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Abstract

Consider an agent who can costlessly add mean-preserving noise to

his output. To deter such risk-taking, the principal optimally o�ers a

contract that makes the agent's utility concave in output. If the agent is

risk-neutral and protected by limited liability, this concavity constraint

binds and so linear contracts maximize pro�t. If the agent is risk averse,

the concavity constraint might bind for some outputs but not others.

We characterize the unique pro�t-maximizing contract and show how

deterring risk-taking a�ects the insurance-incentive tradeo�. Our logic

extends to costly risk-taking and to dynamic settings where the agent

can shift output over time.
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1 Introduction

Contracts motivate employees, suppliers, and partners to exert e�ort. How-

ever, improperly designed incentives can instead encourage excessive risk-

taking with dramatic consequences. For instance, following the 2008 �nan-

cial crisis, Federal Reserve Chairman Ben Bernanke stated that �compensa-

tion practices at some banking organizations have led to misaligned incentives

and excessive risk-taking, contributing to bank losses and �nancial instabil-

ity� (Federal Reserve Press Release (10/22/2009)). Garicano and Rayo (2016)

suggest that poorly designed incentives led the American International Group

(AIG) to expose itself to massive tail risk in exchange for the appearance of

stable earnings. Rajan (2011) echoes these concerns and suggests that mis-

aligned incentives worsened the e�ects of the crisis.

Even without such disastrous outcomes, agents face opportunities to game

their incentives by engaging in risk-taking in many other settings. Portfolio

managers can choose riskier investments, as well as exert e�ort, to in�uence

their average returns (Brown, Harlow, and Starks (1996); Chevalier and El-

lison (1997); de Figueiredo, Rawley, and Shelef (2014)). Executives and en-

trepreneurs control both the expected pro�tability of their projects and the

distribution over possible outcomes (Matta and Beamish (2008); Rahmandad,

Henderson, and Repenning (2016); Vereshchagina and Hopenhayn (2009)).

Salespeople can both invest to increase demand and adjust the timing of the

resulting sales (Oyer (1998); Larkin (2014)).

This paper explores how a principal optimally motivates an agent who can

engage in risk-taking in a canonical moral hazard setting. We argue that risk-

taking renders convex incentives ine�ective, so that the principal optimally

o�ers a contract that makes the agent's utility concave in output. This result is

the foundation of our analysis, which explores the implications of this concavity

constraint and shows that it has potentially signi�cant e�ects on the structure

of contracts, pro�ts, productivity, and welfare.

In our model, a principal contracts with a potentially liquidity-constrained

agent. If the agent accepts the contract, then he exerts costly e�ort that
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produces a non-contractible intermediate output. The agent privately observes

this output and can then manipulate it by costlessly adding mean-preserving

noise, which in turn determines a contractible �nal output.

Building on the arguments of Jensen and Meckling (1976) and others, Sec-

tion 3 shows that the agent will choose to take on additional risk whenever

intermediate output is such that his utility under the contract is convex at

that output. In so doing, the agent makes his expected utility concave in in-

termediate output. If the principal and agent are both weakly risk-averse, the

principal �nds it optimal to deter risk-taking entirely by o�ering an incentive

scheme that directly makes the agent's utility concave in output. We refer

to this additional constraint � that utility be weakly concave in output � as

the no-gaming constraint. Wherever the no-gaming constraint binds, the

optimal contract makes the agent's utility linear in output.

In Section 4, we consider a risk-neutral agent. In this setting, we show that

the no-gaming constraint binds everywhere, so that a linear (technically, a�ne)

contract is optimal, remains so regardless of the principal's attitude toward risk

(even if she is risk-loving), and is uniquely optimal if the principal is risk averse.

Intuitively, absent the no-gaming constraint, the principal would like to o�er

a convex contract, which would concentrate high pay on high outcomes and

so inexpensively motivate the agent while respecting the liability constraint.

Therefore, the no-gaming constraint binds and so the principal optimally o�ers

a linear contract. We show that relative to any strictly concave contract, there

is a linear contract that both better insures the principal and better motivates

the agent.

Section 5 builds on this logic to explore optimal incentives with a risk-

averse agent (and a risk-neutral principal). In this setting, the no-gaming

constraint implies that the agent's utility must be concave in output. Similar

to Section 4, the optimal contract makes the agent's utility linear wherever

this constraint binds. Unlike that section, however, the no-gaming constraint

does not necessarily bind everywhere.

Suppose that the limited liability constraint is slack. Without risk-taking,

the optimal contract would equate the principal's marginal cost of paying the
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agent to the marginal bene�t of relaxing the agent's participation and incen-

tive constraints at each output (Mirrlees (1976); Holmström (1979)). However,

doing so might violate the no-gaming constraint. Where it does, we show that

the optimal contract is instead ironed, in the sense that it is linear in util-

ity and sets expected marginal bene�ts equal to expected marginal costs over

those regions. For instance, suppose that no-gaming binds for low output but

not for high output, which turns out to be true under fairly weak conditions

on preferences and production. In that case, the optimal contract makes the

agent's utility linear in output below a threshold; above that threshold, utility

is concave and equates marginal bene�ts to marginal costs output-by-output.

In the extreme, if no-gaming is slack everywhere, then the standard contract

characterized by Mirrlees (1976) and Holmström (1979) is optimal; if it binds

everywhere, then the optimal contract makes the agent's utility linear in out-

put.

If instead the participation constraint is slack (and so limited liability

binds), then we show that the no-gaming constraint binds for any output

that suggests less than the desired e�ort. As a result, and similar to the intu-

ition outlined above, the pro�t-maximizing incentive scheme makes the agent's

utility linear over these outputs.

These results are implications of a set of necessary and su�cient conditions

we develop for a pro�t-maximizing contract. Since balancing bene�ts and costs

output-by-output might violate concavity, we cannot characterize the pro�t-

maximizing contract using the techniques of Mirrlees (1976) and Holmström

(1979). Instead, we construct two simple perturbations of a candidate contract

that preserve concavity while changing either the level or the slope of the

agent's utility over appropriate intervals of output. Perhaps surprisingly, we

prove that it is also su�cient to consider these two perturbations, so that a

contract is pro�t-maximizing if, and only if, it cannot be improved by them.

Finally, Section 6 considers three extensions, all of which assume that both

the principal and the agent are risk-neutral. First, we consider optimal con-

tracts in a model where the agent engages in risk-taking before he observes

intermediate output. We show that the agent's risk-taking concavi�es his ex-
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pected payo� conditional on his e�ort, rather than on intermediate output, and

we identify mild conditions under which a linear contract is optimal. Second,

we consider optimal contracts if the agent incurs a cost that is increasing in

the variance of her risk-taking distribution. We show that our basic intuition

extends to this setting, resulting in a unique optimal contract that is convex in

output, but not so convex as to induce gaming. As gaming becomes cheap, the

optimal contract becomes linear. Finally, we study a dynamic setting in which

the principal o�ers a stationary contract that the agent can game by choos-

ing when output is realized over an interval of time. Oyer (1998) and Larkin

(2014) document how convex incentive schemes and long sales cycles can en-

courage such intertemporal gaming. We show that this setting is equivalent

to our risk-taking model. Thus, a linear contract is optimal, since a convex

contract would induce the agent to bunch sales over short time intervals and

a strictly concave contract would provide subpar e�ort incentives.

Our analysis is inspired by Diamond (1998) and Garicano and Rayo (2016).

Diamond (1998) is a seminal exploration of optimal contracts when the agent

can both exert e�ort and make other choices that a�ect the output distribu-

tion. Section 6 of that paper argues that linear contracts are among the many

optimal contracts in an example with risk-neutral parties, binary e�ort, and

an agent who can choose any mean-preserving spread of output. Our Proposi-

tion 2 expands this result to settings with more general e�ort choices, output

distributions, and principal utility functions.

Relative to Diamond (1998), we contribute in three ways. First, we show

that the fundamental consequence of agent risk-taking is to constrain incen-

tives to be concave, not necessarily linear. Linear contracts are instead a

consequence of this concavity constraint binding everywhere, as it does if the

agent is risk-neutral. However, as Section 5 demonstrates, the concavity con-

straint need not necessarily bind everywhere if the agent is risk-averse, in which

case the optimal contract makes utility strictly concave in output. Second, our

Proposition 2 identi�es an additional conceptual advantage of linear contracts

with a risk-neutral agent: relative to any strictly concave contract, they better

insure the principal and so are uniquely optimal if the principal is even slightly
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risk-averse. Finally, our analysis of optimal contracts with a risk-averse agent

in Section 5 is entirely new and shows how risk-taking a�ects contracts in a

canonical moral hazard setting. Garicano and Rayo (2016) includes a model

of risk-taking that is similar to ours, but it �xes an exogenous (non-concave)

contract to focus on the social costs of excessive risk.

Our model of risk-taking is embedded in a canonical moral hazard prob-

lem. With a risk-neutral agent, our model builds on Innes (1990), Spulber

and Poblete (2012), and other papers for which limited liability is the central

contracting friction. With a risk-averse agent, we build on Mirrlees (1976) and

Holmström (1979) if the limited liability constraint is slack, and Jewitt, Kadan,

and Swinkels (2008) if it binds. Within the classic agency literature, our anal-

ysis is conceptually related to papers that study principal-agent relationships

in which the agent both exerts e�ort and makes other decisions. Classic exam-

ples include Lambert (1986) on how agency problems in information-gathering

can lead to ine�cient investment in risky projects and Holmström and Ricart

i Costa (1986) on project selection under career concerns. Malcomson (2009)

presents a general model of such settings, but di�ers from our analysis in

assuming that decisions are contractible. Other papers consider settings in

which the principal also chooses actions other than the agent's wage contract,

such as an endogenous performance measure; see for example, Halac and Prat

(2016) and Georgiadis and Szentes (2018).

A growing literature studies agent risk-taking. Some papers in this lit-

erature assume that an agent chooses from a parametric class of risk-taking

distributions in either static (Palomino and Prat (2003); Hellwig (2009)) or dy-

namic (Demarzo, Livdan, and Tchistyi (2014)) settings. We di�er by allowing

our agent to choose any mean-preserving spread of output, which means that

our optimal contract must deter a more �exible form of gaming. Therefore,

we join other papers that study non-parametric risk-taking, again in either

static (Robson (1992); Diamond (1998); Hébert (2015)) or dynamic (Ray and

Robson (2012); Makarov and Plantin (2015)) settings. We di�er from these

papers by identifying concavity as the key constraint on the optimal incentive

scheme if the agent can costlessly take on risk and then characterizing opti-
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mal incentives given this constraint in the context of a canonical moral hazard

problem.1

More broadly, our work is related to a long-standing literature which ar-

gues that optimal contracts must both induce e�ort and deter gaming. A

seminal example is Holmström and Milgrom (1987), which displays a dynamic

environment in which linear contracts are optimal. Recent papers, including

Chassang (2013), Carroll (2015), and Antic (2016), take up this point by de-

parting from a Bayesian framework and proving that simple contracts perform

well under min-max or other non-Bayesian preferences. In contrast, our paper

considers contracts that deter gaming in a setting that lies �rmly within the

Bayesian tradition.

While the contracting problems are quite di�erent, Carroll's intuition is

related to ours. In that paper, Nature selects a set of actions available to the

agent in order to minimize the principal's expected payo�s. The key di�erence

is in the types of gambles available to the agent. In Carroll's paper, Nature

might allow the agent to take on additional risk to game a convex incentive

scheme, in which case risk-taking behavior is similar to that in our paper and

its predecessors. However, if the principal o�ers a concave incentive scheme,

then Nature might also allow the agent to choose a distribution with less risk.

In contrast, we allow the agent to add risk but not reduce it. This di�erence

is most striking if the agent is risk-averse, in which case Carroll's optimal

contract makes the agent's utility linear in output, while ours might make

utility strictly concave.

2 Model

We consider a static game between a principal (P, �she�) and an agent (A,

�he�). The agent has limited liability, so he cannot pay more than M ∈ R
to the principal. Let [y, ȳ] ≡ Y ⊆ R be the set of contractible outputs. The

1In Ray and Robson (2012), Condition R2 is a version of a concavity constraint. However,
that paper analyzes how risk-taking by status-conscious customers a�ect the intergenera-
tional wealth distribution, and in particular it studies neither moral hazard nor optimal
contracts.
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timing is as follows:

1. The principal o�ers an upper semicontinuous contract s(y) : Y → [−M,∞).2

2. The agent accepts or rejects the contract. If he rejects, the game ends,

he receives u0, and the principal receives 0.

3. If the agent accepts, he chooses e�ort a ≥ 0.

4. Intermediate output x is realized according to F (·|a) ∈ ∆(Y).

5. The agent chooses a distribution Gx ∈ ∆(Y) subject to EGx [y] = x.

6. Final output y is realized according to Gx, and the agent is paid s(y).

The principal's and agent's payo�s are equal to π (y − s(y)) and u (s (y))−c(a),

respectively.

We assume that π(·) and u(·) are strictly increasing and weakly concave,

with u(·) onto, and that c(·) is in�nitely di�erentiable, strictly increasing, and

strictly convex. We also assume that F (·) has full support for all a ≥ 0,

satis�es EF (·|a)[x] = a, and is in�nitely di�erentiable with a density f(·) that
is strictly MLRP-increasing in a, with fa(·|a)

f(·|a)
uniformly bounded for all a.

This game is similar to a canonical moral hazard problem, with the twist

that the agent can engage in risk-taking by choosing a mean-preserving spread

Gx of intermediate output x. Let

G = {G : Y → ∆(Y) | EGx [y] = x for all x ∈ Y} .

Without loss, we can treat the agent as choosing a and G ∈ G simultaneously.

Intermediate output can take di�erent forms in di�erent settings. For

instance, CEOs typically have advance information about whether or not they

will hit their earnings targets in a given quarter, and they can cut maintenance

or R&D expenditures if they are likely to fall short, taking on tail risk for

2One can show that the restriction to upper semicontinuous contracts is without loss:
if the agent has an optimal action given a contract s(·), then there exists an upper semi-
continuous contract that induces the same equilibrium payo�s and distribution over �nal
output.
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the appearance of higher earnings (Rahmandad, Henderson, and Repenning

(2016)). Similarly, portfolio managers are typically compensated based on

their annual returns and can adjust the riskiness of their investments over the

course of the year in order to game those incentives (Chevalier and Ellison

(1997)).3

After the agent observes x but before y is realized, we have a setting with

both a hidden type and a hidden action. In such problems, it is often useful

to ask the agent to report his type, in this case x. By punishing di�erences

between this report and y, the principal may be able to dissuade some or all

gambling. We restrict attention to situations where such intermediate reports

are not useful. The simplest way to do so is to assume that the timing of x

is random, and gambling is instantaneous.4 We think this is the economically

correct modeling assumption in many settings. Indeed, the spirit of the model

is that the agent can misbehave in a particular direction, and it seems unlikely

that the principal can catalog the precise moments and ways in which this

might occur.

3 Risk-taking and optimal incentives

This section explores how the agent's ability to engage in risk-taking constrains

the contract o�ered by the principal.

We �nd it convenient to rewrite the principal's problem in terms of the

utility v(y) ≡ u(s(y)) that the agent receives for each output y. If we de-

�ne u ≡ u(−M), then an optimal contract solves the following constrained

3An alternative assumption is that the agent engages in risk-taking before uncertainty
is resolved, which may be more natural in some applications. Section 6.1 explores this
alternative.

4Allowing reports would change the agent's gaming incentives but not completely elim-
inate them. Online Appendix E.1 has an analysis with risk-neutral parties and shows that
linear contracts are optimal even if such reports are allowed.
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maximization problem:

max
a,G∈G,v(·)

EF (·|a)

[
EGx

[
π
(
y − u−1 (v (y))

)]]
(ObjF )

s.t. a,G ∈ arg max
ã, G̃∈G

{
EF (·|ã)

[
EG̃x

[v (y)]
]
− c(ã)

}
(ICF )

EF (·|a) [EGx [v (y)]]− c(a) ≥ u0 (IRF )

v (y) ≥ u for all y. (LLF )

The main result of this section is Proposition 1, which characterizes how

the threat of gaming a�ects the incentive schemes v(·) that the principal can
o�er. The principal optimally o�ers a contract that deters risk-taking entirely,

but doing so constrains her to incentive schemes that are weakly concave in

output. De�ne GD so that for each x ∈ Y , GD
x is degenerate at x.

Proposition 1. Suppose (a,G, v(·)) satis�es (ICF )-(LLF ). Then there exists

a weakly concave v̂(·) such that (a,GD, v̂(·)) satis�es (ICF )-(LLF ) and gives

the principal a weakly higher expected payo�.

The proof is in Appendix A. For an arbitrary incentive scheme v(·), de�ne
vc(·) : Y → R as its concave closure,

vc(x) = sup
w,z∈Y,p∈[0,1] s.t. (1−p)w+pz=x

{(1− p)v(w) + pv(z)} . (1)

At any outcome x such that the agent does not earn vc(x), he can engage in

risk-taking to earn that amount in expectation (but no more). But then the

principal can do at least as well by directly o�ering a concave contract, and if

either the agent or the principal is strictly risk-averse, then o�ering a concave

contract is strictly more pro�table than inducing risk-taking.

Given Proposition 1, we can write the optimal contracting problem as one

without risk-taking but with a no-gaming constraint that requires the agent's

utility to be concave in output, with the caveat that our resulting solution is
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one of many if (but only if) both parties are risk-neutral:

max
a,v(·)

EF (·|a)

[
π
(
y − u−1(v(y))

)]
(Obj)

s.t. a ∈ arg max
ã

{
EF (·|ã) [v(y)]− c(ã)

}
(IC)

EF (·|a) [v(y)]− c(a) ≥ u0 (IR)

v(y) ≥ u for all y ∈ Y (LL)

v(·) weakly concave. (NG)

For a �xed e�ort a ≥ 0, we say that v(·) implements a if it satis�es (IC)-(NG)

for a, and it does so at maximum pro�t if it maximizes (Obj) subject to (IC)-

(NG). An optimal v(·) implements the optimal e�ort level a∗ ≥ 0 at maximum

pro�t.

Mathematically, the set of concave contracts is well-behaved. Consequently,

we can show that for any a ≥ 0, a contract that implements a at maximum

pro�t exists, and is unique if either π(·) or u(·) is strictly concave.

Lemma 1. Fix a ≥ 0 and suppose that u > −∞. Then there exists a contract

that implements a at maximum pro�t, and does so uniquely if either π(·) or

u(·) is strictly concave.

This result, which follows from the Theorem of the Maximum, is an im-

plication of Proposition 9 in Online Appendix D.5 Existence is guaranteed

by (NG); for example, without this constraint, no pro�t-maximizing contract

would exist with a risk-neutral agent.6 If at least one player is strictly risk-

averse, then Jensen's Inequality implies that a convex combination of two

di�erent contracts that implement a also implements a and gives the principal

a strictly higher payo�, which proves uniqueness.

5All online appendices may be found at https://sites.google.com/site/danielbarronecon/
6With a risk-neutral agent, the principal wants to pay the agent only after arbitrarily

high output realizations, since those outputs are most indicative of high e�ort. See, e.g.,
Innes (1990).

11



4 Optimal Contracts for a Risk-Neutral Agent

Suppose the agent is risk-neutral, so u(y) = y, v(·) = s(·), and u = −M . In

this setting, the key friction is the agent's liability constraint, which might

prevent the principal from simply �selling the �rm� to the agent.

For any e�ort level a, de�ne

sLa (y) = c′(a)(y − y)− w,

where w = min
{
M, c′(a)(a− y)− c(a)− u0

}
. Intuitively, sLa (y) is the least

costly linear contract that implements a. Note that for a linear contract, (IC)

can be replaced by its �rst-order condition because expected output is linear

in e�ort and the cost of e�ort is convex.

De�ne the �rst-best e�ort aFB ∈ R+ as the unique e�ort that maximizes

y − c(y) and so satis�es c′
(
aFB

)
= 1. We prove that a linear contract that

implements no more than �rst-best e�ort is optimal.

Proposition 2. Let u(s) ≡ s. If a∗ is optimal, then a∗ ≤ aFB and sLa∗(·) is

optimal.

The proofs for all results in this section can be found in Appendix A. To

see the intuition, consider sLaFB(·), which both implements aFB and provides

full insurance to the principal. If sLaFB(·) satis�es (IR) with equality, then it is

clearly optimal.

Suppose instead that (IR) is slack for sLaFB(·), in which case (LL) must

bind. Suppose that (a∗, s∗(·)) is optimal, and let ŝ(·) be the linear contract

that agrees with s∗(·) at y and gives the agent the same utility as s∗(·) if he

chooses e�ort optimally. As shown in Figure 1, ŝ(·) must single-cross s∗(·)
from below, e�ectively moving payments from low to high outputs. Since

F (·|a) satis�es MLRP, paying more for high output motivates more e�ort and

so ŝ(·) implements some â ≥ a∗. If â ≥ aFB, then ŝ(·) ≥ sLaFB(·), and so the

principal prefers sLaFB(·) to s∗(·) because it induces �rst-best e�ort, perfectly

insures the principal, and gives the agent less utility than s∗(·).
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Figure 1: Intuition for the proof of Proposition 2.

If â < aFB, then ŝ′(·) < 1 and so the principal's wealth under ŝ(·), y− ŝ(y),

is increasing in y. Consequently, the principal likes that ŝ(·) induces more

e�ort than s∗(·). Moreover, ŝ(y) > s∗(y) exactly when output is high and

so her marginal utility of wealth is low, and so ŝ(·) also insures the principal

better than s∗(·). So the principal prefers ŝ(·) to s∗(·), and a fortiori prefers

sLâ (·), which lies weakly below ŝ(·). We conclude that any optimal contract

s∗(·) must satisfy s∗(·) ≡ sLa∗(·).
Lemma 1 implies that sLa∗(·) is uniquely optimal if the principal is risk-

averse. If she is risk-neutral, then sLa∗(·) is optimal but not uniquely so; in

particular, any contract with a concave closure equal to sLa∗(·) would give

identical expected payo�s.

For any a > 0, the agent's promised utility under sLa (·) depends on y, the
worst possible outcome over which the agent can gamble. In particular, such a

sLa (·) starts at y and has a strictly positive slope, so that the agent's expected

compensation Ey[s
L
a (y)] = sLa (a) increases without bound as y decreases. That

is, as the agent's ability to take on left-tail risk becomes arbitrarily severe,

motivating e�ort while deterring risk-taking becomes arbitrarily costly to the

13



principal. Consequently, the optimal e�ort level converges to 0 as y becomes

arbitrarily negative. Moreover, if the principal is risk-neutral, then we can

show that e�ort is strictly increasing in y: as the agent's ability to take left-

tail risks becomes more severe, the principal responds by inducing lower e�ort.

See Appendix E.3 for details.

In some applications, the principal might have risk-seeking preferences over

output, for instance because she also faces convex incentives. For example,

Rajan (2011) argues that, anticipating the possibility of bailouts, shareholders

of �nancial institutions might have had an incentive to encourage risk-taking

prior to the 2008 �nancial crisis. We can model such settings by allowing π(·)
to be any strictly increasing and continuous function. Proposition 1 does not

directly apply in this case because the principal might strictly prefer the agent

to take on additional risk following some realizations of x. Nevertheless, we

can modify the argument from Proposition 2 to show that a linear contract is

optimal.

Corollary 1. Let u(s) ≡ s and let π(·) be an arbitrary continuous and strictly

increasing function that has a strictly increasing concave closure πc(·). If a∗

is optimal, then a∗ ≤ aFB and sLa∗(·) is optimal.

To see the proof of Corollary 1, note that the principal's expected payo� cannot

exceed πc(·) for reasons similar to Proposition 1. Therefore, the contract that

maximizes EF (·|a) [πc(x− s(x))] subject to (IC)-(NG) provides an upper bound

on the principal's payo�. But Proposition 2 asserts that sLa∗(·) is optimal in this

problem because πc(·) is concave. Given sLa∗(·), the agent is indi�erent among

distributions G ∈ G, so he is willing to choose G such that the principal's

expected payo� equals πc(·).

5 Optimal contracts if the agent is risk averse

This section characterizes the unique contract that implements a given a > 0

at maximum pro�t in a setting with a risk-averse agent and a risk-neutral prin-

cipal. Section 5.1 illustrates how this characterization sheds light on pro�t-
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maximizing incentives in the presence of risk-taking. These results are im-

plications of our necessary and su�cient conditions for a pro�t-maximizing

contract, developed in Section 5.2.

We impose two simplifying assumptions to make the analysis tractable.

First, letting w denote the in�mum of the domain of u(·), we assume that

limw↓w u
′(w) = ∞ and limw↑∞ u

′(w) = 0. Second, we replace (IC) with the

weaker condition that local incentives are slack,

d

da

{
EF (·|a) [v (y)]− c(a)

}
≥ 0. (IC-FOC)

Given (NG), replacing (IC) with (IC-FOC) entails no loss if F (·|·) satis�es

weak regularity conditions; see, for example, Jewitt (1988) and Chade and

Swinkels (2016). For a �xed e�ort a ≥ 0, de�ne the principal's problem

max
v(·)
{(Obj) subject to (IC-FOC), (IR), (LL), and (NG)} . (P)

For a ≥ 0 and y ∈ Y , de�ne the likelihood function

l(y|a) =
fa(y|a)

f(y|a)
.

De�ne ρ(·) as the function that maps 1
u′(·) into u(·); that is, for every w ∈

(w,∞), ρ
(

1
u′(w)

)
= u(w), with ρ(z) ≡ −∞ for all z ≤ 0.7 Then ρ−1(v(y))

equals the marginal cost to the principal of giving the agent extra utility at y.

If u > −∞, then Lemma 1 implies that a unique solution to (P) exists.

If u = −∞, then Online Appendix D shows that a unique solution exists so

long as u′(·) is not excessively convex. Our results in this section apply in

either setting. Unless otherwise noted, proofs for this section may be found in

Appendix B.

7This function is well-de�ned because u′(·) and u(·) are strictly monotonic. It is contin-
uous because limw↓w u

′(w) =∞ and limw↓w u(w) = −∞.
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5.1 Implications of the No-Gaming Constraint

This section illustrates how risk-taking a�ects the trade-o� between insuring

and motivating the agent that lies at the heart of this moral hazard problem.

For a broad class of settings, we show that optimal incentives are linear in

output where (NG) binds and otherwise equate the marginal costs and bene�ts

of incentive pay.

Given the program (P), let λ and µ be the shadow values on (IR) and

(IC-FOC), respectively. For a �xed a ≥ 0 and an incentive scheme v(·) that

implements a, de�ne

n(y) ≡ ρ−1(v(y))− λ− µl(y|a) (2)

as the net cost of increasing v(·) at y, taking into account how that increase

a�ects (IR) and (IC-FOC). In particular, increasing v(y) increases the prin-

cipal's cost at rate ρ−1(v(y))f(y|a), relaxes (IR) at rate f(y|a), which has

implicit value λ, and relaxes (IC-FOC) at rate fa(y|a), which has implicit

value µ. Taking the di�erence between these costs and bene�ts and dividing

by f(y|a) yields n(y).

Suppose that (LL) is slack. Absent (NG), the optimal contract would

set n(y) = 0 output-by-output and so v(·) = ρ(λ + µl(·|a)). Indeed, this

incentive scheme (with the appropriate λ and µ) is the Holmström-Mirrlees

contract characterized in Mirrlees (1976) and Holmström (1979). However,

setting n(y) = 0 at each y might violate (NG).

Nevertheless, pro�t-maximizing contracts build on this basic logic. Intu-

itively, if setting n(y) = 0 at some output y would violate (NG), then this

constraint binds, and so the optimal contract is locally linear in utility. These

linear segments are �ironed� in the sense that they set net cost equal to 0 in

expectation, even if they do not do so point-by-point. Outside of these ironed

regions, (NG) is slack and so n(y) = 0 at each output.

We demonstrate this intuition if ρ(λ + µl(·|a)) is �rst convex and then

concave, which we argue is a natural case to consider.
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Lemma 2. Suppose u(·) and F (·|a) are analytic and con (ρ′) + con(ly) > −1.8

Then for any λ and µ, there exists a yI such that ρ(λ + µl(·|a)) is convex on

[y, yI) and concave on (yI , ȳ].

The proof of Lemma 2 may be found in Appendix E.2. The requirement

that con(ρ′) + con(ly) > −1 is relatively mild, and holds, for example, if ly is

strictly log-concave and u(w) = logw, or more generally, for a wide range of

utilities that satisfy Hyperbolic Absolute Risk Aversion (HARA).9

The following Proposition characterizes the optimal contract if ρ(λ+µl(·|a))

is �rst convex and then concave, and (LL) is slack.

Proposition 3. Fix a ≥ 0 and π(y) ≡ y. Let v∗(·) solve (P), let λ and

µ be the shadow values on (IR) and (IC-FOC), respectively, and suppose that

v∗(y) > u.10 Suppose there exists yI such that ρ(λ+µl(·|a)) is convex on [y, yI)

and concave on (yI , ȳ]. Then v∗(·) satis�es (IR) and (IC-FOC) with equality,

and there exist ŷ ≥ yI , v ∈ R, and α ∈ R+ such that v∗(·) is continuous,

v∗(y) =

v + α(y − y) if y < ŷ

ρ(λ+ µl(y|a)) otherwise,

and such that
∫ ŷ
y
n(y)f(y)dy = 0. If yI = y, then ŷ = y.

We interpret Proposition 3 here and defer a discussion of the proof to

Section 5.2. Under the condition that ρ(λ + µl(·|a)) is �rst convex and then

concave and (LL) is slack, the pro�t-maximizing contract v∗(·) is linear in

utility for low output and otherwise sets n(y) = 0 output-by-output. Moreover,

8For any interval X ⊆ R and analytic function h : X → R+, con(h) =

infX

{
1− (hh

′′
)/(h

′
)2
}
. Intuitively, con(h) is the largest value t for which ht/t is concave.

See Prekopa (1973) and Borell (1975) for details.
9Recall that HARA utility satis�es u(w) = 1−γ

γ

(
αw
1−γ + β

)γ
. Then for any λ and µ,

ρ(λ + µl(·|a)) is �rst convex and then concave for any well-de�ned HARA utility if either
γ < 0 or γ ∈

(
1
2 , 1
)
.

10Appendix D gives conditions under which an optimal contract exists even if u = −∞.
Under those conditions, this existence proof also shows that (LL) is slack if u > −∞ is
su�ciently negative.
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Figure 2: Illustration of ρ(λ+ µl(·|a)) and the pro�t-maximizing v∗(·).

on the linear region of v∗(·), expected net costs equal 0. See Figure 2 for an

illustration.

In the extremes, if ρ(λ + µl(·|a)) is convex everywhere, then the pro�t-

maximizing contract is linear,11 while the pro�t-maximizing contract equals

ρ(λ + µl(·|a)) if the latter is concave. Intuitively, ρ(λ + µl(·|a)) is likely to

be convex if the principal would like to �insure against downside risk� by

o�ering low-powered incentives for low output and �motivate with upside risk�

by giving steeper incentives for high output. For instance, ρ(·) tends to be more

convex if prudence, which measures how rapidly the agent becomes less risk-

averse as his compensation increases, is large relative to relative risk aversion.12

Conversely, ρ(λ+ µl(·|a)) is likely to be concave if the principal would like to

�motivate with downside risk� and �insure against upside risk.�

Proposition 3 focuses on the case where (LL) is slack, but (NG) has a

11This case obtains if, for example, l(·|a) is convex and ρ(·) is convex on the range of
λ+ µl(·|a). Note that ρ(·) cannot be convex over its entire domain, because ρ(0) = −∞.

12In particular, recalling that prudence is −u
′′′(·)
u′′(·) and relative risk aversion is −u

′′(·)
u′(·) , it

can be shown that ρ(·) is convex whenever the ratio of prudence to relative risk aversion
exceeds 3.
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similar e�ect if (IR) is slack so that (LL) binds. In that case, the principal

would like to pay the agent as little as possible for any y with l(y|a) < 0,

since paying for low output both increases the agent's rent and tightens (IC-

FOC) (Jewitt, Kadan, and Swinkels (2008)). However, rewarding the agent for

high output while holding him to his liability constraint following low output

violates (NG), which therefore binds following low output.

Proposition 4. Fix a ≥ 0 and π(y) ≡ y. Let v∗(·) solve (P), and suppose

that (IR) is slack under v∗(·). De�ne y0 such that l (y0|a) = 0. Then v∗(·) is

linear on [y, y0].

If (IR) is slack and v∗(·) is strictly concave for y < y0, then making it

��atter� on [y, y0] by taking a convex combination of it with the linear segment

that connects v(y) and v(y0) improves the agent's incentives, and decreases

the principal's expected payment. So the pro�t-maximizing v∗(·) is linear on
[y, y0], though it might be strictly concave for higher output.

Before turning to our characterization, it is worth emphasizing that the

e�ects of risk-taking extend beyond those outputs for which (NG) binds. In

particular, so long as (NG) binds somewhere, risk-taking potentially distorts

both λ and µ away from their levels absent (NG), and so can in�uence optimal

incentives even at outputs where (NG) is slack. That is, λ and µ both shape,

and are shaped by, the pro�t-maximizing incentive scheme.

5.2 A Characterization

This section develops the necessary and su�cient conditions for a pro�t-

maximizing contract that underpin the results in Section 5.1. Since setting

n(y) = 0 output-by-output might violate (NG), we instead identify perturba-

tions that respect (NG) and a�ect an interval of an incentive scheme. Then

we prove that an incentive scheme is pro�t-maximizing if and only if it cannot

be improved by these perturbations.

We begin by de�ning several features of v(·) that will be useful for our

construction.
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Figure 3: Raise and tilt . These perturbations require care around yL and yH to ensure

that concavity is preserved. For this reason, we need both yL and yH to be free for raise.

For tilt up, we need yL to be free, while yH must be free for tilt down.

De�nition 1. Given v(·):

1. An interval [yL, yH ] is a linear segment if v(·) is linear on [yL, yH ] but

not on any strictly larger interval. Point y is free if it is not on the

interior of any linear segment.

2. A free y ∈ (y, ȳ) is a kink point of v(·) if two linear segments meet at

y, and a point of normal concavity otherwise.

Consider the following two perturbations, formally de�ned in Online Ap-

pendix B and illustrated in Figure 3. Raise increases the level of v(·) by a

constant over an interval, while tilt increases the slope of v(·) by a constant

over an interval. Raising an interval typically introduces non-concavities into

v(·) at both endpoints of the interval. Tilting it a positive amount may intro-

duce a non-concavity at the lower end of the interval, and tilting it a negative

amount may introduce a non-concavity at the upper end of the interval. On-

line Appendix B shows that for small perturbations, we can repair these non-

concavities on an arbitrarily small interval so long as the relevant endpoints

are free.
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While raise and tilt a�ect both (IR) and (IC-FOC), Online Appendix B

shows that since F (·|a) satis�es MLRP, raise and tilt have non-collinear e�ects

on (IR) and (IC-FOC), which means that we can construct combinations of

the two perturbations to a�ect each of these constraints separately. Therefore,

so long as there exists at least one free point ŷ < ȳ such that v(ŷ) > u, we

can use these perturbations on [ŷ, ȳ] to establish the shadow values λ and µ of

relaxing (IR) and (IC-FOC).13

If an incentive scheme v(·) is pro�t-maximizing, then it cannot be improved

by either raise or tilt on any valid interval. That is, raising v(·) on an interval

[yL, yH ] with both endpoints free must have non-negative expected net cost:∫ yH

yL

n(y)f(y|a)dy ≥ 0. (3)

If v(yL) > u, then we can similarly perturb v(·) on [yL, yH ] by raising it a

negative amount, so (3) must hold with equality.

Similarly, if yL is free, then tilting v(·) on [yL, yH ] must have non-negative

expected net cost:∫ yH

yL

n (y) (y − yL)f (y|a) dy + (yH − yL)

∫ ȳ

yH

n(y)f(y|a) ≥ 0, (4)

where the �rst term represents the fact that tilt increases the slope of v(·) from
yL to yH and the second represents the resulting higher level of v(·) from yH

to ȳ. If yH is free, then applying negative tilt yields the reverse inequality:∫ yH

yL

n (y) (y − yL)f (y|a) dy + (yH − yL)

∫ ȳ

yH

n(y)f(y|a) ≤ 0. (5)

Our characterization combines these perturbations with the usual comple-

mentary slackness condition that λ = 0 if (IR) is slack (so that (LL) binds).

De�nition 2. A contract v(·) is Generalized Holmström-Mirrlees (GHM) if

(IC-FOC) holds with equality, (IR), (LL), and (NG) are satis�ed, there exist

13If no such point exists, then v(·) is linear and v(y) = u.
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λ ≥ 0 and µ > 0 such that

λ

(∫ ȳ

y

v(y)f (y|a) dy − c(a)− u0

)
= 0,

and for any yL < yH ,

1. if yL and yH are free, then (3) holds, and holds with equality if v (yL) > u;

2. if yL is free, then (4) holds;

3. if yH is free, then (5) holds.

Our main result in this section characterizes the unique incentive scheme

that implements any a > 0 at maximum pro�t.

Proposition 5. Suppose u(·) is strictly concave and π(y) ≡ y. Then for any

a > 0, v(·) implements a at maximum pro�t if and only if it is GHM.

The necessity of GHM follows from the arguments above. To establish

su�ciency, we �rst show that if any ṽ(·) implements a at higher pro�t than

v(·), then there exists a local perturbation that improves v(·). Then we show

that among local perturbations, it su�ces to consider tilt and raise on valid

intervals. This result follows because any perturbation that respects concavity

can be approximated arbitrarily closely by a combination of valid tilts and

raises. Therefore, if any perturbation improves the principal's pro�tability,

then so must some individual tilt or raise.

One implication of Proposition 5 is that net cost equals 0 for any output

where both (LL) and (NG) are slack.

Corollary 2. Suppose u(·) is strictly concave and π(y) ≡ y. For any a > 0,

let v(·) solve (P) and suppose y ∈ (y, ȳ) is free. Then n(y) ≤ 0, and n(y) = 0

if y is a point of normal concavity.

At any point of normal concavity y, we can �nd two free points that are

arbitrarily close to y.14 Proposition 5 implies that (3) holds with equality be-

tween these points; taking a limit as these points approach y yields n(y) = 0. If

14See Claim 1 in Appendix B.
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y is a kink point, then we cannot perturb v(·) around y and preserve concavity.

However, there is a sense in which (NG) binds on the linear segments on either

side of y: Lemma 3 in Online Appendix B proves that absent (NG), the prin-

cipal would want to increase payments near the ends of a linear segment and

decrease them somewhere in the middle of that segment. Therefore, n(y) ≤ 0

at the endpoints of any linear segment, which includes any kink point.

Together, Proposition 5 and Corollary 2 imply Proposition 3. If (LL) is

slack, then (3) holds with equality over any valid interval. Therefore, for each

y, the pro�t-maximizing incentive scheme either sets n(y) = 0 or is linear,

with expected net cost equal to 0 over each linear segment. This is the sense

in which our pro�t-maximizing contract �irons� ρ(λ+µl(·|a)). Moreover, since

(NG) binds on any linear segment, n(·) must be negative at the endpoints of
that segment and positive somewhere in the middle. So a GHM contract v(·)
can have two linear segments only if ρ(λ+µl(·|a)) has a strictly concave region

followed by a weakly convex region, which is assumed away in Proposition 3

and ruled out by the condition in Lemma 2.

6 Extensions and Reinterpretations

This section considers three extensions, all of which assume that both the

principal and the agent are risk-neutral. Section 6.1 alters the timing so that

the agent gambles before observing intermediate output. Section 6.2 changes

the agent's utility so that he must incur a cost to gamble. Section 6.3 reinter-

prets the baseline model as a dynamic setting in which, rather than gambling,

the agent can choose when output is realized in order to game a stationary

contract. Proofs for this section may be found in Online Appendix C.

6.1 Risk-Taking Before Intermediate Output is Realized

If the agent engages in risk-taking before observing intermediate output, then

he gambles to concavify his expected utility given e�ort. This section considers

this alternative timing and gives conditions under which linear contracts are
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optimal.

Consider the following timing:

1. The principal o�ers a contract s(y) : Y → [−M,∞).

2. The agent accepts or rejects the contract. If he rejects, the game ends,

he receives u0, and the principal receives 0.

3. The agent chooses an e�ort a ≥ 0 and a distribution G(·) ∈ ∆(Y) subject

to the constraint EG [x|a] = a.15

4. The outcome of the gamble x ∼ G(·) is realized, and �nal output is

realized according to y ∼ F (·|x). We assume that F (·|x) has full support,

with EF (·|x)[y] = x and a density f(·|x) that satis�es strict MLRP in x.

The principal and agent earn y−s (y) and s (y)− c(a), respectively, where c(·)
is strictly convex.

To interpret risk-taking in this model, suppose the principal is an investor

and the agent is an entrepreneur who chooses which project to pursue. E�ort

improves the expected returns of the project, whileG(·) captures other features
of the project. For example, a degenerate distribution over x might represent a

project that would be modestly pro�table irrespective of economic conditions,

while a more variable distribution over x corresponds to a project that would

be a dramatic success in a growing economy but an utter failure otherwise.

Then F (·|x) represents uncertainty that remains after x is realized. We assume

that the entrepreneur has access to a rich enough set of projects that G(·) can
be any mean-preserving spread of a.16

15With some notational inconvenience, one can extend this argument to more general
mappings from a to EG[x|a].

16If
∫ z
y
Fxx(y|x)dy ≥ 0 for all z ∈ Y and x, then a riskier G(·) leads to a riskier distribution

over �nal output (in each case, in the sense of second-order stochastic dominance). Note that
this is not the only way to model ex-ante risk-taking. For example, we could have modeled
the agent as choosing a random, additively separable noise term that a�ects output. We do
not believe that optimal contracts would be linear in that alternative framework.
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Given s(·) and x, the agent's expected payo� equals

Vs(x) ≡
∫ ȳ

y

s(y)f(y|x)dy. (6)

De�ne V c
s (·) as the concave closure of Vs(·) as in (1). Analogous to Proposition

1, the agent will optimally choose G such that EG(·) [Vs(x)] = V c
s (a). Since

EG(·)
[
EF (·|x)[y]

]
= a for any G(·), the principal's problem is

max
a, s(·)

a− V c
s (a) (7)

s.t. a ∈ arg max
ã
{V c

s (ã)− c (ã)}

V c
s (a)− c(a) ≥ u0

s(·) ≥ −M.

We prove that a linear contract solves this problem.

Proposition 6. If a∗ ≥ 0 is optimal in the program (7), then a∗ ≤ aFB and

sLa∗(·) is optimal.

To see the argument, relax the optimal contracting problem by assuming

that the principal can choose V c
s (·) directly, subject only to the constraints

that V c
s (·) is concave and V c

s (·) ≥ −M . This relaxed problem is very similar

to (Obj)-(NG), except that V c
s (·) is a function of e�ort rather than of inter-

mediate output. Nevertheless, as in the proof of Proposition 2, a linear V c
s (·)

is optimal. But V c
s (·) is linear if Vs(·) is linear, and Vs(·) is linear if s(·) is

linear because EF (·|x)[y] = x. Hence, sLa∗(·) induces the optimal V c
s (·) from the

relaxed problem and so is optimal.

6.2 Costly Risk-Taking

Consider the model from Section 2, and suppose that the agent must pay

a private cost EGx [d(y)] − d(x) to implement distribution Gx following the

realization of x, where d(·) is smooth, strictly increasing, and strictly convex,

with d(y) = 0. For example, this cost function equals the variance of Gx if
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d(y) = y2. More generally, d(·) captures the idea that the agent must incur a

higher cost to take on more dispersed risk. The principal's and agent's payo�s

are y − s(y) and s(y)− c(a)− d(y) + d(x), respectively.17

For any contract s(·), de�ne

ṽ(y) ≡ s(y)− d(y) and c̃(a) ≡ c(a)− EF (·|a)[d(x)],

so that conditional on e�ort, the agent's payo� equals ṽ(y) − c̃(a). Then the

principal's payo� equals π̃(y)− ṽ(y), where π̃(y) ≡ y−d(y) is strictly concave.

As in Section 3, the agent chooses Gx so that his expected payo� equals

ṽc(x). Since π̃(·) is strictly concave, the principal prefers to deter risk-taking by
o�ering a contract that makes the agent's payo� ṽ(·) concave. Consequently,
we can modify the proof of Proposition 2 to show that the principal's optimal

contract makes ṽ(·) linear. Therefore, the optimal s(·) is convex and equals

the sum of a linear component and d(·).

Proposition 7. Assume c̃(·) is strictly increasing and strictly convex. For

optimal e�ort a∗ ≥ 0, de�ne s∗(y) = c̃′(a∗)(y − y) + d(y) − w̃, where w̃ =

min
{
M, c̃′(a∗)(a− y)− c̃(a∗)− u0

}
. Then s∗(·) is optimal.

This result follows a similar logic to Proposition 2, where the optimal

s∗(·) ensures that ṽ(·) is linear. Intuitively, s∗(·) is the most convex contract

that deters the agent from gambling. Note that the optimal contract from

Proposition 2 is strictly more expensive than s∗(·), since the principal can

o�er somewhat convex incentives if the agent �nds risk-taking costly.

6.3 Manipulating the Timing of Output18

This section considers a model in which the principal o�ers a stationary con-

tract that the agent can game by shifting output across time, rather than by

engaging in risk-taking. We show that this model is identical to the setting in

Section 4.

17We are grateful to Doron Ravid for suggesting this formulation of the cost function.
18We are grateful to Lars Stole for suggesting this interpretation of the model.
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Consider a continuous-time game between an agent and a principal on the

time interval [0, 1]. Both parties are risk-neutral and do not discount time. At

t = 0:

1. The principal o�ers a stationary contract s(y) : Y → [−M,∞).

2. The agent accepts or rejects. If he rejects, he earns u0 and the principal

earns 0.

3. The agent chooses an e�ort a ≥ 0.

4. Total output x is realized according to F (·|a) ∈ ∆(Y).

5. The agent chooses a mapping from time t to output at time t, yx :

[0, 1]→ Y , subject to
∫ 1

0
yx(t)dt = x.

6. The agent is paid
∫ 1

0
s(yx(t))dt.

The principal's and agent's payo�s are
∫ 1

0
[yt − s(yt)] dt and

∫ 1

0
s(yt)dt− c(a),

respectively. Let F (·|·) and c(·) satisfy the conditions from Section 2.

Crucially, the principal must o�er a stationary contract s(·). Without

this restriction, the principal could eliminate gaming incentives entirely, for

instance by paying only for output realized at a speci�c time. While station-

arity is a signi�cant restriction, we believe it is realistic in many settings: as

documented by Oyer (1998) and Larkin (2014), contracts tend to be stationary

over some period of time (such as a quarter or a year).

This problem is equivalent to one in which, rather than choosing the re-

alized output yx(t) at each time t, the agent instead decides what fraction of

time in t ∈ [0, 1] to spend producing each possible output y ∈ Y . In particular,

de�ne Gx(y) as the fraction of time for which yx(t) ≤ y.19 Then Gx(·) is a

distribution that satis�es EGx [y] = x, and the agent's and principal's payo�s

are EGx [s(y)] − c(a) and EGx [y − s(y)], respectively. That is, intertemporal

gaming plays exactly the same role as gambling in our baseline model.

19Formally, Gx(y) = L({t|yx(t) ≤ y}), where L(·) denotes the Lebesgue measure.
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Proposition 8. The optimal contracting problem in this setting coincides with

(ObjF )-(LLF ) with u(y) ≡ y and π(y) ≡ y. Hence, if a∗ ≥ 0 is optimal, then

a∗ ≤ aFB and sLa∗(·) is optimal.

Intuitively, the agent will adjust his realized output so that his total payo�

equals the concave closure of s(·). He does so by smoothing output over time

if s(·) is concave, or bunching it in a short interval if s(·) is convex. This

behavior is consistent with Oyer (1998) and Larkin (2014), which �nd that

salespeople facing convex incentives concentrate their sales. Conversely, Brav

et al. (2005) �nd that CEOs and CFOs pursue smooth earnings to avoid the

severe penalties that come from falling short of market expectations.

7 Concluding Remarks

Risk-taking fundamentally constrains how a principal motivates her agents.

This paper argues that risk-taking blunts convex incentives, which has signif-

icant e�ects on optimal incentive provision. Apart for Corollary 1, the agent

does not engage in risk-taking under our optimal contract. Therefore, our

analysis focuses on the incentive costs of risk-taking, rather than any direct

costs that risk-taking has on society.

Nevertheless, our framework provides a natural starting point to consider

why contracts might not deter risk-taking. Corollary 1 suggests one reason:

the principal might be risk-seeking, for instance because her own incentives are

non-concave. A second reason is implicit in our assumption that the principal

can commit to an incentive scheme. Commitment might be di�cult in some

settings, for instance because output can serve as the basis for future com-

pensation (Chevalier and Ellison (1997); Makarov and Plantin (2015)). More

generally, an agent's competitive context shapes the incentives they face, which

in turn determine the kinds of risks they optimally pursue; see Fang and Noe

(2015) for a step in this direction. A further analysis of how competition shapes

incentives could shed more light on risk-taking behavior in both �nancial and

product markets.
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A Proofs for Sections 3 and 4

For notational convenience, we use the inde�nite integral to indicate an integral

on [y, ȳ] in all of the appendices.

A.1 Proof of Proposition 1

Fix a ≥ 0, and let v(·) implement a at maximum pro�t. We �rst claim that

following each realization x, the agent's payo� equals vc(x) and the principal's

payo� is no larger than π(x− v̂c(x)).

Fix x ∈ Y . Since v is upper semicontinuous, there exists p ∈ [0, 1] and

z1, z2 ∈ Y such that pz1 + (1 − p)z2 = x and pv(z1) + (1 − p)v(z2) = vc(x).

Since the agent can choose G̃x to assign probability p to z1 and 1 − p to

z2, his expected equilibrium payo� satis�es EGx [v(y)] ≥ vc(x). But vc is

concave and vc(y) ≥ v(y) for any y ∈ Y , so by Jensen's Inequality EGx [v(y)] ≤
EGx [vc(y)] ≤ vc (EGx [y]) = vc(x). So EGx [v(y)] = vc(x), and hence the

contract vc(x) satis�es (ICF )-(LLF ) for e�ort a and the degenerate distribution

G.

Next, consider the principal's expected payo�. Since π(·) is concave, ap-

plying Jensen's Inequality and the previous result yields

EF (·|a) [EGx [π(y − u−1(v(y)))]] ≤ EF (·|a) [π (EGx [y − u−1(v(y))])]

≤ EF (·|a) [π (x− u−1(vc(x)))] ,

where the �rst inequality is strict if π is strictly concave and the second is

strict if u is strictly concave (so that −u−1 is also strictly concave). Therefore,

the principal weakly prefers the contract vc(x), and strictly so if either π(·) or
u(·) is strictly concave. �

A.2 Proof of Lemma 1

Existence follows from Proposition 9 in Appendix D. To prove uniqueness, sup-

pose at least one of π(·) or u(·) is strictly concave, and suppose that two con-

tracts v(·) and ṽ(·) both implement a ≥ 0 at maximum pro�t, with v(x) 6= ṽ(x)
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for some x ∈ Y . Since v(·) and ṽ(·) are upper semi-continuous and concave,

they must di�er on an interval of positive length. But then the contract

v∗(·) ≡ 1
2
(v(·) + ṽ(·)) satis�es (ICF )-(LLF ) for e�ort a, and the principal's

payo� under v∗ is

EF (·|a) [π(y − u−1(v∗(y)))] ≥ EF (·|a)

[
π
(
y − 1

2
(u−1(v(y)) + u−1(ṽ(y)))

)]
≥

1
2
EF (·|a) [π(y − u−1(v(y)))] + 1

2
EF (·|a) [π(y − u−1(ṽ(y)))] ,

by Jensen's Inequality, where at least one of the inequalities is strict.�

A.3 Proof of Proposition 2

For any contract s, write U(s) = maxa
{
EF (·|a)[s(y)]− c(a)

}
. Fix an optimal

pair (a∗, s∗) where s∗(·) implements a∗. Recall that for each a, sLa is the lowest-

cost linear contract that implements a, and that sLaFB has slope 1.

Assume �rst that U(s∗) ≥ U(sLaFB). Then

EF (·|a∗) [π(y − s∗(y))] ≤ π
(
EF (·|a∗) [y − s∗(y)]

)
= π

(
a∗ − EF (·|a∗) [s∗(y)]

)
= π

(
a∗ − c(a∗)−

(
EF (·|a∗) [s∗(y)]− c(a∗)

))
≤ π

(
aFB − c(aFB)−

(
EF (·|aFB)

[
sLaFB(y)

]
− c(aFB)

))
= π

(
EF (·|aFB)

[
y − sLaFB(y)

])
= EF (·|aFB)

[
π(y − sLaFB(y))

]
.

The �rst inequality is Jensen's, and is strict unless either y−s∗(y) is constant or

the principal is risk neutral. The second inequality uses U(s∗) ≥ U(sLaFB) and

a∗− c(a∗) ≤ aFB− c(aFB), and is strict unless a∗ = aFB and U(s∗) = U(sLaFB).

The �nal equality uses that y−sLaFB(y) is a constant. For (a∗, s∗) to be optimal,

these inequalities must hold with equality, so a∗ = aFB, sLaFB(·) is optimal, and

moreover s∗ = sLaFB if the principal is risk averse.

Assume instead that U(sLaFB) > U(s∗). Then, since U(s∗) ≥ u0, it follows

that sLaFB(y) = −M . For each a, let ŝa(·) be the linear contract ŝa(y) = s∗(y)+

c′(a)(y − y) that equals s∗(y) at y and implements a. Note that ŝaFB(y) ≥
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sLaFB(y) for any y, so U(ŝaFB) ≥ U(sLaFB) > U(s∗).

We claim that U(ŝa∗) ≤ U(s∗). To see this, de�ne û so that∫
(ŝa∗(y)− (s∗(y) + û))f(x|a∗)dx = 0 (8)

and suppose to the contrary that û > 0. Then, since ŝa∗(y) < s∗(y) + û, and

since ŝa∗(·) is linear and s∗(·) + û is concave, there exists ỹ > y such that

ŝa∗(·) − (s∗(·) + û) is strictly negative below ỹ and strictly positive above ỹ.

Hence, since fa(·|a∗)
f(·|a∗) is strictly increasing, by Beesack's inequality,20 (8) implies

that

0 <

∫
(ŝa∗(y)− (s∗(y) + û))

fa(y|a∗)
f(y|a∗)

f(y|a∗)dx

=

∫
(ŝa∗(y)− s∗(y)) fa(y|a∗)dy

where the equality uses that
∫
fa(y|a∗)dy = 0. This contradicts that both ŝa∗

and s∗ implement a∗, and so U(ŝa∗) ≤ U(s∗).

Since U(ŝa) is continuous in a and U(ŝaFB) > U(s∗) ≥ U(sa∗), there exists

â ∈ [a∗, aFB) such that U(ŝâ) = U(s∗). Since sLâ is weakly below ŝâ,

EF (·|a∗)
[
sLâ (y)

]
≤ EF (·|a∗) [ŝâ(y)]

= EF (·|â) [ŝâ(y)]−
∫ â

a∗

(
∂

∂a
EF (·|a) [ŝâ(y)]

)
da

= EF (·|â) [ŝâ(y)]− c′(â)(â− a∗)

= U(ŝâ) + c(â)− c′(â)(â− a∗)

≤ U(ŝâ) + c(a∗)

= U(s∗) + c(a∗)

= EF (·|a∗) [s∗(y)] .

20The relevant version of Beesack's inequality states that if a function h(·) single-crosses 0
from below and satis�es

∫
h(x)dx = 0, then for any increasing function g(·),

∫
h(x)g(x)dx ≥

0, and strictly so if g(·) is strictly increasing and h(·) is not everywhere 0. See Beesack (1957),
available online at https://www.jstor.org/stable/2033682.
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Here, the second equality uses that EF (·|a) [ŝâ(y)] is linear in a and that ŝâ(·)
implements â, and the second inequality uses that c(·) is convex.

Choose ŷ so that sLâ (·) crosses the concave contract s∗(·) from below at ŷ,

where if sLâ (y) < s∗(y) for all y, then ŷ = ȳ. Since â < aFB, and hence sLâ (·)
has slope strictly less than 1, it follows that for all y < ŷ and t > sLâ (y),

π′(y − t) ≥ π′(y − sLâ (y)) ≥ π′(ŷ − sLâ (ŷ)),

and strictly so if π(·) is not linear. Similarly, for all y > ŷ and t < sLâ (y),

π′(y − t) ≤ π′(y − sLâ (y)) ≤ π′(ŷ − sLâ (ŷ)),

and strictly so if π(·) is not linear. That is, the marginal cost to the principal

of paying the agent is no less than π′(ŷ − sLâ (ŷ)) for y < ŷ, and no more than

this amount for y > ŷ.

But then, since EF (·|a∗)
[
sLâ (y)

]
≤ EF (·|a∗) [s∗(y)] and sLâ (y) < s∗(y) if and

only if y < ŷ,

EF (·|a∗)
[
π(y − sLâ (y))

]
≥ EF (·|a∗) [π(y − s∗(y))] ,

and strictly so unless the principal is risk neutral, or sLâ (·) and s∗(·) agree.

Finally, since the slope of sLâ (·) is strictly less than 1 and â ≥ a∗,

EF (·|â)

[
π(y − sLâ (y))

]
≥ EF (·|a∗)

[
π(y − sLâ (y))

]
,

and strictly so unless â = a∗.

To conclude the proof, note that since (a∗, s∗) is optimal, each of these

inequalities is an equality, and hence a∗ = â ≤ aFB. If the principal is risk

averse, then s∗ = sLâ as well. If the principal is risk neutral, then sLâ (·) is

optimal but not uniquely so.�
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A.4 Proof of Corollary 1

Fix a > 0 and consider the problem (ObjF )-(LLF ) with an arbitrary π(·) and
u(s) ≡ s. De�ne EGx [π(y)] = πc(x), where πc(·) denotes the concave closure

of π(·).
Modify (Obj)-(NG) so that the principal's utility equals πc(·). Since πc(y) ≥

π(y) for any y, so the principal's payo� in this modi�ed problem must be

weakly larger than under the original problem. But πc(·) is concave and

sLa (y) = −M , so Proposition 2 implies that sLa (·) implements a at maximum

pro�t in this modi�ed problem. So the principal's expected payo� equals

EF (·|a)

[
πc(x− sLa (x))

]
in this modi�ed problem.

Now, consider the contract sLa (x) in the original problem (Obj)-(NG). For

any distribution Gx ∈ ∆(Y) such that EGx [y] = x, EGx

[
y − sLa (y)

]
= x−sLa (x)

because sLa is linear. Therefore, as in Proposition 1, there exists some GP
x such

that EGP
x

[
π(y − sLa (y))

]
= πc(x− sLa (x)). Furthermore, conditional on x, the

agent's expected payo� satis�es EGx

[
sLa (y)− c(a)

]
= sLa (x) − c(a) for any

Gx with EGx [y] = x. So sLa (·) satis�es (ICF )-(LLF ) for a > 0 and Gx =

GP
x for each x ∈ Y . The principal's expected payo� if she o�ers sLa equals

EF (·|a)

[
πc(x− sLa (x))

]
, her payo� from the modi�ed problem. So sLa a fortiori

implements a at maximum pro�t for any a ≥ 0. �
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