, z) ∈ [0, 2010 −

Firstyear(s)]× [1, 10]. Because each state exits the sample in the same year, the first

set of dummies are equivalent to age group × year dummies. Because different states

enter the sample in different years between 1990 and 1993, the second set of dummies

are not collinear with the first set. Denote the predicted values by ˆSharesay. The

predicted values from this regression capture the propensity for NE-to-E transitions

to be undercounted relative to E-to-E transitions in the early years of the sample. By

only using the number of years until the end of the sample and the timing of states

entry into the sample to generate the prediction, we seek to isolate the component of

variation in Sharesay that is attributable to the selection bias generated by the way we

define the sample, thereby removing the part of the variation in Sharesay that is due

to differences in the timing and severity of economic booms and busts across states

that generate true variation in Sharesay unrelated to our sample selection procedure.
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Interacting with age groups allows the severity of the bias to be different for different

age groups due to a decreased likelihood of unobserved prior employment spells for

younger workers.

6. Construct the expected number of “missing” NE-to-E transitions for each state-age-

year combination as:

NEtoEimputedsay = (EtoEsay)Ratio
peak
sa (1− ˆSharesay) (66)

(1− ˆSharesay) captures the NE-to-NE transitions that are missing due to our sample

selection procedure as a share of E-to-E transitions, relative to the natural share for

the chosen state-age group combination (as judged by Ratiopeaksa ). Multiplying this

value by Ratiopeaksa converts this relative measure back to a ratio that is specific to

the particular state-age group context, and multiplying by EtoEsay converts this ratio

into a count of missing NE-to-E transitions.

7. Finally, we distribute the imputed NE-to-E transitions for each state-age-year combi-

nation across transition groups g featuring different census tracts within the chosen

state and different destination types by multiplying NEtoEimputedsay by the average

share of all observed NE-to-E transitions in the chosen state-age group combination

(across all years) associated with each transition group, denoted P (g|s(g), a(g)):

NEtoEimputedg = (NEtoEimputedsay(g) )(P (g|s(g), a(g))) (67)

Analogous imputation procedures are used for E-to-NE and NE-to-NE transitions. For

E-to-NE transitions, most imputed transitions are at the end of the sample, and the state-

age-year imputed counts EtoNEimputedsay need to be distributed across origin locations and

initial earnings levels only, since non-employment in year t + 1 is its own destination type

d. Similarly, the bulk of the imputed NE-to-NE transitions are at the beginning and

end of the sample, with few in the middle years, and the state-age-year imputed counts

NEtoNEimputedsay only need to be distributed across origin locations (since for observed NE-

to-NE transitions we assign the origin location to be the geographic location of the most
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recent establishment at which a worker worked).
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Tables

Table 1: Probability of Obtaining Stimulus Job for a
Randomly Chosen Individual at Different Distances from Focal Tract:
Stimuli Consist of 500 New Jobs in Different Industries (Averaged Across Firm Size/Firm
Average Earnings Combinations)

Distance from Industry

Focal Tract Avg. Info. Manu. R/W Trd. Oth. Serv. Ed./Hlth Lei/Hosp. Gov. Const.

Target Tract 0.032 0.028 0.034 0.031 0.036 0.030 0.031 0.028 0.035

1 Tct Away 0.005 0.004 0.005 0.004 0.006 0.005 0.005 0.005 0.005

2 Tcts Away 0.002 0.002 0.002 0.002 0.003 0.003 0.002 0.002 0.002

3+ Tcts w/in PUMA 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

1 PUMA Away 5.7E-04 5.4E-04 5.6E-04 5.4E-04 6.2E-04 6.6E-04 5.9E-04 5.3E-04 5.5E-04

2 PUMAs Away 2.5E-04 2.5E-04 2.5E-04 2.6E-04 2.7E-04 2.7E-04 2.6E-04 2.5E-04 2.4E-04

3+ PUMAs w/in State 1.3E-04 1.3E-04 1.4E-04 1.5E-04 1.2E-04 1.3E-04 1.3E-04 1.3E-04 1.2E-04

1-2 States Away 2.7E-05 2.6E-05 2.8E-05 3.1E-05 2.8E-05 2.5E-05 2.8E-05 2.4E-05 2.4E-05

3+ States Away 1.3E-06 9.6E-07 1.8E-06 1.5E-06 9.1E-07 1.6E-06 1.6E-06 1.0E-06 9.4E-07

Notes:
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Table 2: Share of Stimulus Positions Filled by Workers Initially Employed (or Nonemployed)
at Different Distances from Focal Tract:
Stimuli Consist of 500 New Jobs in Different Industries (Averaged Across Firm Size/Firm
Average Earnings Combinations)

Distance from Industry

Focal Tract Avg. Info. Manu. R/W Trd. Oth. Serv. Ed./Hlth Lei/Hosp. Gov. Const.

Target Tract 0.075 0.069 0.077 0.070 0.083 0.067 0.070 0.071 0.090

1 Tct Away 0.067 0.063 0.066 0.056 0.076 0.070 0.066 0.071 0.067

2 Tcts Away 0.073 0.076 0.070 0.063 0.079 0.074 0.071 0.074 0.074

3+ Tcts w/in PUMA 0.136 0.131 0.132 0.125 0.136 0.144 0.141 0.138 0.143

1 PUMA Away 0.107 0.108 0.102 0.098 0.112 0.119 0.106 0.106 0.109

2 PUMAs Away 0.131 0.136 0.123 0.127 0.131 0.132 0.128 0.138 0.129

3+ PUMAs w/in State 0.101 0.104 0.101 0.112 0.090 0.097 0.098 0.107 0.102

1-2 States Away 0.249 0.261 0.249 0.280 0.252 0.224 0.248 0.240 0.235

3+ States Away 0.061 0.051 0.080 0.070 0.041 0.073 0.072 0.055 0.049

Notes:
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Table 3: Change in Probability of Nonemployment due to Stimulus for a
Randomly Chosen Individual at Different Distances from Focal Tract:
Stimuli Consist of 500 New Jobs at Firms in Alternative Industries (Averaged Across Firm
Size/Firm Average Earnings Combinations)

Distance from Industry

Focal Tract Avg. Info. Manu. R/W Trd. Oth. Serv. Ed./Hlth Lei/Hosp. Gov. Const.

Target Tract 0.012 0.009 0.011 0.011 0.014 0.011 0.011 0.010 0.014

1 Tct Away 0.002 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002

2 Tcts Away 8.7E-04 8.2E-04 8.3E-04 8.1E-04 1.1E-03 9.7E-04 8.8E-04 8.3E-04 7.9E-04

3+ Tcts w/in PUMA 5.2E-04 4.8E-04 4.9E-04 4.9E-04 5.7E-04 5.9E-04 5.5E-04 5.0E-04 5.2E-04

1 PUMA Away 3.6E-04 3.3E-04 3.5E-04 3.5E-04 4.0E-04 3.9E-04 3.7E-04 3.5E-04 3.5E-04

2 PUMAs Away 2.2E-04 2.1E-04 2.1E-04 2.2E-04 2.3E-04 2.3E-04 2.2E-04 2.1E-04 2.1E-04

3+ PUMAs w/in State 1.5E-04 1.4E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.4E-04 1.4E-04

1-2 States Away 4.2E-05 4.1E-05 4.3E-05 4.5E-05 4.4E-05 4.2E-05 4.3E-05 4.0E-05 3.9E-05

3+ States Away 3.7E-06 3.3E-06 4.5E-06 4.1E-06 3.6E-06 4.0E-06 4.0E-06 3.2E-06 3.3E-06

Notes:
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Table 4: Share of Additional Employment Produced by Stimulus Among Geographic Areas
Defined by Distances from the Focal Tract:
Stimuli Consist of 500 New Jobs at Firms in Different Industries (Averaged Across Firm
Size/Firm Average Earnings Combinations)

Distance from Industry

Focal Tract Avg. Info. Manu. R/W Trd. Oth. Serv. Ed./Hlth Lei/Hosp. Gov. Const.

Target Tract 0.027 0.023 0.025 0.025 0.031 0.024 0.025 0.025 0.035

1 Tct Away 0.021 0.020 0.019 0.017 0.025 0.024 0.022 0.022 0.022

2 Tcts Away 0.026 0.026 0.024 0.023 0.030 0.028 0.025 0.026 0.025

3+ Tcts w/in PUMA 0.067 0.065 0.061 0.061 0.071 0.073 0.069 0.068 0.072

1 PUMA Away 0.068 0.066 0.063 0.063 0.072 0.071 0.068 0.070 0.069

2 PUMAs Away 0.111 0.113 0.105 0.109 0.114 0.113 0.111 0.115 0.112

3+ PUMAs w/in State 0.114 0.117 0.111 0.114 0.111 0.113 0.113 0.119 0.116

1-2 States Away 0.392 0.406 0.389 0.405 0.389 0.378 0.388 0.395 0.384

3+ States Away 0.177 0.167 0.202 0.185 0.161 0.182 0.183 0.164 0.171

Notes:
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Table 5: Change in Probability of Nonemployment due to Stimulus for a
Randomly Chosen Individual at Different Distances from Focal Tract:
Stimuli Consist of 500 New Positions in Alternative Combinations of Firm Size Quar-
tile/Firm Average Pay Quartile (Averaged Across Industry Supersectors)

Distance from Firm Size/Pay Level Combination

Focal Tract Sm./Low Lg./Low Sm./Hi Lg./Hi

Target Tract 0.013 0.013 0.009 0.011

1 Tct Away 0.002 0.002 0.001 0.002

2 Tcts Away 9.3E-04 1.0E-03 6.9E-04 8.7E-04

3+ Tcts w/in PUMA 5.5E-04 5.9E-04 4.2E-04 5.3E-04

1 PUMA Away 3.8E-04 4.0E-04 2.9E-04 3.8E-04

2 PUMAs Away 2.2E-04 2.4E-04 1.8E-04 2.3E-04

3+ PUMAs w/in State 1.5E-04 1.6E-04 1.2E-04 1.6E-04

1-2 States Away 4.3E-05 4.3E-05 3.8E-05 4.5E-05

3+ States Away 4.1E-06 3.5E-06 3.7E-06 3.7E-06

Notes:
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Table 6: Share of Additional Employment Produced by Stimulus Among Geographic Areas
Defined by Distances from the Focal Tract:
Stimuli Consist of 500 New Positions in Alternative Combinations of Firm Size Quar-
tile/Firm Average Pay Quartile (Averaged Across Industry Supersectors)

Distance from Firm Size/Pay Level Combination

Focal Tract Sm./Low Lg./Low Sm./Hi Lg./Hi

Target Tract 0.030 0.029 0.023 0.024

1 Tct Away 0.023 0.024 0.019 0.020

2 Tcts Away 0.027 0.029 0.023 0.025

3+ Tcts w/in PUMA 0.069 0.074 0.061 0.066

1 PUMA Away 0.069 0.072 0.062 0.068

2 PUMAs Away 0.110 0.117 0.105 0.114

3+ PUMAs w/in State 0.112 0.119 0.109 0.117

1-2 States Away 0.383 0.387 0.397 0.401

3+ States Away 0.186 0.158 0.198 0.167

Notes:
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Table 7: Expected Change in Annual Earnings from New Stimulus Positions for a Randomly
Chosen Individual at Different Distances from Focal Tract:
Stimuli Consist of 500 New Jobs in Different Industries (Averaged Across Firm Size/Firm
Average Earnings Combinations)

Distance from Industry

Focal Tract Avg. Info. Manu. R/W Trd. Oth. Serv. Ed./Hlth Lei/Hosp. Gov. Const.

Target Tract 512 462 565 493 632 411 552 471 508

1 Tct Away 211 189 197 226 250 207 218 196 204

2 Tcts Away 164 155 156 191 180 152 173 158 147

3+ Tcts w/in PUMA 153 141 145 171 162 149 164 146 141

1 PUMA Away 140 132 128 169 150 135 147 132 128

2 PUMAs Away 115 106 104 148 129 105 125 108 100

3+ PUMAs w/in State 111 101 99 144 123 100 119 103 95

1-2 States Away 92 86 80 125 99 82 102 86 80

3+ States Away 0 0 0 0 0 0 0 0 0

Notes:
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Table 8: Expected Share of Annual Earnings Increases from New Stimulus Positions by
Workers Initially Employed (or Nonemployed) at Different Distances from Focal Tract:
Stimuli Consist of 500 New Jobs in Different Industries (Averaged Across Firm Size/Firm
Average Earnings Combinations)

Distance from Industry

Focal Tract Avg. Info. Manu. R/W Trd. Oth. Serv. Ed./Hlth Lei/Hosp. Gov. Const.

Target Tract 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

1 Tct Away 0.003 0.003 0.003 0.002 0.003 0.003 0.002 0.003 0.003

2 Tcts Away 0.005 0.005 0.005 0.004 0.005 0.005 0.004 0.005 0.005

3+ Tcts w/in PUMA 0.018 0.018 0.019 0.016 0.018 0.020 0.018 0.019 0.020

1 PUMA Away 0.025 0.025 0.025 0.022 0.024 0.026 0.023 0.025 0.026

2 PUMAs Away 0.054 0.054 0.055 0.052 0.056 0.055 0.053 0.054 0.054

3+ PUMAs w/in State 0.079 0.077 0.079 0.077 0.082 0.079 0.077 0.079 0.078

1-2 States Away 0.784 0.788 0.766 0.799 0.786 0.776 0.793 0.785 0.781

3+ States Away 0.032 0.030 0.047 0.027 0.025 0.035 0.029 0.029 0.032

Notes:
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Table 9: Expected Change in Annual Earnings From New Stimulus Positions for a Ran-
domly Chosen Individual at Different Distances from Focal Tract:
Stimuli Consist of 500 New Positions in Alternative Combinations of Firm Size Quar-
tile/Firm Average Pay Quartile (Averaged Across Industry Supersectors)

Distance from Firm Size/Pay Level Combination

Focal Tract Sm./Low Lg./Low Sm./Hi Lg./Hi

Target Tract 546 517 459 525

1 Tct Away 215 230 176 223

2 Tcts Away 163 184 133 176

3+ Tcts w/in PUMA 152 171 124 163

1 PUMA Away 141 158 112 150

2 PUMAs Away 116 135 89 123

3+ PUMAs w/in State 111 129 84 117

1-2 States Away 91 109 70 99

3+ States Away 0 0 0 0

Notes:
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Table 10: Share of Additional Employment Produced by Stimulus among Workers Initially
Employed (or Nonemployed) at Different Initial Earnings Quintiles (or Nonemployment):
Stimuli Consist of 500 New Jobs at Firms in Different Industries (Averaged Across Firm
Size/Firm Average Earnings Combinations)

Earnings Industry

Quintile Avg. Info. Manu. R/W Trd. Oth. Serv. Ed./Hlth Lei/Hosp. Gov. Const.

Nonemployed 0.433 0.417 0.409 0.429 0.462 0.433 0.430 0.424 0.456

1st Quintile 0.153 0.156 0.153 0.152 0.146 0.158 0.164 0.155 0.143

2nd Quintile 0.147 0.147 0.152 0.147 0.139 0.149 0.149 0.148 0.141

3rd Quintile 0.113 0.115 0.117 0.113 0.108 0.113 0.110 0.116 0.111

4th Quintile 0.086 0.089 0.090 0.087 0.082 0.085 0.083 0.088 0.086

5th Quintile 0.072 0.077 0.077 0.074 0.067 0.069 0.068 0.071 0.070

Notes:
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Table 11: Expected Share of Annual Earnings Increases from New Stimulus Positions among
Workers Initially Employed (or Nonemployed) at Different Initial Earnings Quintiles (or
Nonemployment):
Stimuli Consist of 500 New Jobs at Firms in Different Industries (Averaged Across Firm
Size/Firm Average Earnings Combinations)

Earnings Industry

Quintile Avg. Info. Manu. R/W Trd. Oth. Serv. Ed./Hlth Lei/Hosp. Gov. Const.

Nonemployed 0.138 0.137 0.134 0.140 0.141 0.138 0.139 0.138 0.138

1st Quintile 0.119 0.119 0.118 0.119 0.119 0.119 0.120 0.119 0.118

2nd Quintile 0.166 0.165 0.166 0.165 0.165 0.166 0.166 0.165 0.165

3rd Quintile 0.178 0.178 0.178 0.177 0.177 0.178 0.177 0.178 0.178

4th Quintile 0.188 0.188 0.189 0.187 0.187 0.188 0.187 0.188 0.188

5th Quintile 0.212 0.214 0.214 0.212 0.210 0.211 0.210 0.212 0.212

Notes:
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Table 12: Share of Additional Employment Produced by Stimulus Among Workers Initially
Employed (or Nonemployed) at Different Initial Earnings Quintiles (or Nonemployment):
Stimuli Consist of 500 New Positions in Alternative Combinations of Firm Size Quar-
tile/Firm Average Pay Quartile (Averaged Across Industry Supersectors)

Earnings Firm Size/Pay Level Combination

Quintile Sm./Low Lg./Low Sm./Hi Lg./Hi

Nonemployed 0.439 0.453 0.412 0.428

1st Quintile 0.159 0.157 0.150 0.148

2nd Quintile 0.152 0.149 0.143 0.142

3rd Quintile 0.114 0.110 0.114 0.113

4th Quintile 0.082 0.079 0.093 0.091

5th Quintile 0.062 0.060 0.085 0.080

Notes:
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Table 13: Expected Share of Annual Earnings Increases from New Stimulus Positions among
Workers Initially Employed (or Nonemployed) at Different Initial Earnings Quintiles (or
Nonemployment):
Stimuli Consist of 500 New Positions in Alternative Combinations of Firm Size Quar-
tile/Firm Average Pay Quartile (Averaged Across Industry Supersectors)

Earnings Firm Size/Pay Level Combination

Quintile Sm./Low Lg./Low Sm./Hi Lg./Hi

Nonemployed 0.139 0.141 0.135 0.138

1st Quintile 0.120 0.120 0.117 0.118

2nd Quintile 0.167 0.167 0.164 0.164

3rd Quintile 0.179 0.178 0.177 0.177

4th Quintile 0.187 0.187 0.189 0.188

5th Quintile 0.208 0.208 0.218 0.214

Notes:
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Table 14: Change in Probability of Nonemployment due to Stimulus for a
Randomly Chosen Individual at Different Combinations of Initial Earnings Quintile (or
Nonemployment) and Distance from Focal Tract:
Averaged Across All Stimulus Specifications Featuring 500 New Jobs)

Distance from Earnings Quintile

Focal Tract Nonemp. 1st Q. 2nd Q. 3rd Q. 4th Q. 5th Q.

Target Tract 6.7E-02 5.8E-03 3.7E-03 2.9E-03 2.2E-03 1.7E-03

1 Tct Away 5.4E-03 2.0E-03 1.3E-03 9.2E-04 6.5E-04 4.7E-04

2 Tcts Away 3.1E-03 1.1E-03 7.8E-04 2.3E-04 4.0E-04 3.0E-04

3+ Tcts w/in PUMA 1.6E-03 6.5E-04 4.4E-04 3.3E-04 2.4E-04 1.9E-04

1 PUMA Away 1.1E-03 4.5E-04 3.2E-04 2.3E-04 1.6E-04 1.2E-04

2 PUMAs Away 6.2E-04 2.7E-04 2.0E-04 1.4E-04 1.0E-04 7.7E-05

3+ PUMAs w/in State 4.0E-04 1.9E-04 1.3E-04 1.0E-04 7.2E-05 5.4E-05

1-2 States Away 1.2E-04 5.6E-05 3.9E-05 2.8E-05 2.0E-05 1.5E-05

3+ States Away 1.0E-05 4.8E-06 3.3E-06 2.4E-06 1.8E-06 1.4E-06

Notes:
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Table 15: Expected Change in Annual Earnings From New Stimulus Positions Among Work-
ers Initially Employed at Different Combinations of Initial Earnings Quintile (or Nonem-
ployed) and Distance from Focal Tract:
Averaged Across All Stimulus Specifications Featuring 500 New Jobs)

Distance from Earnings Quintile

Focal Tract Nonemp. 1st Q. 2nd Q. 3rd Q. 4th Q. 5th Q.

Target Tract 896 363 387 440 485 545

1 Tct Away 174 208 203 214 218 234

2 Tcts Away 143 160 169 160 169 176

3+ Tcts w/in PUMA 126 152 149 157 157 165

1 PUMA Away 117 138 142 142 149 148

2 PUMAs Away 108 114 115 117 118 118

3+ PUMAs w/in State 104 109 110 112 113 113

1-2 States Away 89 92 93 93 93 94

3+ States Away 0 1 1 1 1 1

Notes:
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Table 16: Expected Change in Annual Earnings From New Stimulus Positions Among Work-
ers Initially Employed in the Focal Tract at Different Earnings Quintiles (or Nonemployed)
by Industry Supersector (Averaged Across Firm Size/Firm Average Earnings Combinations)

Earnings Industry

Quintile Avg. Info. Manu. R/W Trd. Oth. Serv. Ed./Hlth Lei/Hosp. Gov. Const.

Nonemployed 896 702 794 860 1196 830 864 777 1142

1st Quintile 363 333 362 358 438 301 475 329 307

2nd Quintile 387 346 428 369 467 324 463 361 333

3rd Quintile 440 402 505 404 537 354 473 436 408

4th Quintile 485 453 576 451 583 347 527 477 469

5th Quintile 545 541 694 554 649 388 565 479 491

Notes:
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Table 17: Expected Change in Annual Earnings From New Stimulus Positions Among
Workers Initially Employed in the Focal Tract at Different Earnings Quintiles (or Nonem-
ployed) by Firm Size Quartile/Firm Average Pay Quartile Combination (Averaged Across
Industry Supersectors)

Earnings Firm Size/Pay Level Combination

Quintile Sm./Low Lg./Low Sm./Hi Lg./Hi

Nonemployed 1020 1051 671 842

1st Quintile 433 410 282 326

2nd Quintile 467 443 291 346

3rd Quintile 512 467 355 426

4th Quintile 507 459 449 527

5th Quintile 442 402 664 673

Notes:
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Table 18: Change in Probability of Nonemployment From a Natural Disaster Removing 25,
50 or 100% of Positions in the Focal Tract for a Randomly Chosen Individual at Different
Distances from Focal Tract (Averaging Across the Initial Earnings Distribution)

Distance from % of Jobs Removed

Focal Tract 25% 50% 100%

Target Tract 0.039 0.091 0.245

1 Tct Away 4.9E-04 8.6E-04 1.7E-03

2 Tcts Away 3.2E-04 5.5E-04 9.9E-04

3+ Tcts w/in PUMA 1.5E-04 3.0E-04 6.1E-04

1 PUMA Away 1.2E-04 2.2E-04 4.1E-04

2 PUMAs Away 7.5E-05 1.4E-04 2.8E-04

3+ PUMAs w/in State 5.3E-05 1.0E-04 2.0E-04

1-2 States Away 1.7E-05 3.4E-05 6.5E-05

3+ States Away 1.5E-06 3.1E-06 5.9E-06

Notes:
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Table 19: Expected Change in Annual Earnings Produced by a Natural Disaster Remov-
ing 25, 50 or 100% of Positions in the Focal Tract Among Geographic Areas Defined by
Distances from the Focal Tract: (Averaging Across the Initial Earnings Distribution)

Distance from % of Jobs Removed

Focal Tract 25% 50% 100%

Target Tract -1536 - 2802 - 4653

1 Tct Away -77 - 147 - 278

2 Tcts Away -69 - 130 - 242

3+ Tcts w/in PUMA -64 - 125 - 235

1 PUMA Away -61 - 122 - 212

2 PUMAs Away -55 - 106 - 193

3+ PUMAs w/in State -53 - 102 - 186

1-2 States Away -43 - 83 - 151

3+ States Away 0 - 1 - 1

Notes:
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Table 20: Expected Share of Annual Earnings Decreases Produced by a Natural Disaster
Among Geographic Areas Defined by Distances from the Focal Tract, by Disaster Severity
(25%/50%/100% of Jobs Lost)

Distance from % of Jobs Removed

Focal Tract 25% 50% 100%

Target Tract 0.007 0.006 0.006

1 Tct Away 0.002 0.002 0.002

2 Tcts Away 0.004 0.004 0.004

3+ Tcts w/in PUMA 0.016 0.017 0.017

1 PUMA Away 0.023 0.023 0.022

2 PUMAs Away 0.056 0.055 0.055

3+ PUMAs w/in State 0.082 0.081 0.081

1-2 States Away 0.785 0.785 0.782

3+ States Away 0.025 0.027 0.031

Notes:
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Table 21: Share of Additional Nonemployment Produced by a Natural Disaster Removing
25, 50 or 100% of Positions in the Focal Tract Among Workers at Different Initial Earnings
Quintiles (or Nonemployed)

Earnings % of Jobs Removed

Quintile 25% 50% 100%

Nonemployed 0.330 0.315 0.284

1st Quintile 0.173 0.166 0.162

2nd Quintile 0.169 0.169 0.170

3rd Quintile 0.136 0.141 0.146

4th Quintile 0.106 0.115 0.128

5th Quintile 0.085 0.094 0.110

Notes:
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Table 22: Change in Probability of Nonemployment From a Natural Disaster Removing 25%
of Positions in the Focal Tract Among Workers Initially Employed at Different Combinations
of Initial Earnings Quintile (or Nonemployed) and Distance from Focal Tract

Distance from Earnings Quintile

Focal Tract Nonemp. 1st Q. 2nd Q. 3rd Q. 4th Q. 5th Q.

Target Tract 0.018 0.059 0.048 0.042 0.038 0.029

1 Tct Away 1.4E-03 7.5E-04 6.0E-04 3.2E-04 1.7E-04 1.5E-04

2 Tcts Away 8.0E-04 4.2E-04 2.2E-04 4.6E-04 1.0E-04 9.1E-05

3+ Tcts w/in PUMA 4.5E-04 2.8E-04 1.8E-04 9.3E-05 5.2E-05 5.4E-06

1 PUMA Away 3.0E-04 1.6E-04 1.1E-04 7.3E-05 5.4E-05 4.0E-05

2 PUMAs Away 1.8E-04 1.1E-04 7.7E-05 5.3E-05 3.8E-05 2.9E-05

3+ PUMAs w/in State 1.3E-04 7.9E-05 5.5E-05 3.7E-05 2.7E-05 2.0E-05

1-2 States Away 4.5E-05 2.2E-05 1.6E-05 1.1E-05 8.2E-06 6.2E-06

3+ States Away 4.0E-06 1.9E-06 1.3E-06 9.4E-07 6.9E-07 5.3E-07

Notes:
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Table 23: Change in Probability of Nonemployment From a Natural Disaster Removing
100% of Positions in the Focal Tract Among Workers Initially Employed at Different Com-
binations of Initial Earnings Quintile (or Nonemployed) and Distance from Focal Tract

Distance from Earnings Quintile

Focal Tract Nonemp. 1st Q. 2nd Q. 3rd Q. 4th Q. 5th Q.

Target Tract 0.052 0.304 0.281 0.280 0.279 0.239

1 Tct Away 4.2E-03 2.3E-03 1.7E-03 1.3E-03 9.7E-04 7.5E-04

2 Tcts Away 2.4E-03 1.4E-03 1.0E-03 6.1E-04 5.8E-04 4.5E-04

3+ Tcts w/in PUMA 1.5E-03 9.3E-04 6.6E-04 4.5E-04 3.1E-04 2.0E-04

1 PUMA Away 1.0E-03 5.5E-04 4.1E-04 2.8E-04 2.1E-04 1.6E-04

2 PUMAs Away 6.7E-04 3.9E-04 2.8E-04 2.0E-04 1.5E-04 1.1E-04

3+ PUMAs w/in State 4.7E-04 2.8E-04 2.0E-04 1.4E-04 1.0E-04 7.7E-05

1-2 States Away 1.7E-04 8.8E-05 6.2E-05 4.4E-05 3.3E-05 2.5E-05

3+ States Away 1.6E-05 7.8E-06 5.3E-06 3.8E-06 2.9E-06 2.2E-06

Notes:
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Table 24: Expected Share of Annual Earnings Decreases Produced by a Natural Disaster
among Workers Initially Employed (or Nonemployed) at Different Initial Earnings Quintiles
(or Nonemployment), by Disaster Severity (25%/50%/100% of Jobs Lost)

Earnings % of Jobs Removed

Quintile 25% 50% 100%

Nonemployed 0.140 0.139 0.138

1st Quintile 0.120 0.120 0.120

2nd Quintile 0.166 0.166 0.166

3rd Quintile 0.178 0.178 0.178

4th Quintile 0.186 0.187 0.187

5th Quintile 0.210 0.210 0.211

Notes:
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Table 25: Expected Change in Annual Earnings From a Natural Disaster Removing 25% of
Positions in the Focal Tract Among Workers Initially Employed at Different Combinations
of Initial Earnings Quintile (or Nonemployed) and Distance from Focal Tract

Distance from Earnings Quintile

Focal Tract Nonemp. 1st Q. 2nd Q. 3rd Q. 4th Q. 5th Q.

Target Tract -146 -1249 -1552 -1746 -1961 -2015

1 Tct Away -67 -72 -88 -83 -73 -74

2 Tcts Away -64 -68 -64 -76 -71 -70

3+ Tcts w/in PUMA -62 -64 -68 -63 -63 -65

1 PUMA Away -54 -54 -63 -61 -60 -71

2 PUMAs Away -51 -56 -56 -54 -55 -57

3+ PUMAs w/in State -51 -54 -54 -54 -53 -54

1-2 States Away -41 -43 -43 -43 -43 -43

3+ States Away 0 0 0 0 0 0

Notes:
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Table 26: Expected Change in Annual Earnings From a Natural Disaster Removing 100% of
Positions in the Focal Tract Among Workers Initially Employed at Different Combinations
of Initial Earnings Quintile (or Nonemployed) and Distance from Focal Tract

Distance from Earnings Quintile

Focal Tract Nonemp. 1st Q. 2nd Q. 3rd Q. 4th Q. 5th Q.

Target Tract -431 -3618 -4526 -5148 -6150 -6291

1 Tct Away -227 -273 -285 -290 -287 -290

2 Tcts Away -219 -248 -238 -252 -247 -246

3+ Tcts w/in PUMA -211 -237 -239 -244 -243 -230

1 PUMA Away -186 -208 -213 -225 -218 -215

2 PUMAs Away -179 -192 -194 -195 -196 -201

3+ PUMAs w/in State -176 -188 -187 -188 -188 -190

1-2 States Away -145 -150 -151 -152 -152 -152

3+ States Away 0 -1 -1 -1 -1 -2

Notes:
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Table 27: Change in Probability of Destination Employment (or Nonemployment) at Dif-
ferent Distances from Focal Tract after a Natural Disaster Removing 25, 50 or 100% of
Positions for Workers Initially Employed in the Focal Tract (Averaging Across the Initial
Earnings Distribution)

Distance from % of Jobs Removed

Focal Tract 25% 50% 100%

Nonemployment 0.039 0.091 0.245

Target Tract -0.102 -0.247 -0.666

1 Tct Away 0.004 0.010 0.025

2 Tcts Away 0.005 0.012 0.030

3+ Tcts w/in PUMA 0.009 0.021 0.055

1 PUMA Away 0.007 0.016 0.045

2 PUMAs Away 0.009 0.023 0.063

3+ PUMAs w/in State 0.007 0.017 0.046

1-2 States Away 0.020 0.050 0.139

3+ States Away 0.003 0.006 0.018

Notes:
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Table 28: Change in Probability of Destination Employment (or Nonemployment) at Dif-
ferent Distances from Focal Tract after a Natural Disaster Removing 100% of Positions for
Workers Initially Employed in the Focal Tract by Initial Earnings Quintile (or Nonemploy-
ment)

Distance from Earnings Quintile

Focal Tract Nonemp. 1st Q. 2nd Q. 3rd Q. 4th Q. 5th Q.

Nonemployment 0.052 0.304 0.281 0.280 0.279 0.239

Target Tract -0.068 -0.627 -0.707 -0.765 -0.804 -0.826

1 Tct Away 0.000 0.020 0.029 0.031 0.029 0.031

2 Tcts Away 0.001 0.023 0.033 0.037 0.037 0.040

3+ Tcts w/in PUMA 0.001 0.049 0.058 0.066 0.066 0.071

1 PUMA Away 0.002 0.039 0.046 0.053 0.056 0.058

2 PUMAs Away 0.003 0.055 0.062 0.072 0.077 0.087

3+ PUMAs w/in State 0.002 0.037 0.047 0.053 0.056 0.061

1-2 States Away 0.006 0.088 0.134 0.153 0.182 0.210

3+ States Away 0.000 0.012 0.016 0.019 0.023 0.029

Notes:
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Table 29: Change in Probability of Destination Employment (or Nonemployment) at Dif-
ferent Distances from Focal Tract after a Natural Disaster Removing 25% of Positions for
Workers Initially Employed in the Focal Tract by Initial Earnings Quintile (or Nonemploy-
ment)

Distance from Earnings Quintile

Focal Tract Nonemp. 1st Q. 2nd Q. 3rd Q. 4th Q. 5th Q.

Nonemployment 0.018 0.059 0.048 0.042 0.038 0.029

Target Tract -0.025 -0.123 -0.122 -0.117 -0.109 -0.104

1 Tct Away 0.000 0.004 0.005 0.005 0.004 0.004

2 Tcts Away 0.000 0.005 0.006 0.006 0.005 0.006

3+ Tcts w/in PUMA 0.001 0.010 0.011 0.011 0.010 0.009

1 PUMA Away 0.001 0.008 0.008 0.008 0.007 0.007

2 PUMAs Away 0.001 0.011 0.011 0.011 0.010 0.011

3+ PUMAs w/in State 0.001 0.007 0.008 0.008 0.008 0.008

1-2 States Away 0.002 0.017 0.023 0.023 0.024 0.026

3+ States Away 0.000 0.002 0.003 0.003 0.003 0.003

Notes:
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