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Abstract 

Charging full requirements customers for distribution network services using the 
traditional cents per kilowatt hour (KWh) approach creates economic incentives for consumers to 
invest in distributed generation technologies, such as rooftop solar photovoltaics, despite the fact 
that marginal cost of grid-supplied electricity is lower. This paper first assesses the economic 
efficiency properties of this approach to transmission and distribution network pricing and whether 
current approach distribution network pricing implies that full-requirement customers cross-subsidize 
distributed solar customers.  Using data on quarterly residential distribution network prices from 
California’s three largest investor-owned utilities I find that larger amounts of distributed solar 
capacity and more geographically concentrated solar capacity predict higher distribution network 
prices and average distribution network costs.  Moreover, this result continues to hold even after 
controlling for average distribution network costs for the utility,  Using these econometric model 
estimates, I find that 2/3 of the increase in residential distribution network costs for each of the three 
utilities between 2003 and 2016 can attributed to the growth distributed solar capacity. The paper 
also investigates the legal obligation that distributed solar generation customers have to pay for 
sunk costs of investments in the transmission and distribution networks. The paper closes with 
a description of an alternative approach to distribution network pricing that is likely to increase 
the economic signals for efficient electricity consumption and the incentive for cost effective 
installation of distributed solar generation capacity.  A straightforward approach to implementing 
this mechanism for regions where residential customers have interval meters.   Suggestions for how 
to implement mechanism in regions with   mechanical meters is also discussed.
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1. Introduction 

The falling cost of rooftop solar photovoltaic (PV) installations and generous solar 

support mechanisms in many states have led to a rapid increase in the amount of solar capacity 

installed by residential customers in these regions. The retail price a household pays for the 

last unit of grid-supplied electricity consumed is another important driver of the decision to 

install a rooftop solar system because it is the cost avoided from consuming a kilowatt-hour 

(KWh) from the distributed solar system.  This retail price is typically significantly above the 

marginal cost of providing that KWh, because historically state regulators set the average 

retail electricity price equal to the vertically-integrated utility’s average total cost of 

generating, transmitting, distributing, and retailing electricity.  In regions of the United 

States with formal wholesale electricity markets, such as the California Independent System 

Operator (ISO), the PJM Interconnection, the New England ISO, and New York ISO, state 

public utilities commissions (PUCs) continue to recover the vast majority of the costs of the 

transmission and distribution networks and the cost of serving regulated retail customers 

through per unit charges in excess of the marginal cost of providing these services. The 

resulting retail prices for grid-supplied electricity increase the attractiveness of installing a 

rooftop solar system. 

A number of PUCs have further increased the magnitude of the difference between 

the retail price for the last unit consumed and the marginal cost of supplying this KWh for 

high-demand users by charging retail customers according to increasing block price 

schedules. For example, the three largest investor-owned utilities in California all charge 

residential consumers according to steeply increasing block price schedules. Borenstein 

(2015) argues that for Pacific Gas and Electric—the utility with the largest number of 

distributed solar residential customers in the United States—the financial incentive to 
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adopt distributed solar during his sample period is due as much to California’s increasing 

block rates as it is to the 30 percent federal tax credit for a distributed solar installation. 

In the language of interconnection pricing, retail electricity prices that recover fixed 

and sunk costs through a per unit KWh charge encourage inefficient bypass in the sense that 

residential customers find it privately profitable to install a distributed solar system because 

the levelized cost (net of the government support received by the household) of electricity 

from their distributed solar system is less than the retail price, but not less than the marginal 

cost of an additional KWh of grid-supplied electricity. Consequently, although it is privately 

profitable for the consumer to install the distributed solar system (ignoring the cost of the 

government support provided to the household to purchase the solar system),  it is socially 

inefficient for this investment to occur because it is cheaper to supply this customer with 

wholesale energy from the grid rather than pay for the cost of the solar system.  In the former 

vertically-integrated geographic monopoly regime, this approach to retail pricing do not lead to 

inefficient bypass because the price of distributed generation implied that customers effectively 

only had the choice to consume grid-supplied electricity or not consume grid-supplied 

electricity. 

Retail electricity prices that recover fixed and sunk costs on a per KWh basis when 

customers have the option to install distributed solar capacity has created what many 

electric utilities argue is an unsustainable dynamic where high marginal prices for grid-

supplied electricity encourage customers to install distributed solar PV systems, which then 

requires the regulator to set higher retail prices to recover the same fixed and sunk costs 

from a smaller volume of sales of grid-supplied electricity. This higher retail price 

encourages more customers to install distributed solar PV systems, which then requires 

higher retail prices if the utility is going to recover these sunk and fixed costs. 
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The significantly larger monthly bills for grid-suppled electricity by distributed solar 

customers under the existing retail tariffs before versus after they install a rooftop solar system 

have caused many utilities to claim that these customers are cross-subsidized by full-

requirements customers.  This is often referred to as a “cost-shift” from the utility’s 

distributed solar customers to its full requirements customers.  Solar installers often counter 

these claims by arguing that distributed solar installations allow utilities to reduce their 

distribution network costs because a declining share of the electricity households consume is 

supplied from the grid.  Solar installers also claim that this fact implies rooftop solar customers 

make much less use of the distribution grid and should therefore pay for less of the fixed and 

sunk costs.  Utilities counter that they made sunk investments in the distribution grid to serve 

all customers and should therefore receive full cost recovery from all customers.  There is an 

ongoing debate to resolve these issues in a number of states with significant distributed solar 

potential such as Arizona, California and Nevada. 

This paper contributes to this debate by providing: (1) a theoretical foundation to 

address the cost-shift debate, (2) empirical evidence on the claims made by utilities and solar 

installers about the impact of solar installations on distribution network costs and prices, (3) 

description of the legal risks these issues create for utilities, and (4) a framework for more 

efficient pricing to recover to the costs of the transmission and distribution network.    

The economic theory of multi-product cost functions is used to argue that full-

requirements customers are unlikely to be cross-subsidizing customers with distributed 

solar systems even under the existing tariffs for grid-supplied electricity.  The major source 

of economic inefficiency from the existing transmission and distribution pricing scheme is 

that it encourages inefficient levels of the electricity consumption and the inefficient 

decisions by consumers to bypass grid-supplied electricity. 
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I then examine the empirical validity of the claim that distributed solar installations 

reduce distribution network costs using panel data on quarterly utility-level residential 

distribution network prices, utility-level quarterly installed distribution network-level solar PV 

capacity, annual utility-level distribution network regulated costs (revenue requirements), and 

annual utility-level electricity demand for California’s three large investor-owned utilities.  I 

estimate an econometric model of the California Public Utilities Commission (CPUC) 

distribution network price-setting process to quantify the extent to which increases in solar PV 

capacity in a utility’s distribution network predicts higher residential distribution network 

prices.   

I find that even after the accounting for the mechanical effect that more distributed solar 

PV capacity reduces the total withdrawals of grid-supplied electricity and therefore requires an 

increase residential distribution prices, more solar capacity in the distribution network predicts 

significantly higher distribution network prices.  I find that the vast majority of the almost 100 

percent increase in average residential distribution network prices between 2003 and 2017 for 

each of the three utilities can be explained by increases in the installation of distributed solar 

PV capacity.   I then repeat this analysis using the annual distribution network regulated average 

cost for each utility as the dependent variable and find that increases in the amount distributed 

solar capacity the utility’s service territory predicts a higher distribution network average cost 

for the utility.   Combing this residential distribution price data with the annual distribution 

network average cost data, I find that residential distribution network prices are higher in utility 

distribution networks with more solar capacity even after controlling the annual average cost of 

the distribution network.  These results are exactly counter to the claims of solar PV suppliers 

about the impact of solar PV installations on distribution costs and prices.  Moreover, they are 

consistent with state regulators placing a greater share of the burden of the recovery of the fixed 
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cost of the distribution network on residential consumers in utility service territories with more 

distributed solar capacity. 

I then consider the legal question of whether utilities will be allowed to recover the 

costs of the transmission and distribution network from distributed solar PV customers that 

claim not to use these networks at all or as much as they did before installing rooftop solar 

capacity.  Resolution of this legal question is particularly urgent for utilities experiencing rapid 

growth in the amount of distributed solar capacity given the estimated relationship between 

distribution network prices and costs and amount of solar PV capacity installed in that utility’s 

distribution network.  There are legal precedents in favor both sides of this debate, which 

provides a strong case for these utilities addressing this issue with their public utilities 

commissions as soon as possible. 

Finally, I develop a simple economic model that provides a mechanism for increasing 

the efficiency of distribution network pricing and reduces the incentive for both inefficient 

consumption of grid-supplied electricity and inefficient decisions to install distributed solar 

systems. This model is first applied to the case that customers have interval meters capable 

of recording their consumption on an hourly basis.  I then consider an extension to the case 

that customers have meters that can only read their monthly consumption.  The paper closes 

with a brief discussion of how the insights from this simple model can be operationalized 

in an actual regulatory price-setting process to improve the efficiency of retail electricity 

pricing in regions with significant distributed solar resources. 

2.  The Theory of Multi-Output Production Applied to Electric Utility Costing 

To understand of the inefficiency of the existing approach to retail electricity pricing 

and to provide essential input into the model used to derive more efficient of retail 

tariffs, I rely on the economic concept of a multiproduct cost function, C(q1,q2….,qN), where 
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qk is the amount of electricity withdrawn by customer k from the grid and N is the total 

number of customers served. For each value of (q1,q2….,qN)′, the N-dimensional vector of 

the monthly consumption of each customer served by the utility, the function C(q1,q2….,qN) 

gives the utility’s total cost of providing this vector of outputs. Under the regularity conditions 

on utility’s technology set described in Panzar (1989) this function is differentiable in all of 

the arguments.1 

The marginal cost of providing customer k with an additional KWh of grid-supplied 

electricity is the increase in the value of C(q1,q2….,qN) associated with a one unit change in qk 

keeping the output levels of all other customers constant.  Mathematically, the marginal cost 

of serving customer k at output vector (q1,q2….,qN)ꞌ is equal to 
డ஼ሺ௤భ,௤మ,…,௤ಿሻ

డ௤ೖ
.  Virtually all hours 

of the year this marginal cost is slightly higher than the hourly wholesale price at the point of 

withdrawal from the transmission grid that connects that customer to their distribution grid. 

The cost is higher than the wholesale price because of distribution network losses between 

the point of injection to the customer’s distribution network and the customer’s dwelling where 

the energy is consumed.2  However, during hours when the capacity constraints on the 

distribution network are close to binding, the marginal cost of customer k withdrawing an 

additional KWh can be substantially larger than the relevant hourly locational marginal price 

of wholesale electricity because marginal losses scale with the square of the flow on the 

distribution line. 

                                                            

1 The technology set, T, is composed of pairs of input vectors, x, and output vectors, y, such that the output vector y is 
technologically feasible to produce from the input vector x. 
2According to the United States Energy Information Administration annual transmission and distribution network losses average 
about 6 percent of the total electricity produced nationally. (https://www.eia.gov/tools/faqs/faq.cfm?id=105&t=3) 
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The next cost concept is the incremental cost of qk, which is equal to difference 

between the value of C(q1,q2….,qN) and the value of C(q1,q2….,qk-1,0,qk+1,…,qN), or the 

amount that total costs are reduced as a result not selling anything to customer k. 

Mathematically, this is equal to IC(qk|Q-k) = C(q1,q2….,qN) – C(q1,q2….,qk-1,0,qk+1,…,qN), 

where Q-k = (q1,q2….,qk-1,qk+1,…,qN). Dividing IC(qk|Q-k) by qk yields the average 

incremental cost of qk, AIC(qk|Q-k) = IC(qk|Q-k)/qk, which is also small, because the fixed 

costs of the installed generation capacity, transmission and distribution grid, metering and 

billing systems must be incurred to serve the remaining customers. Therefore, these costs 

are not eliminated by setting customer k’s consumption to zero. One reason for the 

difference between the marginal cost of qk  and AIC(qk|Q-k) is the existence of fixed costs 

associated with providing service to customer k, such as the cost to connect the customer 

to the grid (although most these costs directly charged to the customer at the time they 

connect) and the monthly fixed cost of metering and billing the customer. If the marginal 

cost of serving customer k varies with the value of the qk then the marginal cost of serving 

customer k at output level qk given Q-k can differ from AIC(qk|Q-k). For the reasons discussed 

above, it is extremely unlikely that the incremental cost of providing qk units of electricity 

exceeds customer k’s monthly bill, even if customer k has a distributed solar system. 

The final cost concept is the stand-alone cost of qk. This is equal to SAC(qk) = 

C(0,0….,0,qk,0,…,0), which is equal to the total cost of providing qk units to just customer k 

and nothing to all other customers. Dividing SAC(qk) by qk yields the stand-alone average cost 

of qk which much greater than average incremental cost of qk, because the stand-alone 

average cost contains all of the fixed costs of the generation, transmission, distribution, and 

retailing segments as well as the monthly fixed cost of providing service to customer k. 
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It is profitable for the utility to serve a customer if the incremental cost of serving that 

customer is less than the revenue the firm earns by providing service to that customer. 

Because of the existence of the fixed costs of providing service to any customer, such as the 

sunk cost of the transmission and distribution network, it is possible for a utility to find it 

unilaterally profitable to serve each of its customers, but not earn sufficient revenues to 

cover its total costs. Specifically, given its existing tariff and existing vector of monthly 

outputs, (q1,q2….,qN)′ the utility could find itself in the position of wanting to continue to 

provide service to each of its customers, even though the total revenues received from these 

customers is considerably less than the total cost of producing this vector of outputs. 

As Faulhaber (1975) explains, as long as all groups of customers are paying more in 

revenues for their total consumption than the incremental cost of serving them and none of 

the groups of customers are paying more than the stand-alone cost of serving them, there are 

no cross-subsidies between customers. However, under these circumstances, the utility 

may not recover enough revenues from all of its customers under the existing tariff to 

cover its total production costs. 

This set of circumstances can arise when a utility that was formerly recovering its 

total cost of production has a number of customers that install distributed solar systems. 

Under the existing tariff these distributed solar customers are still paying more in revenue to 

the utility than the incremental cost of providing them with this reduced amount of grid-

supplied electricity. However, because their consumption of grid-supplied electricity has 

fallen they are making less of a contribution to fixed cost recovery than they were as full-

requirement customers. 

This logic suggests that it is highly unlikely that distributed solar customers are 

receiving cross- subsidies from full-requirements customers. Distributed solar customers are 
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simply making less of a contribution to fixed cost recovery as a result of their decision 

to incur the expense of investing in distributed solar capacity. The fixed-cost recovery 

problem created by a customer investing in a distributed solar system is no different from 

the fixed-cost recovery problem created by a customer reducing their monthly consumption 

of grid supplied electricity as a result of an energy efficiency investment or simply becoming 

more aware of their electricity consumption. In all of these cases, the utility is still recovering 

at least the incremental cost of serving these customers under the existing tariff, but the 

customer’s total contribution to fixed cost recovery is lower. 

Although cross-subsidies between full-requirements and distributed solar customers 

are very  unlikely  to  exist  under  the  current  retail  pricing  regime,  this regime  does  create  

incentives  for inefficient consumption of electricity and inefficient bypass of grid-supplied 

electricity because the prices a customer pays for grid supplied electricity so far above the 

marginal cost of grid supplied electricity (excluding unpriced environmental externalities). 

3. Impact of Solar Installations on Distribution Networks Prices and Costs 

This section assesses the impact of increases in distributed solar capacity in a utility 

service territory on residential distribution network prices and regulated distribution network 

costs using data from the three large investor-owned utilities in California—Pacific Gas and 

Electric, Southern California Edison, and San Diego Gas and Electric.  This assessment is based 

on a simple model of the CPUC distribution network price-setting process.  

3.1. Economic Model of CPUC Price-Setting Process 

The CPUC process first determines the revenue requirement for the utility based on a 

test year output level.  The revenue requirement is the utility’s annual costs that the CPUC 

allows the utility to recover from its customers through the prices charged.  The other input to 

the price-setting process is the test year output level, which is a forecast of the utility’s annual 



12  

demand during the time period covered by the price.  The utility’s revenue requirement divided 

by this forecast of demand gives the average price utility is allowed to charge.   

The utility’s annual revenue requirement can and often does change several times within 

the year in response to regulatory decisions made by the CPUC. When this occurs, the CPUC 

will change the price the utility is allow to charge. Each time a price set by the CPUC is changed 

a new tariff sheet is issued by the CPUC giving this price and the date that it becomes effective. 

I model the residential distribution network price-setting process as follows.  Let Fiy 

equal the revenue requirement for utility i in year y and QRFiy equal the forecast of demand for 

utility i and year y for the residential sector.   Because prices can be revised numerous time 

during the year, I assume that the quarterly value of the utility’s residential distribution network 

revenue requirement is equal to FRiq = (FRiy )exp(εiq), where εiq is unobserved shock to utility 

i’s annual revenue requirement in quarter q.   I assume that the εiq are independent, identically 

distributed random variables with finite first and second moments for each utility.  

According to this simple model, utility i’s residential distribution price in quarter q, is 

equal to PRiq = (FRiy )exp(εiq)/QRFiy.   Taking logarithms of both sides of this equation yields: 

ln(PRiq) = ln(FRiy) - ln(QRFiy) + εiq    (1)  

To assess the impact of the amount distributed solar capacity in utility i’s service territory on 

residential distribution network prices, I create the following variables.  Let CIiq equal the 

cumulative megawatts (MWs) of distributed solar installed in utility i’s territory as of the start of 

quarter q.  Define CONCiq = ∑
஼ூ೥೜
ுு೥

௓ሺ௜ሻ
௭ୀଵ , where CIzq is the cumulative MWs of distributed solar 

capacity installed in zip code z of utility i’s service territory as of the start of quarter q, HHz is 

the number of households in zip code z in utility i’s service territory, and Z(i) is the number of 

zip codes in utility i’s service territory.  CONCiq is larger for given number of MWs in utility i’s 

service territory if these MWs are concentrated in a small number of zip codes.  To estimate the 
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impact of solar installations in the utility’s service territory and the geographic concentration of 

these solar installations on distribution prices, I estimate the following equation: 

ln(PRiq) = αiy + βln(QRFiy) + δln(CIiq) + γln(CIiq)ln(CONCiq) + ηiq, (2) 

where the αiy are utility-year fixed effects and the ηiq  are assumed to be independent, identically 

distributed mean zero and variance ߪఎଶ random variables.  Operationalizing this model requires 

an estimate of QRFiy, the forecast of utility i’s residential demand during year i. 

For each of the utility’s I estimate a univariate time series model using QRiy, the annual 

residential demand for utility i and year y, using data from 1990 to 2016 and then use the one-

step ahead forecast of Qiy as the value of QFiy.  For each utility, the model ln(Qiy) = μi + ln(Qiy-1) 

+ υiy is sufficient to produce a time series model such that null hypothesis that the υiy are a white 

noise sequence cannot be rejected.   I then compute QRFiy = (QRiy-1)exp(̂ߤ௜+ 
ଵ

ଶ
 ௜ isߤ̂ జଶሻ, whereݏ

the estimate of μi and ݏజଶ is the estimate of the variance of υiy constructed the residuals of this 

regression. 

 This simple model for the distribution network price setting process has a number of 

testable restrictions and implications for the parameters of equation (2).  First restricting equation 

(2) to satisfy the theory in equation (1), implies β = -1, δ = 0, and γ = 0.  In addition, 

(FRyi)E(exp(εiq)) = exp(αyi)E(exp(ηiq)), which implies that FRyi = exp(αyi)E(exp(ηiq))/E(exp(εiq)), 

so that exp(αyi) estimates FRyi up to an unknown scale factor, E(exp(ηiq))/E(exp(εiq)). 

 The second model I estimate relates the logarithm of the annual average revenue 

requirement of utility i and year y to ln(QFiy) and ln(CIiy) and ln(CIiy)ln(CONCiy).  QFiy, the 

forecast of utility i’s demand in year y, is computed from Qiy, demand of utility i in year y, 

following the same procedure as described above to derive QRFiy from QRiy.  To compute the 

annual average revenue requirement for utility i in year y, let RRiy equal the annual revenue 
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requirement for utility i in year y.   Define ARiy = RRiy/QFiy as the annual average revenue 

requirement for utility i in year y.  I estimate 

ln(ARiy) = λi + τy + βln(QFiy) + δln(CIiy) + γln(CIiy)ln(CONCiy) + ηiq, (3) 

where CIiy equals the cumulative megawatts (MWs) of distributed solar installed in utility i’s 

territory as of the start of year y, λi is a utility fixed effect, and τy is a year-of-sample fixed effect.  

CONCiy = ∑
஼ூ೥೤
ுு೥

௓ሺ௜ሻ
௭ୀଵ , where CIzy is the cumulative MWs of distributed solar installed in zip code 

z of utility i’s service territory as of the start of year y.   This model assesses whether the utility 

i’s average regulated distribution cost is responsive to changes in installed solar capacity and the 

distribution of this capacity in its service territory.  

 The final model I estimate assesses whether increases in installed solar capacity predict 

increases in residential distribution prices after controlling for the level of the annual average 

utility-level revenue requirement.   I estimate the equation: 

ln(PRiq) = αi + φln(ARiy)  + δln(CIiq) + γln(CIiq)ln(CONCiq) + ηiq,  (4) 

where the αi are utility fixed effects.   If δ > 0 and γ > 0, then residential distribution prices 

increase in response to more distributed solar capacity in the utility’s service territory and if this 

solar capacity is more geographically concentrated in the zip codes in the utility’s service 

territory even after controlling for the utility’s average distribution network revenue requirement. 

3.2. Data Sources 

The data used to estimate these models comes from variety of sources.   The tariffs sheet 

for the three investor-owned utilities are the source for the quarterly value of the residential 

distribution price.  This is the distribution price for the standard residential tariff: (1) the E-1 

Tariff for Pacific Gas and Electric, (2) the Schedule D Tariff for Southern California Edison, 
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and (3) the Schedule DR Tariff for San Diego Gas and Electric.   These prices often change 

several times during the year. 

For each utility and each quarter between quarter 1 of 2003 to quarter 4 to 2016, the 

residential distribution network tariff that was in force at the start of the quarter according to 

the tariff document is assigned to that quarter of the sample.  For much of this sample period 

the residential distribution network for each utility was priced according to an increasing block 

price schedule.  These increasing block price schedules are converted to a single weighted 

average residential distribution price for the quarter using the climate-region-weighted tier 

weights for each investor-owned utility computed in Table A2 of Borenstein (2011).  For each 

utility residential distribution tariff, I apply the climate region weighted average weight for 

consumption on that tier times the value of the distribution price for that tier and sum these 

products over all tiers in the increasing block distribution network price schedule to arrive at 

quarterly residential distribution price, Piq. 

 The annual demand in gigawatt-hours (GWh) for electricity by residential consumers of 

investor-owned utility i in year y, QRiy, and the aggregate demand in (GWh) served by this 

utility in the same year, Qiy, from 1990 to 2016 are available from the California Energy 

Consumption Database.3  Figures 1 to 3 plot the values from Qiy for Pacific Gas and Electricity, 

Southern California Edison, and San Diego Gas and Electric, respectively.  Plots for three 

utilities share the several common features.  First, steady load growth between 1990 and 1998, 

with a drop in 1998 and 1999 and a substantial uptick in 2000 consistent with a loss of customers 

to direct access in 1998 and 1999 and subsequent return of these customers during electricity 

crisis in 2000.  The other feature is the significant slowdown in load growth from 2006 onward, 

                                                            

3 http://www.ecdms.energy.ca.gov/ 
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consistent with the start of the California Solar Initiative which provided more than $2 billion 

in declining subsidies to households that installed rooftop solar systems between 2006 and 

2016.   The plots of QRiy for each utility have these same patterns. 

The quarterly values of cumulative MWs of distributed solar capacity installed in each 

zip code of each utility service territory are available from the Currently Interconnected Data 

Set from the Go Solar California web-site.4   This data is used to construct the CIiq and CIiy 

variables.  Figure 4 plots the values of CIiq for each utility from quarter 1 2003 to quarter 4 of 

2016.  Although it is difficult determine from Figure 4, there is small amount of distributed 

solar capacity in each utility‘s service territory as of the start of the sample period.  Data on the 

number of households in each California zip code, HHz, is obtained from the 2010 US Census.  

This data is combined with the Go Solar California data to construct the CONCiq and CONCiy 

variables.  

The annual total distribution network revenue requirement for utility i in year y, RRiy, 

from 2006 to 2016 is available from Table 1.6 of the California Electric and Gas Utility Cost 

Report:  Public Utilities Code Section 913 Annual Report to the Governor and Legislature 

available from the CPUC.   Before that date, information on the annual distribution network 

revenue requirement for each utility is only available from CPUC Advice Letters. 

3.3. Empirical Results 

The empirical results are based on quarterly data from 2003 to 2016 and annual data 

from 2006 to 2016.  The start date for the quarterly data was chosen to coincide the start of the 

California’s renewable energy effort.   The state’s renewables portfolio standard (RPS) started 

in 2003, and this also initiated widespread discussion of distributed solar PV capacity as a source 

                                                            

4 https://www.californiasolarstatistics.ca.gov/data_downloads/ 
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of electricity for residential consumers.  The start date for the annual revenue requirement data 

coincided with the start of the California Solar Initiative noted above.  However, the primary 

driver of this start date was the difficulty in obtaining data before this data.   I am currently 

attempting to compile distribution revenue requirement data back to 2000 from CPUC Advice 

Letters to each of the utilities. 

Table 1 reports the results of estimating  

ln(QRiy) = μi + ln(QRiy-1) + υiy 

for each utility using annual data from 1990 to 2016.   The ordinary least squares estimate of μi 

and the estimated standard error for this parameter estimate are reported for each utility along 

with the estimated value of the variance of υiy.  For all three utilities, the null hypothesis that μi 

= 0 cannot be rejected.  Each column of the table also reports the value of the Box-Pierce Q-

statistic that tests the null hypothesis that the υiy are not autocorrelated up to lag J=11 and J=6.  

In all cases the P-value associated with this test statistic is substantially less than 0.05, which 

implies that 0.05 size test of this null hypothesis would not be rejected.   Table 2 reports the 

results of repeating this same procedure for utility-level demand, Qiy. 

Table 3 presents the results of estimating 

ln(PRiq) = αiy + βln(QFiy) + δln(CIiq) + γln(CIiq)ln(CONCiq) + ηiq.  (2’) 

A number of results are worth noting.   First, a 0.05 test of the null hypothesis that β = -1 cannot 

be rejected.  Second, the estimates of δ and γ are both positive and large relative to their standard 

error.  This result is consistent with residential distribution prices increasing faster in utility 

service territories and quarters with more cumulative solar MWs and more concentrated 

deployment of these distributed solar MWs. 

 Figure 5 to 7 plot the normalized values of the annual residential distribution network 

cost FPiy = exp(αiy)/exp(αiy*) for y* = 2006 implied by our model of residential distribution 
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network pricing for each utility.   These values of FPiy are plotted along with normalized value 

of the annual distribution revenue requirement for each utility RRiy/RRiy* for y* = 2006.  The 

trends in these two annual time series for each utility are remarkably similar, except for Parcific 

Gas and Electric from 2011 to 2014, which provide further support for the validity of our model 

of the regulatory price setting process. 

 Table 4 presents the results of estimating 

ln(ARiy) = λi + τy + βln(QFiy) + δln(CIiy) + γln(CIiy)ln(CONCiy) + ηiq, (3’) 

using annual data from 2006 to 2016.   Once again estimate the estimate of β is not statistically 

different from -1 and δ and γ are both positive.   The estimate of δ is significantly smaller in 

magnitude than the corresponding the estimate from equation (1) and the estimate of γ is not 

statistically different from zero.  Nevertheless, these results indicate that after controlling for 

year-of-sample and utility fixed-effects, higher levels of cumulative solar installs are associated 

with higher average utility-level distribution costs. 

 Table 5 reports the results of estimating 

ln(Piq) = αi + φln(ARiy)  + δln(CIiq) + γln(CIiq)ln(CONCiq) + ηiq,   (4’) 

The estimates of δ and γ are both positive.   The estimate of δ is smaller in magnitude than the 

corresponding the estimate from equation (1) and the estimate of γ is not statistically different 

from zero.   Nevertheless, this result implies that even after controlling for the regulated average 

cost of the distribution network, increases in solar installations implies higher distribution 

network prices. 

The regression results for models (2), (3) and (4) suggest the following conclusions about 

the impact of distributed solar installations on both distribution network costs and residential 

distribution network prices.  First, the results of estimating model (2) support the conclusion that 

more solar installations lead to higher residential distribution prices and even higher residential 
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distribution network prices for utilities where these solar installations are more geographically 

concentrated.   Second, the model (3) results imply that the same conclusion applies to the 

average utility-wide regulated distribution cost, but the magnitude of these effects are smaller 

and they are less precisely estimated.   This result could be due to the smaller annual sample of 

data used to estimate this regression.  Third, the model (4) results support the conclusion that 

after controlling for the level of the average regulated distribution network cost, more solar 

installations and a greater geographic concentration of these installations leads to higher 

residential distribution prices.  The above results are consistent with more solar installations 

increasing total distribution network costs.  They are also are consistent with the view that the 

amount of these costs that the CPUC allocates the residential customers also increases with the 

amount of distributed solar capacity. 

The results of estimating our model of the residential distribution network price-setting 

process embodied in equation (2) can be used to compute a counterfactual distribution network 

price path that keeps the amount of distribution solar capacity at the quarter 1 of 2003 level.   This 

counterfactual price can be computed by multiplying each quarterly residential distribution 

network price by exp(- δln(CIiq/CIiq*) – γ[ln(CIiq)ln(CONCiq) - ln(CIiq*)ln(CONCiq*)]) for q* 

equal to quarter 1 of 2003 using the values of δ and γ obtained from estimating equation (2).  For 

each of the three utilities, Figures 8 to 10 plot the actual average quarterly distribution network 

price and the counterfactual quarterly distribution network price that removes the impact of 

distributed solar capacity installed after quarter 1 of 2003.   For each utility, roughly 2/3 of the 

average distribution network price increase between quarter 1 of 2003 and quarter 4 of 2016 can 

be attributed to the adoption of distributed solar capacity. 
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4. Legal Case for Utility to Recover Sunk Costs 

There are a variety of reasons why a regulated utility that invests in the long-lived 

capital equipment necessary to provide service to consumers may not recover these sunk 

costs. Hempling (2015) provides seven examples of a regulated entity that was denied sunk 

cost recovery by the courts. Several of these legal decisions appear to be applicable to 

case of distributed solar investments. 

All of these decisions are related to the basic legal principle in regulatory rate-

making that a utility is only allowed the opportunity to recover its costs if the capital employed 

is “used and useful” and the “prudently operated.” The utility is not guaranteed to recover 

these costs. The standard argument used by the utilities to justify their claims of cost 

recovery is the Fifth Amendment of the Constitution which states in part, “[N]or shall 

private property be taken for public use, without just compensation.” Hempling (2015) 

notes that Justice Brandeis clarified what this clause meant for a regulated utility as, “The 

thing devoted by the investor to the public use is not specific property, tangible and intangible, 

but capital embarked in the enterprise. Upon the capital so invested the Federal Constitution 

guarantees to the utility the opportunity to earn a fair return.” (p. 2) 

Hempling (2015) goes on to emphasize that the courts have determined that 

“utility investors enjoy no constitutional guarantee of stranded cost recovery.” (p. 2). 

Consequently, one way to justify that the utility’s shareholders bearing the brunt of the 

revenue shortfalls relative to total costs of production is that competition from distributed 

solar has led to the partial obsolescence of the transmission and distribution grid, which has 

significantly reduced the revenues the utility is likely to earn from grid-supplied electricity. 

Therefore the utility’s investors now own a less valuable asset in the same sense that the 

owners of the Market Street Railway in San Francisco that operated streetcars and buses in 
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the city owned a less valuable asset as a result of competition from municipal transportation 

companies and other modes of transportation.5  The court upheld the Railway Commission’s 

decision to set a lower price for Market Street Railway’s services, which in turn produced a 

lower rate of return on its sunk costs. Hempling (2015) notes that “the Court explained that 

the Constitution has no sympathy for a company whose services are no longer needed.” 

Building on this decision, an argument for full cost recovery would be that the 

intermittent nature of distribution solar generation is sufficiently great that the full capacity 

of the existing transmission and distribution grid is necessary to serve both distributed 

solar and full requirements customers. Specifically, it is sometimes the case that the 

distributed solar systems are not producing any electricity and the transmission and 

distribution grid is utilized at the same rate as would be the case in the absence of any 

distributed solar investments. The argument that transmission and distribution networks have 

the same annual peak utilization rates as they did without any distributed solar investments 

is increasingly difficult to make as the share of distributed solar capacity increases and the 

diversity of distributed solar locations increases. 

These opposing arguments suggest that the ultimate allocation of sunk costs of the 

transmission and distribution grid will involve some of these costs being recovered from 

utility shareholders. The above logic also suggests that the longer this regulatory decision 

is delayed the greater is the likelihood that more of these sunk costs will be recovered from 

utility shareholders, because more households are installing distributed solar systems over 

time.   Moreover, as the results in Section 3 demonstrate, the longer utilities experiencing 

                                                            

5 Market Street Railway Co. v Railway Commission of California, 324, US 548 (1945). 
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significant increases in distributed solar capacity delay the resolution of this question the larger 

are distribution network costs at risk for under-recovery. 

5. Toward More Efficient Retail Tariff Design 

This section presents a simple economic model that suggests several pathways for 

increasing the efficiency of retail electricity pricing.    I first consider the case that customers 

have meters that can record their consumption on an hourly basis in order to match the 

frequency that the marginal cost of retail electricity changes. Then I consider the case that 

customers only have mechanical meters. 

Let C(h) equal the marginal cost of retail electricity facing the customer during hour 

of the year h, for h=1,2,…,H, where H is the total number of hours in the year. Under all but 

extreme system conditions, to a first approximation, C(h) is equal to the hourly wholesale price 

at the customer’s distribution network location times one plus the marginal distribution loss 

factor for delivery to the customer’s premises. Let the customer’s hourly demand curve for 

electricity be Q(h) = A(h) – P(h)/θ(h), where Q(h) is the customer’s demand in hour h, P(h) 

is the customer’s marginal price in hour h, and A(h) is the customer’s willingness to pay 

for the first unit of consumption in hour h, or alternatively the customer’s demand for 

electricity at P(h) equal zero, and θ(h) is the slope of the customer’s inverse demand curve 

during hour h, θ(h) = dP/dQ.. 

Suppose that C(h),  A(h), and θ(h) are random variables with compact support and 

joint density, f(C,A,θ). The support of C(h) is [CL,CH] and [AL,AH] where 0 < CL < CH < ∞, 

0 < AL < AH < ∞, and AL > CH.   The last inequality imposes the reasonable assumption that 

it is socially optimal for the customer to always consume a positive quantity of electricity 

during every hour of the year.  Assume that θ(h) also has compact support.   
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The economic efficiency implies that the hourly retail price of electricity should be 

set equal to the hourly marginal cost of grid supplied electricity, so that P(h) = C(h). Using 

the logic of two-part tariff pricing, the maximum fixed charge that the consumer would be 

willing to pay for grid-supplied electricity during this hour is area below the demand 

curve above the hourly price, C(h).  This is the shaded area in Figure 11 and is equal 

½θ(h)(A(h) – C(h)/θ(h))2. 

Suppose before setting the fixed charge for the year or month, the regulator only knows 

that the (A(h),C(h),θ(h))′ for all hours of the year are independent, identically distributed 

draws from f(C,A,θ).  Figure 12 shows the value of hourly consumer surplus (CS) for the 

extreme case that A(h) = AL and C(h) = P(h) = CH. The hourly value of consumer surplus is 

extremely small, which implies a small maximum hourly fixed fee. Figure 13 shows the other 

extreme of A(h) = AH and C(h) = P(h) = CL, and the hourly value of consumer surplus is 

extremely large, which allows a very large hourly fixed fee. 

Suppose that the consumer is risk neutral with respect to his electricity expenditures and 

will remain connected to the grid for the year if the expected annual fixed charge is less than 

the expected value of the annual consumer surplus obtained from consuming at P(h) = C(h) each 

hour of the year. Note that ½θ(h)(A(h) – C(h)/θ(h))2 can be written as ½θ(h)*(Q(h))2 where 

Q(h) is the quantity demanded during hour h.  Taking the expectation of ½θ(h)*(Q(h))2 yields 

Expected Hourly Willingness to Pay = 1/2[ Cov(θ(h),Q(h)2) + E(θ(h))E(Q(h)2)]. (5) 

This results implies that customers with an hourly demand that is positively correlated with the 

absolute value of the slope of their hourly inverse demand curve, customers with a large 

expected value of the slope of their hourly demand curve and customers with a large expected 

value of the square of their demand (or equivalently a large variance and mean of their demand) 
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have the largest willingness to pay to purchase their electricity each hour at a price equal to 

C(h). 

If one assumes θ(h) = 1 for hours of the year then there is an even more straightforward 

way to compute each customer’s annual fixed charge:  

Expected Hourly Willingness to Pay = ½ [E(Q(h)2] = ½[Var(Q(h)) + (E(Q(h))2.].  (6) 

If FRRiy  is the fixed cost component of the distribution network revenue requirement, the CPUC 

could use historical hourly data for the past year to compute  

Estimated Expected Hourly WTP for customer k  = EEHWTP(k) = 
ଵ

଼଻଺଴

ଵ

ଶ
∑ ܳሺ݄, ݇ሻଶ଼଻଺଴
௛ୀଵ  

where customer k’s consumption in hour h of the previous year is Q(h,k).  The annual fixed 

charge for customer k of utility i for year y is then equal to  

F(k,i,y) = 
∑ ிோோ೔೤ாாுௐ்௉ೖ
಼
ೖసభ

∑ ாாுௐ்௉ೖ
಼
ೖసభ

.     (7) 

This fixed charge could be equally divided across months of the year or tailored to the 

customer’s monthly demand throughout the year.  Each time the CPUC updates the revenue 

requirement, it could also update F(k,i,y) for each customer.  Each year it could also update 

EEHWTP(k) for each customer.  

This approach to assigning fixed cost recovery would not differ between distributed solar 

and full requirements customers, although it would clearly account for both the benefits and 

costs a distributed solar installation provides to the customer.   Specifically, distributed solar 

would allow the customer to have a low value for E(Q(h)), its average hourly consumption.  

However, it is likely that a distributed solar customer would have a significantly larger value of 

Var(Q(h)) than a full requirement customer with the same value of E(Q(h)).   By this logic, it is 

unclear if a customer would have a larger value of F(k,i,y) as a full requirements or distributed 

solar customer.  However, because the distribution network pricing mechanism allows the 
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customer to withdraw electricity from the grid at hourly marginal cost, it would eliminate the 

incentive for inefficient bypass of the grid-supplied electricity at an unsubsidized price for a 

distributed solar installation.  It would also provide a strong incentive for distributed solar 

customers to install storage devices to reduce the variance of their hourly withdraws from the 

grid and thereby reduce their annual fixed charge. 

The expression for the EEHWTP can also be broken down according to the moments of 

the joint distribution of A(h) and C(h) as: 

EEHWTP = ½ [Var(A(h)) – 2(Cov(A(h),C(h))) + Var(C(h))] + [E(A(h)) - E(C(h))]2. 

This implies that customers with a large variance in their hourly baseline (zero price) demands 

and a large variance in the hourly marginal cost of grid-supplied electric have a higher WTP pay 

to purchase grid-supplied electricity at C(h).   One reason for a higher variance in the marginal 

cost of grid-supplied electricity is that during some hours the customer’s consumption of 

electricity results in binding constraints in the distribution network, which produces an extremely 

large marginal distribution loss factor for deliveries though the distribution grid.  Customers with 

a larger expected consumption, E(Q(h)] = [E(A(h)) – E(C(h))] also have a higher expected 

willingness to pay.  Customers with demands that are more highly correlated with the marginal 

cost of grid supplied electricity have a lower willingness to pay.  Because higher wholesale 

prices tend to occur during high system demand periods, one interpretation of this result 

is that customers whose demands are more highly correlated with the system demand have a 

lower willingness to pay to consume at C(h). 

For the case that the customer only has a mechanical meter, suppose the customer 

can only be charged a price for their consumption each hour of the year equal to the expected 

marginal cost of grid-supplied electricity, E(C(h)). Under these conditions, the hourly value 

of the consumer’s willingness to pay is equal to ½(A(h) – E[C(h)])2. By the above logic: 
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Expected Hourly WTP = ½ E((Q(h)2) = ½ [Var(A(h)) + [E(A(h) – E(C(h))]2. (8) 
 

However, because hourly data is not available for customers without interval meters, other 

methods must be employed to proxy for variables used to compute an estimate of the Expected 

Hourly WTP for each customer.   An approach similar to load profiling can be used to compute 

this estimate for each customer.  Specifically, for a test sample of customers with interval 

meters which are typically used to compute hourly load profiles, the CPUC can compute 

values of EEHWTP(k) for these customers and then have an algorithm for assigning values of 

EEHWTP(k) to each customer based on this algorithm based on observable characteristics of 

the customer and then this value of EEHWTP(k) can be used to compute F(k,i,y) for that 

customer. 

This model also helps illustrates the inefficiency of pricing mechanisms such as a 

monthly demand charge that assesses on $/KW charge on a customer’s peak demand during 

the month. Unless the hour the demand charge is assessed coincides with the hour when 

the marginal cost of grid-supplied electricity is highest, there is no economic efficiency 

reason for charging a customer a higher price during the hour in the month that its 

demand is highest.  Depending on a customer’s pattern of demand throughout the month, the 

customer could incur a demand charge which significantly increases the marginal price of 

electricity when the marginal cost of grid-supplied electricity is extremely low.  

Consequently, there is no economic efficiency rationale for a demand charge, if the customer’s 

hourly demands are uncorrelated with the hourly marginal cost of grid-supplied electricity. 

There is, however, a limited efficiency argument for demand charges if customer’s hourly 

demands are positively correlated with the marginal cost of grid-supplied electricity, but 

this argument can be easily refuted if the hourly marginal price of electricity is set equal 

to marginal cost of grid-supplied electricity. 
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6. Concluding Comments 

If current technological and social trends continue, the share of United States 

electricity consumption provided by distributed solar generation capacity is likely to continue 

to increase.  According to our distribution network pricing model parameter estimates this will 

lead to increasing distribution network costs and prices to residential customers.  If current 

residential distribution network tariffs remain in place, utilities will find it increasingly 

difficult to recover the costs of their distribution networks, even if the revenues they receive 

from supplying distributed solar and full-requirements customers exceeds the incremental 

cost to both customers.  Moreover, the legal precedents for the recovery of sunk investments 

by regulated entities imply that electric utilities would be well-served to seek a resolution to 

the cost recovery issue as soon as possible because further delay will increase these 

distribution network costs (as more customers install distribution solar systems) and increase 

the likelihood that a greater share of these sunk costs must be recovered utility shareholders. 

For customers with interval meters, which is the vast majority of customers in 

regions with significant solar resources such as California and Arizona, there is a 

straightforward approach to increasing the economic efficiency of retail electricity pricing 

and reducing the incentive for inefficient bypass of grid-supplied electricity. The hourly 

retail price should be set equal to the hourly marginal cost of grid-supplied electricity and 

the remainder of the utility’s costs that can be recovered can be obtained through customer-

specific monthly fixed charges that depend on the expected value of the square of the 

household’s hourly consumption.  Setting default retail electricity prices in this manner 

will also provide strong incentives for customers to install on-site storage devices and other 

mechanisms for shifting their consumption away from high-priced hours. 

   



28  

References 

Borenstein, Severin (2011) “Regional and Income Distribution Effects of Alternative Retail 
Electricity Tariffs,’ Energy Institute at Haas Working Paper 222, October. 

 
Borenstein, Severin (2015) “The Private Net Benefits of Residential Solar PV: The Role of 

Electricity Tariffs, Tax Incentives, and Rebates, National Bureau of Economic Research 
Working Paper Number 21342, July. 

 
Faulhaber, Gerald R. (1975) “Cross-Subsidization: Pricing in Public Enterprises,” American 

Economic Review, 65(5), 966-977. 
 
Hempling, Scott (2015) “From Streetcars to Solar Panels: Stranded Cost Policy in the United 

States, Energy Regulation Quarterly, Volume 3, Issue 3. 
 
Panzar, John C. “Technological Determinants of Firm and Industry Structure” Handbook 

of Industrial Organization, Elsevier Science Publishers, B.V., 1989, 3-59. 
  



29  

 
 

Table 1:  Regression Results for Forecasting Annual Utility-Level  
Residential Demand in GWh 

 PG&E SCE SDG&E 
 i 0.00337ߤ

(0.00845) 
0.00632 
(0.0109) 

0.0123 
(0.0110) 

௜ݏ
ଶ 0.001231 0.00283 0.0284 

 
Box-Pierce statistic 
(lag=11) 

6.9430 12.9303 10.9349 

Prob > chi2(11) 0.8039 0.2979 0.4487 
 

Box-Pierce statistic 
(lag=6) 

5.2154 9.0647 7.2321 

Prob > chi2(6) 0.5171 0.1699 0.2999 
 

Number of Obs. 26 26 26 
Standard errors in parentheses below coefficient estimate 

 

 

Table 2:  Regression Results for Forecasting Annual Total Utility-Level Demand in GWh 

 PG&E SCE SDG&E 
 i 0.00672ߤ

(0.00773) 
0.00712 
(0.0109) 

0.0110 
(0.0110) 

௜ݏ
ଶ 0.0014924 0.0029975 0.0030489 

 
Box-Pierce statistic 
(lag=11) 

8.4430 14.4959 12.8822 

Prob > chi2(11) 0.6732 0.2068 0.3011 
 

Box-Pierce statistic 
(lag=6) 

7.4304 10.0387 8.2416 

Prob > chi2(6) 0.2829 0.1230 0.2209 
 

Number of Obs. 26 26 26 
Standard errors in parentheses below coefficient estimate 
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Table 3:   Model (2) Estimates--Residential Distribution Network Price-Setting Process 

Dependent Variable = Logarithm of Quarterly Average Residential  
Distribution Network Price 

Regressor   
ln(QFR) -0.751 

(1.032) 
-0.671 
(1.085) 

ln(CI)  0.058 
(0.023) 

 0.068 
(0.023) 

ln(CI)*ln(CONC)  0.003 
(0.001) 

 

 Utility*Year Fixed Effects Utility*Year Fixed Effects 
Number of Observations 168 168 

 

Table 4:   Model (3) Estimates--Average Distribution Network Cost  

Dependent Variable = Logarithm of Annual Average Distribution Network Cost 
Regressor   
ln(QF) -1.252 

(1.342) 
-1.671 
(1.851) 

ln(CI)  0.028 
(0.013) 

 0.039 
(0.018) 

ln(CI)*ln(CONC)  0.002 
(0.002) 

 

 Utility and Year Fixed 
Effects 

Utility and Year Fixed 
Effects 

Number of Observations 33 33 
 

Table 5:   Model (4) Estimates—Residential Distribution Network Price Controlling for 
Average Distribution Network Costs 

Dependent Variable = Logarithm of Quarterly Average Residential  
Distribution Network Price 

Regressor   
ln(RR/QF)  1.020 

(0.906) 
 1.671 
(1.851) 

ln(CI)  0.026 
(0.013) 

 0.035 
(0.015) 

ln(CI)*ln(CONC)  0.001 
(0.001) 

 

 Utility*Year Fixed Effects Utility*Year Fixed Effects 
Number of Observations 132 132 
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Figure 1: Plots of Annual Demand in GWh for Pacific Gas & Electric 
 (Red Line) and Forecast Demand (Black Line) 

 
Figure 2: Plots of Annual Demand in GWh for Southern California Edison 

 (Red Line) and Forecast Demand (Black Line) 
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Figure 3: Plots of Annual Demand in GWh for San Diego Gas and Electric 
 (Red Line) and Forecast Demand (Black Line) 

Figure 4: Cumulative Installed Distributed Solar Generation Capacity by Quarter and 
Utility in Megawatts (MWs) 
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Figure 5: Normalized Annual Distribution Cost and Normalized Proxy Annual Residential 
Distribution Cost from Model 1 Estimates for Pacific Gas and Electric 

 
Figure 6: Normalized Annual Distribution Cost and Normalized Proxy Annual Residential 

Distribution Cost from Model 1 Estimates for Southern California Edison 
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Figure 7: Normalized Annual Distribution Cost and Normalized Proxy Annual Residential 
Distribution Cost from Model 1 Estimates for San Diego Gas and Electric 

 
Figure 8:  Actual and Counterfactual (No Post-2003 Distributed Solar Installations)  

Quarterly Residential Distribution Price for Pacific Gas and Electric 
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Figure 9: Actual and Counterfactual (No Post-2003 Distributed Solar Installations)  
Quarterly Residential Distribution Price for Southern California Edison  

 
Figure 10:  Actual and Counterfactual (No Post-2003 Distributed Solar Installations)  

Quarterly Residential Distribution Price for San Diego Gas and Electric 
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Figure 11:   Efficient Two-Part Tariff Pricing 

 

Figure 12:   Worst-Case Hourly Willingness to Pay 

Q = A − P/θ(h) 

Q = AL − P/θ(h) 
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Figure 12:   Best-Case Hourly Willingness to Pay 

 

 

Q = AH − P/θ(h) 


