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Abstract

Consider an agent who can costlessly add mean-preserving noise to
his output. To deter such risk-taking, the principal optimally offers a
contract that makes the agent’s utility concave in output. If the agent is
risk-neutral and protected by limited liability, this concavity constraint
binds and so linear contracts maximize profit. If the agent is risk averse,
the concavity constraint might bind for some outputs but not others.
We characterize the unique profit-maximizing contract and show how
deterring risk-taking affects the insurance-incentive tradeoff. Our logic
extends to costly risk-taking and to dynamic settings where the agent

can shift output over time.
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1 Introduction

Contracts motivate employees, suppliers, and partners to exert effort. How-
ever, improperly designed incentives can instead encourage excessive risk-
taking with dramatic consequences. For instance, following the 2008 finan-
cial crisis, Federal Reserve Chairman Ben Bernanke stated that “compensa-
tion practices at some banking organizations have led to misaligned incentives
and excessive risk-taking, contributing to bank losses and financial instabil-
ity” (Federal Reserve Press Release (10/22/2009)). (Garicano and Rayo| (2016))
suggest that poorly designed incentives led the American International Group
(AIG) to expose itself to massive tail risk in exchange for the appearance of
stable earnings. [Rajan| (2011) echoes these concerns and suggests that mis-
aligned incentives worsened the effects of the crisis.

Even without such disastrous outcomes, agents face opportunities to game
their incentives by engaging in risk-taking in many other settings. Portfolio
managers can choose riskier investments, as well as exert effort, to influence
their average returns (Brown, Harlow, and Starks| (1996); Chevalier and El-
lison (1997); [de Figueiredo, Rawley, and Shelef| (2014)). Executives and en-
trepreneurs control both the expected profitability of their projects and the
distribution over possible outcomes (Matta and Beamish| (2008)); Rahmandad,
Henderson, and Repenning (2016); [Vereshchagina and Hopenhayn| (2009)).
Salespeople can both invest to increase demand and adjust the timing of the
resulting sales (Oyer| (1998)); Larkin (2014)).

This paper explores how a principal optimally motivates an agent who can
engage in risk-taking in a canonical moral hazard setting. We argue that risk-
taking renders convex incentives ineffective, so that the principal optimally
offers a contract that makes the agent’s utility concave in output. This result is
the foundation of our analysis, which explores the implications of this concavity
constraint and shows that it has potentially significant effects on the structure
of contracts, profits, productivity, and welfare.

In our model, a principal contracts with a potentially liquidity-constrained

agent. If the agent accepts the contract, then he exerts costly effort that



produces a non-contractible intermediate output. The agent privately observes
this output and can then manipulate it by costlessly adding mean-preserving
noise, which in turn determines a contractible final output.

Building on the arguments of |Jensen and Meckling (1976) and others, Sec-
tion [3| shows that the agent will choose to take on additional risk whenever
intermediate output is such that his utility under the contract is convex at
that output. In so doing, the agent makes his expected utility concave in in-
termediate output. If the principal and agent are both weakly risk-averse, the
principal finds it optimal to deter risk-taking entirely by offering an incentive
scheme that directly makes the agent’s utility concave in output. We refer
to this additional constraint — that utility be weakly concave in output — as
the no-gaming constraint. Wherever the no-gaming constraint binds, the
optimal contract makes the agent’s utility linear in output.

In Section 4] we consider a risk-neutral agent. In this setting, we show that
the no-gaming constraint binds everywhere, so that a linear (technically, affine)
contract is optimal, remains so regardless of the principal’s attitude toward risk
(even if she is risk-loving), and is uniquely optimal if the principal is risk averse.
Intuitively, absent the no-gaming constraint, the principal would like to offer
a convex contract, which would concentrate high pay on high outcomes and
so inexpensively motivate the agent while respecting the liability constraint.
Therefore, the no-gaming constraint binds and so the principal optimally offers
a linear contract. We show that relative to any strictly concave contract, there
is a linear contract that both better insures the principal and better motivates
the agent.

Section [5| builds on this logic to explore optimal incentives with a risk-
averse agent (and a risk-neutral principal). In this setting, the no-gaming
constraint implies that the agent’s utility must be concave in output. Similar
to Section [ the optimal contract makes the agent’s utility linear wherever
this constraint binds. Unlike that section, however, the no-gaming constraint
does not necessarily bind everywhere.

Suppose that the limited liability constraint is slack. Without risk-taking,

the optimal contract would equate the principal’s marginal cost of paying the



agent to the marginal benefit of relaxing the agent’s participation and incen-
tive constraints at each output (Mirrlees| (1976); Holmstrom| (1979)). However,
doing so might violate the no-gaming constraint. Where it does, we show that
the optimal contract is instead ironed, in the sense that it is linear in util-
ity and sets expected marginal benefits equal to expected marginal costs over
those regions. For instance, suppose that no-gaming binds for low output but
not for high output, which turns out to be true under fairly weak conditions
on preferences and production. In that case, the optimal contract makes the
agent’s utility linear in output below a threshold; above that threshold, utility
is concave and equates marginal benefits to marginal costs output-by-output.
In the extreme, if no-gaming is slack everywhere, then the standard contract
characterized by [Mirrlees (1976)) and Holmstrom| (1979) is optimal; if it binds
everywhere, then the optimal contract makes the agent’s utility linear in out-
put.

If instead the participation constraint is slack (and so limited liability
binds), then we show that the no-gaming constraint binds for any output
that suggests less than the desired effort. As a result, and similar to the intu-
ition outlined above, the profit-maximizing incentive scheme makes the agent’s
utility linear over these outputs.

These results are implications of a set of necessary and sufficient conditions
we develop for a profit-maximizing contract. Since balancing benefits and costs
output-by-output might violate concavity, we cannot characterize the profit-
maximizing contract using the techniques of Mirrlees| (1976)) and Holmstrom
(1979). Instead, we construct two simple perturbations of a candidate contract
that preserve concavity while changing either the level or the slope of the
agent’s utility over appropriate intervals of output. Perhaps surprisingly, we
prove that it is also sufficient to consider these two perturbations, so that a
contract is profit-maximizing if, and only if, it cannot be improved by them.

Finally, Section [f] considers three extensions, all of which assume that both
the principal and the agent are risk-neutral. First, we consider optimal con-
tracts in a model where the agent engages in risk-taking before he observes

intermediate output. We show that the agent’s risk-taking concavifies his ex-



pected payoff conditional on his effort, rather than on intermediate output, and
we identify mild conditions under which a linear contract is optimal. Second,
we consider optimal contracts if the agent incurs a cost that is increasing in
the variance of her risk-taking distribution. We show that our basic intuition
extends to this setting, resulting in a unique optimal contract that is convex in
output, but not so convex as to induce gaming. As gaming becomes cheap, the
optimal contract becomes linear. Finally, we study a dynamic setting in which
the principal offers a stationary contract that the agent can game by choos-
ing when output is realized over an interval of time. Oyer| (1998) and |Larkin
(2014) document how convex incentive schemes and long sales cycles can en-
courage such intertemporal gaming. We show that this setting is equivalent
to our risk-taking model. Thus, a linear contract is optimal, since a convex
contract would induce the agent to bunch sales over short time intervals and
a strictly concave contract would provide subpar effort incentives.

Our analysis is inspired by Diamond| (1998) and (Garicano and Rayo| (2016)).
Diamond, (1998)) is a seminal exploration of optimal contracts when the agent
can both exert effort and make other choices that affect the output distribu-
tion. Section 6 of that paper argues that linear contracts are among the many
optimal contracts in an example with risk-neutral parties, binary effort, and
an agent who can choose any mean-preserving spread of output. Our Proposi-
tion [2| expands this result to settings with more general effort choices, output
distributions, and principal utility functions.

Relative to Diamond (1998), we contribute in three ways. First, we show
that the fundamental consequence of agent risk-taking is to constrain incen-
tives to be concave, not necessarily linear. Linear contracts are instead a
consequence of this concavity constraint binding everywhere, as it does if the
agent is risk-neutral. However, as Section 5[ demonstrates, the concavity con-
straint need not necessarily bind everywhere if the agent is risk-averse, in which
case the optimal contract makes utility strictly concave in output. Second, our
Proposition [2|identifies an additional conceptual advantage of linear contracts
with a risk-neutral agent: relative to any strictly concave contract, they better

insure the principal and so are uniquely optimal if the principal is even slightly



risk-averse. Finally, our analysis of optimal contracts with a risk-averse agent
in Section [ is entirely new and shows how risk-taking affects contracts in a
canonical moral hazard setting. (Garicano and Rayo (2016]) includes a model
of risk-taking that is similar to ours, but it fixes an exogenous (non-concave)
contract to focus on the social costs of excessive risk.

Our model of risk-taking is embedded in a canonical moral hazard prob-
lem. With a risk-neutral agent, our model builds on [Innes (1990), Spulber
and Poblete| (2012), and other papers for which limited liability is the central
contracting friction. With a risk-averse agent, we build on Mirrlees| (1976) and
Holmstrom) (1979) if the limited liability constraint is slack, and [Jewitt, Kadan,
and Swinkels| (2008) if it binds. Within the classic agency literature, our anal-
ysis is conceptually related to papers that study principal-agent relationships
in which the agent both exerts effort and makes other decisions. Classic exam-
ples include |Lambert| (1986) on how agency problems in information-gathering
can lead to inefficient investment in risky projects and Holmstrom and Ricart
i Costal (1986) on project selection under career concerns. Malcomson| (2009)
presents a general model of such settings, but differs from our analysis in
assuming that decisions are contractible. Other papers consider settings in
which the principal also chooses actions other than the agent’s wage contract,
such as an endogenous performance measure; see for example, |Halac and Prat
(2016) and |Georgiadis and Szentes| (2018]).

A growing literature studies agent risk-taking. Some papers in this lit-
erature assume that an agent chooses from a parametric class of risk-taking
distributions in either static (Palomino and Prat| (2003); Hellwig| (2009)) or dy-
namic (Demarzo, Livdan, and Tchistyi (2014))) settings. We differ by allowing
our agent to choose any mean-preserving spread of output, which means that
our optimal contract must deter a more flexible form of gaming. Therefore,
we join other papers that study non-parametric risk-taking, again in either
static (Robson| (1992); |[Diamond| (1998); Hébert| (2015))) or dynamic (Ray and
Robson| (2012)); Makarov and Plantin| (2015))) settings. We differ from these
papers by identifying concavity as the key constraint on the optimal incentive

scheme if the agent can costlessly take on risk and then characterizing opti-



mal incentives given this constraint in the context of a canonical moral hazard
problem[l]

More broadly, our work is related to a long-standing literature which ar-
gues that optimal contracts must both induce effort and deter gaming. A
seminal example is Holmstrom and Milgrom| (1987), which displays a dynamic
environment in which linear contracts are optimal. Recent papers, including
Chassang| (2013)), Carroll (2015), and |Antic| (2016), take up this point by de-
parting from a Bayesian framework and proving that simple contracts perform
well under min-max or other non-Bayesian preferences. In contrast, our paper
considers contracts that deter gaming in a setting that lies firmly within the
Bayesian tradition.

While the contracting problems are quite different, Carroll’s intuition is
related to ours. In that paper, Nature selects a set of actions available to the
agent in order to minimize the principal’s expected payoffs. The key difference
is in the types of gambles available to the agent. In Carroll’s paper, Nature
might allow the agent to take on additional risk to game a convex incentive
scheme, in which case risk-taking behavior is similar to that in our paper and
its predecessors. However, if the principal offers a concave incentive scheme,
then Nature might also allow the agent to choose a distribution with less risk.
In contrast, we allow the agent to add risk but not reduce it. This difference
is most striking if the agent is risk-averse, in which case Carroll’s optimal
contract makes the agent’s utility linear in output, while ours might make

utility strictly concave.

2 Model

We consider a static game between a principal (P, “she”) and an agent (A,
“he”). The agent has limited liability, so he cannot pay more than M € R
to the principal. Let [y,7] = Y C R be the set of contractible outputs. The

'In Ray and Robson|(2012), Condition R2 is a version of a concavity constraint. However,
that paper analyzes how risk-taking by status-conscious customers affect the intergenera-
tional wealth distribution, and in particular it studies neither moral hazard nor optimal
contracts.



timing is as follows:
1. The principal offers an upper semicontinuous contract s(y) : Y — [—M, oo)E]

2. The agent accepts or rejects the contract. If he rejects, the game ends,

he receives ug, and the principal receives 0.
3. If the agent accepts, he chooses effort a > 0.
4. Intermediate output x is realized according to F'(-|a) € A(Y).
5. The agent chooses a distribution G, € A()Y) subject to Eq, [y] = .
6. Final output y is realized according to G, and the agent is paid s(y).

The principal’s and agent’s payoffs are equal to 7 (y — s(y)) and u (s (y)) —c(a),
respectively.

We assume that m(-) and wu(-) are strictly increasing and weakly concave,
with u(-) onto, and that ¢(-) is infinitely differentiable, strictly increasing, and
strictly convex. We also assume that F(-) has full support for all a > 0,

satisfies Ep(.|q)[2] = @, and is infinitely differentiable with a density f(-) that
fa(-la)
f(la)
This game is similar to a canonical moral hazard problem, with the twist

is strictly MLRP-increasing in a, with uniformly bounded for all a.
that the agent can engage in risk-taking by choosing a mean-preserving spread

G, of intermediate output xz. Let

G={G:Y = A) | Eg,[y] =z for all x € V}.

Without loss, we can treat the agent as choosing a and G' € G simultaneously.

Intermediate output can take different forms in different settings. For
instance, CEOs typically have advance information about whether or not they
will hit their earnings targets in a given quarter, and they can cut maintenance

or R&D expenditures if they are likely to fall short, taking on tail risk for

20One can show that the restriction to upper semicontinuous contracts is without loss:
if the agent has an optimal action given a contract s(-), then there exists an upper semi-
continuous contract that induces the same equilibrium payoffs and distribution over final
output.



the appearance of higher earnings (Rahmandad, Henderson, and Repenning
(2016)). Similarly, portfolio managers are typically compensated based on
their annual returns and can adjust the riskiness of their investments over the
course of the year in order to game those incentives (Chevalier and Ellison
(1997)) ]

After the agent observes x but before y is realized, we have a setting with
both a hidden type and a hidden action. In such problems, it is often useful
to ask the agent to report his type, in this case x. By punishing differences
between this report and y, the principal may be able to dissuade some or all
gambling. We restrict attention to situations where such intermediate reports
are not useful. The simplest way to do so is to assume that the timing of x
is random, and gambling is instantaneous.lz_f] We think this is the economically
correct modeling assumption in many settings. Indeed, the spirit of the model
is that the agent can misbehave in a particular direction, and it seems unlikely
that the principal can catalog the precise moments and ways in which this

might occur.

3 Risk-taking and optimal incentives

This section explores how the agent’s ability to engage in risk-taking constrains
the contract offered by the principal.

We find it convenient to rewrite the principal’s problem in terms of the
utility v(y) = wu(s(y)) that the agent receives for each output y. If we de-

fine u = u(—M), then an optimal contract solves the following constrained

3An alternative assumption is that the agent engages in risk-taking before uncertainty
is resolved, which may be more natural in some applications. Section explores this
alternative.

4 Allowing reports would change the agent’s gaming incentives but not completely elim-
inate them. Online Appendix has an analysis with risk-neutral parties and shows that
linear contracts are optimal even if such reports are allowed.



maximization problem:

, dax | Er(lo) [Ea, [7 (y —u™" (v(y)))]] (Objr)
s.t. a,G € arg améaexg {Erca [Eg, [v(y)] —ca)} (ICF)
Er(jo) [Ea, [v (1)] — ¢(a) > ug (IRF)

v(y) >u forall y. (LLg)

The main result of this section is Proposition |1} which characterizes how
the threat of gaming affects the incentive schemes v(-) that the principal can
offer. The principal optimally offers a contract that deters risk-taking entirely,
but doing so constrains her to incentive schemes that are weakly concave in
output. Define G so that for each z € ), GL is degenerate at z.

Proposition 1. Suppose (a,G,v(-)) satisfies {IC¥|)-(LLg|). Then there exists
a weakly concave 9(-) such that (a,GP,0(-)) satisfies {[[C¥l)-(LLg]) and gives
the principal o weakly higher expected payoff.

The proof is in Appendix [A]l For an arbitrary incentive scheme v(-), define

v°(+) : Y — R as its concave closure,

ve(x) = sup {(1 =p)v(w) +pv(2)}. (1)
w,z€Y,p€0,1] s.t. (1—p)w+pz=z
At any outcome x such that the agent does not earn v°(x), he can engage in
risk-taking to earn that amount in expectation (but no more). But then the
principal can do at least as well by directly offering a concave contract, and if
either the agent or the principal is strictly risk-averse, then offering a concave
contract is strictly more profitable than inducing risk-taking.
Given Proposition [I} we can write the optimal contracting problem as one
without risk-taking but with a no-gaming constraint that requires the agent’s

utility to be concave in output, with the caveat that our resulting solution is
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one of many if (but only if) both parties are risk-neutral:

max Erga) [7 (v — v (0(y)))] (Obj)

s.t. a € argmax {Era) [v(y)] — c(@)}

Erca) [v(y)] — cla) = uo
v(y) >uforally € Y (LL
v(+) weakly concave. (NG

For a fixed effort a > 0, we say that v(-) implements a if it satisfies (IC)-(NG])
for a, and it does so at mazimum profit if it maximizes subject to (IC))-
. An optimal v(-) implements the optimal effort level a* > 0 at maximum
profit.

Mathematically, the set of concave contracts is well-behaved. Consequently,
we can show that for any a > 0, a contract that implements a at maximum

profit exists, and is unique if either m(-) or u(-) is strictly concave.

Lemma 1. Fiz a > 0 and suppose that u > —oo. Then there exists a contract
that implements a at mazximum profit, and does so uniquely if either w(-) or

u(+) is strictly concave.

This result, which follows from the Theorem of the Maximum, is an im-
plication of Proposition @ in Online Appendix @E] Existence is guaranteed
by ; for example, without this constraint, no profit-maximizing contract
would exist with a risk-neutral agent[f] If at least one player is strictly risk-
averse, then Jensen’s Inequality implies that a convex combination of two
different contracts that implement a also implements a and gives the principal

a strictly higher payoff, which proves uniqueness.

5 All online appendices may be found at https://sites.google.com /site/danielbarronecon /

SWith a risk-neutral agent, the principal wants to pay the agent only after arbitrarily
high output realizations, since those outputs are most indicative of high effort. See, e.g.,
Innes) (1990)).

11



4 Optimal Contracts for a Risk-Neutral Agent

Suppose the agent is risk-neutral, so u(y) =y, v(-) = s(-), and u = =M. In
this setting, the key friction is the agent’s liability constraint, which might
prevent the principal from simply “selling the firm” to the agent.

For any effort level a, define

where w = min {M, ¢ (a)(a —y) — c¢(a) — up}. Intuitively, st(y) is the least
costly linear contract that implements a. Note that for a linear contract,
can be replaced by its first-order condition because expected output is linear
in effort and the cost of effort is convex.

Define the first-best effort a*® € R, as the unique effort that maximizes
FB)

y — c(y) and so satisfies ¢ (a = 1. We prove that a linear contract that

implements no more than first-best effort is optimal.

Proposition 2. Let u(s) = s. If a* is optimal, then a* < a'P and sk.(-) is

optimal.

The proofs for all results in this section can be found in Appendix [A] To
see the intuition, consider s%.;(-), which both implements a*” and provides
full insurance to the principal. If SSFB('> satisfies with equality, then it is
clearly optimal.

Suppose instead that is slack for ngB(-), in which case 1} must
bind. Suppose that (a*,s*(-)) is optimal, and let §(-) be the linear contract
that agrees with s*(-) at y and gives the agent the same utility as s*(-) if he
chooses effort optimally. As shown in Figure 1, §(-) must single-cross s*(-)
from below, effectively moving payments from low to high outputs. Since
F(-|a) satisfies MLRP, paying more for high output motivates more effort and
so §(-) implements some @ > a*. If @ > P, then 5(-) > sfFB(-), and so the
principal prefers s(fFB(-) to s*(-) because it induces first-best effort, perfectly

insures the principal, and gives the agent less utility than s*(-).
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Figure 1: Intuition for the proof of Proposition [2|

If a < afB, then §(-) < 1 and so the principal’s wealth under 3(-), y — 3(y),
is increasing in y. Consequently, the principal likes that $(-) induces more
effort than s*(-). Moreover, $(y) > s*(y) exactly when output is high and
so her marginal utility of wealth is low, and so §(-) also insures the principal
better than s*(-). So the principal prefers §(-) to s*(-), and a fortiori prefers

sk(+), which lies weakly below 5(-). We conclude that any optimal contract

s*(+) must satisfy s*(-) = sk (-).
Lemma (1| implies that s (-) is uniquely optimal if the principal is risk-

averse. If she is risk-neutral, then sk (-) is optimal but not uniquely so; in
L

particular, any contract with a concave closure equal to si.(-) would give
identical expected payoffs.

For any a > 0, the agent’s promised utility under sZ(-) depends on y, the
worst possible outcome over which the agent can gamble. In particular, such a
sk(.) starts at y and has a strictly positive slope, so that the agent’s expected
compensation E,[s%(y)] = sk(a) increases without bound as y decreases. That
is, as the agent’s ability to take on left-tail risk becomes arbitrarily severe,

motivating effort while deterring risk-taking becomes arbitrarily costly to the
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principal. Consequently, the optimal effort level converges to 0 as y becomes
arbitrarily negative. Moreover, if the principal is risk-neutral, then we can
show that effort is strictly increasing in y: as the agent’s ability to take left-
tail risks becomes more severe, the principal responds by inducing lower effort.
See Appendix for details.

In some applications, the principal might have risk-seeking preferences over
output, for instance because she also faces convex incentives. For example,
Rajan| (2011)) argues that, anticipating the possibility of bailouts, shareholders
of financial institutions might have had an incentive to encourage risk-taking
prior to the 2008 financial crisis. We can model such settings by allowing 7 (-)
to be any strictly increasing and continuous function. Proposition [I| does not
directly apply in this case because the principal might strictly prefer the agent
to take on additional risk following some realizations of x. Nevertheless, we
can modify the argument from Proposition [2[to show that a linear contract is

optimal.

Corollary 1. Let u(s) = s and let w(-) be an arbitrary continuous and strictly
increasing function that has a strictly increasing concave closure w¢(+). If a*

is optimal, then a* < a'P and sk.(-) is optimal.

To see the proof of Corollary [I} note that the principal’s expected payoff cannot
exceed 7¢(+) for reasons similar to Proposition |1} Therefore, the contract that
maximizes Ep(|q) [1°(z — s(z))] subject to (IC)-(NG) provides an upper bound
on the principal’s payoff. But Propositionasserts that sL.(-) is optimal in this
problem because 7¢(+) is concave. Given sk (-), the agent is indifferent among
distributions G € G, so he is willing to choose GG such that the principal’s
expected payoff equals 7¢(-).

5 Optimal contracts if the agent is risk averse

This section characterizes the unique contract that implements a given a > 0
at maximum profit in a setting with a risk-averse agent and a risk-neutral prin-
cipal. Section illustrates how this characterization sheds light on profit-

14



maximizing incentives in the presence of risk-taking. These results are im-
plications of our necessary and sufficient conditions for a profit-maximizing
contract, developed in Section [5.2]

We impose two simplifying assumptions to make the analysis tractable.
First, letting w denote the infimum of the domain of u(-), we assume that
limy, ' (w) = oo and limye v/ (w) = 0. Second, we replace with the

weaker condition that local incentives are slack,

d
P {Er(ia)[v (y)] — cla)} > 0. (IC-FOC)
Given (NG), replacing with (IC-FOC]) entails no loss if F'(-|-) satisfies

weak regularity conditions; see, for example, Jewitt| (1988) and Chade and
Swinkels (2016). For a fixed effort a > 0, define the principal’s problem

m(a.)x{(Obj) subject to (IC-FOC), (IR), (LL), and (NG)}. (P)

For a > 0 and y € Y, define the likelihood function

010 = ey

Define p(-) as the function that maps u%() into u(+); that is, for every w €
(w,0), p <m> = u(w), with p(z) = —oo for all z < 0. Then p~*(v(y))
equals the marginal cost to the principal of giving the agent extra utility at y.

If u > —o0, then Lemma [I| implies that a unique solution to (P) exists.
If u = —o0, then Online Appendix [D] shows that a unique solution exists so
long as «/(-) is not excessively convex. Our results in this section apply in

either setting. Unless otherwise noted, proofs for this section may be found in
Appendix

"This function is well-defined because u/(-) and u(-) are strictly monotonic. It is contin-
uous because lim,,j, @' (w) = oo and lim,,}, u(w) = —occ.
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5.1 Implications of the No-Gaming Constraint

This section illustrates how risk-taking affects the trade-off between insuring
and motivating the agent that lies at the heart of this moral hazard problem.
For a broad class of settings, we show that optimal incentives are linear in
output where binds and otherwise equate the marginal costs and benefits
of incentive pay.

Given the program (P), let A and u be the shadow values on and
(IC-FOCQ), respectively. For a fixed a > 0 and an incentive scheme v(-) that

implements a, define

n(y) = p~ (v(y)) = A — pl(yla) (2)
as the net cost of increasing v(-) at y, taking into account how that increase
affects and ([C-FOQ). In particular, increasing v(y) increases the prin-
cipal’s cost at rate p~'(v(y))f(yla), relaxes at rate f(y|a), which has
implicit value A, and relaxes at rate f,(yla), which has implicit
value p. Taking the difference between these costs and benefits and dividing
by f(yla) yields n(y).

Suppose that is slack. Absent , the optimal contract would
set n(y) = 0 output-by-output and so v(-) = p(A + wl(-|a)). Indeed, this
incentive scheme (with the appropriate A and u) is the Holmstrom-Mirrlees
contract characterized in Mirrlees| (1976) and [Holmstrom| (1979). However,
setting n(y) = 0 at each y might violate (NGJ).

Nevertheless, profit-maximizing contracts build on this basic logic. Intu-
itively, if setting n(y) = 0 at some output y would violate (NG), then this
constraint binds, and so the optimal contract is locally linear in utility. These
linear segments are “ironed” in the sense that they set net cost equal to 0 in
expectation, even if they do not do so point-by-point. Outside of these ironed
regions, is slack and so n(y) = 0 at each output.

We demonstrate this intuition if p(A + ul(-|a)) is first convex and then

concave, which we argue is a natural case to consider.
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Lemma 2. Suppose u(-) and F(-|a) are analytic and con (p')+ con(l,) > —1F]|
Then for any \ and p, there exists a y; such that p(A + ul(-|a)) is convex on

[y, yr) and concave on (yr, 7.

The proof of Lemma [2] may be found in Appendix [E.2l The requirement
that con(p’) + con(l,) > —1 is relatively mild, and holds, for example, if [, is
strictly log-concave and u(w) = logw, or more generally, for a wide range of
utilities that satisfy Hyperbolic Absolute Risk Aversion (HARA)[]

The following Proposition characterizes the optimal contract if p(A+pul(-|a))
is first convex and then concave, and is slack.

Proposition 3. Fiz a > 0 and 7(y) = y. Let v*(-) solve (P), let \ and
w be the shadow values on (IR) and (IC-FOC), respectively, and suppose that
v*(y) > gm Suppose there exists y; such that p(A+pl(-|a)) is convez on [y, yr)
and concave on (yr,y|. Then v*(-) satisfies (IR) and (IC-FOC) with equality,

and there ezist y > y;, v € R, and a € Ry such that v*(-) is continuous,

vtaly—y)  ify<y
v*(y) =

p(A+ pl(yla))  otherwise,

and such that fy@ n(y)f(y)dy = 0. If yr =y, then § = y.

We interpret Proposition [3| here and defer a discussion of the proof to
Section [5.2] Under the condition that p(A + pl(-|a)) is first convex and then
concave and is slack, the profit-maximizing contract v*(-) is linear in
utility for low output and otherwise sets n(y) = 0 output-by-output. Moreover,

8For any interval X C R and analytic function h : X — Ry, con(h) =
infx {1 — (hh")/ (hl)Q}. Intuitively, con(h) is the largest value ¢ for which h'/t is concave.
See [Prekopal (1973) and Borell| (1975) for details.

v

9Recall that HARA utility satisfies u(w) = I_T'Y (f‘j‘i{ + B) . Then for any X and p,

p(A + pl(-a)) is first convex and then concave for any well-defined HARA utility if either
y<O0orvye (3,1).

19 Appendix @ gives conditions under which an optimal contract exists even if u = —oc.

Under those conditions, this existence proof also shows that (LL|) is slack if u > —oo is

sufficiently negative.
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v()

v
n(y)f(y)dy =0

Figure 2: Illustration of p(A + wl(-]a)) and the profit-maximizing v*(-).

on the linear region of v*(-), expected net costs equal 0. See Figure 2 for an
illustration.

In the extremes, if p(A + pl(-Ja)) is convex everywhere, then the profit-
maximizing contract is linear[r] while the profit-maximizing contract equals
p(A + pl(-]a)) if the latter is concave. Intuitively, p(A + pl(-]a)) is likely to
be convex if the principal would like to “insure against downside risk” by
offering low-powered incentives for low output and “motivate with upside risk”
by giving steeper incentives for high output. For instance, p(+) tends to be more
convex if prudence, which measures how rapidly the agent becomes less risk-
averse as his compensation increases, is large relative to relative risk cwersion.m
Conversely, p(A + ul(-|a)) is likely to be concave if the principal would like to
“motivate with downside risk” and “insure against upside risk.”

Proposition [3| focuses on the case where (LL) is slack, but (NG) has a

"This case obtains if, for example, I(-|a) is convex and p(-) is convex on the range of
A+ pl(-]a). Note that p(-) cannot be convex over its entire domain, because p(0) = —occ.

12In particular, recalling that prudence is —%((f)) and relative risk aversion is —Z/,/—((_')), it
can be shown that p(-) is convex whenever the ratio of prudence to relative risk aversion
exceeds 3.
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similar effect if is slack so that binds. In that case, the principal
would like to pay the agent as little as possible for any y with I(y|la) < 0,
since paying for low output both increases the agent’s rent and tightens
FOC) (Jewitt, Kadan, and Swinkels| (2008))). However, rewarding the agent for

high output while holding him to his liability constraint following low output
violates (NGJ), which therefore binds following low output.

Proposition 4. Fiz a > 0 and w(y) = y. Let v*(-) solve (P), and suppose
that is slack under v*(-). Define yo such that l (yo|la) = 0. Then v*(-) is

linear on [y, yo).

If is slack and v*(-) is strictly concave for y < yo, then making it
“flatter” on [y, yo] by taking a convex combination of it with the linear segment
that connects v(y) and v(yo) improves the agent’s incentives, and decreases
the principal’s expected payment. So the profit-maximizing v*(-) is linear on
[y, o, though it might be strictly concave for higher output.

Before turning to our characterization, it is worth emphasizing that the
effects of risk-taking extend beyond those outputs for which binds. In
particular, so long as binds somewhere, risk-taking potentially distorts
both X and p away from their levels absent , and so can influence optimal
incentives even at outputs where is slack. That is, A and p both shape,

and are shaped by, the profit-maximizing incentive scheme.

5.2 A Characterization

This section develops the necessary and sufficient conditions for a profit-
maximizing contract that underpin the results in Section [5.1] Since setting
n(y) = 0 output-by-output might violate (NGJ), we instead identify perturba-
tions that respect and affect an interval of an incentive scheme. Then
we prove that an incentive scheme is profit-maximizing if and only if it cannot
be improved by these perturbations.

We begin by defining several features of v(:) that will be useful for our

construction.
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v() v()

Tilt up

Tilt down

Raise

Y Y y Y Yu

Figure 3: Raise and tilt. These perturbations require care around y; and ygz to ensure
that concavity is preserved. For this reason, we need both y; and yg to be free for raise.

For tilt up, we need yy, to be free, while yy must be free for ¢ilt down.

Definition 1. Given v(-):

1. An interval lyp,yn| is a linear segment if v(-) is linear on [yp,yy| but
not on any strictly larger interval. Point y is free if it is not on the

interior of any linear segment.

2. A freey € (y,7) is a kink point of v(-) if two linear segments meet at

y, and a point of normal concavity otherwise.

Consider the following two perturbations, formally defined in Online Ap-
pendix [B| and illustrated in Figure 3. Raise increases the level of v(-) by a
constant over an interval, while tilt increases the slope of v(-) by a constant
over an interval. Raising an interval typically introduces non-concavities into
v(+) at both endpoints of the interval. Tilting it a positive amount may intro-
duce a non-concavity at the lower end of the interval, and tilting it a negative
amount may introduce a non-concavity at the upper end of the interval. On-
line Appendix [B| shows that for small perturbations, we can repair these non-
concavities on an arbitrarily small interval so long as the relevant endpoints

are free.
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While raise and tilt affect both and ([C-FOC]), Online Appendix

shows that since F'(-|a) satisfies MLRP, raise and tilt have non-collinear effects
on and , which means that we can construct combinations of
the two perturbations to affect each of these constraints separately. Therefore,
so long as there exists at least one free point § < ¢ such that v(g) > u, we
can use these perturbations on [7, 7] to establish the shadow values A and u of
relaxing and H

If an incentive scheme v(-) is profit-maximizing, then it cannot be improved
by either raise or tilt on any valid interval. That is, raising v(-) on an interval

lyr, ymr] with both endpoints free must have non-negative expected net cost:

YH
[ nswlaydy = o ®)
yL
If v(y,) > u, then we can similarly perturb v(-) on [yr,yn| by raising it a
negative amount, so ([3)) must hold with equality.
Similarly, if y;, is free, then tilting v(-) on [yr,yy] must have non-negative
expected net cost:
YH Y
[0 - s+ - [ 0@l 20 @
yL YH
where the first term represents the fact that tilt increases the slope of v(-) from
yr to yg and the second represents the resulting higher level of v(-) from yg
to y. If yy is free, then applying negative tilt yields the reverse inequality:
Y

/yH n(y) (y —yo)f (yla) dy + (ya — yL)/ n(y)f(yla) <O0. (5)

YL YH
Our characterization combines these perturbations with the usual comple-

mentary slackness condition that A = 0 if is slack (so that (LL) binds).

Definition 2. A contract v(-) is Generalized Holmstrom-Mirrlees (GHM) if

[IC-FOQ) holds with equality, (IR), (LI]), and are satisfied, there exist

31f no such point exists, then v(-) is linear and v(y) = w.
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A >0 and p > 0 such that

A (/yv(y)f (yla) dy — c(a) — UO> =0,

and for any yr < ym,

1. ifyp, and yy are free, then (@ holds, and holds with equality if v (yr) > u;

2. if yr, is free, then holds;
3. if yg is free, then (@ holds.

Our main result in this section characterizes the unique incentive scheme

that implements any a > 0 at maximum profit.

Proposition 5. Suppose u(-) is strictly concave and w(y) =y. Then for any

a >0, v(-) implements a at mazimum profit if and only if it is GHM.

The necessity of GHM follows from the arguments above. To establish
sufficiency, we first show that if any o(-) implements a at higher profit than
v(-), then there exists a local perturbation that improves v(-). Then we show
that among local perturbations, it suffices to consider #ilt and raise on valid
intervals. This result follows because any perturbation that respects concavity
can be approximated arbitrarily closely by a combination of valid tilts and
raises. Therefore, if any perturbation improves the principal’s profitability,
then so must some individual tilt or raise.

One implication of Proposition [5|is that net cost equals 0 for any output
where both (LL) and (NG are slack.

Corollary 2. Suppose u(-) is strictly concave and 7(y) = y. For any a > 0,
let v(-) solve (P) and suppose y € (y,y) is free. Then n(y) <0, and n(y) =0

if y is a point of normal concavity.

At any point of normal concavity y, we can find two free points that are
arbitrarily close to yE Proposition [5| implies that holds with equality be-
tween these points; taking a limit as these points approach y yields n(y) = 0. If

1Gee Claim [1]in Appendix
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y is a kink point, then we cannot perturb v(-) around y and preserve concavity.
However, there is a sense in which binds on the linear segments on either
side of y: Lemma |3[in Online Appendix |B| proves that absent , the prin-
cipal would want to increase payments near the ends of a linear segment and
decrease them somewhere in the middle of that segment. Therefore, n(y) <0
at the endpoints of any linear segment, which includes any kink point.
Together, Proposition [5| and Corollary [2] imply Proposition [3| If is
slack, then holds with equality over any valid interval. Therefore, for each
y, the profit-maximizing incentive scheme either sets n(y) = 0 or is linear,
with ezpected net cost equal to 0 over each linear segment. This is the sense
in which our profit-maximizing contract “irons” p(A+ ul(-|a)). Moreover, since
binds on any linear segment, n(-) must be negative at the endpoints of
that segment and positive somewhere in the middle. So a GHM contract v(-)
can have two linear segments only if p(A+pl(-|a)) has a strictly concave region
followed by a weakly convex region, which is assumed away in Proposition

and ruled out by the condition in Lemma

6 Extensions and Reinterpretations

This section considers three extensions, all of which assume that both the
principal and the agent are risk-neutral. Section alters the timing so that
the agent gambles before observing intermediate output. Section changes
the agent’s utility so that he must incur a cost to gamble. Section reinter-
prets the baseline model as a dynamic setting in which, rather than gambling,
the agent can choose when output is realized in order to game a stationary

contract. Proofs for this section may be found in Online Appendix [C]

6.1 Risk-Taking Before Intermediate Output is Realized

If the agent engages in risk-taking before observing intermediate output, then
he gambles to concavify his expected utility given effort. This section considers

this alternative timing and gives conditions under which linear contracts are
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optimal.

Counsider the following timing:
1. The principal offers a contract s(y) : Y — [—M, 00).

2. The agent accepts or rejects the contract. If he rejects, the game ends,

he receives ug, and the principal receives 0.

3. The agent chooses an effort a > 0 and a distribution G(-) € A(Y) subject
to the constraint Eg [z]a] = a[]

4. The outcome of the gamble x ~ G(-) is realized, and final output is
realized according to y ~ F'(-|x). We assume that F'(-|z) has full support,
with Ep(js)[y] = = and a density f(-|z) that satisfies strict MLRP in .

The principal and agent earn y — s (y) and s (y) — c¢(a), respectively, where ¢(-)
is strictly convex.

To interpret risk-taking in this model, suppose the principal is an investor
and the agent is an entrepreneur who chooses which project to pursue. Effort
improves the expected returns of the project, while G(-) captures other features
of the project. For example, a degenerate distribution over x might represent a
project that would be modestly profitable irrespective of economic conditions,
while a more variable distribution over x corresponds to a project that would
be a dramatic success in a growing economy but an utter failure otherwise.
Then F'(-|x) represents uncertainty that remains after x is realized. We assume
that the entrepreneur has access to a rich enough set of projects that G(-) can

be any mean-preserving spread of a['"

15With some notational inconvenience, one can extend this argument to more general
mappings from a to Eg[z|a).

161f j; Fo2(y|z)dy > 0 for all z € Y and z, then a riskier G(-) leads to a riskier distribution
over final output (in each case, in the sense of second-order stochastic dominance). Note that
this is not the only way to model ex-ante risk-taking. For example, we could have modeled
the agent as choosing a random, additively separable noise term that affects output. We do
not believe that optimal contracts would be linear in that alternative framework.
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Given s(-) and z, the agent’s expected payoff equals
Viiw) = [ s)fle)dy (5
y

Define V£(+) as the concave closure of V;(+) as in ([I). Analogous to Proposition
the agent will optimally choose G such that Eq(.) [Vi(x)] = V(a). Since
Ec() [Er(is)[y]] = a for any G(-), the principal’s problem is

max a—Vy (a) (7)

s.t. a € arg max {Vi(a) —c(a)}

Vila) = e(a) = uo
s() > —M.

We prove that a linear contract solves this problem.

Proposition 6. If a* > 0 is optimal in the program (E]]), then a* < af'? and
L

sy« (+) is optimal.

To see the argument, relax the optimal contracting problem by assuming
that the principal can choose V£(-) directly, subject only to the constraints
that V(+) is concave and VE(-) > —M. This relaxed problem is very similar
to (Ob))-(NG)), except that VE(+) is a function of effort rather than of inter-
mediate output. Nevertheless, as in the proof of Proposition [2 a linear V¢ (-)
is optimal. But V¢(-) is linear if V;(-) is linear, and Vi(-) is linear if s(-) is
linear because Ep(|y)[y] = z. Hence, s& () induces the optimal VE(-) from the

relaxed problem and so is optimal.

6.2 Costly Risk-Taking

Consider the model from Section [2| and suppose that the agent must pay
a private cost Eq, [d(y)] — d(z) to implement distribution G, following the
realization of z, where d(-) is smooth, strictly increasing, and strictly convex,

with d(y) = 0. For example, this cost function equals the variance of G, if
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d(y) = y*. More generally, d(-) captures the idea that the agent must incur a
higher cost to take on more dispersed risk. The principal’s and agent’s payoffs
are y — s(y) and s(y) — c(a) — d(y) + d(x), respectively["]

For any contract s(-), define

0(y) = s(y) — d(y) and é(a) = ¢(a) = Ep(ja[d(z)],

so that conditional on effort, the agent’s payoff equals 9(y) — é(a). Then the
principal’s payoff equals 7(y) — 0(y), where 7(y) = y —d(y) is strictly concave.

As in Section [3 the agent chooses G, so that his expected payoff equals
0¢(x). Since 7(+) is strictly concave, the principal prefers to deter risk-taking by
offering a contract that makes the agent’s payoff 0(-) concave. Consequently,
we can modify the proof of Proposition [2| to show that the principal’s optimal
contract makes ©(-) linear. Therefore, the optimal s(-) is convex and equals

the sum of a linear component and d(+).

Proposition 7. Assume ¢(-) is strictly increasing and strictly convex. For
optimal effort a* > 0, define s*(y) = &(a*)(y —y) + d(y) — w0, where W =
min {M,&(a*)(a — y) — é(a*) —ug}. Then s*(-) is optimal.

This result follows a similar logic to Proposition where the optimal
s*(+) ensures that o(-) is linear. Intuitively, s*(-) is the most convex contract
that deters the agent from gambling. Note that the optimal contract from
Proposition [2] is strictly more expensive than s*(-), since the principal can

offer somewhat convex incentives if the agent finds risk-taking costly.

6.3 Manipulating the Timing of Output]™

This section considers a model in which the principal offers a stationary con-
tract that the agent can game by shifting output across time, rather than by
engaging in risk-taking. We show that this model is identical to the setting in
Section [l

1"We are grateful to Doron Ravid for suggesting this formulation of the cost function.
18We are grateful to Lars Stole for suggesting this interpretation of the model.
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Consider a continuous-time game between an agent and a principal on the
time interval [0, 1]. Both parties are risk-neutral and do not discount time. At
t=0:

1. The principal offers a stationary contract s(y) : Y — [—M, 00).

2. The agent accepts or rejects. If he rejects, he earns uy and the principal

earns 0.
3. The agent chooses an effort a > 0.
4. Total output z is realized according to F(-|a) € A(Y).

5. The agent chooses a mapping from time ¢ to output at time t, y, :
0,1] — Y, subject to fol v, (t)dt = .

6. The agent is paid fol s(y(t))dt.

The principal’s and agent’s payoffs are fol [y; — s(y;)] dt and fol s(y)dt — c(a),
respectively. Let F(-|) and ¢(-) satisfy the conditions from Section [2|

Crucially, the principal must offer a stationary contract s(-). Without
this restriction, the principal could eliminate gaming incentives entirely, for
instance by paying only for output realized at a specific time. While station-
arity is a significant restriction, we believe it is realistic in many settings: as
documented by Oyer (1998) and [Larkin| (2014), contracts tend to be stationary
over some period of time (such as a quarter or a year).

This problem is equivalent to one in which, rather than choosing the re-
alized output y,(t) at each time ¢, the agent instead decides what fraction of
time in ¢ € [0, 1] to spend producing each possible output y € Y. In particular,
define G, (y) as the fraction of time for which y,(t) < y[®| Then G,(*) is a
distribution that satisfies E¢, [y] = x, and the agent’s and principal’s payoffs
are Eqg, [s(y)] — ¢(a) and Eg, [y — s(y)], respectively. That is, intertemporal

gaming plays exactly the same role as gambling in our baseline model.

YFormally, G, (y) = L({t|y.(t) < y}), where L(-) denotes the Lebesgue measure.
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Proposition 8. The optimal contracting problem in this setting coincides with

-[LLF) with u(y) =y and n(y) = y. Hence, if a* > 0 is optimal, then

a* < a8 and sk.(-) is optimal.

Intuitively, the agent will adjust his realized output so that his total payoff
equals the concave closure of s(-). He does so by smoothing output over time
if s(-) is concave, or bunching it in a short interval if s(-) is convex. This
behavior is consistent with Oyer (1998) and |[Larkin| (2014)), which find that
salespeople facing convex incentives concentrate their sales. Conversely, Brav
et al.| (2005) find that CEOs and CFOs pursue smooth earnings to avoid the

severe penalties that come from falling short of market expectations.

7 Concluding Remarks

Risk-taking fundamentally constrains how a principal motivates her agents.
This paper argues that risk-taking blunts convex incentives, which has signif-
icant effects on optimal incentive provision. Apart for Corollary [I, the agent
does not engage in risk-taking under our optimal contract. Therefore, our
analysis focuses on the incentive costs of risk-taking, rather than any direct
costs that risk-taking has on society.

Nevertheless, our framework provides a natural starting point to consider
why contracts might not deter risk-taking. Corollary [1| suggests one reason:
the principal might be risk-seeking, for instance because her own incentives are
non-concave. A second reason is implicit in our assumption that the principal
can commit to an incentive scheme. Commitment might be difficult in some
settings, for instance because output can serve as the basis for future com-
pensation (Chevalier and Ellison| (1997)); Makarov and Plantin| (2015)). More
generally, an agent’s competitive context shapes the incentives they face, which
in turn determine the kinds of risks they optimally pursue; see Fang and Noe
(2015) for a step in this direction. A further analysis of how competition shapes
incentives could shed more light on risk-taking behavior in both financial and

product markets.
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A Proofs for Sections [3 and 4

For notational convenience, we use the indefinite integral to indicate an integral

on [y,y] in all of the appendices.

A.1 Proof of Proposition

Fix a > 0, and let v(-) implement a at maximum profit. We first claim that
following each realization x, the agent’s payoff equals v“(x) and the principal’s
payoff is no larger than 7(z — 0°(x)).

Fix z € Y. Since v is upper semicontinuous, there exists p € [0, 1] and
21,29 € Y such that pz; + (1 — p)zg = x and pv(z1) + (1 — p)v(z2) = v(x).
Since the agent can choose G, to assign probability p to z; and 1 — p to
z9, his expected equilibrium payoff satisfies Fq, [v(y)] > v°(z). But v is
concave and v¢(y) > v(y) for any y € ), so by Jensen’s Inequality Eg, [v(y)] <
Eq, [v°(y)] < v°(Eg, [y]) = v°(z). So Eg, [v(y)] = v°(x), and hence the
contract v°(z) satisfies (IC)-(LLg]) for effort a and the degenerate distribution
G.

Next, consider the principal’s expected payoff. Since 7(+) is concave, ap-

plying Jensen’s Inequality and the previous result yields

Epcia) [Ee, [y =« (W) < Ercjo [7 (Ee, [y — v (v(@))])]
< EF( o) [T (2 —u 1(vc(l‘)))] :

where the first inequality is strict if 7 is strictly concave and the second is
strict if u is strictly concave (so that —u~! is also strictly concave). Therefore,
the principal weakly prefers the contract v°(x), and strictly so if either 7 (-) or

u(+) is strictly concave. B

A.2 Proof of Lemma 1]

Existence follows from Proposition [J/in Appendix[D} To prove uniqueness, sup-
pose at least one of 7() or u(+) is strictly concave, and suppose that two con-

tracts v(-) and 9(-) both implement a > 0 at maximum profit, with v(x) # o(z)
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for some z € ). Since v(-) and 0(-) are upper semi-continuous and concave,

they must differ on an interval of positive length. But then the contract

v*(-) = 3(v(+) + (-)) satisfies 1)1} for effort a, and the principal’s

payoff under v* is

Er(la) [T(y —u (0" ()] = Ergjo) [7 (v — 5 (w (0(y) +u'(0(y))))] >
3Er(la) [T(y = u (@) + 5Erej [7(y — u™ (@),

by Jensen’s Inequality, where at least one of the inequalities is strict.ll

A.3 Proof of Proposition

For any contract s, write U(s) = max, {Er(jq)[s(y)] — c(a)}. Fix an optimal
pair (a*, s*) where s*(-) implements a*. Recall that for each a, s is the lowest-
cost linear contract that implements a, and that saLFB has slope 1.

Assume first that U(s*) > U(s;). Then

Erclay [1(y = 5" (y)] < 7 (Epjar) [y — 5" (v)])

I
3

IN
)

" = c(a") = (Bpcpors) [s505(y)] — c(a”?)))

I
N
AAE\/-\/-\
*
|
o
—
S
*
SN~—
|
~—
*
B
*
.
*
—
<
=
|
o)
~—~
S
*
~—
~
~—

= ]EF(,‘aFB) [T(y - SaFB(y))} :

The first inequality is Jensen’s, and is strict unless either y—s*(y) is constant or
the principal is risk neutral. The second inequality uses U(s*) > U(stzp) and
a* —c(a*) < a"P —c(arP), and is strict unless a* = a"F and U(s*) = U(skp).
The final equality uses that y—s%.,(y) is a constant. For (a*, s*) to be optimal,
these inequalities must hold with equality, so a* = a®?, sk, (-) is optimal, and
moreover s* = saLFB if the principal is risk averse.

Assume instead that U(sk.z) > U(s*). Then, since U(s*) > uy, it follows
that s%.5(y) = —M. For each a, let §,(-) be the linear contract 5,(y) = s*(y)+

d(a)(y — y) that equals s*(y) at y and implements a. Note that 5,r5(y) >
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skep(y) for any y, so U(8,r5) > U(skep) > U(s*).
We claim that U(8,+) < U(s*). To see this, define @ so that

/ (8- () — (°(y) + ) f(z]a")dz = 0 (8)

and suppose to the contrary that @ > 0. Then, since 5.-(y) < s*(y) + 4, and
since 34-(-) is linear and s*(-) + @ is concave, there exists § > y such that

Soc () — (s*(+) + @) is strictly negative below § and strictly positive above 7.

fa(la”) -
f(la*)

Hence, since
that

is strictly increasing, by Beesack’s mequahtyl 1mphes

Tl f(yla®)dz

= [ o) = ') ulolay
where the equality uses that [ f,(y|a*)dy = 0. This contradicts that both §,-
and s* implement a*, and so U(S,+) < U(s*).

Since U(3$,) is continuous in a and U(S,r5) > U(s*) > U(s,+), there exists
a € [a*,a™P) such that U(5;) = U(s*). Since st is weakly below 3,

EF(~\a*) [Sé(y)} < IE‘:fF(-|a*) [§&(y)]

i
S =
A

&
"w>

IS
—

<
=

|
Q\
—

Q>
N~—
—

Q>

|

Q
*
SN—

(8a) + ¢
< U(8s) + c(a”)
= U(s") +
= Ep(jar [s"(y)] -

20The relevant version of Beesack’s inequality states that if a function h( ) s1ngle crosses 0
from below and satisfies [ h(z)dx = 0, then for any increasing function g(-), [ h(x)g(z)dz >
0, and strictly so if g(+) is strictly increasing and h(+) is not everywhere 0. See Beesack (1957)
available online at https://www.jstor.org/stable/2033682.
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Here, the second equality uses that Ep(.e) [5a(y)] is linear in a and that 5(:)
implements @, and the second inequality uses that ¢(-) is convex.

Choose § so that sZ(-) crosses the concave contract s*(-) from below at 7,
where if sk(y) < s*(y) for all y, then § = ¢. Since a < a’P, and hence sZ(-)

has slope strictly less than 1, it follows that for all y < ¢ and ¢ > sZ(y),
Ty —t) =7y —si(y) > (5 — s:(9)),

and strictly so if 7(-) is not linear. Similarly, for all y > ¢ and ¢ < s%(y),
Ty —t) <7y —si(y) <G — 52 (@),

and strictly so if 7(-) is not linear. That is, the marginal cost to the principal
of paying the agent is no less than 7/(§ — s%(g)) for y < §, and no more than
this amount for y > 4.

But then, since Ep(joy [s%(y)] < Epgjar) [s*(y)] and sk(y) < s*(y) if and
only if y < 9,

Ergan) [7(y — sE(y)] > Eran [7(y — s* ()],

and strictly so unless the principal is risk neutral, or s¥(-) and s*(-) agree.

Finally, since the slope of sk(.) is strictly less than 1 and a > a*,

Ercp [1(y = si®)] = Ercpe) [7(y — 55 ()]

and strictly so unless a = a*.

To conclude the proof, note that since (a*,s*) is optimal, each of these
inequalities is an equality, and hence a* = a < afP. If the principal is risk
averse, then s* = sk as well. If the principal is risk neutral, then s¥(-) is

optimal but not uniquely so.l
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A.4 Proof of Corollary

Fix a > 0 and consider the problem (Objg|)-(LLg) with an arbitrary =(-) and
u(s) = s. Define Eg, [7(y)] = 7°(z), where 7°(-) denotes the concave closure

of 7(-).
Modify (Obj)-(NGJ) so that the principal’s utility equals 7¢(+). Since 7¢(y) >
m(y) for any y, so the principal’s payoff in this modified problem must be

weakly larger than under the original problem. But 7°(-) is concave and

sk(y) = —M, so Proposition [2 implies that sZ(-) implements a at maximum

profit in this modified problem. So the principal’s expected payoff equals
Er(ja) [7°(x — sk(z))] in this modified problem.

Now, consider the contract sZ(z) in the original problem (Obj)-(NG]). For
any distribution G, € A(Y) such that Eq, [y] = z, Eq, [y — sk (y)] = z—st(x)
because s is linear. Therefore, as in Proposition |1} there exists some G such
that Egr [w(y — sk(y))] = 7°(z — sL(x)). Furthermore, conditional on z, the
agent’s expected payoff satisfies Eq, [sL(y) — c(a)] = sk(z) — c(a) for any

G, with Eg, [y] = 2. So sE(-) satisfies (ICg)-(LLg) for a > 0 and G, =

GE for each z € . The principal’s expected payoff if she offers s& equals

L
a

Er(ja) [7¢(z — sE(z))], her payoff from the modified problem. So st a fortiori

implements a at maximum profit for any « > 0.
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