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Abstract

We study how parent liability for subsidiary environmental cleanup costs affects

industrial pollution and production. Our empirical setting exploits a Supreme Court

case that strengthened limited liability protection for parent corporations. Using a

difference-in-differences framework, we find that increased liability protection for par-

ents leads to a 10% increase in toxic emissions by subsidiaries. This decision is also

associated with abnormal returns of over 1% for parent firms with a relatively high ex-

posure to the change in legal liability. We find evidence that the increase in pollution

is driven by lower investment in abatement technologies rather than higher production.

Cross-sectional tests suggest a risk-shifting motivation for these effects. Overall, our

results highlight moral hazard problems associated with limited liability.
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1 Introduction

For more than 150 years, limited liability for the owners of firms has been a defining char-

acteristic of many business organizations. This legal concept is often credited with spurring

economic growth and the development of capital markets (Manne (1967)); some call it “one

of mankind’s greatest inventions” (The Economist (9/26/2016)). Economists have long rec-

ognized, however, that limited liability engenders a moral hazard problem because the assets

of a firm may be insufficient to pay stakeholders’ claims. This, in turn, incentivizes behavior

that is privately profitable but socially costly (Admati (2017)). In an effort to limit such

effects, courts can allow creditors to “pierce the corporate veil” and impose liability on firm

owners. Easterbrook and Fischel (1985) note that successful instances of veil piercing are

almost entirely confined to closely-held corporations and parent-subsidiary relationships.

In this paper, we study the tradeoffs of limited liability in the parent-subsidiary context.

Specifically, we ask how limited liability protection for parents affects the production and

pollution decisions of subsidiaries. Such decisions can impose significant costs on other

stakeholders. For example, industrial facilities emit billions of pounds of toxic chemicals that

have been linked to adverse health outcomes (e.g., Chay and Greenstone (2003)), decreased

worker productivity (e.g., Graff Zivin and Neidell (2012)), and lower home prices (e.g.,

Greenstone and Gallagher (2008)). Policymakers in many countries have adopted a “polluter

pays” approach to environmental regulation to encourage the internalization of such costs;

Esty (2008) states the principle has “taken on a quasi-constitutional aura in international

environmental law.” However, the effectiveness of this regulatory framework is, to an extent,

undercut by limited liability. Specifically, if liability truly is limited, a parent firm will not

bear the costs of environmental remediation that exceed the value of the subsidiary’s assets.

Our empirical setting uses a landmark Supreme Court case that clarified parent company

liability under the Comprehensive Environmental Response, Compensation, and Liability

Act (CERCLA), also known as Superfund. Specifically, in United States v. Bestfoods (here-

after Bestfoods) the Supreme Court implemented a strict legal standard for parent liability

of subsidiary environmental cleanup costs under CERCLA. Prior to Bestfoods, some circuit

courts held parent firms liable for cleanup costs under a relatively broad range of circum-
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stances.1 Specifically, these courts held parents liable if they had “actual control” of or the

“ability to control” the subsidiary. In Bestfoods, the Supreme Court invalidated these tests

and held that parent companies were liable only under narrow circumstances. We use this

decision as a natural experiment in a difference-in-differences setting. The treatment group

for the analysis consists of subsidiaries located in areas that had weaker liability protection

prior to Bestfoods; the control group consists of those located in areas where strict standards

were already in place.

We use plant-level data on toxic emissions from the Environmental Protection Agency

(EPA) to examine the response of subsidiaries to the strengthening of parent liability pro-

tection resulting from Bestfoods. Our main outcome of interest is the amount (in pounds) of

toxic ground pollution (e.g., disposals in landfills or underground injection wells), as this is

the focus of CERCLA enforcement efforts. We find that treated subsidiaries increase ground

pollution by nearly 10% relative to the control group in the five years following Bestfoods.

Our analysis suggests that this effect is driven by both intensive and extensive margins of

pollution. Moreover, we document similar magnitudes for chemicals that are known to cause

human harm (including cancer and other chronic diseases) and for other chemicals. Our

results are robust to controlling for time-invariant heterogeneity at the plant level as well

as time-varying heterogeneity at the parent-year, chemical-year, and industry-year levels.

Moreover, we do not find evidence of an effect on stand-alone plants that do not have a

parent, suggesting that our findings are not driven by local economic shocks.

We also find that the increase in parent liability protection has a significant impact on firm

value. Specifically, we analyze cumulative abnormal returns around the oral arguments and

decision dates for Bestfoods. We find that parent corporations with relatively high exposure

to this change in legal liability (as measured by an above median number of subsidiaries

in treated districts) have CARs of approximately 1.5% for the (-1, 10) window around oral

arguments for the case.

We next analyze why firms increase pollution output. Stronger liability protections may

decrease the incentives to invest in pollution abatement because parents do not fully inter-

1In the US, circuit courts (also called courts of appeals) are intermediate-level courts. Each circuit court
covers a geographic area containing multiple states.
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nalize the risk of environmental disasters. However, such protections may also decrease the

variable cost of using pollutive technologies and therefore lead to an increase in production.

While these channels are not mutually exclusive, our evidence suggests the results are driven

by reduced incentives to engage in pollution abatement. Specifically, using plant-level data

from the EPA’s Pollution Prevention (P2) database, we find a decrease in the likelihood

of process-related abatement activities (e.g., improving chemical reaction conditions, imple-

menting better process controls) of approximately 12-25% relative to the sample mean. We

do not, however, find evidence consistent with the increased production channel; changes in

plant output (measured using EPA mandated production data) are both economically small

and statistically insignificant. In addition, we do not find evidence of changes in subsidiary

employment, measured using the National Establishment Time-Series (NETS) database.

The lack of a change in subsidiary size and output is consistent with the notion that costs

associated with cleanups and abatement for ground pollution are often fixed in nature and

therefore do not affect marginal costs of production (EPA (2011)).

We perform a series of cross-sectional tests to examine the types of parents and sub-

sidiaries that drive main findings. First, we consider the role of subsidiary solvency. The

likelihood of parent liability is, in part, a function of the likelihood that the cost of an envi-

ronmental cleanup would bankrupt a subsidiary. Consistent with this idea, the increase in

pollution and reduction in abatement are concentrated in less solvent subsidiaries, measured

using a plant’s Paydex score. We also find the effects are concentrated among subsidiaries of

parents with a higher proportion of tangible assets — those for which pollution abatement

activities are likely more costly. Finally, we document evidence of a risk-shifting motivation

for the increase in pollution and decrease in abatement activities. Specifically, the effects are

concentrated in firms that have higher leverage and are less solvent, measured using Altmans

unlevered Z-score.

Our paper contributes to the broad literature on the economics of industrial pollution.

One strand of this literature studies environmental monitoring and enforcement.2 The most

closely related work is Alberini and Austin (2002), which studies variation in environmental

rules regarding strict liability, a legal standard that imposes liability on polluters regard-

2See Gray and Shimshack (2011) for a review of this literature.
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less of intent or negligence. The authors find that strict liability is associated with fewer

environmental accidents at the state-level and a reallocation of economic activity. Simi-

larly, Stafford (2002) shows that strict liability encourages compliance with environmental

regulations. Shapira and Zingales (2017) argues that firms are cognizant of legal liability

stemming from industrial pollution, but this does not necessarily deter socially harmful be-

havior. Other papers study a variety of factors that affect corporate environmental behavior,

including third-party auditors (e.g., Duflo et al. (2013)), reputational penalties (e.g., Karpoff

et al. (2005)), and financial characteristics (e.g., Chang et al. (2016)). Our paper contributes

to this literature by showing that limited liability for parent firms also plays an important

role in incentivizing the use of pollutive technologies that potentially impose externalities on

other stakeholders.

More generally, our paper provides some of the first evidence on how limited liability

impacts managerial decision making. The seminal work on legal responsibility for external-

ities comes from Coase (1960), who argues that when transaction costs are negligible and

property rights are well defined, economic agents can bargain over the use of these rights

in such a way that their initial allocation is irrelevant. Subsequent authors have noted that

market imperfections (e.g., information asymmetry and moral hazard) can render regulation

or the demarcation of liability important (e.g., Shavell (1984), Laffont (1995)). More recent

papers including Biais et al. (2010) and Chaigneau et al. (2014) have focused on the opti-

mal compensation contract in the presence of externalities, the limited liability of agents,

and moral hazard. A tradition in legal scholarship has also debated the costs, benefits and

legal practicalities of limited liability (e.g., Easterbrook and Fischel (1985), Clark Jr. and

Hickok (2016)). Some previous empirical work has also studied limited liability outside of

the parent-subsidiary context. For example, Grossman (2001) argues that double liability

for deposit holders prior to the Great Depression was associated with less risk-taking in

good economic times but not in times of financial distress. In addition, Koudijs and Salis-

bury (2016) finds that increased limited liability protection for household assets in the 1850s

increased household risk-taking only if the increase in protection was modest.

Finally, our cross-sectional tests highlight the role of firms’ leverage and financial strength

on the response to the increase in limited liability protections, a finding that is similar in
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spirit to the risk-shifting incentives first described by Jensen and Meckling (1976). Evidence

consistent with the risk-shifting hypothesis has been documented in a variety of settings

including banking (e.g., Esty (1997), Landier et al. (2015)), venture capital (e.g., Denes

(2016)), and investments by distressed firms (Eisdorfer (2008)). However, evidence inconsis-

tent with the hypothesis has also been reported by Andrade and Kaplan (1998), Gilje (2016),

and Gormley and Matsa (2011), among others. A related strand of literature examines how

firms’ financial conditions impact non-financial stakeholders. For example, previous papers

show that distress affects worker safety (Cohn and Wardlaw (2016)) as well as product qual-

ity and pricing (e.g., Dionne et al. (1997), Phillips and Sertsios (2013)). Similar to these

lines of literature, we find that the increase in pollution and decrease in abatement activities

are concentrated in the subsidiaries of parents that are likely to be financially distressed.

One interpretation of this finding is that such firms forgo investment in costly pollution

abatement in order to free up funds for more immediate financing needs, thus shifting risk,

and potentially real harm, to other stakeholders.

2 Background

The United States Congress passed CERCLA in 1980 as a response to the high-profile

Love Canal disaster (Greenstone and Gallagher, 2008).3 Rather than implement ex-ante

restrictions on polluters, the legislation was designed to address the ex-post remediation of

toxic sites. Specifically, under CERCLA, the EPA maintains a National Priorities List (NPL)

of toxic facilities based on known or threatened hazardous emissions.4 The list currently

consists of over 1,300 facilities. Once assigned to the NPL, facilities are further scrutinized by

the Agency to determine their levels of environmental and health risks as well as appropriate

remedial actions. CERCLA grants the federal government “extraordinary” unilateral power

in this regard — the EPA can either undertake a cleanup itself or compel the polluter to do

so (Gaba, 2015).

3The Love Canal in New York State was a canal site where Hooker Chemicals & Plastics Corporation (now
Occidental Chemical Corporation) disposed of a large amount of toxic chemicals which caused environmental
problems and increased rates of cancer in the community that lived nearby.

4See https://www.epa.gov/superfund/superfund-national-priorities-list-npl for further de-
tails on this process.
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The expenses associated with environmental remediation can be substantial, and in many

cases the process takes decades to complete. The Government Accountability Office esti-

mates cleanup costs for the 142 largest NPL sites average $140 million, or about $20 billion

in total (Government Accountability Office, 2005). Two of the earliest and highest profile

CERCLA sites were Love Canal in New York and Berkeley Pit in Montana, which were des-

ignated as NPL sites in 1980 and 1983, respectively. Love Canal was removed from the NPL

following a cleanup effort that lasted 21 years and cost $400 million (DePalma, 2004). The

cleanup at Berkeley Pit, however, remains a work in progress. In fact, in 2016, more than

30 years after the cleanup began, thousands of migrating geese landed in the Berkeley Pit

and died from exposure to the toxic heavy metals (Guarino, 2016). The human costs associ-

ated with the emission of CERCLA-covered chemicals can also be substantial. For example,

prior to the start of cleanup efforts, communities around these two sites had unusually high

rates of miscarriage and birth defects, including double rows of teeth, enlarged hearts and

visual/hearing impairment. Residents also suffered from high incidents of attempted suicide,

nervous breakdowns, epilepsy, asthma, urinary tract infections as well as some of the highest

cancer rates in the country (Tuholske, 1993).

Congress intended the “polluter pays” principle to play a key role in CERCLA. To this

end, the legislation imposes two statutory mechanisms to pay for cleanups: Superfund and

liability rules. Superfund is a trust fund used by the EPA to pay for site cleanups in instances

when the polluter either cannot pay (e.g., due to bankruptcy) or be identified (e.g., “midnight

dumping”) (Plater et al., 2016). Revenue for the fund initially came from excise taxes on

crude oil and imports that use hazardous substances as well as a corporate income tax.

However, these taxes expired in 1995, and today the US Treasury funds the program.

CERCLA also imposes liability on the “owners or operators” of toxic sites that require

cleanup. Such liability may arise if cleanup costs exceed the value of the subsidiary that

produced the pollution. This seemingly simple idea has engendered significant confusion

in the courts, especially regarding parent-subsidiary relationships. Specifically, under state

corporate law, a parent is not responsible for the acts of its subsidiary except in narrow

circumstances. However, the text of CERCLA does not specify a specific legal standard for
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parent liability (Cook, 1998).5 Lacking such a directive, individual federal judges had discre-

tion to impose legal standards for lawsuits under CERCLA. The nature of these standards

varied across federal circuit courts.6 Specifically, each of the circuit courts adopted one of

the following tests for when a parent company can be held liable for the cleanup costs of its

subsidiaries under CERCLA (Cook, 1998):

• Authority-to-Control (ATC) is the broadest standard that defines an “owner or

operator” as any person who has the power to control the activities of the polluter.

This standard was adopted by the Fourth, Eight, and Ninth Circuit Courts.

• Actual-Control (AC) is a narrower standard that imposes liability on the parent

if the subsidiary does not act independently. This may be the case, for example, if

the parent corporation is involved in the day-to-day operations of its subsidiary. This

standard for parent corporation liability was adopted by the First, Second, Third, and

Eleventh Circuits

• Veil Piercing is the strictest standard. Under this test, parents are liable for sub-

sidiary cleanup costs only if the corporate veil can be pierced under state law. Courts

that used this standard argued that the legislative intent of CERCLA was not to “alter

so substantially a basic tenant of corporate law” (Joslyn Manufacturing Co. v. T.L.

James & Co., Inc.). The veil piercing standard was adopted by the remaining Circuit

Courts.

Figure 2 shows the geographic areas that employed each of the three standards. Liability

standards are based on the location of a plant, not the parent headquarters or state of

incorporation. This fact is critical for our empirical strategy.

In 1998, the Supreme Court resolved the ambiguity surrounding parent company liability

under CERCLA in Unites States v. Bestfoods. The unanimous opinion expressly rejected the

authority-to-control and actual control standards that had broadened parent liability relative

5CERCLA defines an “owner or operator” as“any person owning or operating such a facility” (Chay and
Greenstone, 2003). The lack of clarity perhaps stems from the Act being “a last minute compromise” that
was “hastily and inadequately drafted” (Bartley (2005), quoting United States v. A. & F. Materials Co.).

6When there is a lack of Supreme Court jurisprudence, individual circuit courts can arrive at vastly
different conclusions when presented with an ambiguous legal statute (i.e., a “circuit split”).
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to traditional corporate law standards. Specifically, the Court ruled that parents were liable

for environmental remediation costs under two circumstances. First, parents can be held

liable under the traditional veil piercing standard. Under state corporate law, satisfying

this standard requires showing an abuse of the corporate form (e.g., using a subsidiary to

deliberately defraud creditors). Second, parents are responsible if they, themselves, operated

the facility (rather than the subsidiary) responsible for the pollution. Satisfying one of these

conditions requires involvement in facility operations that is “eccentric under the accepted

norms of parental oversight of a subsidiarys facility” (U.S. v. Bestfoods). Such actions may

include the parent leasing the site from the subsidiary, a joint-venture with a subsidiary, or

direct control of facility operations by an employee of the parent. Normal oversight of a

subsidiary and its operations that would not give rise to CERCLA parent liability include

“appointing a subsidiary’s officers and directors, monitoring its performance, supervising

the subsidiary’s finances, approving budgets and capital expenditures, and even articulating

general policies and procedures for the subsidiary” (Plater et al., 2016).

Thus, relative to the weaker ATC and AC standards, the Bestfoods case significantly

increased the difficulty of holding parent corporations liable under CERCLA (Plater et al.,

2016). In courts that had adopted the weaker standards, the government often argued that

shared officers/directors or parent oversight of a subsidiary gave rise to parent liability; under

Bestfoods, such actions are “viewed as indicative of normal parent-subsidiary relationships”

and not grounds to impose liability (Plater et al., 2016). This differential change in par-

ent liability for facilities located in areas that used less strict standards is central to our

identification strategy.

3 Data and Methodology

3.1 Data

Our main sample consists of plants in the EPA’s Toxic Release Inventory (TRI) database

from 1994 – 2003. Since 1987, the EPA has reported chemical-level emissions data in TRI

for plants (associated with both public and private firms) that exceed a minimum number
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of employees, operate in certain industries, and emit specific hazardous pollutants. The

current standard requires reporting if a facility contains at least 10 full-time employees,

operates in one of roughly 400 industries defined at the six-digit NAICS level, and uses one

of nearly 600 chemicals.7 Appendix A.7 lists the industries that currently report at the

three-digit NAICS; the most common include chemical manufacturing (25.1% of sample),

fabricated metal product manufacturing (11.0%), primary metal manufacturing (9.1%), and

transportation equipment manufacturing (6.9%), merchant wholesalers, non-durable goods

(4.4%) and utilities (4.3%). For most chemicals, disclosure is triggered if more than 25

thousand pounds of a chemical are manufactured or processed or 10 thousand pounds are

otherwise used during a year, though some substances (known as Persistent Bioaccumulative

Toxic (PBT) chemicals) have more stringent requirements. While TRI data are self-reported

by facilities, the EPA monitors the data for potential errors and can initiate civil enforcement

actions for non-compliance. For example, Lucas-Milhaupt Warwick LLC, a metal company

located in Warwick, RI, paid a fine of $69,000 in 2015 due to improper TRI reporting.8

For each chemical subject to TRI reporting, plants are required to provide the number of

pounds released into the ground, air, and water. Ground emissions consist of waste disposed

in underground injection wells, landfills, surface impoundments, or spills and leaks released

to land. Air emissions consist of stack or point releases (e.g., through a vent or duct) and

fugitive emissions (e.g., evaporative losses). Water emissions consist of releases to streams

and other surface bodies of water. Figure 1 plots the time series of aggregate emissions for

the three categories over our sample period. Consistent with previous findings (e.g., Shapiro

and Walker (2015)), emissions fell through the 1990s, primarily driven by a decrease in air

pollution.

We obtain information on the toxicity of chemical emissions using the EPA’s Integrated

Risk Information System (IRIS). IRIS provides information on potential human health ef-

fects from exposure to over 400 chemicals. The database includes both carcinogenic and

non-carcinogenic chemicals, which are chosen for inclusion in the database according to po-

7Some requirements (e.g., the industries subject to reporting) have changed over the course of our sample.
We show in the appendix that such changes do not materially affect our findings.

8See https://www.epa.gov/newsreleases/metal-products-company-settles-epa-chemical-reporting-lapses-
warwick-ri-facility.
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tential effects on public health, regulatory implementation needs, and availability of scientific

assessment of chemicals. IRIS also includes information on the primary system affected or

tumor site for the chemicals (e.g., nervous, respiratory, developmental). We match the IRIS

database to TRI using chemical identifiers (i.e., Chemical Abstract Services (CAS) numbers)

and use the database to construct an indicator for whether a chemical in TRI poses potential

harm to humans as well as indicators for whether particular bodily systems are affected.

We use the EPA’s Pollution Prevention (P2) database to analyze abatement activities

and changes in production. Plants reporting to the TRI database are required to docu-

ment source reduction activities at the chemical level that reduce the amount of hazardous

substances entering the waste stream. The most common abatement activity is “good oper-

ating practices,” which comprises actions such as improved maintenance scheduling, record

keeping, or procedures. For example, a soap manufacturer changing “production schedules

to allow for longer run times for similar products to reduce the need for diethanolamine

feedstock changeovers” is an abatement activity related to operating practices.9 The second

most common abatement activist is “process modifications,” which include actions such as

modifying equipment, layout, or piping. For example, the EPA highlights a battery manu-

facturer that “upgraded its conveyor system to prevent blockage and loss of cobalt material

due to contamination” as an abatement activity related to production. The list of activities

listed both types of abatement are provided in Table A.6. We use these classifications to

construct indicators for process-related abatement and operating-related abatement activ-

ities. While we cannot precisely classify fixed and variable costs using the P2 database,

anecdotal evidence suggests changes in operating practices include significant variable costs

while process modifications may include a significant fixed cost component.

The P2 database also includes a production or activity ratio that measures changes in the

output or outcome of processes in which a chemical is involved. For example, if a chemical

is used in the manufacturing of refrigerators, the production ratio for year t is given by

#Refrigerators Producedt
#Refrigerators Producedt−1

. If a chemical is used in a capacity not directly related to production

(e.g., for cleaning), the EPA alternatively requires facilities to report the ratio reflecting

changes in this activity. For example, if a chemical is used to clean molds, the activity ratio

9See https://www.epa.gov/toxics-release-inventory-tri-program/pollution-prevention-p2-and-tri.
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for year t is given by #MoldsCleanedt
#MoldsCleanedt−1

. If a particular chemical is used in multiple production

processes/activities, firms are required to report a weighted average. Due to errors in the

data, we exclude production ratios that are not between zero and three (inclusive), though

our findings are qualitatively similar using narrower or wider bounds (e.g., [0, 2] or [0, 5]).

Plant-level data are from the National Establishment Time Series (NETS) database,

which is constructed by Walls & Associates using archival data from Dun and Bradstreet.

We use plant Paydex score and number of employees from NETS to analyze subsets of the

main sample. Paydex score, which ranges from 0 to 100, is a business credit score based

on trade credit performance provided to Dun and Bradstreet by a large number of vendors

and suppliers. The score is value-weighted according to size of obligations, and a score of

80 indicates that, typically, payments are made according to the loan terms. Our analysis

focuses on the minimum score reported over the course of a year. Dun and Bradstreet

determines plant employment by directly contacting entities and using statistical models to

estimate missing values; excluding estimated employment data does not materially affect

our findings. We match NETS data to the TRI database using a linking file between plant

D-U-N-S numbers and TRI identifiers created by Walls & Associates. Finally, we also use

Compustat for financial information for publicly traded parent companies. We identify public

parents using a fuzzy matching algorithm and manually check all matches.

We identify subsidiaries (as opposed to stand alone firms) using the TRI database. Specif-

ically, for each plant, the databse provides the parent company, defined as highest-level cor-

poration that owns at least 50 percent of voting shares. For example, Chemtool Inc. is a

subsidiary of Lubrizol Corp., which is owned by Berkshire Hathaway, so the ultimate parent

corporation for Chemtool is Berkshire Hathaway. We match subsidiaries to court districts to

form treatment and control groups. Subsidiaries located in “ability to control” and “actual

control” districts form the treatment group, and those located in districts with the veil pierc-

ing standard comprise the control group. Treatment status is based on the location of the

plant and is not affected by the location of the parent or its state of incorporation. Figure 3

depicts the fraction of observations in each of the 11 court circuits and shows the breakdown

between treatment and control groups during our study (1994-2003). Approximately 24%

of the subsidiaries are located in districts that adopted the “actual control” standard (the
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first of our treatment groups), 28% are in districts with the “ability to control” standard

(the second of our treatment groups), and 48% fall into circuits that used the veil piercing

standard for parent liability (our control group). Despite there being large differences in the

size of some districts (e.g., the Ninth Circuit contains nine states including California), the

number of observations are fairly balanced between treatment and control groups.

In total, our sample consists of 7,833 parent corporations which have an average 2.91

subsidiaries. Each of these subsidiaries report emissions for, on average, 3.98 toxic chemicals.

Table 1 reports summary statistics for our main outcomes of interest. The first four columns

of the table report statistics for all subsidiaries, and the second four limit the sample to

subsidiaries with public parent corporations. Unless otherwise noted, all summary statistics

are at the chemical-plant-year level. For the full sample, subsidiaries average 36 thousand

pounds of ground pollution for each chemical reported in TRI, though nearly 90% do not

report ground emissions. Air and water emissions average about 25 thousand and 4 thousand,

respectively. Abatement activities are fairly common: operating and process related actions

are taken for 8% and 5% of the sample, respectively. The production ratio averages 0.96 and

has a median of 1.0, and the average subsidiary employs 315 workers.

3.2 Regression Specification

We use the Bestfoods decision as a natural experiment in a difference-in-differences frame-

work. We define an indicatorBestfoods that takes a value of one starting in 1999, the first full

calendar year following the decision, for plants located in a district that previously adopted

relatively weaker standards for parent liability (i.e., the AC or ATC legal tests).10. For

our initial analysis, the primary dependent variable is the natural logarithm of 1 plus the

pounds of emissions (chemical-level) for each plant.11 The granular nature of the data allows

for the use of fixed effects that exploit variation from the same parent company operating

10The court decision was in June of 1998, so the classification of 1998 as either treatment or control is
somewhat arbitrary. Results are qualitatively similar when excluding 1998.

11In unreported analysis, we rescale pollution levels by adding 1000 instead of 1 as in Chatterji et al.
(2009). This does not have a material effect on the results.
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subsidiaries in different districts. Specifically, our main specification takes the following form:

log(1 + LbsGroundPollutionc,p,t,i) = β Bestfoodsp,t + αp + αi,t + αc,t + εc,p,t,i,

where p indexes a plant belonging to parent firm i, c indexes chemical, and t indexes time. We

include plant fixed effects (αp) to control for time-invariant heterogeneity at the subsidiary

level. In addition, we include parent-year fixed effects (αi,t) to control for time-varying

heterogeneity at the parent-level, and chemical-year fixed effects (αc,t) to control for time-

varying heterogeneity at the chemical-year.12 As Chatterji et al. (2009) and DiGiuli (2013)

note, there is not a clear way of aggregating pollutants or easily comparing their environmen-

tal impact, however the chemical-year fixed effects allow us to exploit within-chemical-time

variation. We also show that our main results are robust to the inclusion of industry-year

fixed effects, defined using the primary 4-digit SIC code for each plant. Robust standard

errors are clustered at the circuit level.

In later tests we use indicators for different types of abatement and the production ratio as

outcomes using the above specification. We also analyze employment at the plant-level using

a similar specification but excluding chemical-year fixed effects. Finally, we use 1997 values

(prior to Bestfoods) to analyze subsets of the main sample based on plant characteristics

(e.g., Paydex) or parent characteristics (e.g., leverage). The specifications used for these

tests is the same as above.

4 Results

4.1 Effect of Parent Liability on Subsidiary Pollution

In this section, we ask whether the relative increase in parent liability protection stemming

from Bestfoods affects emissions by subsidiaries. The primary outcome of interest is ground

pollution, which is the focus of CERCLA enforcement actions, although we analyze the effect

on air and water pollution as well. We also study differential effects of the Bestfoods decision

12The inclusion of these fixed effects accounts for the indicators for pre-treatment time periods and treat-
ment/control status since plants do not change location.
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across different types of chemicals.

4.1.1 Subsidiary Ground Emissions

Table 2 examines the effect of the Bestfoods decision on ground pollution by subsidiaries.

The dependent variable for this table is the natural logarithm of one plus pounds of ground

pollution. Columns (1) – (4) indicate that subsidiaries located in areas that experienced

a relative increase in parent liability protection also increased ground emissions following

Bestfoods. The magnitude of the effect ranges from 0.0428 in the model with plant and year

fixed-effects (Column (1)) to 0.0756 in the model with plant, parent firm-year, and chemical-

year fixed effects (Column (3)). The increase in emissions is economically large: the average

value of the dependent variable is 0.746, indicating an increase of between 5.7% and 10.1%

relative to the sample average. Because the columns (3) and (4) contain parent-year fixed

effects, the estimates for these specifications are relative to plants of the same parent located

in areas where higher liability standards were already in place. This assuages concerns that

the estimates reflect other types of changes (e.g., demand shocks) at the parent level.

The remainder of Table 2 analyzes the effect of Bestfoods on different subsets of plants.

In columns (5) and (6), we estimate the treatment effect separately for subsidiaries in each of

the jurisdictions with relatively weaker standards prior to Bestfoods (i.e., for plants located

in the Ability-To-Control and Actual-Control areas). The indicators ATC and AC are

defined analogously to Bestfoods in the baseline specification, but only take a value of one

for plants located districts that used the respective standards. The results indicate similar

effects across both types of jurisdictions. Specifically, the coefficients for both ATC and AC

are statistically significant at the 5% level or lower, and the points estimates for both are

of similar magnitude to the baseline specification. Next, columns (7) and (8) restrict the

sample to subsidiaries with publicly traded parents. We document larger point estimates of

about 0.18 for this sample of firms, or about 17% relative to the sub-sample mean. Finally,

columns (9) and (10) restrict analysis to plants that do not have a parent listed in the

TRI database. Because such firms do not have a parent, we omit parent-year fixed effects

from the regression specifications. Consistent with the idea that a change in parent liability

should only affect plants with a parent corporation, we find no effect for this subset of
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plants. The point estimates are both economically small (ranging from -0.001 to 0.02) and

statistically indistinguishable from zero. This analysis serves as a useful falsification test

as it suggests there was not a confounding shock that broadly affected emissions by all

plants (both subsidiaries and stand-alone) in treated areas around the time of the Bestfoods

decision.

Figure 4 plots the coefficient dynamics for ground pollution. We construct this figure

by replacing the pooled treatment variable, Bestfoods in the baseline specification with

indicators for each year before and after the decision. The coefficient trend is relatively flat

prior to the decision, but begins to increase once liability standards changed for the treated

group. While the “parallel trends” assumption necessary for empirical identification in our

setting is ultimately untestable, this figure provides evidence that is consistent with the

assumption.

We report additional robustness tests in the supplementary appendix. First, we verify

that our results are not driven by any individual court circuit by iteratively removing one

circuit and rerunning our main analysis. This analysis mitigates concerns that contempo-

raneous geographical shocks that are unrelated to the Bestfoods decision may confound the

analysis. We plot the point estimates and confidence intervals in Figure A.1. The estimate

for each iteration remains positive and statistically significant at the 5% level or lower. Next,

in Table A.1 we remove industries added to the TRI database after the Bestfoods decision.

The estimated coefficients in columns (1) – (4) are similar, both in terms of magnitude and

statistical significance, to the main analysis. In Tables A.2 we find evidence that the main

effect is driven both by the intensive and extensive margins. Specifically, in columns (1) –

(4) we find an increase in the natural logarithm of ground pollution for plants with (strictly)

positive ground pollution in 1997. Columns (5) – (8) indicate an increase in the likelihood

of emitting a positive amount of ground pollution. As with the main analysis, the findings

are stronger (both in terms of magnitude and statistical significance) when the sample is re-

stricted to subsidiaries with publicly traded parents. Moreover, in Table A.3, we examine the

effect of Bestfoods on (log) total pollution emissions in columns (1) – (4) as further verifica-

tion that our main results are not the result of observations with zero ground pollution since

there are few observations without total pollution emissions. We also examine whether the
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fraction of ground emissions reported for a given chemical as a proportion of total emissions

(i.e., as a fraction of ground, water, and air pollution) increases. Columns (5) – (8) suggest

that ground pollution accounts for a larger fraction of overall pollution output following

Bestfoods. We verify that our main results are robust to collapsing data to contain only one

pre-treatment and one post-treatment time period in Table A.4, as suggested by Bertrand

et al. (2004). We further verify that our results are robust to our method of computing

standard errors. Panel A of Table A.5 reports our main results with state-level clustering,

which preserves much of the panel structure of our treatment unit (e.g., Circuit Courts), but

has a larger number of clustering units. Panel B clusters by parent-firm in addition to by

state, to account for unobserved serial correlation for subsidiaries that share a parent.

4.1.2 Chemical Toxicity

The previous results suggest that increased liability protection is associated with an increase

in ground pollution. We next analyze the types of chemicals emitted by subsidiaries by

classifying them according to their potential harm to humans. To this end, we match the

chemicals from the TRI database with the EPA’s Integrated Risk Information System (IRIS),

which classifies chemicals based on evidence of harm to humans. We define chemicals to be

either classified as known to be harmful or non-classified based off of the IRIS definitions.

Approximately 57% of the chemical observations in the full sample have known adverse effects

on humans. Overall, the results of this analysis suggests the increase in ground emissions

is not driven by inert substances. Rather, we find little evidence of differences in changes

to ground pollution produced using harmful chemicals according to IRIS and chemicals not

classified by this database.

The results of this analysis are reported in Table 3. Panel A reports the impact of

the Bestfoods decision on ground pollution split by chemical type. The sample consists of

chemicals that have known adverse health outcomes in columns (1) – (4) and unclassified

chemicals in columns (5) – (8). For both samples we report results for both all subsidiaries

as well as subsidiaries with publicly traded parents. Overall, estimates for both samples are

similar to each other and comparable to the baseline evidence presented above. In particular,

the full-sample baseline estimate is 6.8% for harmful chemicals (column (3)) and 7.6% for
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unclassified chemicals (column (5)). Panel B further categorizes harmful chemicals based on

the biological system they harm. We find that there are increases in toxic pollution that

harm a variety of biological systems, with particularly strong results for chemicals that effect

the nervous, urinary, and developmental systems.

4.1.3 Other Types of Pollution

We next analyze the effect of Bestfoods on air and water pollution. It is unlikely that

parent liability under CERCLA would directly affect these types of emissions. Specifically,

courts have ruled the CERCLA does not apply to air emissions, even if chemicals pollute

land or water after being released into the air (see Pakootas v. Teck Cominco Metals). In

addition, while CERCLA does cover disposals into waterways, the EPA has historically had

lax enforcement of this type of pollution. The reason for this stems from the fact that it

is often difficult to identify the polluters of waterways (e.g., if many firms use the same

river to dispose of waste), and cleaning up such sites often comes at considerable expense

and questionable efficacy. For these reasons, the focus of CERCLA cleanups is “on upland

sites, with rivers all but forgotten.” (DePalma, 2012). However, Bestfoods could still have an

indirect effect on water or air pollution if they serve as complements or substitutes for ground

pollution. It is unclear if this is the case as plant production functions are unobservable to

the econometrician.

Table 4 reports the effect of Bestfoods on water and air emissions. The dependent variable

in columns (1) – (4) is log(1 +LbsWater Pollution), and the dependent variable in columns

(5) – (8) is log(1 + LbsAir Pollution). As before, we report results both for the full sample

of subsidiaries as well as for subsidiaries with public parents. Overall, we find little evidence

that changes in parent liability primarily pertaining to ground pollution affect other types of

emissions. Specifically, while point estimates for water emissions are positive across different

specifications, they are not significant at conventional levels. In addition, the point estimate

for air pollution is positive and weakly significant for the sample of all subsidiaries (column

(5)), but there is little evidence for the sample of subsidiaries with public parents. Overall,

the lack of evidence for a change in other types of emissions is consistent with Greenstone

(2003), who finds little evidence of a change in the output of non-regulated pollution output
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following the adoption of the Clean Air Act.

4.2 Effect of Parent Liability on Firm Value

We next test the effect of Bestfoods on the value of parent corporations. Stronger limited

liability protections make it less likely that a parent corporation incurs costs associated with

subsidiary environmental cleanups. This may, in turn, have a positive effect on firm value.

However, the magnitude of such an effect is unclear as it is a function of both the magnitude

and likelihood of environmental remediation.

For this analysis, we focus on cumulative abnormal returns (CARs) around two important

events for the Bestfoods case: oral arguments (March 24, 1998) and the Supreme Courts

decision (June 8, 1998). These dates represent important milestones in the resolution of

uncertainty for a case before the Supreme Court. During oral arguments, justices often ask

questions to attorneys that indicate their level of skepticism towards a given side of the case.

It is plausible that market participants update their beliefs regarding the outcome of a case

during such arguments before any residual uncertainty is resolved by the final ruling. This

is particularly likely for unanimous decisions, such as Bestfoods, where the final outcome did

not hinge on the decision of one or two justices.

In order to estimate the effect on shareholder value, we compute daily CARs adjusted for

the Fama-French three-factor model around both the date of oral arguments and the decision.

Results are qualitatively similar using a four-factor model. We estimate each model in the

100 days prior to each event for the publicly traded firms in our sample. Because such firms

often have plants located in both the treatment and control districts, we define an indicator,

High Exposure, that takes the value of one if a parent has relatively more plants (i.e., above

median) located in the treatment districts. This allows us to compare the CARs of firms in

our sample for which the event was relatively more important.

Table 5 reports the results of this analysis. Panel A analyzes CARs for the entire sample

of firms in our sample, while Panel B restricts the sample to multi-plant firms for which the

effects of Bestfoods may be more salient. Columns (1) – (3) report results the oral arguments

date, and columns (4) – (6) report results for the decision date. Overall, we find evidence

of higher abnormal returns for high exposure firms around the date of oral arguments but
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no effect around the actual decision date. Specifically, for the (-1, 5) and (-1, 10) windows,

firms with relatively high exposure experienced higher abnormal returns ranging from 82

to 148 basis points. This effect is somewhat stronger in terms of magnitude and statistical

significance for the multi-plant firms in Panel B, with effects of 109 and 160 basis points

for the (-1, 5) and (-1, 10) windows, respectively. In unreported results, we find similar

results for the (-1, 30) window, suggesting this effect is not short-lived. We do not, however

find evidence of differences in abnormal returns around the decisions date; the coefficients in

columns (4) – (6) are both economically small and statistically indistinguishable from zero

for both samples. This finding is consistent with the idea that market participants may have

anticipated the unanimous decision.

4.3 The Channel

In this section we investigate the channel linking parent liability protections to increased sub-

sidiary emissions. We specifically consider whether higher emissions result from an increase

in economic activity or a decrease in firms efforts to reduce pollution output. The extent to

which parent limited liability protections lead to a change in output depends on the nature

of firms’ costs impacted by the decision. If, for example, the Bestfoods lowered current fixed

costs (e.g., those pertaining to pollution abatement) or expected future fixed cleanup costs,

the changed in parent liability protection would not lead to a change in current produc-

tion.13 However, if the decision instead impacted variable costs borne by firms, this would

lead to an increase in production. The evidence in this section is consistent with Bestfoods

impacting fixed costs. Specifically, we document a drop in abatement efforts related to the

manufacturing process but find no evidence of an increase in subsidiary output.

4.3.1 Pollution Abatement

A strengthening of parent liability protection may lead to a decrease in pollution abatement

activities if such activities affect the likelihood of enforcement actions under CERCLA. We

13EPA (2011) notes that, in contrast to actions to address air or water pollution, cleanup costs for ground
pollution are largely fixed because such programs “often require remediation of hazardous materials left over
from earlier uses that are not related to the current use, except by geography.”
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test this hypothesis using data from the EPAs Pollution Prevention (P2) database, which

provides information on abatement activities at the plant-chemical-year level. Our specific

focus is on the two most common abatement categories: changes in operating practices

and process improvements. According to P2 guidelines, good operating practices include

activities like improving maintenance or quality control, while process improvement include

activities such as improving chemical reaction conditions or implementing better process

controls. We analyze whether firms are less likely to implement pollution abatement activity

in these two categories of actions following the Bestfoods decision.

Table 6 presents the results of this analysis. The dependent variable in columns (1) – (4)

is an indicator for abatement related to operating practices, and the dependent variable for

columns (5) – (8) is an indicator for abatement related to process improvements. Overall, our

results indicate subsidiaries decrease abatement activities for actions related to the produc-

tion process but not for activities related to plant operations. Specifically, the magnitude of

the estimated coefficients for operating practices are both economically small (ranging from

0.001 to 0.004) and statistically indistinguishable from zero. However, for abatement related

to the manufacturing process, estimates are both larger (ranging from -0.006 to -0.014) and

statistically significant at conventional levels. The effects for process-related abatement are

sizable relative to the sample mean, implying a drop of 12–25%. As with the pollution es-

timates, the findings are particularly strong for subsidiaries with a publicly traded parent.

This reduction in abatement activities is consistent with the idea that less investment in

abatement activity leads to a larger increase in emissions. In unreported analysis we exam-

ine less common types of abatement actions taken by firms. We find evidence of a decrease

in efforts to improve inventory management, but estimates for other types of abatement are

statistically indistinguishable from zero, but these activities are uncommon to begin with.

4.3.2 Plant Production and Employment

We next examine whether strengthening parent liability protection affects subsidiary output.

The expansion of legal protection for parent companies resulting from Bestfoods can be

viewed as a decrease in the expected cost of using pollutive technology. A natural question

to ask is, to what extent can the increase in pollution that we document be due increased
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production as a result of lower expected costs? We examine this question using two measures

of economic activity — the production ratio (i.e., the ratio of current year to previous year

output at the chemical-level) from the TRI data and subsidiary employment data from

NETS.

Table 7 reports the results of this analysis. The results in columns (1) – (4) indicate little

evidence of changes to output as measured by the production ratio. Specifically, coefficients

for the full sample of subsidiaries (columns (1) and (2)) are positive but not significant at

conventional levels. Point estimates for subsidiaries with public parents (columns (3) and

(4)), which have relatively large changes in ground pollution, are smaller in magnitude and

statistically indistinguishable from zero. Due to reporting errors, we limit production ratios

to the [0, 3] range for our analysis, but in unreported analysis we find qualitatively similar

results using ranges of [0, 2] or [0, 5].

We next examine the effect of Bestfoods on subsidiary employment, which serves as a

proxy for the size of the subsidiary. The results of this analysis are reported in columns

(5) – (8), where the dependent variable is the natural logarithm of subsidiary employment.

We omit chemical-year fixed effects from the regression specifications because employment

is defined the plant, rather than chemical, level. Overall, we find little evidence of changes

to employment. In particular, the point estimates for this analysis are negative, though

statistically insignificant at conventional levels.

Taken together, these results suggest that economic activity did not increase in sub-

sidiaries for which their parent companies received an increase in legal protection despite

there being an increase in pollution emissions. These findings are consistent with the idea

that costs associated with abatement and remediation of ground pollution are often fixed in

nature and therefore do not affect marginal production decisions. Indeed, EPA (2011) notes

that environmental remediation costs for ground pollution “often involves upfront expendi-

tures on costly equipment. Such sunk costs are unrelated to current production decisions,

unlike variable costs that firms often incur when complying with air and water regulations.”

In addition, abatement efforts related to process modifications often include actions such as

investing in new production technologies, which likely have a sizable fixed-cost component.
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4.4 Cross-Sectional Heterogeneity in Responses

In this section we test for heterogeneity in responses to the Bestfoods decision based on sub-

sidiary and parent characteristics. Specifically, we consider the effect of subsidiary solvency,

parent tangibility, and parent leverage/risk of distress.

4.4.1 Subsidiary Solvency

The Bestfoods decision decreased the likelihood of parent liability for cleanup costs of pol-

lution disasters that exceed the value of the subsidiary’s assets. Because less-solvent sub-

sidiaries are more likely to go into bankruptcy as a result of environmental liabilities (all

else equal), the likelihood of parent liability is (partially) a function of subsidiary finan-

cial solvency. In this section, we test whether the effects of Bestfoods are more salient for

less-solvent subsidiaries. We measure solvency at the plant-level using Dun and Bradstreets

Paydex score, which measures the creditworthiness of an establishment in a given year. For

this analysis, we compare the effects on ground pollution and process-related abatement

for plants with above/below median Paydex scores in 1997, the year before Bestfoods. The

minimum 1997 Paydex score for the median firm in the sample is 69, indicating payments

to suppliers of trade credit typically arrive two weeks beyond terms.

Table 8 presents the results of this analysis. The dependent variable for columns (1)

and (2) is the natural logarithm of one plus pounds of ground pollution, and the dependent

variable for columns (3) and (4) is an indicator for process-related abatement. Columns

(1) and (3) use the baseline specification, and columns (2) and (4) also include subsidiary

industry-year fixed effects. We find that our previous results for both pollution emission and

for pollution prevention are concentrated in plants that were in poorer financial health (i.e.,

those with 1997 Paydex scores less than 69). For example, column (2) indicates that the

point estimate for the less solvent subsidiaries is 0.083 (significant at the 5% level) whereas

the point estimate for more solvent subsidiaries is -0.045 (insignificant at conventional levels).

There are similar patterns in column (4), where the point estimate for less solvent subsidiaries

is -0.017 (significant at the 5% level) and 0.0168 (insignificant at conventional levels) for the

subsidiaries that were more solvent. The differences between the coefficients for the high
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and low subsidiary solvency samples are statistically significant at the 10% level or lower

across the different specifications. In unreported analysis we run this test on the subset of

subsidiaries that have public parent companies and find qualitatively similar results, but

with a substantially reduced sample.

4.4.2 Parent Tangibility

We next examine how the main results vary across parents with different levels of tangible

assets. In our previous analysis, we found that the Bestfoods decision led to a decrease

in pollution abatement activities related to production. Such activities potentially entail

significant fixed costs, especially for firms with a higher proportion of tangible assets. Thus,

the disincentive to invest in abatement following the change in liability standards may be

particularly strong for this set of firms. To test this idea, we use parent-level data from

Compustat in 1997 (i.e., the year before Bestfoods) to classify parents as having above or

below median proportion of tangible assets (net plant, property and equipment/total assets).

We then repeat our main analysis for the two groups.

Table 9 presents the results of this analysis. Columns (1) and (2) report results for

ground pollution, and columns (3) and (4) report results for investment in process pollution

abatement. Columns (1) and (3) use the baseline specification, and columns (2) and (4)

also include subsidiary industry-year fixed effects. Consistent with our conjecture, we find

stronger results for subsidiaries of parent companies that have a higher fraction of tangible

assets. For example, in Column (1) we find that in the subsample of parent companies

with high tangible assets, the coefficient is 0.225 (significant at the 1% level) whereas the

corresponding point estimate for the low-tangibility sample (.103) is less than half this mag-

nitude and significant at the 5% level. We find a similar difference for investment in process

abatement. The estimate in column (3) is -0.0166 (significant at the 1% level) for the sample

of parent companies with high tangible assets, whereas the corresponding coefficient for the

low-tangibility sample is -0.009 (insignificant at conventional levels). For the most part, these

differences are suggestive in nature and not statistically significant at conventional levels.
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4.4.3 Parent Leverage and Risk of Distress

We finally examine how the leverage and financial health of the parent-firm impacts the

extent of the response to strengthening of liability protection. While previous research

argues highly-levered firms in poor financial health have incentives to shift risk from equity

holders to credit holders (e.g. Jensen and Meckling (1976)), such firms may similarly have

stronger incentives to shift economic harm to other stakeholders (e.g., to plant workers or

the local community). For example, parents that are close to default may disproportionately

respond to changes in liability for subsidiary pollution relative to more solvent firms because

managers of distressed firms view investments in pollution abatement as having a higher

short-term value if directed towards immediate financing needs. This would particularly be

true for the low probability, high ex-post cost liabilities incurred under CERCLA. If such

economic harm shifting incentives are at play, firms with relatively high leverage and high

risk of distress (i.e., a low Altman’s unlevered Z-score) may disproportionately respond to

changes in parent liability.

We first examine whether firms with higher solvency respond differently to the Bestfoods

decision. We repeat the analysis from Table 9 but define firms as having above or below

median parent unlevered Z-score in 1997. Panel A of Table 10 presents the results of this

analysis. Columns (1) and (2) report results for ground pollution, and columns (3) and (4)

report results for investment in process pollution abatement. The increase in pollution and

decrease in pollution abatement investment is concentrated in those firms with low Z-scores

(i.e., those firms that are the least financially solvent). For example, in column (2) we find

that in the subsample of low Z-score parent companies the coefficient is 0.337 (significant

at the 1% level) whereas the corresponding coefficient for the high Z-score sample is three

times smaller, 0.088, (insignificant at conventional levels). We find a similar difference for

investment in process abatement. The coefficient in specification (4) is -0.0302 (significant at

the 1% level) for the low-Z-score sample, whereas the corresponding coefficient for the high

Z-score sample is -0.006 (insignificant at conventional levels). The difference between the

coefficients for the samples with high/low parent solvency is statistically noisy for column

(4), but otherwise significant at conventional levels.
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We repeat the same analysis for parent companies with above or below median lever-

age. Panel B of Table 10 reports the results. Our results on pollution and abatement are

concentrated in subsidiaries of parent companies with higher leverage. For example, in col-

umn (2) we find that in the subsample of high leverage parent companies the coefficient is

0.234 (significant at the 1% level) whereas the corresponding coefficient for the low-leverage

sample is 0.144 (significant at the 1% level). We find a similar difference for investment in

process abatement; the coefficient in column (4) is -0.0158 (significant at the 1% level) for

the high-leverage sample, whereas the corresponding coefficient for the low-leverage sample

is -0.007 (insignificant at conventional levels). However, these results are suggestive as the

differences between coefficients are not statistically significant.

Taken together, the above results indicate significant cross-sectional heterogeneity in

the response to the Bestfoods decision. First, the main findings are driven by less solvent

subsidiaries that have the largest impact (all else equal) on their parents expected liabilities.

Moreover, the results are stronger for subsidiaries of parents with a higher fraction of tangible

assets that may disproportionately benefit from reduced investment in production-related

abatement technologies. Finally, the results are driven by subsidiaries of parents that are

closer to distress. Such firms are more likely to benefit from reducing short term investment

in pollution abatement, potentially shifting economic harm to other stakeholders.

5 Conclusion

Limited liability is a ubiquitous feature of modern economic organization. However, despite

being credited as one of the major reasons for capital market development, economists have

long recognized the inherent moral hazard problem associated with limited liability. Specif-

ically, because shareholders are not responsible for obligations that exceed the value of the

firm, they do not bear all costs associated with risky activities. These risks are therefore

borne by other stakeholders, including creditors, employees, the surrounding community,

and society at large. Admati (2017) argues that lack of accountability for managers further

exacerbates these misaligned incentives.

In this paper, we use industrial waste emissions as a setting to analyze the tradeoffs of
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limited liability in the parent-subsidiary context. Our identification strategy uses a landmark

Supreme Court case (United States v. Bestfoods) that clarified parent company liability under

CERCLA as a natural experiment to study how changing the limited liability protection of

parent companies affects the pollution activity of their subsidiaries. We find this increase

in parent liability protections is associated with an increase in ground pollution of 10% for

treated firms. Chemicals with known adverse health effects on humans constitute part of the

increase. While higher pollution is not necessarily indicative of a welfare loss for society, we

find little evidence of increased production or employment by subsidiaries. Rather, evidence

suggests the increase is driven by lower investment in abatement technologies.

Our results are driven by less solvent subsidiaries that are more likely to impose liability

on parents and also by firms with relatively high tangible assets that would likely benefit

most from reducing costly expenditures on pollution abatement. We find evidence of a

risk-shifting motivation for increasing pollution emissions — our results are concentrated in

highly levered parent companies and parent companies that are more likely to be financially

insolvent. These parent firms are most likely to benefit from a reduction in short term costs

at the potential expense of longer term harm.

Overall, our results highlight costs associated with limited liability. While our setting

precludes a rigorous welfare analysis, the findings suggest the strengthening of liability pro-

tections for parents leads to an increase in costs borne by other stakeholders. Thus, efforts

by policymakers to strengthen liability protections should carefully weigh the interests of

shareholders with those of other constituencies.
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Figure 1: Total Pollution by Type, 1994 – 2003

The figure below shows the total amount of pollution reported by TRI firms from 1994 – 2003 for industries
that were required to report over the entire sample.
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Figure 2: Treatment and Control States

The map below shows the states that fall into treatment and control groups.
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Figure 3: Distribution of Plants to Court Circuits and Treatment Groups

The figure below shows the percentage of observations in different court circuits and the distribution of
observation into treatment and control groups.
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Figure 4: Treatment Effect Dynamics – Ground Pollution

This figure plots the coefficient dynamics for ground pollution around the Bestfoods decision. The dependent
variable is one plus the log of pounds of ground pollution. The regression model is estimated with plant
fixed effects, parent firm times year fixed effects, and chemical times year fixed effects. Standard errors are
clustered by court circuit.
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Table 1: Summary Statistics
The table reports summary statistics for the full sample and for firms that are subsidiaries of public parent
companies. Pollution emission data, abatement data, and productivity ratio data are from the EPA Toxic
Release Inventory, and employment data are from the National Establishment Time-Series database.

All Subs Subs w/ Public Parent
Obs Mean Median SD Obs Mean Median SD

Lbs Ground Pollution (1000s) 608,729 36.04 0 1,679.31 188,982 39.68 0 1,516.24
Lbs Air Pollution (1000s) 608,733 24.79 255 289.74 188,984 31.54 255 293.67
Lbs Water Pollution (1000s) 608,730 3.60 0 145.56 188,982 4.44 0 186.84
1(Ground Polluter) 608,733 0.10 0 0.30 188,984 0.13 0 0.34
1(Abatement - Operating) 608,733 0.08 0 0.27 188,984 0.08 0 0.28
1(Abatement - Process) 608,733 0.05 0 0.22 188,984 0.05 0 0.22
Productivity Ratio 574,724 0.96 1 0.39 178,627 0.95 1 0.39
Employment (Plant) 111,103 315.19 135 671.17 31,791 418.72 180 880.14
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Table 3: Differential Effects of Bestfoods for Harmful Chemicals
This table uses OLS regressions to test the differential effects of the Bestfoods court decision on ground
pollution based on the potential harm to humans. The dependent variable is the log of one plus pounds of
ground pollution. Bestfoods is an indicator that takes the value of 1 after 1998, (the year of the Bestfoods
decision) for plants that are located in the circuits that had previously adopted the Ability-to-Control or
Actual Control standards for parent company liability. Specifications (1) – (4) in Panel A are run on the
subsample of chemicals that are classified by the EPA as harmful to human health. Specifications (5) –
(8) are run on the subsample of chemicals that are not classified. Panel B further breaks down known
harmful chemicals by biological system. Robust standard errors clustered by court circuit are reported in
parentheses. The fixed effects used in each specification are noted in the table. The symbols *, **, and ***
denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel A — Ground Pollution by Human Harm

Ln(1 + Lbs Ground Pollution)

Harmful Chemicals Non-Classified Chemicals

All Subs Subs w/ Public Parent All Subs Subs w/ Public Parent

(1) (2) (3) (4) (5) (6) (7) (8)

Bestfoods 0.0678*** 0.0565** 0.167*** 0.151*** 0.0761** 0.0675** 0.196*** 0.231***
(0.0213) (0.0199) (0.0393) (0.0432) (0.0305) (0.0278) (0.0342) (0.0394)

Plant FE x x x x x x x x
Chem-Year FE x x x x x x x x
Parent-Year FE x x x x x x x x
Industry-Year FE x x x x

Observations 330,087 329,317 100,210 99,674 247,730 247,110 84,050 83,577
R-squared 0.674 0.681 0.742 0.750 0.684 0.689 0.736 0.743

Panel B — Biological Impact of Chemicals

Ln(1 + Lbs Ground Pollution), All Subs

System Affected = Nervous Respiratory Urinary Developmental Hematologic Heptatic

(1) (2) (3) (4) (5) (6)

Bestfoods 0.0673*** 0.0681 0.121*** 0.0508*** 0.0925* 0.00428
(0.0112) (0.0396) (0.0216) (0.0127) (0.0453) (0.0284)

Plant FE x x x x x x
Chem-Year FE x x x x x x
Parent-Year FE x x x x x x

Observations 130,224 90,888 66,374 62,010 53,051 41,171
R-squared 0.672 0.666 0.808 0.686 0.813 0.716
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Table 4: Effect of Bestfoods on Subsidiary Water and Air Pollution
This table uses OLS regressions to test the effect of the Bestfoods court decision on the output of ground
pollution. The dependent variable is the log of one plus pounds of water pollution or one plus pounds of
air pollution. Bestfoods is an indicator that takes the value of 1 after 1998, (the year of the Bestfoods
decision) for plants that are located in the circuits that had previously adopted the Ability-to-Control or
Actual Control standards for parent company liability. Robust standard errors clustered by court circuit are
reported in parentheses. The fixed effects used in each specification are noted in the table. The symbols *,
**, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Ln(1 + Lbs Water Pollution) Ln(1 + Lbs Air Pollution)

All Subs Subs w/ Public Parent All Subs Subs w/ Public Parent

(1) (2) (3) (4) (5) (6) (7) (8)

Bestfoods 0.0165 0.0183 0.0131 0.0136 0.0423* 0.0215 0.0206 -0.00500
(0.0145) (0.0159) (0.0327) (0.0328) (0.0211) (0.0251) (0.0361) (0.0273)

Plant FE x x x x x x x x
Chem-Year FE x x x x x x x x
Parent-Year FE x x x x x x x x
Industry-Year FE x x x x

Observations 593,529 592,588 186,212 185,776 593,533 592,592 186,215 185,779
R-squared 0.531 0.536 0.541 0.547 0.710 0.714 0.726 0.732
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Table 5: Cumulative Abnormal Returns
This table uses OLS regressions to test the effect of Bestfoods on cumulative abnormal returns (CARs).
CARs are are calculated using the Fama-French three factor model. High Exposure is a binary variable
that takes the value of one if the plant has an above median proportion of plants in Ability-to-Control or
Actual-Control (treatment) districts. Specifications (1) – (3) use CARs around the date of oral arguments
for Bestfoods, and specifications (4) – (6) use the date of the unanimous decision. Robust standard errors
are reported in parentheses. The symbols *, **, and *** denote statistical significance at the 10%, 5%, and
1% levels, respectively.

Oral Argument CARs Decision (Unanimous) CARs
(-1,+1) (-1,+5) (-1,+10) (-1,+1) (-1,+5) (-1,+10)

(1) (2) (3) (4) (5) (6)

Panel A: All Firms

High Exposure 0.00344 0.00826* 0.0148** -0.00274 -0.00220 -0.00368
(0.00268) (0.00428) (0.00619) (0.00274) (0.00436) (0.00580)

Observations 771 771 771 771 771 771
R-squared 0.002 0.005 0.007 0.001 0.000 0.001

Panel B: Multi-Plant Firms

High Exposure 0.00586* 0.0109** 0.0160** -0.000830 -0.00347 -0.00236
(0.00304) (0.00488) (0.00660) (0.00313) (0.00511) (0.00721)

Observations 501 501 501 500 500 500
R-squared 0.007 0.010 0.012 0.000 0.001 0.000
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Table 6: Effect of Bestfoods on Pollution Abatement Activities
This table uses OLS regressions to test the effect of the Bestfoods court decision on the likelihood of firms
implementing pollution abatement investment. The dependent variable is an indicator variable that takes
the value of one if the plant has invests in pollution abatement for operations or for process. Bestfoods
is an indicator that takes the value of 1 after 1998, (the year of the Bestfoods decision) for plants that are
located in the circuits that had previously adopted the Ability-to-Control or Actual Control standards for
parent company liability. Robust standard errors clustered by court circuit are reported in parentheses. The
fixed effects used in each specification are noted in the table. The symbols *, **, and *** denote statistical
significance at the 10%, 5%, and 1% levels, respectively.

1(Abatement - Operations) 1(Abatement - Process)

All Subs Subs w/ Public Parent All Subs Subs w/ Public Parent

(1) (2) (3) (4) (5) (6) (7) (8)

Bestfoods 0.000998 0.00194 0.00462 0.00382 -0.00647* -0.00614** -0.0130*** -0.0144***
(0.00533) (0.00713) (0.00749) (0.0104) (0.00302) (0.00259) (0.00287) (0.00314)

Plant FE x x x x x x x x
Chem-Year FE x x x x x x x x
Parent-Year FE x x x x x x x x
Industry-Year FE x x x x

Observations 593,533 592,592 186,215 185,779 593,533 592,592 186,215 185,779
R-squared 0.601 0.611 0.578 0.601 0.452 0.462 0.397 0.425
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Table 7: Effect of Bestfoods on Subsidiary Production and Employment
This table uses OLS regressions to test the effect of the Bestfoods court decision on plant production and
employment. The dependent variable is the Production Ratio reported in the TRI database in specifications
(1) – (4) and the (plant level) log of employment in specifications (5) – (8). Bestfoods is an indicator that
takes the value of 1 after 1998, (the year of the Bestfoods decision) for plants that are located in the circuits
that had previously adopted the Ability-to-Control or Actual Control standards for parent company liability.
Robust standard errors clustered by court circuit are reported in parentheses. The fixed effects used in each
specification are noted in the table. The symbols *, **, and *** denote statistical significance at the 10%,
5%, and 1% levels, respectively.

Productivity Ratio Employment (Plant Level)

All Subs Subs w/ Public Parent All Subs Subs w/ Public Parent

(1) (2) (3) (4) (5) (6) (7) (8)

Bestfoods 0.00706 0.00224 -0.000535 0.00333 -0.0140 -0.0213 -0.0279 -0.0289
(0.00605) (0.00520) (0.00877) (0.00843) (0.0161) (0.0177) (0.0277) (0.0238)

Plant FE x x x x x x x x
Chem-Year FE x x x x
Parent-Year FE x x x x x x x x
Industry-Year FE x x x x

Observations 560,222 559,457 175,918 175,519 72,808 71,926 25,934 25,010
R-squared 0.476 0.495 0.437 0.477 0.921 0.928 0.901 0.917
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Table 8: Differential Effects by Subsidiary Solvency
This table uses OLS regressions to test the effect of the Bestfoods court decision on the output of ground
pollution or the likelihood of firms implementing pollution abatement investment. The dependent variable
is either the log of one plus pounds of ground pollution or an indicator variable that takes the value of one
if the plant has invests in pollution abatement for operations or for process. Bestfoods is an indicator that
takes the value of 1 after 1998, (the year of the Bestfoods decision) for plants that are located in the circuits
that had previously adopted the Ability-to-Control or Actual Control standards for parent company liability.
Robust standard errors clustered by court circuit are reported in parentheses. The fixed effects used in each
specification are noted in the table. The symbols *, **, and *** denote statistical significance at the 10%,
5%, and 1% levels, respectively.

Ground Pollution 1(Abatement - Process)

(1) (2) (3) (4)

Low Plant Paydex

Bestfoods 0.0771** 0.0835** -0.0148** -0.0172**
(0.0265) (0.0375) (0.00491) (0.00569)

Observations 188,375 187,883 188,375 187,883
R-squared 0.635 0.647 0.497 0.518

High Plant Paydex

Bestfoods -0.0248 -0.0497 0.00855 0.0168
(0.0334) (0.0296) (0.0127) (0.0112)

Observations 171,922 171,517 171,924 171,519
R-squared 0.676 0.682 0.503 0.527

Plant FE x x x x
Chem-Year FE x x x x
Parent-Year FE x x x x
Industry-Year FE x x
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Table 9: Differential Effects by Parent Tangibility
This table uses OLS regressions to test the effect of the Bestfoods court decision on the output of ground
pollution or the likelihood of firms implementing pollution abatement investment. The dependent variable
is either the log of one plus pounds of ground pollution or an indicator variable that takes the value of one
if the plant has invests in pollution abatement for operations or for process. Bestfoods is an indicator that
takes the value of 1 after 1998, (the year of the Bestfoods decision) for plants that are located in the circuits
that had previously adopted the Ability-to-Control or Actual Control standards for parent company liability.
Robust standard errors clustered by court circuit are reported in parentheses. The fixed effects used in each
specification are noted in the table. The symbols *, **, and *** denote statistical significance at the 10%,
5%, and 1% levels, respectively.

Ground Pollution 1(Abatement - Process)

(1) (2) (3) (4)

High Parent Tangibility

Bestfoods 0.225*** 0.262*** -0.0166*** -0.0191***
(0.0533) (0.0458) (0.00360) (0.00479)

Observations 113,218 112,830 113,221 112,833
R-squared 0.730 0.737 0.394 0.428

Low Parent Tangibility

Bestfoods 0.103** 0.115*** -0.00902 -0.00430
(0.0438) (0.0261) (0.00529) (0.00760)

Observations 72,063 71,744 72,063 71,744
R-squared 0.682 0.695 0.417 0.464

Plant FE x x x x
Chem-Year FE x x x x
Parent-Year FE x x x x
Industry-Year FE x x
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Table 10: Differential Effects by Parent Solvency and Leverage
This table uses OLS regressions to test the effect of the Bestfoods court decision on the output of ground
pollution or the likelihood of firms implementing pollution abatement investment. Bestfoods is an indicator
that takes the value of 1 after 1998, (the year of the Bestfoods decision) for plants that are located in the
circuits that had previously adopted the Ability-to-Control or Actual Control standards for parent company
liability. Robust standard errors clustered by court circuit are reported in parentheses. The fixed effects
used in each specification are noted in the table. The symbols *, **, and *** denote statistical significance
at the 10%, 5%, and 1% levels, respectively.

Panel A — Altman’s Unlevered Z-Score

Ground Pollution 1(Abatement - Process)

(1) (2) (3) (4)

Low Parent Z-Score

Bestfoods 0.296*** 0.337*** -0.0281*** -0.0302***
(0.0682) (0.0980) (0.00713) (0.00520)

Observations 81,260 80,858 81,260 80,858
R-squared 0.764 0.769 0.439 0.480

High Parent Z-Score

Bestfoods 0.0988* 0.0879 -0.00453 -0.00585
(0.0500) (0.0504) (0.00662) (0.0118)

Observations 81,378 81,014 81,379 81,015
R-squared 0.548 0.570 0.388 0.429

Plant FE x x x x
Chem-Year FE x x x x
Parent-Year FE x x x x
Industry-Year FE x x
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Table 10: Differential Effects by Parent Solvency and Leverage (continued)

Panel B — Leverage

Ground Pollution 1(Abatement - Process)

(1) (2) (3) (4)

High Parent Leverage

Bestfoods 0.229*** 0.234*** -0.0147*** -0.0158***
(0.0685) (0.0636) (0.00411) (0.00335)

Observations 95,595 95,140 95,597 95,142
R-squared 0.754 0.760 0.407 0.452

Low Parent Leverage

Bestfoods 0.128** 0.144*** -0.0114* -0.00668
(0.0469) (0.0440) (0.00624) (0.0102)

Observations 89,845 89,497 89,846 89,498
R-squared 0.623 0.639 0.400 0.439

Plant FE x x x x
Chem-Year FE x x x x
Parent-Year FE x x x x
Industry-Year FE x x
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Figure A.1: Robustness to Removing Court Circuits

The figure below plots point estimates and confidence intervals for the coefficient Treated in the regression
described in Table 2 after iteratively removing one court circuit for each estimation of the regression. The
dependent variable is the natural logarithm of one plus the amount of ground pollution. The model includes
plant, parent company-year, and chemical-year fixed effects. Standard errors are clustered by court circuit.
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Table A.1: Robustness to Industries Continuously Required to Report
This table uses OLS regressions to test the effect of the Bestfoods court decision on the output of ground
pollution or the likelihood of firms implementing pollution abatement investment. The dependent variable
is either the log of one plus pounds of ground pollution or an indicator variable that takes the value of one
if the plant has invests in pollution abatement for operations or for process. Bestfoods is an indicator that
takes the value of 1 after 1998, (the year of the Bestfoods decision) for plants that are located in the circuits
that had previously adopted the Ability-to-Control or Actual Control standards for parent company liability.
The sample contains only industries required to report emissions data continuously throughout the sample.
Robust standard errors clustered by court circuit are reported in parentheses. The fixed effects used in each
specification are noted in the table. The symbols *, **, and *** denote statistical significance at the 10%,
5%, and 1% levels, respectively.

Ln(1 + Lbs Ground Pollution) 1(Abatement - Process)

All Subs Subs w/ Public Parent All Subs Subs w/ Public Parent

(1) (2) (3) (4) (5) (6) (7) (8)

Bestfoods 0.0679** 0.0591** 0.170*** 0.178*** -0.00646* -0.00584* -0.0136*** -0.0136***
(0.0244) (0.0237) (0.0378) (0.0365) (0.00343) (0.00277) (0.00292) (0.00272)

Plant FE x x x x x x x x
Chem-Year FE x x x x x x x x
Parent-Year FE x x x x x x x x
Industry-Year FE x x x x

Observations 516,335 515,449 154,100 153,674 516,338 515,452 154,101 153,675
R-squared 0.507 0.514 0.487 0.503 0.449 0.460 0.392 0.420
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Table A.2: Robustness to Ground Pollution Measurement
This table uses OLS regressions to test the effect of the Bestfoods court decision on the output of ground
pollution. The dependent variable is either the log of one plus pounds of ground pollution or an indicator
for whether the plant released ground pollution. Bestfoods is an indicator that takes the value of 1 after
1998, (the year of the Bestfoods decision) for plants that are located in the circuits that had previously
adopted the Ability-to-Control or Actual Control standards for parent company liability. Robust standard
errors clustered by court circuit are reported in parentheses. The fixed effects used in each specification are
noted in the table. The symbols *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels,
respectively.

Ln(1 + Ground Pollution), 1997 Pollution > 0 1(Ground Pollution)

All Subs Subs w/ Public Parent All Subs Subs w/ Public Parent

(1) (2) (3) (4) (5) (6) (7) (8)

Bestfoods 0.254** 0.190 0.635*** 0.908*** 0.00716* 0.00586 0.0237*** 0.0253***
(0.1000) (0.116) (0.166) (0.212) (0.00382) (0.00408) (0.00333) (0.00470)

Plant FE x x x x x x x x
Chem-Year FE x x x x x x x x
Parent-Year FE x x x x x x x x
Industry-Year FE x x x x

Observations 92,404 92,168 26,451 26,283 593,533 592,592 186,215 185,779
R-squared 0.532 0.544 0.505 0.525 0.607 0.614 0.664 0.675
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Table A.3: Total Pollution and the Proportion of Ground Pollution
This table uses OLS regressions to test the effect of the Bestfoods court decision on the output of total
pollution and the fraction of pollution that is emitted in ground form. The dependent variable is either
the log of one plus pounds of ground pollution, water, and air pollution or the proportion of pollution for
a given chemical that is emitted as ground pollution. Bestfoods is an indicator that takes the value of 1
after 1998, (the year of the Bestfoods decision) for plants that are located in the circuits that had previously
adopted the Ability-to-Control or Actual Control standards for parent company liability. Robust standard
errors clustered by court circuit are reported in parentheses. The fixed effects used in each specification are
noted in the table. The symbols *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels,
respectively.

Ln(1 + Total Pollution) GroundPollution
Total Pollution

All Subs Subs w/ Public Parent All Subs Subs w/ Public Parent
(1) (2) (3) (4) (5) (6) (7) (8)

Bestfoods 0.0586** 0.0379 0.0849* 0.0645** 0.00582*** 0.00571*** 0.0146*** 0.0146***
(0.0244) (0.0293) (0.0381) (0.0276) (0.00163) (0.00161) (0.00226) (0.00293)

Plant FE x x x x x x x x
Chem-Year FE x x x x x x x x
Parent-Year FE x x x x x x x x
Industry-Year FE x x x x

Observations 593,528 592,587 186,212 185,776 488,739 488,009 154,404 153,951
R-squared 0.684 0.688 0.704 0.711 0.673 0.679 0.723 0.731
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Table A.4: Robustness to Collapsing Observations
This table uses OLS regressions to test the effect of the Bestfoods court decision on the output of ground
pollution or the likelihood of firms implementing pollution abatement investment. The sample has been
averaged at the plant-chemical level to contain one observation before the Bestfoods decision and one obser-
vation after the decision. The dependent variable is either the log of one plus pounds of ground pollution or
an indicator variable that takes the value of one if the plant has invests in pollution abatement for operations
or for process. Bestfoods is an indicator that takes the value of 1 after 1998, (the year of the Bestfoods
decision) for plants that are located in the circuits that had previously adopted the Ability-to-Control or
Actual Control standards for parent company liability. Robust standard errors clustered by court circuit are
reported in parentheses. The fixed effects used in each specification are noted in the table. The symbols *,
**, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Ln(1 + Lbs Ground Pollution) 1(Abatement - Process)

All Subs Subs w/ Public Parent All Subs Subs w/ Public Parent

(1) (2) (3) (4) (5) (6) (7) (8)

Bestfoods 0.0633** 0.0571* 0.191*** 0.179*** -0.00680** -0.00561* -0.0141*** -0.0127**
(0.0269) (0.0265) (0.0325) (0.0333) (0.00271) (0.00295) (0.00362) (0.00479)

Plant FE x x x x x x x x
Chem-Year FE x x x x x x x x
Parent-Year FE x x x x x x x x
Industry-Year FE x x x x

Observations 150,660 150,430 47,273 47,146 150,660 150,430 47,273 47,146
R-squared 0.644 0.645 0.712 0.715 0.517 0.523 0.483 0.496
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Table A.5: Robustness to Clustering
This table uses OLS regressions to test the effect of the Bestfoods court decision on the output of ground
pollution or the likelihood of firms implementing pollution abatement investment. The sample has been
averaged at the plant-chemical level to contain one observation before the Bestfoods decision and one obser-
vation after the decision. The dependent variable is either the log of one plus pounds of ground pollution or
an indicator variable that takes the value of one if the plant has invests in pollution abatement for operations
or for process. Bestfoods is an indicator that takes the value of 1 after 1998, (the year of the Bestfoods
decision) for plants that are located in the circuits that had previously adopted the Ability-to-Control or
Actual Control standards for parent company liability. Robust standard errors clustered by court circuit are
reported in parentheses. The fixed effects used in each specification are noted in the table. The symbols *,
**, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel A — Clustering by State

Ln(1 + Lbs Ground Pollution) 1(Abatement - Process)

All Subs Subs w/ Public Parent All Subs Subs w/ Public Parent

(1) (2) (3) (4) (5) (6) (7) (8)

Bestfoods 0.0756*** 0.0666*** 0.184*** 0.186*** -0.00647* -0.00614* -0.0130** -0.0144**
(0.0210) (0.0197) (0.0340) (0.0339) (0.00329) (0.00323) (0.00529) (0.00584)

Plant FE x x x x x x x x
Chem-Year FE x x x x x x x x
Parent-Year FE x x x x x x x x
Industry-Year FE x x x x

Observations 593,528 592,587 186,212 185,776 593,533 592,592 186,215 185,779
R-squared 0.651 0.655 0.717 0.724 0.452 0.462 0.397 0.425

Panel B — Clustering by State and Parent Company

Ln(1 + Lbs Ground Pollution) 1(Abatement - Process)

All Subs Subs w/ Public Parent All Subs Subs w/ Public Parent

(1) (2) (3) (4) (5) (6) (7) (8)

Bestfoods 0.0756** 0.0666** 0.184*** 0.186*** -0.00647 -0.00614 -0.0130* -0.0144**
(0.0286) (0.0263) (0.0477) (0.0465) (0.00429) (0.00396) (0.00693) (0.00689)

Plant FE x x x x x x x x
Chem-Year FE x x x x x x x x
Parent-Year FE x x x x x x x x
Industry-Year FE x x x x

Observations 593,528 592,587 186,212 185,776 593,533 592,592 186,215 185,779
R-squared 0.651 0.655 0.717 0.724 0.452 0.462 0.397 0.425
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Table A.6: Process and Operating Abatement Activities
This table lists abatement activities classified as process modifications or good operating practices under
TRI reporting guidelines.

Process Modifications Good Operating Practices

1 Optimized reaction conditions or otherwise in-
creased efficiency of synthesis

Improved maintenance scheduling, record
keeping, or procedures

2 Instituted recirculation within a process Changed production schedule to minimize
equipment and feedstock changeovers

3 Modified equipment, layout, or piping Introduced in-line product quality monitoring
or other process analysis system

4 Use of a different process catalyst Other changes in operating practices

5 Instituted better controls on operating bulk
containers to minimize discarding of empty
containers

6 Changed from small volume containers to bulk
containers to minimize discarding of empty
containers

7 Reduced or eliminated use of an organic sol-
vent

8 Used biotechnology in manufacturing process

9 Other process modifications
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Table A.7: Industries that Report Toxic Release Inventory
Facilities in the following industries must report chemical emissions data (in 2015).

NAICS Description Proportion
Code of Sample

811 Repair and Maintenance 0.0003
562 Waste Management and Remediation Services 0.0201
541 Professional, Scientific, and Technical Services 0.0007
519 Other Information Services 0.0000
512 Motion Picture and Sound Recording Industries 0.0000
511 Publishing Industries (except Internet) 0.0001
488 Support Activities for Transportation 0.0002
425 Wholesale Electronic Markets and Agents and Brokers 0.0005
424 Merchant Wholesalers, Nondurable Goods 0.0438
339 Miscellaneous Manufacturing 0.0145
337 Furniture and Related Product Manufacturing 0.0174
336 Transportation Equipment Manufacturing 0.0693
335 Electrical Equipment, Appliance, and Component Manufacturing 0.0226
334 Computer and Electronic Product Manufacturing 0.0317
333 Machinery Manufacturing 0.0386
332 Fabricated Metal Product Manufacturing 0.1096
331 Primary Metal Manufacturing 0.0912
327 Nonmetallic Mineral Product Manufacturing 0.0277
326 Plastics and Rubber Products Manufacturing 0.0431
325 Chemical Manufacturing 0.2506
324 Petroleum and Coal Products Manufacturing 0.0525
323 Printing and Related Support Activities 0.0069
322 Paper Manufacturing 0.0394
321 Wood Product Manufacturing 0.0182
316 Leather and Allied Product Manufacturing 0.0027
315 Apparel Manufacturing 0.0005
314 Textile Product Mills 0.0019
313 Textile Mills 0.0074
312 Beverage and Tobacco Product Manufacturing 0.0036
311 Food Manufacturing 0.0336
221 Utilities 0.0430
212 Mining (except Oil and Gas) 0.0081
211 Oil and Gas Extraction 0.0002
113 Forestry and Logging 0.0001
111 Crop Production 0.0001
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