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Abstract

Firm-level customs and production data reveal both the heterogeneity and the granularity

of individual buyers and sellers. We seek to capture these �rm-level features in a general

equilibrium model that is also consistent with observations at the aggregate level. Our model

is one of product trade through random meetings. Buyers, who may be households looking

for �nal products or �rms looking for inputs, connect with sellers randomly. At the �rm

level, the model generates predictions for buyer-seller connections and the share of labor in

production broadly consistent with observations on French manufacturers and their customers

in other countries of the European Union. At the aggregate level, �rm-to-�rm trade determines

bilateral trade shares as well as labor�s share of output in each country.



1 Introduction

International economists have begun to exploit data generated by customs records, which

describe the �nest unit of trade transactions. These records expose the activity of individual

buyers and sellers that underlie aggregate trade �ows, which had been the object of earlier

quantitative analysis in international trade.

We seek to capture both the heterogeneity and the granularity in individual buyer-seller

relationships in a general equilibrium framework that is also consistent with observations at

the aggregate level. Our model is one of product trade through randommeetings. Buyers, who

may be households looking for �nal products or �rms looking for inputs, connect with sellers

randomly. At the �rm level, the model generates predictions for imports, exports, and the

share of labor in production broadly consistent with observations on French manufacturers.

At the aggregate level, �rm-to-�rm trade determines bilateral trade shares as well as labor�s

share of output in each country.

In contrast to standard production theory, we model a �rm�s technology as combining a set

of tasks. Each task consists of a set of subtasks that can be performed by labor, which can be

of di¤erent types appropriate for di¤erent tasks. But labor competes with intermediate goods

produced by other �rms which can also perform these subtasks. Firms may thus look very

di¤erent from one another in terms of their production structure, depending on the sellers of

intermediate goods that they happen to encounter. A �rm�s cost in a market thus depends

not only on its underlying e¢ ciency, but also on its luck in �nding low-cost suppliers. An

implication is that an aggregate change, such as a reduction in trade barriers, can reduce the

share of labor in production by exposing producers to more and cheaper sources of supply.



Our model is complementary to recent work of Ober�eld (2017) in which a producer�s

cost depends not only on its own e¢ ciency but the e¢ ciencies of its upstream suppliers. It

is also complementary to recent work of Chaney (2014) and Eaton, Eslava, Jinkins, Krizan,

and Tybout (2014), with trade the consequence of individual links formed between buyers

and sellers over time. In order to embed the framework into general equilibrium, however, our

analysis here remains static, more in line with the two-stage model of production in Bernard,

Moxnes, and Ulltveit-Moe (2017).1 Our model also relates to Garetto (2013), in that �rms

and workers compete directly to provide inputs for �rms.2

We proceed as follows. Section 2 discusses motivating facts culled from data on the cus-

tomers of French manufacturers in 24 EU destinations. Section 3 develops our model of

�rm-to-�rm trade. Section 4 analyzes its implications for aggregate outcomes such as bi-

lateral trade and wages. Section 5 turns to �rm-level implications for our motivating facts,

1Bernard, Moxnes, and Saito (2015) apply this model to micro data from Japan to evaluate the e¤ects of

a new high-speed train line on �rms�supplier networks.
2In addition to the work already cited, our paper relates closely to a number of active areas. One is recent

work on exports and the labor market, including Caliendo and Rossi-Hansberg (2012), Egger and Kreickemeier

(2009), Felbermayr, Prat, and Schmerer (2008), Helpman, Itskhoki, and Redding (2010), and Hummels,

Jørgenson, Munch, and Xiang (2014). Another is quantitative work focussing on �rm-level imports, including

Biscourp and Kramarz (2007), Blaum, Lelarge, and Peters (2014), Bricongne, Lionel, Gaulier, Taglioni, and

Vicard (2012), Caliendo, Monte, and Rossi-Hansberg (2015), Frías, Kaplan, and Verhoogen (2009), Helpman,

Itskhoki, Muendler, and Redding (2017), Irarrazabal, Moxnes, and Ulltveit-Moe (2013), Klein, Moser, and

Urban (2010), Kramarz (2009), and Kramarz, Martin, and Mejean (2015). A third is other theories of

networks or input-output interactions, including Acemoglu and Autor (2011), Acemoglu, Carvalho, Ozdaglar,

and Tahbaz-Salehi (2012), Lucas (2009), and Luttmer (2015). A fourth is recent work on networks in trade.

Notable papers are Tintelnot et al. (2017), Kikkawa et al. (2017), and Miyauchi (2018).
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and others. Section 6 discusses our strategy to estimate the model�s parameters. Section 7

concludes.

2 Basic Facts about Firm-to-Firm Trade

For the year 2005 we observe French exporters of manufactured goods and the �rms that buy

from them in each of 24 EU countries, which we will call destinations, observing the amount

sold to each buyer in each country. Appendix A describes these data. We organize these data

in terms of some de�nitions and identities.

We denote byNnF the number of French exporters to destination n and by �BnF the average

number of buyers per French exporter in that destination. Multiplying these two we get what

we call the number of relationships RnF between French exporters and their buyers in n:

RnF = �BnFNnF : (1)

At the aggregate level we observe the value of total absorption (purchases for �nal demand

or for use as intermediates) Xn of manufactured goods by destination n, which we call market

size. We also observe the fraction �nF that is spent on manufactures from France, which we

call French market share. We can decompose the value of manufactures XnF shipped from

France to destination n as the product of market share and market size:

XnF = �nFXn:

The three regressions in Table 1 report the results of regressing NnF ; RnF ; and �BnF against

�nF and Xn (all in logs).3 The �rst regression shows how the number of French exporters NnF
3Note that each of the left-hand side variables emerge from two other decompositions of total French exports
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in a market varies with market size and market share. Both elasticities are positive and less

than one. Since the e¤ect of market share on entry exceeds that of market size, average French

sales per �rm are larger in larger markets given overall French exports.4 The second regression

shows how the number of relationships RnF in a market varies with market size and market

share. Both coe¢ cients are larger than for NnF ; with the coe¢ cient on market share around

unity. An implication is that sales per relationship are larger when market size accounts for

larger French exports but not when when larger French exports are accounted for by larger

French market share. The third regression shows that the number of relationships per buyer

increase with market size and market share each with an elasticity around one third.5

We now turn to an exploration of how these various magnitudes and others vary across

destinations.

XnF :

XnF = x̂nFNnF

XnF = �xnFRnF

where x̂nF is average total sales per French exporter in market n and �xnF is average sales per relationship in

market n: The two are connected by the identity:

x̂nF = �BnF �xnF

4Eaton, Kortum, and Kramarz (2011) explored the same relationship using data from 1986 with 112 foreign

destinations. Coe¢ cients on both market size and market share were somewhat larger.
5Note that, as dictated by the accounting identity (1), the coe¢ cients in the �rst and third regressions sum

to the corresponding coe¢ cients in the second.
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2.1 French Exporters

In parallel with the �rst regression in Table 1, the x in Figure 1 plots the number of French

exporters in market n; NnF (in thousands) against market size Xn (total manufacturing

absorption in U.S. dollars), showing simply how larger markets attract more French exporters.

(Figures 1, 2, and 3 are all on log-log scales.) The number of exporters vary by a factor of

about 50. Malta, the smallest market in our data, attracts the second smallest number of

French exporters. The most popular destination is Belgium, re�ecting France�s large market

share there. The largest destination, Germany, is the second most popular market.

2.2 French Relationships

In parallel with the second regression in Table 1, the x in Figure 2 plots French relationships

relative to French market share, RnF=�nF ; against market size Xn: The relationship is tight

with a slope in line with the regression coe¢ cient of 0.83 on lnXn in the second regression.

2.3 Buyers per French Exporter

In parallel with the third regression in Table 1, the x in Figure 3a plots the mean number

of buyers per French exporter in market n; �BnF against market size Xn: Note for Malta the

mean is barely above 1 (the theoretical minimum) while for Germany the number is nearly

10.6

The mean number of buyers masks vast heterogeneity across French exporters in terms of

6Our �ndings in Table 1 and Figure 3a on buyers per �rm are in line with evidence from Norwegian

exporters reported in Bernard, Moxnes, and Ultveit-Moe (2017), their Figures 1 and 2 in particular.
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their number of clients. The x in Figure 3b plots (somewhat boringly) the median rather than

the mean. The median is simply 1 in the smaller destinations and 2 in the larger ones. More

interesting is Figure 3c, where the x plots the number of buyers per French exporter for the

French exporter at the 99th percentile in terms of number of buyers. In the smaller markets

the number of buyers is less that 10 but exceeds 100 in two of the largest ones.

To consider how the number of buyers a French exporter has in a given destination corre-

lates with the �rm�s export activity elsewhere, the x in Figure 3d plots the average number of

buyers in Germany (on the y-axis) of French �rms that also export to the market indicated

(by the 3-letter abbreviation) against the number of �rms exporting both to Germany and to

that other market (on the x-axis).

Where the destination is DEU (Germany itself) the �gure simply reports the average

number of buyers per seller from Figure 3a (around 10) against the total number of French

exporters to Germany (over 20,000). But for the around 1,600 that also export to Estonia

(the least popular alternative destination), the average number of buyers in Germany is nearly

40. Very generally, as the number selling to the third market declines, the average number

of buyers per exporter in Germany rises. Firms that succeed in penetrating a less popular

market also succeed in �nding more buyers in Germany.

2.4 French Sellers per Buyer

Looking at the relationship from the buyers�side, The x�s in Figure 4a report the mean number

of French sellers per buyer in each market against French market share �nF : The number varies

between just below 2 to over 3.5, rising somewhat with French market share.
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The dark bars in Figure 4b show the distribution of the number of French sellers per buyer

in Germany. Almost 70 percent of German buyers have only one French seller, but there are

a small share of buyers for whom the number exceeds 33.

2.5 French Labor Share

Our model pertains not only to the connections between �rms and their customers in di¤erent

destinations, but also to how �rms procure their inputs. Standard general equilibrium models

treat the production function as common across categories of �rms, with the prediction that

�rms in the same category facing common factor prices in Walrasian input markets would

employ inputs in the same proportion.

To assess the appropriateness of this approach, we look at payments to production labor

by French manufacturing �rms as a fraction of their total variable costs, de�ned as the sum

of intermediate purchases and payments to production labor. The x in Figure 5 plots the

distribution of the production labor share across these French manufacturing �rms. Note that

the share varies very continuously between 0 and 0.6.

2.6 Sales per Buyer

So far we have not considered statistics related to the volume of sales to individual buyers.

We now turn to the average value sold to a buyer in n by a French exporter �xnF (introduced

in footnote 3). Parallel to Figure 3d (and with the same values on the x-axis), the x�s in

Figure 8 plots �xnF (on the y-axis) �xing country n (Germany buyers) while conditioning on

French exporters that also sell in third countries (indicated by the 3-letter label). While more
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noisy than Figure 3d, the slope of the relationship is also negative. Firms that succeed in

penetrating a less popular market also succeed in selling more to each German buyer. A similar

relationship is obtained if we consider buyers from some other country, such as Belgium.

3 A Model of Production through Random Encounters

Our model seeks to address the granularity and heterogeneity of �rms�relationships with buy-

ers in di¤erent destinations. It also seeks to understand the heterogeneity of �rms�production

decisions.

Our basic framework is Ricardian. We consider a world with a set of i = 1; 2; :::;N

countries. Each country has an endowment of Lli workers of type l = 0; 1; 2; :::;L:

3.1 Technology

A producer j in any country i can make a quantity of output Q(j) by combining a discrete

set of K + 1 tasks, indexed by k = 0; :::; K. Task k in turn combines mk subtasks labelled !.

All producers must perform the same K + 1 tasks but may perform each task with di¤erent

subtasks. We denote the set of subtasks used by �rm j for task k as 
k(j) and de�ne the

number of such subtasks as:

mk(j)= j
k(j)j :

The production function for �rm j is speci�cally:

Q(j) = z(j)
KY
k=0

0@ 1

�k

 P
!2
k(j)

xk(j; !)
(�k�1)=�k

!�k=(�k�1)1A�k

; (2)

8



where z(j) is the overall e¢ ciency of producer j, xk(j; !) is the input of subtask ! of task k

(discussed further below), �k > 1 is the elasticity of substitution between subtasks for task k,

and �k is the Cobb-Douglas share of task k, satisfying �k > 0 and

KX
k=0

�k = 1:

We treat the number of tasks K along with the �k�s and �k�s, as common across all �rms. We

denote the (K + 1)� 1 vector of number of subtasks per task for �rm j as:

m(j) = [m0(j);m1(j); :::;mK(j)]:

In any country i we denote the set of possible values of m as 
m:

In the special case in which mk = 1 for all k; (2) reduces to a Cobb-Douglas production

function. The point of introducing more than a single subtask is to match more �exibly our

data on �rm-to-�rm trade. Allowing heterogeneity across �rms along this dimension captures

the observation that some �rms have a very large number of suppliers and others very few. An

elasticity of substitution greater than one among subtasks explains why a given buyer tends

to purchase more when buying from a seller with more buyers.

We assume that any subtask ! of k can be performed either by the unique type of labor

appropriate for that task, denoted l(k), or with an input produced by another �rm. We allow

K � L, so that one type of labor might be able to perform subtasks of several di¤erent

tasks. We denote the set of tasks that labor of type l can perform as 
l. Worker productivity

performing subtask ! of k for a �rm j is qk(j; !). A subtask can also be performed by an

appropriate intermediate input produced by another �rm. From �rm j�s perspective, labor

and the available inputs are perfect substitutes for performing any subtask. Hence it chooses

whatever performs the subtask at lowest cost.
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To summarize, we can describe �rm j�s technology in terms of its overall e¢ ciency z(j);

the number of subtasks it requires for each task m(j); and its worker e¢ ciency at performing

each subtask, qk(j; !): We now turn to deriving an expression for the �rm�s unit cost.

We assume that, if a �rm hires labor to perform a subtask of k; it does so in a standard

Walrasian labor market in country i, in which labor of type l has a wage wli. Hence we de�ne

the wage for task k as wk;i = w
l(k)
i .

In �nding intermediates, however, buyers match with only an integer number of potential

suppliers, either because of search frictions or because only a handful of producers make an

input appropriate for this particular �rm. We could make various assumptions about the price

at which the intermediate is available. Because it yields the simplest set of results, we assume

Nash bargaining in which the buyer has all the bargaining power, so that the price is pushed

down to unit cost.7

Let cmink;i (j; !) denote the lowest price available to �rm j in country i for an intermediate

to perform subtask ! of k: The price it pays to perform this subtask is thus:

ck;i(j; !) = min

�
wk;i

qk(j; !)
; cmink;i (j; !)

�

and the �rm�s unit cost of delivering a unit of its own output to destination n is:

cni(j;m(j)) =
dni
z(j)

KY
k=0

0@ P
!2
k(j)

ck;i(j; !)
�(�k�1)

!�1=(�k�1)1A�k

; (3)

7An implication is that there are no variable pro�ts. Our model thus cannot accommodate �xed costs,

either of market entry as in Melitz (2003) or in accessing markets for inputs, as in Bernard, Moxnes, and

Ultveit-Moe (2017) or Antras et al. (2017). An alternative, which would allow for variable pro�ts and hence

�xed costs, is Bertrand pricing. While we found this alternative analytically tractable, we deemed the added

complexity not worth the bene�t.
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where dni � 1 is the iceberg transport cost of delivering a unit of output from source i to

destination n, with dii = 1 for all i:

In order to derive a closed form solution for the distribution of costs in this setting, we

impose speci�c distributions on the parameters of potential producers�technologies.

First, following EKK (2011), each country has a measure of potential producers. The

measure of potential producers in country i with e¢ ciency z(j) � z and number of subtasks

per task m(j) =m is:

�Zi (z;m) = p(m)Tiz
��; (4)

where Ti � 0 is a parameter re�ecting the magnitude of country i�s endowments of technology

and � � 0 their similarities. We can interpret p(m) as a probability distribution with:

X
m2
m

p(m) = 1:

Second, worker productivity qk;i(j; !) performing subtask ! of k for a given producer j is

drawn, independently over ! and j, from the probability distribution:

H(q) = e�q
��
; (5)

where � � 0 re�ects the similarity of labor productivities across tasks and �rms. For purposes

that will become apparent below we restrict � � �:

Our speci�cations of the heterogeneity in producer e¢ ciency given in (4), the distribution

of worker productivity given in (5), and the distribution of numbers of subtasks p(m) are

primitives of the model, with Ti; �; and � exogenous parameters.

Our assumptions about technology, along with the speci�cation of �rm-to-�rm matching

in the next section, imply that the measure of potential producers from i who can produce a

11



good at a unit cost below c is:

�ii(c) = Ti�ic
�; (6)

where �i � 0. It follows that the measure of potential producers from i who can deliver to n

at a cost below c is:

�ni(c) = �ii(c=dni) = d
��
ni �ii(c) = Ti�id

��
ni c

�: (7)

We show below that the distribution of unit costs c given by (6) arises endogenously from our

other assumptions, with �i determined by underlying technology, labor market conditions,

and access to intermediates in di¤erent countries of the world, as well as to trade barriers

between countries.

A potential producer becomes an active �rm only if it meets a customer who buys from

it. A customer could be a �nal consumer (a household) or a �rm which uses the producer�s

output as an input. The measure of �nal consumers in market n is the exogenous measure of

households:

Ln =
LX
l=0

Lln:

The measure of active producers in market n is determined endogenously by the potential

producers there that are able to make a sale (either in market n or in some other destination).

3.2 Preferences

Final demand is by households spending their wage income (since there are no pro�ts, saving,

or investment in our model). Since we lack data on �rm-to-household sales, we keep the

consumer side of the model as stripped down as possible. We treat household demand in

parallel to �rms, except we assume that all households have the same preferences: Households
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have an integer number ~K + 1 tasks, indexed by k0, each with a Cobb-Douglas share ~�k0.

Each task k0 can be performed by set of ~
k0 subtasks labelled by ~!, and de�ne the number of

subtasks for task k0 as:

~mk0 =
���~
k0���

Hence, analogous with a �rm�s production function (2), household $ in any country has

preferences given by:

U($) =

~KY
k0=0

0@ 1
~�k0

 P
!02~
k0

xk0($;!
0)(~�k0�1)=~�k0

!~�k0=(~�k0�1)
1A~�k0

where xk0($;!0) is the household�s consumption of subtask !0 of k0 and ~�k0 is the elasticity of

substitution across subtasks within task k0:

3.3 Firm-to-Firm Matching

In contrast with standard Walrasian models, we assume that matching between buyers and

sellers is random. Even though there are a continuum of possible sellers and buyers, an

individual seller matches with only an integer number of potential buyers and, for any subtask,

an individual buyer matches with only an integer number of potential sellers.

We �rst consider �rm-to-�rm matches between potential producers and buyers that are

�rms actively engaged in production. We denote the measure of �rms buying in market n

as Fn; which is determined endogenously in the equilibrium we derive below. We denote the

average number of subtasks of k across producers as �mk; which we derive below and is the

same in any market n:

While in our case the measure of potential sellers implied by (6) is unbounded, the measure

of sellers with unit cost below c is always bounded. Therefore, we treat the likelihood of a
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match involving a seller with unit cost c as limited by the measure of sellers with unit cost

below c.

We specify the measure of �rm-to-�rm matches between buyers in n for subtasks of k and

sellers from country i with unit cost below c as:

Mk;ni(c) =
�k
1� 
�ni�ni(c) �mkFnSn(c)

�
B�'n : (8)

Here, �ni(c) is the measure of potential producers from i who can sell in n at cost below c;

given by (7), and �mkFn is the number of potential purchases for subtasks of k in market n:

The parameter �k re�ects the ease with which buyers can �nd a supplier for subtasks of k and

�ni the ease with which sellers from source i can match with buyers in destination n:

The matching literature (e.g., Mortensen and Pissarides, 1994) typically posits that, as

the measure of buyers and sellers in a market increases, the likelihood of a match between any

given potential buyer and potential seller is smaller.8 To capture such a �congestion e¤ect�

on the sellers�side we de�ne the presence of sellers with unit cost below c in market n as:

Sn(c) =
X
i0

�ni0�ni0(c)

which, from (7), we can write as:

Sn(c) = �nc
�

where we de�ne:

�n =
X
i

�nid
��
ni Ti�i: (9)

8Matching in our framework can be interpreted literally as coming into contact with each other, but it also

could relate to the appropriateness of a seller�s product for the buyer�s purpose. In this sense we can think of

products as di¤erentiated not only by seller, but by buyer as well.
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The parameter 
 � 0 captures the extent to which low cost sellers in market n crowd out

higher cost ones. To capture such e¤ects on the buyers�side we de�ne the presence of buyers

as:

Bn =
X
k

�k �mkFn:

The parameter ' � 0 captures the extent to which buyers crowd each other out in meeting

sellers.

We can write the measure of �rm-to-�rm matches of buyers in market n for subtasks of k

with sellers from anywhere with unit cost below c as:

Mk;n(c) =
X
i0

Mk;ni0 =
�k
1� 
 �mkFnSn(c)

1�
B�'n :

We can write the total measure of �rm-to-�rm matches in market n between buyers and sellers

with unit cost below c as:

Mn(c) =
X
k

Mk;n(c) =
1

1� 
Sn(c)
1�
B1�'n

=
1

1� 
�
1�

n B1�'n c�(1�
)

a Cobb-Douglas combination of seller and buyer presence.

Consistent with the matching function (8) is a Poisson hazard with which a given buyer

in n meets a given seller from i with unit cost c of:

hk;ni(c) = �k�niSn(c)
�
B�'n : (10)

Consider now a buyer in country n seeking the cheapest input for a task. From the Poisson

hazard (10), aggregating across potential suppliers from each source i, with di¤erent costs of

delivering to n, the number of �quotes�below price c that a buyer in n receives for a subtask
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of k is distributed Poisson with parameter:

�k;n(c) =
X
i

Z c

0

hk;ni(c
0)d�ni(c

0) = �kB
�'
n

Z c

0

Sn(c
0)�


X
i

�nid�ni(c
0)

= �kB
�'
n

Z c

0

Sn(c
0)�
dSn(c

0) =
�k
1� 
B

�'
n Sn(c)

1�


= �k;nc
�(1�
)

where:

�k;n =
�k
1� 
B

�'
n �1�
n : (11)

We can also derive this expression directly from the matching function:

�k;n(c) =
Mk;n(c)

�mkFn
(12)

Thus the probability that no supplier with unit cost below c is available is e��k;n(c): If its

own worker productivity is q, the buyer can also perform the subtask with labor at unit cost

wk;n=q, which will exceed c with probability H(wk;n=c). Since the two events are independent,

the distribution of the lowest cost to ful�ll a task is:

Gk;n(c) = 1� e�(w
��
k;nc

�+�k;nc
�(1�
))

To work out the implications of this distribution for the resulting distribution of production

costs, we restrict:

� = � (1� 
) ;

so that the parameter governing heterogeneity in the distribution of costs of intermediates

becomes the same as the parameter governing heterogeneity in the distribution of worker

e¢ ciency (5). The distribution of the cost of ful�lling a task simpli�es to:
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Gk;n(c) = 1� e��k;nc
�

; (13)

where

�k;n = �k;n + w
��
k;n: (14)

3.4 Deriving the Cost Distribution

From (13), (4), and (3), the measure of potential producers from source i that can produce

at a unit cost below c with subtasks per task m, is:

�ii(c;m)

= p(m)Tic
�
KQ
k=0

0@Z 1

0

:::

Z 1

0

 �
mkP
!=1

c
�(�k�1)
k;!

��1=(�k�1)!���k
dGk;i(ck;1):::dGk;i(ck;mk

)

1A
= p(m)Tic

�
KQ
k=0

	k;i(mk);

where:

	k;i(m) =

Z 1

0

:::

Z 1

0

"Z 1

0

�
mP
!=1

c�(��1)!

���k=(�k�1)
dGk;i(cm)

#
dGk;i(cm�1):::dGk;i(c1)

=

Z 1

0

e�x1 :::

Z 1

0

e�xm�1

24Z 1

0

e�xm

 
mP
!=1

�
x!
�k;i

��(�k�1)=�!��k=(�k�1)
dxm

35 dxm�1:::dx1
= �

��k=�
k;i gk(m);

where we have changed the variables of integration to x! = �k;ic�! and de�ned:

gk(m) =

Z 1

0

e�x1 :::

Z 1

0

e�xm�1

"Z 1

0

e�xm
�

mP
!=1

x�(�k�1)=�!

���k=(�k�1)
dxm

#
dxm�1:::dx1:
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In the special case m = 1:

gk(1) =

Z 1

0

e�x
�
x�(�k�1)=�

���k=� dx
=

Z 1

0

e�xx���k=�dx

= �

�
1� ��k

�

�
;

which is well-behaved only for ��k=� < 1.

In the special case of ��k = �k � 1:

gk(m) =

Z 1

0

e�x1 :::

Z 1

0

e�xm�1
�Z 1

0

e�xm
�

mP
!=1

x���k=�!

�
dxm

�
dxm�1:::dx1

= mgk(1):

Returning to the general case and combining the results so far, we have shown that:

�ii(c;m) = p(m)g(m)Tic
�
KQ
k=0

�
��k=�
k;i :

where:

g(m) =
KQ
k=0

gk(mk)

Aggregating over the distribution of m:

�ii(c) =
X
m2
m

�ii(c;m)

= �gTic
�
KQ
k=0

�
��k=�
k;i ;

where

�g =
X
m2
m

p(m)g(m):
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Using this term, we can solve for the mean number of subtasks per task k, �mk; across producers:

�mk =
X
m2
m

~p(m)mk;

where:

~p(m) =
p(m)g(m)

�g
:

We have con�rmed our conjecture about the cost distribution in equation (6), that:

�ii(c) = Ti�ic
�

with:

�i = �g
KQ
k=0

�
��k=�
k;i : (15)

Combining (15), (14), (11), and (9), we can either solve for the vector of �i from the

system of equations:

�i = �g
KQ
k=0

0@ �k
1� 
B

�'
i

 X
i0

�ii0d
��
ii0 Ti0�i0

!1�

+ w��k;i

1A��k=�

: (16)

Or, we can solve for the vector of �n from the system of equations:

�n =
X
i

�nid
��
ni Ti�g

KQ
k=0

�
�k
1� 
B

�'
i �1�
i + w��k;i

���k=�
(17)

for i; n = 1; 2; :::;N . We focus on the second system (17) whose solution, given wages wi and

the measure of active producers Fi, gives us the �n.

A problem can arise in solving the system of equations (17) if it�s too easy for producers

to �nd input suppliers for all tasks, as the cost of production can collapse to zero. We need

to ensure that labor requirements for production don�t vanish. Our strategy for avoiding this

problem is to set �0 = 0 (while keeping �0 > 0); meaning that subtasks of task 0 can be
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performed only by labor (of type l(0) at wage w0;i): Appendix B shows that this condition

su¢ ces to guarantee a unique solution for the �n�s and provides an iterative procedure to

compute them.

3.5 Firm-to-Household Matching

For household tasks k0 = 1; :::; ~K; we treat �rm-to-household encounters like �rm-to-�rm

encounters. But since we never observe a household importing from a foreign �rm we allow

only for matches between households and local �rms. In parallel with our speci�cation of �rm-

to-�rm matching, we posit that the measure of matches between households in destination n

for task k0 and local producers with unit cost below c is:

~Mk0;n(c) =
~�k0

1� 
 ( ~mk0Ln) ~B
�'
n
~Sn(c)

1�
:

where:

~Sn(c) = ~�nn�nn(c)

and:

~Bn =

~KX
k0=1

~�k0 ~mk0Ln

The parameter ~�k0 re�ects the ease with which households can �nd a supplier for subtasks

of task k0 and re�ects ~�nn the ease with which households in destination n can �nd local

suppliers. (Our assumption that households can buy only locally implies that ~�ni = 0 for

i 6= n:): The parameters ' and 
 are as above and re�ect congestion in matching.

Parallel to our discussion above, the number of producers that a household encounters

that can perform a subtask of k0 at cost less that c is distributed Poisson with parameter:,

~�k0n(c) =
~�k0

1� 

~B�'n

~Sn(c)
1�
 = ~�k0;nc

�;
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where:

~�k0;n =
~�k0

1� 

~B�'n

~�1�
n c�;

and where:

~�n = ~�nnTn�n;

where �n is the solution to the set of equations (16) above. Since households represent the

end of the line of the production chain their purchases don�t feed back into costs.

In parallel to our discussion above, the distribution of lowest cost that a household faces

for each subtask of k0 is:

~Gk0;n(c) = 1� e�~�k0;nc
�

:

As with a �rm, a household buys only from the lowest cost producer.

For simplicity we don�t allow households to substitute goods with labor for tasks k0 =

1; :::; ~K: To capture household purchases of nonmanufactures we assume that ~�0 = 0 and

treat task 0 as services which can be provided only by labor of type 0 at a wage w0 with

productivity one.

Depending on the suppliers they encounter, each household will face di¤erent prices for

each subtask. De�ning the consumer price index for task k0 as Pk0 we can derive an expression

for:

E[P
1��k0
k0;n ] = E

24 X
!02
k0

c
�(�k0�1)
k0;!0

35
= ~m

Z 1

0

c�(�k0�1)d ~Gk0;n(c)

= ~m�

�
1� �k

0 � 1
�

�
~�
(�k0�1)=�
k0;n :

showing how the term ~�k0;n translates into consumer prices.
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3.6 From Potential Producers to Firms

As mentioned at the beginning, a (potential) producer turns into an (active) �rm only if it

can �nd a buyer, either a local household or another �rm. Consider a potential seller from i

with unit cost c in market n; starting with its its sales to other �rms in that destination.

Taking the derivative of (8) with respect to c to give the measure of �rm-to-�rm matches

between such a seller for task k:

@Mk;ni(c)

@c
= ��k�niTi�id

��
ni �mkFn�

�

n B

�'
n c��1

The measure of producers from i who can sell in n at cost exactly c is:

@�ni(c)

@c
= �Ti�id

��
ni c

��1:

Hence the number of �rms that our potential producer from i with unit cost c in destination

n encounters for a subtask of k is distributed Poisson with parameter:

ek;ni(c) =
@Mk;ni(c)=@c

@�ni(c)=@c
= �k�ni �mkFn�

�

n B

�'
n c��
;

or, using (10):

ek;ni(c) = �mkFnhk;ni(c):

But it�s not enough for our seller just to encounter a buyer. To make a sale it has to beat

out the competition (whether another supplier or labor), which requires that no other seller

encountered by the buyer has a lower cost. Using expression (13) for the distribution of the

lowest cost for a subtask of k in market n; the probability that our producer is the lowest cost

for any buyer is:

1�Gk;n(c) = e��k;nc
�

:
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Combining these results, this producer�s number of �rm-to-�rm transactions in n for subtasks

of task k is distributed Poisson with parameter:

�k;ni(c) = ek;ni(c)e
��k;nc�

= �k�ni �mkFn�
�

n B

�'
n c��
e��k;nc

�

: (18)

which is decreasing in c: Summing across tasks, this producer�s number of �rm-to-�rm trans-

actions in market n is distributed Poisson with parameter:

�ni(c) =

KX
k=1

�k;ni(c): (19)

By the same logic, the number of household buyers of a �rm in i with unit cost c encounters

is distributed Poisson with parameter:

~�ii(c) =

~KX
k0=1

~�k0~�ii ~mk0Li ~�
�

i
~B�'i c��
e�~�k;ic

�

Aggregating across local households and �rms throughout the world, the number of buyers

of a �rm with unit cost c in its home market i is distributed Poisson with parameter:

�Wi (c) = ~�ii(c) +
NX
n=1

�ni(cdni):

The probability that the producer has at least 1 buyer, turning it into a �rm, is 1� e��Wi (c),

allowing us to write the measure of �rms in i as:

Fi =

Z h
1� e��Wi (c)

i
d�ii(c)

= �Ti�i

Z h
1� e��Wi (c)

i
c��1dc (20)

The system of equations (20), along with (17), allows us, for given wages wli around the world,

to solve for the �i�s and Fi�s. The solution gives us the structure of prices and �rm-to-�rm

and �rm-to-household connections around the world. We turn to the determination of wages

in the next section.
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4 Aggregate Equilibrium

We now have in place the assumptions we need to solve for the aggregate equilibrium. We

begin by solving for our model�s implications for labor shares and trade shares, for given

wages. We then solve for equilibrium in the production of intermediates, given wages. We

conclude by turning to labor-market equilibrium, which determines those wages.

4.1 Labor Shares

From expression (14), with probability w��k;n=�k;n; a �rm hires workers to perform a subtask of

k while with probability �k;n=�k;n it purchases an intermediate from the lowest-cost supplier.

Notice that these probabilities are independent of the unit cost c.9

Since there are a continuum of producers, w��k;n=�k;n is also the aggregate share of labor

in performing task k in country n. The aggregate share of labor of type l in total production

costs is consequently:

�ln =
X
k2
l

�kw
��
k;n=�k;n

and the overall labor share in production costs is:

�Ln =

LX
l=1

�ln:

Note that, even though our basic technology is Cobb-Douglas across tasks k, the labor share

depends on wages and deeper parameters.

9For task k = 0; the probability that a �rm hires labor (of type l(0)) is one.
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4.2 Trade Shares

From (8), the number of matches between �rms in n seeking to ful�ll a subtask of k > 0 and

sellers from i with unit cost c is distributed Poisson with parameter:

@Mk;ni(c)

@c
= ��k�niTi�id

��
ni �mkFn�

�

n B

�'
n c��1

These matches result in a sale with probability e��k;nc
�
; so that the corresponding number of

purchases is distributed Poisson with parameter:

sk;ni(c) =
@Mk;ni(c)

@c
e��k;nc

�

= ��k�niTi�id
��
ni �mkFn�

�

n B

�'
n c��1e��k;nc

�

The corresponding number of purchases from anywhere is distributed Poisson with parameter:

sk;n(c) =
NX
i0=1

sk;ni0(c):

Hence the probability that the purchase is from a seller from i is:

�ni =
sk;ni(c)

sk;n(c)
=

�nid
��
ni Ti�iP

i0 �ni0d
��
ni0Ti0�i0

=
�nid

��
ni Ti�i
�n

: (21)

Note that this probability is the same for any task k > 0 and c: Hence, just as in Eaton and

Kortum (2002), with our continuum of producers, in the aggregate �ni is the bilateral trade

share of source i in the intermediate purchases of destination n.

4.3 Production Equilibrium

With balanced trade, total �nal spending in country n; XC
n ; is labor income:

XC
n =

LX
l=1

wlnL
l
n =

KX
k=1

wk;nLk;n: (22)
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We think of the producers in our model as applying broadly to manufacturers as well as to

retailers and wholesalers of manufactured goods, calling their activities sectorM . In contrast,

we think of the production that involves only labor (task 0 for households) more narrowly as

service activities excluding retail and wholesale, labelling them sector S:

We ignore any input-ouput connections between the two sectors and we ignore trade in

services, so that service output in country i; which we denote Y Si is simply:

Y Si =
~�0X

C
i

Total output of the M sector, Y Mi is used to satisfy �nal demand by local households and

to satisfy demand for intermediates by local and foreign �rms:

Y Mi = (1� ~�0)XC
i +

NX
n=1

�ni(1� �Ln)Y Mn (23)

Given wages, and hence �nal demand XC
i ; labor shares �

L
n ; and trade shares �ni; the system

of equations (23) determines gross output of the M sector Y Mi around the world.

4.4 Labor-Market Equilibrium

We assign labor of type 0 to the service sector. For labor of types l = 1; 2; :::;L; labor market

equilibrium in country i solves the expression:

wliL
l
i = �

l
iY

M
i : (24)

For labor of type 0 labor market equilibrium in country i solves:

w0iL
0
i =

~�0X
C
i + �

0
iY

M
i : (25)

Together these equations determine wages wli around the world.
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5 Implications for Observations on Firm-to-Firm Rela-

tionships

Having completed our model of �rm-to-�rm trade we now turn to how it can come to grips

with the observations on the interaction of individual French manufacturing �rms with their

customers in di¤erent foreign markets discussed in Section 2. Analogous to the facts described

there we consider our model�s implications for: (i) the measureNni of �rms from source i selling

in di¤erent foreign destinations n, (ii) the measure of relationships Rni between sellers from

source i and individual buyers in di¤erent foreign destinations n; (iii) the average number of

buyers per seller from source i in di¤erent foreign destinations n (Rni=Nni), conditioning on

entry into another foreign market n0 6= n; (iv) the entire distribution of the number of buyers

per seller from i across foreign destinations n; (v) the number of sellers from source i per

buyer across foreign destinations n:

5.1 The Measure of Sellers

A �rm in source i will sell to destination n if it has at least one customer there. Recall from

Section 3 that the number of customers that a seller from i has in foreign destination n;

conditional on its unit cost c there, is distributed Poisson with parameter �ni(c) given in (19).

The probability that it has at least one customer in n is thus 1� exp(��ni(c)).

We can calculateNni, the measure of �rms from i selling in n, by integrating this probability

over the distribution of costs in n for �rms from i, given in (7):

Nni =

Z 1

0

(1� e��ni(c))d�ni(c) = d��ni
Z 1

0

(1� e��ni(c))d�ii(c): (26)
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Expression (26) constitutes our model�s theoretical counterpart to Figure 1 in Section 2. Note

how the iceberg cost dni enters directly while the information friction �ni enters only indirectly,

through �ni(c). From expression (19), �ni(c) is linear in �ni: Hence the e¤ect of �ni on Nni

is nonlinear. Increasing it from zero has a large e¤ect on Nni. Further increases have a

diminishing e¤ect that asymptotes to zero.

5.2 The Measure of Relationships

The measure of relationships between sellers from source i and buyers in foreign destination

n; Rni; is simply the expected number of customers for a �rm with unit cost c there, given by

the Poisson parameter �ni(c); integrated over the distribution of costs c of �rms from i in n:

Rni =

Z 1

0

�ni(c)d�ni(c) = Ti�id
��
ni

Z 1

0

�ni(c)�c
��1dc (27)

= �ni�nFnB
�'
n ��
n

Z 1

0

KX
k=1

�mk�kc
�
�e��k;nc

�

�c��1dc

= �niFn (1� 
)
KX
k=1

�k;n �mk

Z 1

0

e��k;nc
�

�c��1dc

= �niFn

KX
k=1

�k;n �mk
�1
�k;n

e��k;nc
�

����1
0

= �niFn

KX
k=1

�mk
�k;n
�k;n

: (28)

Expression (28) constitutes our model�s theoretical counterpart to Figure 2 in Section 2. Note

how the measure of relationships between sellers from i and buyers from n is proportional to

i�s trade share in n and a term that depends only on destination n magnitudes. Recall from

(21) that �ni is proportional to �nid��ni , so that relationships Rni are a¤ected by these two

frictions distinctly from how they a¤ect exporters Nni: An increase in �ni has a linear e¤ect
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on relationships but a diminishing e¤ect on the number of exporters. The distinction allows

us to identify the separate roles of iceberg costs and match frictions in trade shares.

5.3 Buyers per Seller

Dividing the measure of relationships between sellers in i and buyers in n by the measure

of �rms from i selling in foreign destination n, we get the mean number of buyers per seller

(customers per �rm):

�Bni =
Rni
Nni

:

It represents the mean of the integer-valued random number Bni of customers in n buying

from a �rm from i.

Consider a �rm from i selling in n at cost c. Its number of customers is distributed Poisson

with parameter �ni(c) given in (19). The probability that it has x buyers there is thus:

pni(x; c) = Pr[Bni(c) = x] =
e��ni(c) [�ni(c)]

x

x!
;

for x = 0; 1; :::. The mean of Bni(c) is simply:

�Bni(c) =

1X
x=1

xpni(x; c) =

1X
x=1

x
e��ni(c) [�ni(c)]

x

x!
= �ni(c): (29)

Integrating this term over the distribution of costs in n for �rms from i that �nd at least one

customer there, we come full circle to:

�Bni =

Z 1

0

�Bni(c)
d�ni(c)R1

0
(1� e��ni(x))d�ni(x)

=
1

Nni

Z 1

0

�ni(c)d�ni(c) =
Rni
Nni

: (30)

Expression (30) constitutes our model�s theoretical counterpart to Figure 1 in Section 2.
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For any x � 1, we can integrate over the cost measure to obtain the measure of �rms from

i with x buyers in n:

Nni(x) =

Z 1

0

pni(x; c)d�ni(c) =

Z 1

0

e��ni(c) [�ni(c)]
x

x!
d�ni(c) (31)

Thus, the fraction of �rms from i selling in n who have x buyers is:

pni(x) =
Nni(x)

Nni
;

for x = 1; 2; :::.10 Expression (31) constitutes our model�s theoretical counterpart to Figure

3b and 3c in Section 2.

5.4 Buyers per Seller, Conditional on Selling Elsewhere

By analogy to moments in Eaton, Kortum, and Kramarz (2011), we can calculate the expected

number of buyers Bnijm in foreign destination n per seller from i; conditional on the �rm also

selling in some third country n0. The �rm�s ability to sell in n0 indicates that it is likely to

have a lower cost in n than the typical �rm from i that sells there. Hence such a �rm should

have more buyers in n, on average, than those not selling in n0.

10An alternative way to express the measure of �rms from i with at least one �rm buyer in n is:

Nni =
1X
x=1

Nni(x):

An alternative for the number of relationships is:

Rni =
1X
x=1

xNni(x):

Thus a third way to think of mean buyers per seller is

�Bni =
1X
x=1

x
Nni(x)

Nni
=

1X
x=1

xpni(x):
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We �rst compute the measure of relationships in n for �rms from i that also sell in n0:

Rni;n0 =

Z 1

0

�ni(cdni)
�
1� e��n0i(cdn0i)

�
d�ii(c): (32)

In terms of buyers per �rm, conditional on a �rm from i selling in both n and n0, we have:

Bnijn0 =
Rni;n0

N(nn0)i
;

where the measure of �rms from i selling in both n and n0 is:

N(nn0)i =

Z 1

0

(1� e��ni(cdni))(1� e��n0i(cdn0i))d�ii(c): (33)

We have exploited the fact that, given the �rm�s cost at home c, having at least one buyer in

n is independent of having at least one buyer in n0.

Taking the ratio of (32) and (33) we get the average number of buyers in n for �rms from

i selling in both n and n0:

�Bni;n0 =
Rni;n0

N(nn0)i
(34)

Expression (26) constitutes our model�s theoretical counterpart to Figure 3d in Section 2.

5.5 Sellers Per Buyer

A �rm seeking inputs has an average of �mk subtasks to ful�ll for each task k. For a �rm in

country n, the probability of outsourcing a subtask of k is �k;n=�k;n. The probability that the

supplier comes from country i is �ni. Let Sni be the random number of suppliers from country

i for a �rm in country n. The expected number of such suppliers is:

E [Sni] = �ni

KX
k=1

�mk
�k;n
�k;n

:
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What we observe, however, is the expected number of suppliers from i for a �rm in n, condi-

tional on the �rm having at least one supplier from i.

The probability of a �rm in n having at least one supplier from i is:

Pr [Sni � 1] = 1�
KQ
k=1

 1X
nk=1

P (nk)

�
1� �ni

�k;n
�k;n

�nk!
:

Under the assumption that the number of subtasks for task k is a the same mk for all �rms,

this equation simpli�es to:

Pr [Sni � 1] = 1�
KQ
k=1

�
1� �ni

�k;n
�k;n

�mk

:

In that case, the theoretical analog of the observable moment is:

E [SnijSni � 1] =
�nF

PK
k=1

�k;n
�k;n

1�
KQ
k=1

�
1� �ni �k;n�k;n

�mk

: (35)

Expression (35) constitutes our model�s theoretical counterpart to Figure 4a in Section 2.

6 Estimation

We now describe our procedure for estimating the model and present preliminary results.

Our strategy is to search for a vector of parameters that minimizes deviations between the

moments shown in Section 2 and the model�s predictions for these moments. (At this point

we are not attempting to match the moments on sales per buyer.) Recall that our data are

for French exporters, i = F , and buyers in 24 EU countries n.

To eliminate parameters that would not be well identi�ed from the moments in Section

2, we estimate a restricted version of the model. These restrictions impose symmetry across

tasks:
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� We assume that �k, �k, �k, wk, and �mk are the same for tasks k = 1; :::; K. As a result

we have: vk;n = vn and �k;n = �n.

� To streamline the notation we rename �0 = � so that �k = (1� �) =K.

� As mentioned in Section 3.4 we set �0 = 0. We can then normalize �k = 1 for k =

1; :::; K.

� In this restricted model, the measure of buyers in country country n simpli�es to:

Bn = �mKFn

and the Poisson parameter, for the number of buyers in country n of a French �rm

delivering to n at cost c, simplies to:

�nF (c) = �nFB
1�'
n ��
n c

��
e��nc
�

:

In linking the model to the data, we condition on three sets of outcomes. A consequence

is that the model will �t these outcomes exactly. The purpose of conditioning is to absorb

parameters so that we reduce the dimension of the unknown parameter space over which we

need to search. Appendix C describes the details:

� To absorb the iceberg parameters dnF , we condition on French market share in each

destination:

XnF

Xn

= �nF :

� To absorb the parameters of the availability of suppliers �n we condition on the inter-

mediate share of manufacturing production �Mn , which we de�ne as 1 minus the value
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added share of gross production in country n:

�Mn = (1� �) vn
�n
:

� To absorb the measure of buyers in each destination, we condition on relationships of

French exporters:

RnF = �nFBn
vn
�n
:

After restricting the model and conditioning on these three sets of outcomes, we vastly

reduce the number of parameters to estimate. Furthermore, since � is not separately identi�ed,

we have �xed it at � = 2:1. Since the number of tasks K is only weakly identi�ed by our

current moments, we �x K = 3. Throughout, we impose � = � (1� 
), as required by the

model. We are left with the following vector of parameters:

� =
�
�; �; �; '; f�nFg24n=1 ; f~p (m) jm = 2x; x = 0; 1; :::; 8g

	
Note that we restrict the number of subtasks per task to the set m = f1; 2; 4; :::; 256g. Details

of the estimation algorithm are presented in Appendix C.

The best �tting set of parameters are: � = 0:16, � = 2:60, � = 3:87, and ' = 0:37 together

with the f�nFg plotted in Figure 6 and the f~p(m)g plotted in Figure 7.

As shown in Figure 7, the modal number of subtasks per task is 4, which when multiplied

by the number of tasks means that the modal �rm has 12 production subtasks. There is a

long right tail to this distribution.

These parameters imply 
 = 0:46, which together with ' = 0:37 yields increasing returns

in the matching function. A doubling in the number of buyers and in the number of sellers

(with cost below c) leads to a 17 percent increase in matches.
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Returning to Figures 1-5, we see the ability of the model to �t the observations in Section

2. The �t is perfect in Figure 2 since we condition on relationships, but even in the other

�gures the deviations between data and model are modest.

While Figure 8 was not used in the estimation, we can still see how well the model and

parameters capture the relationship in the data. Apparently we understate the e¤ect of

selection on sales per buyer in Germany. That contrasts with Figure 3d, showing that we

overstate the e¤ect of selection on buyers per French exporter in Germany.

7 Conclusion

Taking into account the granularity of individual buyer-seller relationships expands the scope

for �rm heterogeneity in a number of dimensions. Aside from di¤erences in raw e¢ ciency,

�rms experience di¤erent luck in �nding cheap inputs. These two sources of heterogeneity

combine to create di¤erences in a �rm�s cost to deliver to di¤erent markets around the world.

But within each market �rms have di¤erent degrees of luck in connecting with buyers. We

can thus explain why a �rm may happen to sell in a small, remote market while skipping over

a large one close by. It also explains why one �rm may appear very successful in one market

and sell very little in another, while another �rm does just the opposite.

35



References

Acemoglu, Daron and David Autor (2011) �Skills, Tasks, and Technologies: Implications for

Employment and Earnings,�in David Card and Orley Ashenfelter, editors, Handbook of

Labor Economics, volume 4, Elsevier.

Acemoglu, Daron Vasco M. Carvalho, Asuman Ozdaglar, and Alireza Tahbaz-Salehi (2012),

�The Network Origins of Aggregate Fluctuations,�Econometrica, 80: 1977-2016.

Antras, Pol, Teresa Fort, and Felix Tintelnot (2017) �The Margins of Global Sourcing:

Theory and Evidence from U.S. Firms,�American Economic Review, 107(9).

Bernard, Andrew B., Andreas Moxnes, and Karen Helene Ulltveit-Moe (2017) �Two-sided

Heterogeneity and Trade,�Review of Economics and Statistics.

Bernard, Andrew B., Andreas Moxnes, and Yukiko U. Saito (2015) �Production Networks,

Geography, and Firm Performance,�NBER Working Paper No. 21082.

Biscourp, Pierre and Francis Kramarz (2007) �Employment, Skill Structure, and Interna-

tional Trade: Firm-Level Evidence for France,�Journal of International Economics, 72:

22-51.

Blaum, Joaquin, Claire Lelarge, and Michael Peters (2014) �The Gains from Input Trade in

Firm-Based Models of Importing,�NBER Working Paper No. 21504.

Bricongne, Jean-Charles, Lionel Fontagné, Guillaume Gaulier, Daria Taglioni, and Vincent

Vicard (2012) �Firms and the Global Crisis: French Exports in the Turmoil,�Journal

of International Economics, 87: 134-146.

36



Caliendo, Lorenzo and Esteban Rossi-Hansberg (2012), �The Impact of Trade on Organiza-

tion and Productivity,�Quarterly Journal of Economics, 127: 1393-1467.

Caliendo, Lorenzo, Ferdinando Monte, and Esteban Rossi-Hansberg (2015) �The Anatomy

of French Production Hierarchies,�Journal of Political Economy, 123: 809-852.

Chaney, Thomas (2008) �Distorted Gravity: Heterogeneous Firms, Market Structure, and

the Geography of International Trade,�American Economic Review, 98: 1707-1721.

Chaney, Thomas (2014) �The Network Structure of International Trade,�American Eco-

nomic Review, 104: 3600-3634 .

Eaton, Jonathan, Marcela Eslava, C.J. Krizan, David Jinkins, and James Tybout (2014)

�A Search and Learning Model of Export Dynamics,�unpublished, Pennsylvania State

University.

Eaton, Jonathan and Samuel Kortum (2002) �Technology, Geography, and Trade,�Econo-

metrica, 70: 1741-1779.

Eaton, Jonathan, Samuel Kortum, and Francis Kramarz (2011) �An Anatomy of Interna-

tional Trade: Evidence from French Firms,�Econometrica, 79: 1453-1498.

Eaton, Jonathan, Samuel Kortum, and Sebastian Sotelo (2013) �International Trade: Link-

ing Micro and Macro,� in D. Acemoglu, M. Arellano, and E. Dekel, editors, Advances

in Economics and Econometrics Tenth World Congress, Volume II: Applied Economics,

Cambridge University Press.

37



Egger, Harmut and Udo Kreickemeier (2009) �Firm Heterogeneity and the Labor Market

E¤ects of Trade Liberalisation,�International Economic Review, 50: 187-216.

Felbermayer, Gabriel, Julien Prat, and Hans-Jörg Schmerer (2008) �Globalization and La-

bor Market Outcomes: Wage Bargaining, Search Frictions, and Firm Heterogeneity,�

Journal of Economic Theory, 146: 39-73.

Frías, Judith A., David S. Kaplan, and Eric A. Verhoogen (2009) �Exports andWage Premia:

Evidence from Mexican Employer-Employee Data,�unpublished, Columbia University.

Garetto, Stefania (2013) �Input Sourcing and Multinational Production,�American Eco-

nomic Journal: Macroeconomics, 5: 118-51.

Helpman, Elhanan, Oleg Itskhoki, and Stephen Redding (2010) �Inequality and Unemploy-

ment in a Global Economy,�Econometrica, 78: 1239-1283.

Helpman, Elhanan, Oleg Itskhoki, Marc Muendler, and Stephen Redding (2017) �Trade and

Inequality: From Theory to Estimation,�Review of Economic Studies, 84(1): 357-405.

Hummels, David, Rasmus Jørgenson, Jakob Munch, and Chong Xiang (2014) �The Wage

E¤ects of O¤shoring: Evidence from Danish Matched Worker-Firm Data,�American

Economic Review, 104: 1597-1629.

Irarrazabal, Alfonso, Andreas Moxnes, and Karen Helene Ulltveit-Moe (2013) �Heteroge-

neous Firms or Heterogeneous Workers? Implication for Exporter Premiums and the

Gains from Trade,�Review of Economics and Statistics, 95: 839-849.

38



Kikkawa, Ayumu Ken, Glenn Magerman, and Emmanuel Dhyne (2018) �Imperfect Compe-

tition and the Transmission of Shocks: The Network Matters,�unpublished, University

of Chicago.

Klein, Michael W., Christoph Moser, and Dieter M. Urban (2010) �The Skill Structure of

the Export Wage Premium: Evidence from German Manufacturing,�working paper,

Tufts University.

Kramarz, Francis (2009) �O¤shoring, Wages, and Employment: Evidence form Data Match-

ing Imports, Firms, and Workers,�working paper, INSEE-CREST.

Kramarz, Francis, Julien Martin, and Isabelle Mejean (2015) �Volatility in the Small and in

the Large: Diversi�cation in Trade Networks,�unpublished, CREST.

Lucas, Robert E. (2009) �Ideas and Growth,�Economica, 76: 1-19.

Luttmer, Erzo (2015) �Four Models of Knowledge Di¤usion and Growth,� unpublished,

University of Minnesota.

Melitz, Marc J. (2003) �The Impact of Trade on Intra-Industry Reallocations and Aggregate

Industry Productivity,�Econometrica, 71: 1695-1725.

Miyauchi, Yuhei (2017) �Matching and Agglomeration: Theory and Evidence from Japanese

Firm-to-Firm Trade,�unpublished, MIT.

Mortenson, Dale and Christopher Pissarides (1994) �Job Creation and Job Destruction in

the Theory of Unemployment,�Review of Economic Studies, 61: 397-415.

39



Ober�eld, Ezra (2017) �Business Networks, Production Chains, and Productivity: A Theory

of Input-Output Architecture,�forthcoming Econometrica.

Timmer, M.P., E. Dietzenbacher, B. Los, R. Stehrer, and G.J. de Vries (2015) �An Illus-

trated User Guide to the World Input-Output Database: the Case of Global Automotive

Production,�Review of International Economics, 23: 575-605.

Tintelnot, Felix, Ayumu Ken Kikkawa, Magne Mogstada, and Emmanuel Dhyne (2017)

�Trade and Domestic Production Networks,�unpublished, University of Chicago.

40



8 Appendix A: Data Source

The empirical analysis is conducted using detailed export data covering the universe of French

exporting �rms. The data have been provided by the French Customs, and have been used

by Kramarz, Martin, and Mejean (2014). The full data set covers all export transactions

that involve a French exporter and an importing �rm located in the European Union. In this

paper, we use only the data for the year 2005.

Many researchers before us have used individual trade data from the French Customs.

Typically, the data used in such empirical analyses are annual measures disaggregated at the

level of the exporting �rm, as in Eaton, Kortum, and Kramarz (2011) among others. Some

papers, such as Biscourp and Kramarz (2007) and Blaum, Lelarge, and Peters (2014), also

use data at the level of the importer. An exception is Bricongne, Fontagné, Gaulier, Taglioni,

and Vicard (2012) who use data that record, for each exporting �rm, each transaction in each

month, although not identifying the exact buyer. In this respect, the data we use are more

precise since they not only record the transaction but also the exact identity of the buyer.

For each transaction, the dataset gives us the identity of the exporting �rm (its name and

its SIREN identi�er), the identi�cation number of the importer (an anonymized version of

its VAT number), the date of the transaction (month and year), the product category of the

transaction (at the 8-digit level of the combined nomenclature), the value and the quantity

of the shipment. For the analysis here, records will be aggregated across transactions within

a year, for each exporter-importer-product triplet. Such measurement is possible because,

whereas goods are perfectly free to move across countries within the European Union, �rms

selling goods outside France are still compelled to �ll a Customs form. Such forms are used to
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repay VAT for transactions on intermediate consumptions. Hence, our data are exhaustive.

However, small exporters are allowed to �ll a �simpli�ed� form that does not require the

product category of exported goods. The �simpli�ed�regime can be used by �rms with total

exports in the EU below 100,000 euros in 2005 (and 150,000 euros thereafter). In 2005, we

have data for 46,928 French �rms exporting 7,807 8-digit products to 571,149 buyers located

in the EU. Total exports by these �rms amounts to 207 billions of euros. Such exports account

for 58 percent of French total exports. The total number of observations is 3,983,909.

9 Appendix B: Computing �

[***THIS APPENDIX IS NOT UPDATED***] We derive conditions under which there is

a unique solution for �, given wages, that can be computed by simple iteration. To ensure

a solution it helps to have a su¢ cient share of tasks in which outsourcing is not possible

(�k = 0). Denote the set of such tasks as 
0 and its complement (among the set of all tasks

f1; 2; :::; Kg) as 
P . We require:

�P =
X
k2
P

�k < 1:

As a warm-up exercise, we start with the case of a single country (N = 1), so that � is

a scalar. We then turn to the general case with multiple countries, in which � is an N � 1

vector.

9.1 The Case of a Single Country

With a single country, the solution for � is a �xed point

� = f(�)
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of the function f de�ned as:

f(x) = T

KY
k=1

�
�

�
�kx

�
� + w��k

� �
�
�k

:

Employing our assumption that �k = 0 for all tasks k 2 
0, we can write:

f(x) = T

 Y
k2
0

(wk)
���k

! Y
k2
P

�
�

�
�kx

�
� + w��k

� �
�
�k

:

It is convenient to work in logs. Thus ln� is the �xed point

ln� = F (ln�)

of the function:

F (y) = A+
X
k2
P

�

�
�k ln

�
uke

�
�
y + w��k

�
;

where

A = lnT �
X
k2
0

��k lnwk;

and

uk =
�

�
�k

There exists a unique �xed point of F if it is a contraction. To show that it is, we can check

Blackwell�s su¢ cient conditions, monotonicity and discounting. For monotonicity, note that

x � y implies:

F (x) = A+
X
k2
P

�

�
�k ln

�
uke

�
�
x + w��k

�
� A+

X
k2
P

�

�
�k ln

�
uke

�
�
y + w��k

�
= F (y):

For discounting, a > 0 implies:

F (y + a) = A+
X
k2
P

�

�
�k ln

�
uke

�
�
(y+a) + w��k

�
= A+

X
k2
P

�

�
�k ln

�
e
�
�
auke

�
�
y + w��k

�
= A+

X
k2
P

�

�
�k

�
�

�
a+ ln

�
uke

�
�
y + e�

�
�
aw��k

��
= A+ �Pa+

X
k2
P

�

�
�k ln

�
uke

�
�
y + e�

�
�
aw��k

�
� A+

X
k2
P

�

�
�k ln

�
uke

�
�
y + w��k

�
+ �Pa = F (y) + �Pa:
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We can thus compute the �xed point by iterating on:

y(t) = F (y(t�1));

starting with y(0) = 0. This method is justi�ed, since the contraction mapping theorem

guarantees that:

lim
t!1

y(t) = ln�:

This result also give us the comparative statics. We see directly that ln� is increasing

in technology T , decreasing in any task-speci�c wage wk, and increasing in any task-speci�c

arrival of price quotes �k.

9.2 Multiple Countries

Consider generalizing the argument above to a world of many countries, trading intermediates

and �nal goods with each other. Now � is an N � 1 vector satisfying

�n =
X
i

Tid
��
ni

Y
k

�
�

�
�k;i�

�
�
i + w

��
k;i

� �
�
�k

;

for n = 1; :::;N .

Let ln� be the corresponding vector with ln�n in place of �n for n = 1; :::;N . Thus ln�

is the �xed point

ln� = F (ln�)

of the mapping F , whose n�th element is:

Fn(y) = ln

"X
i

exp

 
ln
�
Tid

��
ni

�
+
X
k

�

�
�k ln

�
uk;ie

�
�
yi + w��k;i

�!#

ln

"X
i

exp

 
Ani +

X
k2
P

�

�
�k ln

�
uk;ie

�
�
yi + w��k;i

�!#
;
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where

Ani = ln
�
Tid

��
ni

�
�
X
k2
0

��k lnwk;i

and

uk;i =
�

�
�k;i:

We can check Blackwell�s conditions again. For monotonicity, it is readily apparent that

for a vector x � y we have Fn(x) � Fn(y) for all n = 1; :::;N . For discounting, consider a > 0

so that

Fn(y + a) = ln

"X
i

exp

 
Ani +

X
k2
P

�

�
�k ln

�
uk;ie

�
�
(yi+a) + w��k;i

�!#

= ln

"X
i

exp

 
Ani +

X
k2
P

�

�
�k

�
�

�
a+ ln

�
uk;ie

�
�
yi + e�

�
�
aw��k;i

��!#

= ln

"X
i

exp

 
Ani + �

Pa+
X
k2
P

�

�
�k ln

�
uk;ie

�
�
yi + e�

�
�
aw��k;i

�!#

� ln

"X
i

exp

 
Ani + �

Pa+
X
k2
P

�

�
�k ln

�
uk;ie

�
�
yi + w��k;i

�!#

= ln

"X
i

exp

 
Ani +

X
k2
P

�

�
�k ln

�
uk;ie

�
�
yi + w��k;i

�!#
+ �Pa

= Fn(y) + �
Pa:

Thus, even with multiple countries, we can still compute the �xed point by iterating on:

y(t) = F (y(t�1));

starting with an N � 1 vector y(0) (which could simply be a vector of zeros). This method is

justi�ed, since the contraction mapping theorem guarantees (just as in the scalar case) that:

lim
t!1

y(t) = ln�:
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This result also give us the comparative statics. We see directly that each element of ln� is

increasing in technology anywhere Ti, decreasing in any task-speci�c wage wk;i in any country,

and increasing in any task-speci�c arrival of price quotes �k;i in any country. An important

caveat, however, is that these comparative statics take task-speci�c wages as given, so do not

predict general-equilibrium outcomes.

10 Appendix C: Estimation Algorithm

Here we describe our algorithm to generate prediction of the model, given parameters. This

algorithm is the basis of our method of moments estimation procedure.

The estimation algorithm can be decomposed into three separate modules. These modules

can be thought of as identifying di¤erent pieces of the parameter vector:

� = f�1;�2;�3g :

While we estimate the entire parameter vector � jointly, it is more transparent to describe

the three modules as being distinct, each one building on those that precede it. Recall that

we have �xed � = 2:1, K = 3, and imposed �=� = 1=(1� 
)

1. The �rst module involves the moments of French �rm entry and relationships by desti-

nation market. This module can identify the parameters:

�1 =
�
�; '; f�nFg24n=1

	
:

2. The second module concerns the moments of the distribution of French suppliers per

customer, by destination market. This module can identify the parameters of the dis-
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tribution of sub-tasks per task across �rms:

�2 = f~p (2x)g8x=0 :

3. The third module concerns the distribution of labor�s share, which we measure for French

manufactures. This module can identify the parameters:

�3 = f�; �g :

We describe the algorithm for each module in turn.

10.1 Algorithm for Module 1

We present the algorithm as a series of steps:

1. Exploiting our measure of intermediates as a share of total costs (noting that a share �

of total costs are administrative labor):

�Mn = (1� �) �n
�n
;

or:

�n
�n

=
�Mn
1� � :

Linking back to fundamental parameters of the model:

�n =
(1� �) �n
�Mn

= (1� �) �
�

B�'n
�Mn

��=�n :

While we don�t know �n, on the right hand side of this expression, its value will cancel

out in what follows.
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2. Invert the expression for relationships:

RnF = �nFBn
�n
�n

= �nFBn
�Mn
1� � ;

to get the measure of buyers (multiplied by the total subtasks per buyer):

Bn =
(1� �)RnF
�Mn �nF

: (36)

3. Calculate a transformed version of �nF (c), taking account of the transport cost in deliv-

ering to destination n:

�nF (cdnF ) = �nFB
1�'
n

�
�nc

�d�nF
��(1��=�)

e��nc
�d�nF

= �nFB
1�'
n

�
�nc

�d�nF
��(1��=�)

e
�(1��) �

�
B
�'
n
�Mn
(�nc�d�nF )

�=�

= �nF

�
(1� �)RnF
�Mn �nF

�1�' �
�nc

�d�nF
��(1��=�)

e
� �
�
1��
�Mn

�
(1��)RnF
�Mn �nF

��'
(�nc�d�nF )

�=�

:

Note that Bn cancels. To cancel �n as well, make the change of variable y = TF�F c�

and construct:

~�nF (y) = �nF

 �
y

TF�F

�1=�
dnF

!

= �nF

�
(1� �)RnF
�Mn �nF

�1�'�
�nF
�nF

y

��(1��=�)
e
� �
�
1��
�Mn

�
(1��)RnF
�Mn �nF

��'�
�nF
�nF

y
��=�

:(37)

All terms on the right-hand-side (with the exception of y) are either parameters or data.

We now propose a set of moments that will allow us to identify the parameters. These

moments will be constructed for the sample of 24 EU countries. They all involve integals

of (37).

4. The �rst of these moments is entry, by destination, of French �rms:

NnF = TF�F

Z 1

0

(1� e��nF (cdnF ))�c��1dc:
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Applying the change of variables y = TF�F c�, so that dy = �TF�F c��1dc, and substi-

tuting in (37):

NnF =

Z 1

0

�
1� e�~�nF (y)

�
dy;

which depends only on parameters and data.

5. The second of these moments is the distribution, by destination, of the number of buyers

per French �rm. In particular, the fraction of French entrants into n who have b buyers

is:

NnF (b)

NnF
=

TF�F
NnF

Z 1

0

e��nF (cdnF )

b!
[�nF (cdnF )]

b �c��1dc

=
1

NnF

Z 1

0

e�~�nF (y)

b!
[~�nF (y)]

b dy

for b = 1; 2; :::.

6. The third of these moments is the expected number of buyers in n per French �rm

exporting to both n and n0:

�bnF jn0 =
RnF;n0

N(nn0)F
=
TF�F
N(nn0)F

Z 1

0

�nF (cdnF )
�
1� e��n0F (cdn0F )

�
�c��1dc

=
1

N(nn0)F

Z 1

0

~�nF (y)
�
1� e�~�n0F (y)

�
dy;

where:

N(nn0)F = TF�F

Z 1

0

(1� e��nF (cdnF ))(1� e��n0F (cdn0F ))�c��1dc

=

Z 1

0

�
1� e�~�nF (y)

� �
1� e�~�n0F (y)

�
dy:

We can calculate this moment across both n 6= F and for all n0 (including n0 = F ).
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10.2 Algorithm for Module 2

We now describe how data on the distribution of French suppliers per buyer allow us to uncover

the distribution of the number of sub-tasks per task ~p(m) (and hence �m). Fortunately, we can

do so independently of the parameters identi�ed in the �rst algorithm.

The probability of a �rm in n outsourcing a sub-task to a French �rm is:

pnF = �nF
�n
�n

= �nF
�Mn
1� � :

Hence these probabilities are as good as known. Let snF denote the number of French suppliers

of the �rm. Conditional on m sub-tasks per task there are a total of mK sub-tasks per �rm.

Hence, for s = 0; 1; :::;m:

Pr [snF = sjm;K] =
�
mK

s

�
(pnF )

s (1� pnF )mK�s ;

where, for s > mK:

Pr [snF = sjm;K] = 0:

Unconditionally, allowing for any value of s = 0; 1; 2; ::::

Pr [snF = s] =
1X
m=1

~p(m) Pr [snF = sjm;K] :

In the data we only observe a �rm in n if it has at least one French supplier. For those

�rms we observe the fraction with s = 1; 2; ::: French suppliers. In fact, we observe such

fractions separately for �rms in each destination n. The analog to these empirical moments

is the conditional probability:

Pr [snF = sjsnF � 1] =
1X
m=1

~p(m)

1� (1� pnF )mK
Pr [snF = sjm;K]

=
1X
m=1

~p(m)

1� (1� pnF )mK
�
mK

s

�
(pnF )

s (1� pnF )mK�s :
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for s = 1; 2; :::. For any destination n, equating the population moments to the analog observed

fractions, we should be able to back out ~p(m), for m = 1; 2; :::, subject to some upper bound

on m.

As a double check on this formula, consider the expectation:

E [snF jsnF � 1] =
1X
s=1

sPr [snF = sjsnF � 1]

=
1X
s=1

s
1X
m=1

~p(m)

1� (1� pnF )mK
Pr [snF = sjm;K]

=
1X
m=1

~p(m)

1� (1� pnF )mK
1X
s=1

sPr [snF = sjm;K]

=
1X
m=1

~p(m)

1� (1� pnF )mK
mKpnF ;

which is (as it should be) the special case of equation (??) in the text, for i = F .

10.3 Algorithm for Module 3

Now consider the distribution of production labor shares across French �rms. We start by

de�ning the probability that a French �rm does not perform a given sub-task with its own

workers (hence outsources that sub-task to another �rm, located anywhere):

pF =
�F
�F

=
�MF
1� � :

To simulate the distribution of the labor share across French �rms, we need to carry out four

steps:

1. Draw the number of sub-tasks per task for the �rm from the distribution, ~p(m), for

m = 1; 2; :::;M . This value of m will apply to each of the �rm�s K tasks.
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2. For each task, independently simulate the fraction of spending devoted to each of its

m sub-tasks. All we need are the fractions, since we know that the overall production

spending share on a task is (1� �) =K.

3. For each task, independently take Bernoulli trials, with probability of success 1� pF , to

determine which sub-tasks are carried out with the �rm�s own workers.

4. Aggregate across the sub-tasks to obtain the production labor share of each task.

5. Average across the K tasks to obtain the overall production labor share of the �rm.

Four of these �ve steps are obvious. Step 2 requires further explanation.

To simulate the vector of spending shares across sub-tasks, consider a �rm with m sub-

tasks per task. If we knew the costs c(!), for ! = 1; 2; :::;m, the spending shares per task

would be:

�(!) =
c(!)�(��1)Pm
!0=1 c(!

0)�(��1)
:

We don�t know these costs, but we do know that they are drawn independently from the

distribution:

GF (c) = 1� e��F c
�

;

where the F subscript denotes France.

We can start by drawing random variables X(!) independently for ! = 1; 2; :::;m from

the unit exponential distribution:

Pr [X(!) � x] = 1� e�x:

Let�s de�ne:

Y (!) = (�F )
�1=�X(!)1=�:
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It follows that:

Pr [Y (!) � y] = Pr

24X(!) �  y

(�F )
�1=�

!�35
= Pr[X(!) � �Fy�]

= 1� e��F y� :

We have transformed X(!) into a random variable Y (!) with the same distribution as c(!).

We can therefore simulate �(!), using random variables X(!) drawn from a unit exponential

distribution, as:

�(!) =
(�F )

�1=�X(!)�(��1)=�Pm
!0=1 (�F )

�1=�X(!0)�(��1)=�

=
X(!)�(��1)=�Pm
!0=1X(!

0)�(��1)=�
;

for ! = 1; 2; :::;m. The nice thing is that we don�t need �F to do so.
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Regressions

� Number of French exporters (ignore constants)

lnNnF = 0:50
(0:04)

lnXn + 0:68
(0:11)

ln�nF

� Number of relationships

lnRnF = 0:83
(0:06)

lnXn + 1:04
(0:16)

ln�nF

� Mean number of buyers per French exporter

ln �BnF = 0:33
(0:03)

lnXn + 0:36
(0:08)

ln�nF
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