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Abstract

This paper examines the role of both technology and non-technology shocks in international

business cycle comovement. Using industry-level data on 30 countries and up to 28 years,

we first provide estimates of utilization-adjusted TFP shocks, and an approach to infer non-

technology shocks. We then set up a quantitative model calibrated to the observed international

input-output and final goods trade, and use it to assess the contribution of both technology

and non-technology shocks to international comovement. We show that unlike the traditional

Solow residual, the utilization-adjusted TFP shocks are virtually uncorrelated across countries.

Transmission of TFP shocks across countries also cannot generate noticeable comovement in

GDP in our sample of countries. By contrast, non-technology shocks are highly correlated across

countries, and the model simulation with only non-technology shocks generates substantial GDP

correlations. We conclude that in order to understand international comovement, it is essential

to both model and measure non-TFP shocks.
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1 Introduction

Real GDP growth is positively correlated across countries. In spite of a large amount of research into

the causes of international comovement, we still lack a comprehensive account of this phenomenon.

Two related themes cut through the literature. First, is international comovement driven pre-

dominantly by technology (Backus, Kehoe, and Kydland, 1992) or non-technology (Stockman and

Tesar, 1995) shocks? Second, does comovement occur because shocks are transmitted across coun-

tries (e.g. Frankel and Rose, 1998; di Giovanni and Levchenko, 2010; di Giovanni, Levchenko, and

Mejean, 2018), or because the shocks themselves are correlated across countries (Imbs, 2004)?

This paper uses sector-level data for 30 countries and up to 28 years years to provide a forensic

account of the sources of international comovement. The first step in our exercise is measurement

of both technology and non-technology shocks. On the technology side, we provide estimates

of utilization-adjusted TFP growth rates in our sample of countries, sectors, and years. Basu,

Fernald, and Kimball (2006, henceforth BFK) develop a methodology to estimate TFP shocks for

the United States controlling for unobserved input utilization and industry-level variable returns

to scale. Importantly, BFK show that doing so produces a TFP series with dramatically different

properties than the traditional Solow residual. We bring this insight into the international context

by estimating the BFK TFP series for a large sample of countries, and analyzing the international

correlations in these series.

Having measured the TFP shocks at the country-sector level, we develop a method to infer

non-technology shocks. The objective is to obtain a shock that rationalizes the change in primary

factor inputs conditional on the technology shock. In our model, sectors use capital, labor, and

intermediate inputs from potentially all countries and sectors in the world. For each sector, real

output growth is therefore moved by (i) its TFP shock; (ii) the change in the use of its intermediate

inputs; and (iii) the non-technology shock to the supply of the primary factors – capital and labor

– to this sector. It is this non-technology shock that we are interested in measuring. Using data

on productivity shocks, sectoral prices, and the world input-output matrix, we back out the non-

technology shock that rationalizes the data on output and input growth in each country, sector,

and year.

Using these technology and non-technology shocks in our sample of countries and sectors, we

assess the role of both the shocks and the international goods market linkages for cross-country

business cycle comovement. We do this by means of two exercises: an accounting decomposition

and model-based counterfactuals. The accounting decomposition writes real GDP growth as a sum

of two components, the TFP growth and the input growth. Thus, the GDP covariance between

any two countries is the sum of the covariance of TFP, covariance of inputs, and the TFP-input

cross-covariance terms. We show that TFP growth is virtually uncorrelated across countries, im-

plying that TFP covariance has a small direct contribution to observed comovement in our sample

of countries. By contrast, input growth is significantly more correlated across countries, with a

1



correlation coefficient nearly half of the correlation of GDP.

Of course, input growth is endogenous as inputs respond to both domestic and foreign TFP

shocks. Thus, the finding that TFP growth is uncorrelated does not necessarily imply TFP shocks

do not contribute to international comovement. It could be that correlated observed input growth

is driven by the propagation of TFP shocks. We must instead examine the properties of the non-

technology shocks, that are constructed after netting out TFP. We show that in contrast to TFP,

the aggregated non-technology shocks are quite correlated across countries, with the correlation

coefficients about half of the correlation in real GDPs. To develop the full picture of the role of

different types of shocks, correlated shocks, and international transmission, we perform model-based

counterfactuals.

Our quantitative framework features multiple countries and sectors, and trade in both final

and intermediate goods. It is implemented on the data from the World Input-Output Database

(WIOD). Final consumption in each country and sector is an Armington aggregate of the goods

coming from different source countries. Each sector uses labor, capital, and intermediate inputs

in production. The intermediate inputs can come from any sector and country in the world, and

we take the information on input usage directly from WIOD. Labor and capital supply to each

sector and country are upward-sloping in the real prices of labor and capital, respectively, and

subject to shocks. It is these shocks to factor supply that we back out from the data and label as

non-technology shocks. We simulate the world economy’s responses to shocks using the approach

of Dekle, Eaton, and Kortum (2008).

The model features standard international transmission mechanisms. A positive foreign shock

lowers the prices of intermediate inputs coming from that country, stimulating demand in countries

and sectors that use those inputs in production. At the same time, a positive shock in a foreign

country makes final goods supplied by that country cheaper, reducing demand for final goods

produced by countries competing with it in final goods markets. Prior to simulating the model,

we first structurally estimate two key elasticities – the final demand elasticity and the elasticity of

substitution between intermediate inputs. Estimates of these elasticities vary substantially in the

literature, and any assessment of the role of transmission vs. correlated shocks will be influenced

by these parameters. Our estimates imply an elasticity of substitution between intermediate inputs

that is not statistically different from 1. On the other hand, we obtain a range of estimates for the

elasticity of substitution in final demand. Given the uncertainty in the appropriate value of this

elasticity, our quantitative analysis uses two values, 1 and 2.75, reflecting our range of estimates.

To focus on the distinction between technology and non-technology shocks, we simulate the

model with only one type of shock at a time. It turns out that a model with only TFP shocks

cannot generate almost any international comovement, whereas the model with only non-technology

shocks can produce a correlation that is 60% of the correlation under both types of shocks. Thus,

non-technology shocks are much more successful at generating the observed comovement than
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technology shocks, a result that is insensitive to the choice of elasticities.

To assess the role of trade linkages in the transmission of shocks, we perform two related

exercises. First, we compute impulse responses to a hypothetical shock abroad on each country’s

GDP. We simulate two kinds of shocks: a 1% increase in U.S. productivity and the non-technology

shocks, and a 1% increase in those parameters in every other country in the world (rest of the

world or ROW shock). The impulse responses point to positive comovement in response to shocks:

real GDP in most countries increases following a shock to the U.S., though the effect is much more

pronounced under a low substitution elasticity. In response to a 1% ROW shock, the real GDP in

the mean country increases by 0.5% under the low elasticity of substitution, and by 0.2% under the

high one, suggesting substantial responsiveness of countries to developments in the world economy.

We then simulate the model under the observed shocks, but in which every country is in au-

tarky. This counterfactual reveals how much comovement would occur purely due to correlated

shocks, and without any transmission of shocks through trade linkages. On average, the autarky

correlations are similar to the baseline under the high elasticity of substitution, and slightly lower

than baseline under the low elasticity. However, these averages conceal a great deal of hetero-

geneity and compositional patterns. There is a part of the country sample that displays higher

GDP correlations in autarky than under trade. However, most countries experience higher corre-

lations under trade. Under the low elasticity of substitution, 24 out of 29 countries have higher

correlations with international trade compared to autarky with the majority of the countries in

the sample, suggesting that trade linkages do increase correlations in most of the country pairs.

In addition, correlations under trade are disproportionately more likely to be higher with larger

countries. All in all, when it comes to quantifying the role of transmission the results are somewhat

more heterogeneous across countries and elasticity-dependent. However, evidence supportive of the

transmission of shocks through trade linkages is clear-cut in much of the world economy.

Our paper contributes to the literature on international comovement. There is a small number of

papers dedicated to documenting international correlations in productivity shocks and inputs (Imbs,

1999; Ambler, Cardia, and Zimmermann, 2004). Also related is the body of work that identifies

technology and demand shocks in a VAR setting and examines their international propagation (e.g.

Canova, 2005; Corsetti, Dedola, and Leduc, 2014; Levchenko and Pandalai-Nayar, 2017). Relative

to these papers, we use sector-level data to provide novel estimates of both utilization-adjusted

TFP and non-technology shocks, and expand the sample of countries. A large literature builds

models in which fluctuations are driven by productivity shocks, and asks under what conditions

those models can generate observed international comovement (see, among many others, Backus,

Kehoe, and Kydland, 1992; Kose and Yi, 2006; Johnson, 2014). A smaller set of contributions adds

non-technology shocks (Stockman and Tesar, 1995; Wen, 2007). In these analyses, productivity

shocks are proxied by the Solow residual, and non-technology shocks are not typically measured

based on data. Our quantitative assessment benefits from improved measurement of both types of
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shocks.

The rest of the paper is organized as follows. Section 2 lays out a basic GDP accounting frame-

work and presents the results of estimating utilization-adjusted TFP. Section 3 introduces the

multi-country, multi-sector model of production and trade necessary to back out non-technology

shocks, estimates key elasticities and uses that model to perform counterfactuals. Section 4 con-

cludes.

2 Accounting Framework

Let there be J sectors indexed by j and N countries indexed by n. Let gross output in sector j

country n be given by:

Ynjt = Znjt

[(
K
αj
njtL

1−αj
njt

)ηj
X

1−ηj
njt

]γj
, (1)

where Knjt, Lnjt, and Xnjt are the capital, labor, and materials inputs, respectively, and Znjt

is TFP. Total output is a Cobb-Douglas aggregate of primary factor inputs Knjt and Lnjt and

materials inputs Xnjt, with possibly non-constant returns to scale (γj 6= 1). When it comes to

measurement, it will be important that Knjt and Lnjt are true, utilization-adjusted inputs that

may not be directly observable.

Define real GDP at time t, evaluated at base prices (prices at t− 1) by:

Ynt =

J∑
j=1

(
Pnjt−1Ynjt − PXnjt−1Xnjt

)
,

where Pnjt−1 is the gross output base price, and PXnjt−1 is the base price of inputs in that sector-

country. The change in real GDP between t− 1 and t is then:

∆Ynt =
J∑
j=1

(
Pnjt−1∆Ynjt − PXnjt−1∆Xnjt

)
,

and the proportional change:

∆Ynt
Ynt−1

=

∑J
j=1

(
Pnjt−1∆Ynjt − PXnjt−1∆Xnjt

)
Ynt−1

=

J∑
j=1

wDnjt−1

(
∆Ynjt
Ynjt−1

− ∆Xnjt

Xnjt−1

PXnjt−1Xnjt−1

Pnjt−1Ynjt−1

)
,

where wDnjt−1 ≡
Pnjt−1Ynjt−1

RGDPnt−1
is the Domar weight of sector j in country n, that is, the weight of the
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sector’s gross sales in aggregate value added. Approximate the growth rate with log difference:

dlogYnt ≈
J∑
j=1

wDnjt−1

(
dlogYnjt − dlogXnjt

PXnjt−1Xnjt−1

Pnjt−1Ynjt−1

)
(2)

=
J∑
j=1

wDnjt−1 (dlogZnjt + γjαjηjdlogKnjt + γj(1− αj)ηjdlogLnjt

+γj (1− ηj) dlogXnjt − dlogXnjt

PXnjt−1Xnjt−1

Pnjt−1Ynjt−1

)
.

All of the terms in this expression are either observable or will be estimated, except for αj and

ηj . Thus, in order to proceed we need to take a stand on how to measure these. Regardless of

the nature of variable returns to scale or market structure, under cost minimization αjηj is the

share of payments to capital in the total costs, while (1− αj)ηj is the share of payments to labor.

We do not observe total costs, only total revenues. We will assume that αjηj also reflects the

share of payments to capital in total revenues. This assumption is satisfied if either (i) sector j is

competitive and the variable returns to scale are external to the firm; or (ii) profits are distributed

among the inputs in proportion to their share in total costs, as in BFK or Hsieh and Klenow (2009).

In either of those cases, these can be taken directly from the data as αjηj = rnjtKnjt/PnjtYnjt and

(1 − αj)ηj = wnjtLnjt/PnjtYnjt, where PnjtYnjt is total revenue, rnjt is the price of capital, and

wnjt is the wage rate. The growth in real GDP then can be written as:

dlogYnt ≈
J∑
j=1

wDnjt−1

dlogZnjt︸ ︷︷ ︸
True TFP

+ (γj − 1)dlog
[(
K
αj
njtL

1−αj
njt

)ηj
X

1−ηj
njt

]
︸ ︷︷ ︸

Scale effect

(3)

+αjηjdlogKnjt + (1− αj)ηjdlogLnjt︸ ︷︷ ︸
Primary inputs

 .

In the first instance, we are interested in the proximate drivers of comovement between countries,

and in particular whether aggregate comovement occurs because of correlated TFP or inputs. Write

real GDP growth as a sum of two components:

dlogYnt ≈ dlogZnt + dlogInt, (4)

where aggregate TFP is denoted by:

dlogZnt =
J∑
j=1

wDnjt−1dlogZnjt, (5)
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and the input-driven component of GDP growth is defined as:

dlogInt ≡
J∑
j=1

wDnjt−1

(γj − 1)dlog
[(
K
αj
njtL

1−αj
njt

)ηj
X

1−ηj
njt

]
︸ ︷︷ ︸

Scale effect

(6)

+αjηjdlogKnjt + (1− αj)ηjdlogLnjt︸ ︷︷ ︸
Primary inputs

 .

Then the covariance of real GDP between two countries is:

Cov(dlogYnt, dlogYn′t) = Cov(dlogZnt, dlogZn′t) + Cov(dlogInt, dlogIn′t) (7)

+Cov(dlogZnt, dlogIn′t) + Cov(dlogInt, dlogZn′t).

This expression can be converted into correlations, as those have a more natural scale and are most

commonly found in business cycle analyses:

ρ(dlogYnt, dlogYn′t) =
σZnσZn′
σnσn′

ρ(dlogZnt, dlogZn′t) +
σInσIn′
σnσn′

ρ(dlogInt, dlogIn′t) (8)

+
σZnσIn′
σnσn′

ρ(dlogZnt, dlogIn′t) +
σZIσZn′
σnσn′

ρ(dlogInt, dlogZn′t),

where ρ(., .) denotes correlation, σn is the standard deviation of dlogYnt, and σZn and σIn are

standard deviations of dlogZnt and dlogInt, respectively. Equations (7)-(8) convey that in the

proximate sense, comovement in real GDP between two countries can be driven by correlated TFP

shocks ρ(dlogZnt, dlogZn′t), correlated inputs ρ(dlogInt, dlogIn′t), or the cross-correlations between

them.

We will first establish stylized facts on the TFP and input cross-country correlations. To do this,

we need to overcome the measurement challenge of estimating the TFP processes when utilization-

adjusted factor usage is unobserved. Since inputs are clearly endogenous, and will respond to both

domestic and potentially foreign GDP, we will then impose some additional theoretical structure

to extract non-technology shocks that rationalize the observed movements in sector-level quantities

and prices.

2.1 Unobserved Factor Utilization

As emphasized by BFK, measuring TFP innovations is difficult because the intensity with which

factors are used in production varies over the business cycle, and cannot be directly observed by the

econometrician. As unobserved factor utilization will respond to TFP innovations, it is especially

important to control for it in estimation, otherwise factor usage will appear in estimated TFP. BFK
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show that controlling for unobserved factor utilization leads to a TFP series in the United States

that has very different properties than the Solow residual.

Let the true factor inputs be comprised of:

Knjt ≡ AnjtMnjt

and

Lnjt ≡ EnjtHnjtNnjt.

The true capital input is the product of the quantity of capital input (“machines”) Mnjt that can

be measured in the data, and capital utilization Anjt that is not directly observable. Similarly, the

true labor input is the product of the number of workers Nnjt, hours per worker Hnjt, and labor

effort Enjt. While Nnjt and Hnjt can be obtained from existing datasets, Enjt is unobservable.

Relationship to Solow residual The Solow residual takes factor shares and nets out the ob-

servable factor uses. Denote by Snjt the Solow residual. It has the following relationship to gross

output and observed inputs:

dlogYnjt = dlogSnjt +αjηjdlogMnjt + (1−αj)ηjdlogHnjt + (1−αj)ηjdlogNnjt + (1− ηj) dlogXnjt.

Plugging this way of writing output growth into the real GDP growth equation (2), we get the

following expression:

dlogYnt ≈
J∑
j=1

wDnjt−1 (dlogSnjt + αjηjdlogMnjt + (1− αj)ηjdlogHnjt + (1− αj)ηjdlogNnjt

+ (1− ηj) dlogXnjt − dlogXnjt

pXnjt−1Xnjt−1

pnjt−1Ynjt−1

)

=

J∑
j=1

wDnjt−1 (dlogSnjt + αjηjdlogMnjt + (1− αj)ηjdlogHnjt + (1− αj)ηjdlogNnjt) .(9)

Comparing (3) to (9), the Solow residual contains the following components:

dlogSnjt = dlogZnjt︸ ︷︷ ︸
True TFP

+ (γj − 1)dlog
[(
K
αj
njtL

1−αj
njt

)ηj
X

1−ηj
njt

]
︸ ︷︷ ︸

Scale effect

+αjηjdlogAnjt + (1− αj)ηjdlogEnjt︸ ︷︷ ︸
Unobserved utilization

.

This expression makes it transparent that in this setting, the Solow residual can diverge from the

true TFP shock for two reasons: departures from constant returns to scale at the industry level,
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and unobserved utilization of inputs.

Let aggregate Solow residual be denoted by:

dlogSnt =
J∑
j=1

wDnjt−1dlogSnjt

= dlogZnt + dlogUnt,

where in the second equality, dlogUnt is the aggregate utilization adjustment:

dlogUnt ≡
J∑
j=1

wDnjt−1

{
(γj − 1)dlog

[(
K
αj
njtL

1−αj
njt

)ηj
X

1−ηj
njt

]
+αjηjdlogAnjt + (1− αj)ηjdlogEnjt} .

It is immediate that the observed Solow residual can be correlated across countries both due to

correlated shocks to true TFP, and due to correlated unobserved input adjustments:

ρ(dlogSnt, dlogSn′t) =
σZnσZn′
σSnσSn′

ρ(dlogZnt, dlogZn′t) +
σUnσUn′
σSnσSn′

ρ(dlogUnt, dlogUn′t)

+
σZnσUn′
σSnσSn′

ρ(dlogZnt, dlogUn′t) +
σUnσZn′
σSnσSn′

ρ(dlogUnt, dlogZn′t),

where σSn and σUn are standard deviations of dlogSnt and dlogUnt, respectively. Thus, it is an

empirical question to what degree correlations in the Solow residual reflect true technology shock

correlation as opposed to endogenous input adjustments.

2.2 Estimation

Note that dlogKnjt and dlogLnjt are true, utilization-adjusted primary input growth rates. Log-

differencing (1), and writing input usage breaking up the observed and the unobserved components

yields:

dlogYnjt = γj

αjηjdlogMnjt + (1− αj)ηjdlog (HnjtNnjt) + (1− ηj)dlogXnjt︸ ︷︷ ︸
Observed inputs

 (10)

+γj (αjηjdlogAnjt + (1− αj)ηjdlogEnjt) + dlogZnjt︸ ︷︷ ︸
Unobserved inputs

.

The key insight of BFK is that the firms’ static optimization implies that the intensity of usage of

observed and unobserved input usages are related. In particular, they provide a set of conditions

under which the change in the unobserved inputs are proportional to the (observed) change in
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hours per worker, with the constant of proportionality that can be estimated:

αjηjdlogAnjt + (1− αj)ηjdlogEnjt = ξjdlogHnjt. (11)

The intuition is that firms optimize multiple dimensions of factor use intensity simultaneously to

minimize costs. Thus, subject to technological constraints embodied in the composite parameter

ξj , firms will set the shadow value of the unobserved dimensions of factor usage equal to shadow

value of the observed dimensions. Plugging (11) into (10) yields the following estimating equation:

dlogYnjt = δ1
j (αjηjdlogMnjt + (1− αj)ηjdlog (HnjtNnjt) + (1− ηj)dlogXnjt) (12)

+δ2
j dlogHnjt + δnj + dlogZnjt,

where we also added country×sector fixed effects to allow for country-sector specific trend output

growth rates. The estimation proceeds to regress real output growth on the growth of the composite

observed input bundle and the change in hours.

We follow BFK’s implementation approach as closely as possible. First, input usage will move

with TFP shocks dlogZnjt, and thus the regressors in this equation are correlated with the residual.

To overcome this endogeneity problem, we use potentially three instruments. The first is oil shocks,

defined as the difference between the log oil price and the maximum log oil price in the preceding

four quarters. This oil price shock is either zero, or is positive when this difference is positive,

reflecting the notion that oil prices have an asymmetric effect on output. The annualized oil shock

is the sum over the four quarters of the preceding year. The second instrument is the growth

rate in real government defense spending, lagged by one year. Finally, the third instrument is the

foreign monetary policy shock interacted with the exchange rate regime. This instrument follows

di Giovanni and Shambaugh (2008) and di Giovanni, McCrary, and von Wachter (2009), who show

that major country interest rates have a significant effect on countries’ output when they peg their

currency to that major country. The assumption in specifications that use this instrument is that

for many countries, interest rates in the US, Germany, or the UK are exogenous.

In practice, we estimate two separate sets of regressions. The first is confined to only the G7

countries, and uses only the first two instruments (oil and military spending). This tends to lead

to the strongest instruments and most precisely estimated coefficients. Since these are the major

world economies, the foreign interest rate instrument is not appropriate here. Second, we estimate

this equation on the full sample of countries excluding the “base” countries of US, Germany, and

the UK, in which case we use all three instruments.

Finally, following BFK, to reduce the number of parameters to be estimated, we restrict δ2
j

to take only three values, according to a broad grouping of sectors: durable manufacturing, non-

durable manufacturing, and all others.

Estimating equation (12) provides estimates of the two unknown parameters: δ̂1
j corresponds to
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γj , and δ̂2
j to γjξj . In addition, conditional on these estimates and the log changes in the observed

inputs, we obtain the TFP shocks dlogZnjt as residuals. We use the estimate of ξj in two places,

as we need it to construct the dlog
[(
K
αj
njtL

1−αj
njt

)ηj
X

1−ηj
njt

]
term:

dlog
[(
K
αj
njtL

1−αj
njt

)ηj
X

1−ηj
njt

]
= dlog

(
M

αjηj
njt N

(1−αj)ηj
njt H

(1−αj)ηj+ξj
njt X

1−ηj
njt

)
,

where we substituted for unobserved inputs using (11). Then, the growth rate of GDP can be

expressed in terms of observable and estimated values:

dlogYnt ≈
J∑
j=1

wDnjt−1

dlogZnjt︸ ︷︷ ︸
True TFP

+ (γj − 1)
[
dlog

(
M

αjηj
njt N

(1−αj)ηj
njt H

(1−αj)ηj+ξj
njt X

1−ηj
njt

)]
︸ ︷︷ ︸

Scale effect

(13)

+ (αjηjdlogMnjt + (1− αj)ηjdlogHnjt + (1− αj)ηjdlogNnjt) + ξjdlogHnjt︸ ︷︷ ︸
Utilization−adjusted primary inputs

 .

With this expression in hand, we can implement the decomposition of real GDP growth into TFP

and input growth (4), and the covariance/correlation decompositions (7)-(8).

2.3 Data

The data requirements for estimating equation (12) is growth of real output and real inputs for a

panel of countries, sectors, and years. The dataset with the broadest coverage of this information is

KLEMS 2009 (O’Mahony and Timmer, 2009).1 This database contains gross output, value added,

labor and capital inputs, as well as output and input deflators. In a limited number of instances,

we supplemented the information available in KLEMS with data from the WIOD Socioeconomic

Accounts, which contains similar variables. After data quality checking and cleaning, we retain a

sample of 30 countries, listed in Appendix Table A1. The database covers all sectors of the economy

at a level slightly more aggregated than the 2-digit ISIC revision 3, yielding, after harmonization,

30 sectors listed in Appendix Table A2. In the best cases we have 28 years of data, 1970-2007,

although the panel is not balanced and many emerging countries do not appear in the data until

the mid-1990s.

The oil price series is the West Texas Intermediate, obtained from the St. Louis Fed’s FRED

database. We have also alternatively used the Brent Crude oil price, obtained from the same

source. Military expenditure comes from the Stockholm International Peace Research Institute

(SIPRI). The exchange rate regime classification along with information on the base country comes

1This is not the latest vintage of KLEMS, as there is a version released in 2016. Unfortunately, however, the 2016
version has a shorter available time series, as the data start in 1995, and also has many fewer countries. A consistent
concordance between the two vintages is challenging without substantial aggregation.
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from Shambaugh (2004), updated in 2015. Finally, base country interest rates are proxied by the

Money Market interest rates in these economies, and obtained from the IMF International Financial

Statistics.

The extraction of the non-technology shocks and the quantitative analysis below require addi-

tional information on the input linkages at the country-sector-pair level, as well as on final goods

trade. This information comes from the 2013 WIOD database (Timmer et al., 2015), which contains

the global input-output matrix.

2.4 Empirical Results

Appendix Table A3 reports the results of estimating equation (12). The returns to scale parameters

vary from about 0.7 to 0.9 in durable manufacturing, from 0.3 to 1 in non-durable manufacturing,

and from 0.1 to nearly 2 in the quite heterogeneous non-manufacturing sector. Thus, the estimates

show departures from constant returns to scale in a number of industries, consistent with existing

evidence. The coefficient on hours per worker (dlogHnjt) is significantly different from zero in two

out of three industry groups, indicating that adjusting for unobserved utilization is important in

the manufacturing industries.

Having estimated these production function parameters and TFP shocks, we are ready to ex-

amine cross-country correlations. We present results for two subsamples: the G7 countries and the

full sample. The G7 countries have less variation among them, making patterns easier to detect.

In addition, the production function coefficient estimates are most reliable for the G7 sample, and

we use them as the baseline coefficients to be applied to all other countries, implying that TFP

and inputs in other countries are likely measured with greater error.

Table 1 reports the basic summary statistics for the main variables of interest. The top panel

reports the correlations among the G7 countries. The average correlation of real GDP growth

among these countries is 0.38. The second line summarizes correlations of the TFP shocks. Those

are on average zero, if not negative. By contrast, input growth is positively correlated, with a

0.21-0.22 average. We then correlate the components of dlogInt in equation (6) separately. The

primary inputs and the scale effect term are both positively correlated across countries, with an

order of magnitude that is similar to the correlation in the overall dlogInt. Finally, the Solow

residual has an average correlation of 0.16-0.18 in this sample of countries. If Solow residual was

taken to be a measure of TFP shocks, we would have concluded that TFP is positively correlated

in this set of countries. As we can see, this conclusion would be misleading. Indeed, the utilization

term Unt, which is the difference between the TFP shock dlogZnt and the Solow residual, has a

correlation that is more than two-thirds of the correlation of the Solow residual. This indicates

that the correlation in the Solow residual is in fact driven by unobserved input utilization and scale

adjustments. The top panel of Figure 1 depicts the kernel densities of the correlations of real GDP,

TFP, and inputs. There is a clear hierarchy, with the real GDP being most correlated, and the
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Table 1: Correlations summary statistics

Mean Median 25th pctile 75th pctile

G7 Countries (N. obs. = 21)

dlogYnt 0.380 0.378 0.265 0.533
dlogZnt -0.024 -0.014 -0.150 0.164
dlogInt 0.210 0.216 0.061 0.371

Primary inputs 0.245 0.260 0.151 0.343
Scale effect 0.185 0.158 0.091 0.352

dlogSnt 0.155 0.180 0.067 0.305
dlogUnt 0.126 0.124 -0.080 0.298

All countries (N. obs. = 406)

dlogYnt 0.171 0.205 -0.078 0.428
dlogZnt 0.019 0.043 -0.184 0.240
dlogInt 0.091 0.106 -0.130 0.325

Primary inputs 0.114 0.142 -0.079 0.339
Scale effect 0.074 0.085 -0.125 0.295

dlogSnt 0.057 0.078 -0.150 0.292
dlogUnt 0.041 0.064 -0.152 0.247

Notes: This table presents the summary statistics of the correlations in the sample of G7 countries (top
panel) and full sample (bottom panel). Variable definitions and sources are described in detail in the text.

TFP being least correlated and centered on zero.

The bottom panel of Table 1 repeats the exercise in the full sample of countries. The basic

message is the same as for the G7 but quantitatively the picture is not as stark and the variation

is greater. It is still the case that dlogZnt has a very low average correlation, with the mean and

median of 0.014 and 0.043, respectively. It is also still the case that the inputs dlogInt have greater

correlation, and that their correlation is on average about half of the average real GDP correlation.

The Solow residuals are also more correlated than dlogZnt, and part of the difference is accounted

for by the fact that the unobserved inputs are positively correlated. The bottom panel of Figure 1

displays the kernel densities of the correlations in the full sample.

We next implement a covariance decomposition as in (7). We would like to see what share of

the covariance in real GDP is due to TFP, input, and TFP-input covariances. One problem with

this exercise is that covariances are quite low (most of them are below 0.01), and thus a covariance

so close to zero in the denominator produces shares that can be very far away from 1. These

12



Figure 1: Correlations: Kernel Densities

G7 Countries (N. obs. = 21)
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Notes: This figure displays the kernel densities of real GDP growth, the utilization-adjusted TFP, and input
correlations in the sample of G7 countries (top panel) and full sample (bottom panel). Variable definitions
and sources are described in detail in the text.
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Table 2: Covariance Decompositions, ρ > 0.2

Mean Median 25th pctile 75th pctile

G7 Countries (N. obs. = 18)

Share of Cov(dlogYnt, dlogYn′t)
Cov(dlogZnt, dlogZn′t) -0.215 0.006 -0.466 0.322
Cov(dlogInt, dlogIn′t) 0.616 0.675 0.249 1.208
Cov(dlogZnt, dlogIn′t)+Cov(dlogInt, dlogZn′t) 0.599 0.496 -0.049 0.792

All countries (N. obs. = 203)
Share of Cov(dlogYnt, dlogYn′t)
Cov(dlogZnt, dlogZn′t) 0.166 0.293 -0.512 1.154
Cov(dlogInt, dlogIn′t) 0.481 0.574 -0.192 1.407
Cov(dlogZnt, dlogIn′t)+Cov(dlogInt, dlogZn′t) 0.353 0.203 -1.240 1.410

Notes: This table presents summary statistics for the covariance decomposition in equation (7) in the
sample of G7 countries (top panel) and full sample (bottom panel). Variable definitions and sources are
described in detail in the text.

outliers are large enough to affect the means. To reduce the impact of dividing by near-zero on

the reported shares, we restrict the sample to country pairs with correlation coefficients above the

median. Table 2 reports the results. In the G7, the share of GDP covariance accounted for by the

covariance of TFP shocks Cov(dlogZnt, dlogZn′t) is zero if not negative on average (the mean is

−0.215, but it is clearly affected by an outlier as the median is zero). By contrast, the covariance

of inputs accounts for about two-thirds of the observed GDP covariance on average. In the full

sample, the contribution of Cov(dlogZnt, dlogZn′t) is clearly larger at about 0.20-0.27 on average.

Nonetheless, input covariance contributes about twice as much, about 0.55.

To summarize, real GDP growth is significantly positively correlated in our sample of countries,

especially in the G7. TFP growth adjusted for utilization has an order of magnitude lower average

correlation than GDP growth. Indeed, average TFP correlation is essentially zero. By contrast,

correlations in input growth have the same order of magnitude as real GDP correlations. Covariance

decompositions indicate that the contribution of covariance in input growth to covariance in real

GDP growth is far larger than the contribution of TFP growth. Finally, using Solow residuals as

a proxy for TFP growth can be quite misleading. In our sample of countries, it would lead us

to conclude that productivity growth is strongly positively correlated across countries, whereas in

fact correlation in the Solow residuals appear to be driven mostly by correlation in the unobserved

inputs.

This is of course only an accounting decomposition. Input usage will respond to TFP shocks

at home and abroad. Since the growth in inputs has not been cleaned of the impact of technology
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shocks, it cannot be thought of as driven exclusively by non-technology shocks. At the next step,

we combine the data above with information on global input-output linkages and a model of world

production and trade to extract non-technology shocks in each country and sector. We will then

assess the correlation of non-technology shocks across countries as we did for TFP shocks. Finally,

extracting both kinds of shocks allows us to perform counterfactuals to determine which of these

shocks are responsible for cross-country comovement.

3 Quantitative Framework

Preliminaries Let there be J sectors indexed by j and i, and N countries indexed by n, m, and

k. Time is indexed by t. Each country n is populated by Ln households. Each household consumes

the final consumption good available in country n and supplies labor and capital to firms. Trade is

subject to iceberg costs τmnj to ship good j from country m to country n (throughout, we adopt

the convention that the first subscript denotes source, and the second destination).

Households Household utility is given by:

u
(
cnt, {lnjt}Jj=1

)
=

∑
t

βtν

cn,t −∑
j

ψ0
njt

ψ̄

(
lnjt
ψ0
njt

)ψ̄ ,

where cnt is per-capita consumption, lnjt the utilization-adjusted per-capita labor supply to sector

j, and the function ν is increasing and concave.

Households rent capital to firms. Let knjt denote the utilization-adjusted per-capita capital

supply to sector j. The household earns rnjt per unit of capital rented to sector j. To supply knjt

units to sector j, the household incurs a utilization cost of
ϕ0
njt

ϕ̄

(
knjt
ϕ0
njt

)ϕ̄
denominated in units of

consumption.

Both labor and capital supply are upward-sloping. We capture this with GHH preferences in

case of labor (Greenwood, Hercowitz, and Huffman, 1988), and with a similar isoelastic formulation

of the utilization cost of capital (e.g. Christiano, Motto, and Rostagno, 2014). Importantly, capital

and labor are supplied to individual sectors, and these factor supplies are subject to sector-specific

shocks. We will treat the labor and capital supply shocks ψ0
njt and ϕ0

njt as time-varying and back

them out from the data. These can have either a literal interpretation as exogenous shifts in factor

supply curves, or more broadly as business cycle shocks that are unrelated to contemporaneous

productivity, such as news shocks (e.g. Beaudry and Portier, 2006), or sentiment shocks (e.g.

Angeletos and La’O, 2013).
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Final consumption is the Cobb-Douglas aggregate across sectors:

cnt =
∏
j

c
ωjn
njt ,

where cnjt is the consumption of sector j in country n. The associated final consumption price

index is:

Pnt =
∏
j

(
P cnjt
ωjn

)ωjn
,

where P cnjt is the consumption price index in sector j and country n. Within each sector, aggregation

across source countries is Armington:

cnjt =

[∑
m

ϑ
1
ρ

mnjcmnjt
ρ−1
ρ

] ρ
ρ−1

,

where cmnjt is consumption in n of sector j goods coming from country m. Thus, the consumption

price index in sector j, country n is:

P cnjt =

[∑
m

ϑmnjP
c
mnjt

1−ρ

] 1
1−ρ

,

where P cmnjt is the price of cmnjt. Denote by the capital letters Cnjt = cnjtLn and Cmnjt = cmnjtLn

the aggregate consumption values.

Household optimization yields the following labor and capital supply curves:

Lnjt = ψ0
njt

(
wnjt
Pnt

) 1
ψ−1

Ln ∀j (14)

Knjt = ϕ0
njt

(
rnjt
Pnt

) 1
ϕ−1

Ln ∀j. (15)

In this formulation, labor and capital are neither fixed to each sector nor fully flexible. As ψ → 1,

labor supply across sectors becomes more sensitive to wage differentials, in the limit households

supplying labor only to the sector offering the highest wage. At the opposite extreme, as ψ →∞,

labor supply is fixed in each sector by the preference parameters ψ0
njt.

Firms Gross output in sector j country n is given by (1). Intermediate input usage Xnjt is an

aggregate of inputs from potentially all countries and sectors:

Xnjt ≡

∑
m,i

µ
1
ε
mi,njX

ε−1
ε

mi,njt

 ε
ε−1

.
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where Xmi,njt is the usage of inputs coming from sector i in country m in production of sector j in

country n, and µmi,nj is the input coefficient.

Let Pnjt denote the price of output produced by sector j in country n (note this is not the same

as the ideal price index P cnjt of sector j final consumption in n, which aggregates imports from the

other countries). We make the assumption that the price is proportional to the unit cost function:

Pnjt ∝ Z
− 1
γj

njt Y

1−γj
γj

njt

(
rnjt
αjηj

)αjηj ( wnjt
(1− αj) ηj

)(1−αj)ηj (∑
m,i µmi,njp

1−ε
mi,njt

1− ηj

) 1−ηj
1−ε

,

where pmi,njt is the price paid in sector n, j for inputs from m, i. This would be the case, for

instance, if firms priced at marginal cost or at a constant markup.

The Armington final consumption aggregation technology and international trade technology

are competitive, and thus the prices “at the factory gate” and the price at the time of consumption

or intermediate usage are related by:

pmi,njt = P cmnit = τmniPmit,

and therefore the final consumption price index in sector j country n is:

P cnjt =

[∑
m

ϑmnj (τmnjPmjt)
1−ρ

] 1
1−ρ

.

We adopt the assumption that the primary factors and inputs receive compensation proportional

to their share in total input spending. This would be true when firms are competitive, or when

profits are shared among the factors and inputs in proportion to their cost share (BFK, Hsieh and

Klenow, 2009). This implies:

rnjtKnjt = αjηjPnjtYnjt

wnjtLnjt = (1− αj) ηjPnjtYnjt
pmi,njtXmi,njt = πxmi,njt (1− ηj)PnjtYnjt, (16)

where πxmi,njt is the share of intermediates from country m sector i in total intermediate spending

by n, j, given by:

πxmi,njt =
µmi,nj (τmniPmit)

1−ε∑
k,l µkl,nj (τknlPklt)

1−ε .

Equilibrium An intra-temporal equilibrium at time t in this economy is a set of goods and

factor prices {Pnjt, wnjt, rnjt}j=1,...,J
n=1,...,N , factor allocations {Lnjt,Knjt}j=1,...,J

n=1,...,N , and goods allocations

{Ynjt}j=1,...,J
n=1,...,N , {Cmnjt}j=1,...,J

n,m=1,...,N , and {Xmi,njt}i,j=1,...,J
n,m=1,...,N such that (i) households maximize util-

17



ity; (ii) firms maximize profits; and (iii) all markets clear.

Total expenditure on exports from n to m in sector j is the sum of final consumption expenditure

and expenditure on intermediates by all sectors i in m:

EXnmjt = πcnmjtωjmPmtCmt +
∑
i

πxnj,mit (1− ηj)PmitYmit,

where πcnmjt ≡
ϑnmj(τnmjPnjt)

1−ρ

(P cmjt)
1−ρ is the share of country n in the total final consumption expenditure

of sector j, country m, and thus πcnmjtωjmPmtCmt is the total final consumption expenditure in

m on j sector goods from n, and
∑

i π
x
nj,mit (1− ηj)PmitYmit is the intermediate spending. Then,

total spending on output produced by country n, sector j is:

Υnjt =
∑
m

[
πcnmjtωjmPmtCmt +

∑
i

πxnj,mit (1− ηj) Υmit

]
,

where we defined Υnjt ≡ PnjtYnjt as the total revenue in sector j, country m, which will be

expositionally convenient.

Factor market clearing ensures labor supply equals labor demand:

wnjtψ
0
njt

(
wnjt
Pnt

) 1
ψ−1

Ln = (1− αj)ηjΥnjt (17)

rnjtϕ
0
njt

(
rnjt
Pnt

) 1
ϕ−1

Ln = αjηjΥnjt. (18)

Finally, total primary factor income in country n must equal total final consumption expenditure.

Allow for a trade imbalance Dnt. Then:

PntCnt =

∑
j

wnjtlnjt +
∑
j

rnjtknjt

Ln +Dnt.

3.1 Extracting Non-Technology Shocks

We have data on gross revenue Υnjt and its deflators Pnjt, and thus we have estimates of real

output Ynjt (indeed, we use those data to estimate TFP). Denote by a “̂” the gross change in a

variable: x̂t+1 ≡ xt+1/xt. Then we can write the growth in real output as:

Ŷnjt+1 = Ẑnjt+1

((
K̂
αj
njtL̂

1−αj
njt

)ηj
X̂

1−ηj
njt+1

)γj
.
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Plugging the gross proportional change versions of (14)-(15) and (17)-(18), we obtain the following

expression:

Ŷnjt+1 = Ẑnjt+1


(Ŷnjt+1

P̂njt+1

P̂nt+1

) 1−αj
ψ

+
αj
ϕ

Ψ̂njt+1


ηj

X̂
1−ηj
njt+1


γj

, (19)

where Ψ̂njt+1 ≡
(
ϕ̂0
njt+1

)αj ϕ−1
ϕ
(
ψ̂0
njt+1

)(1−αj)ψ−1

ψ is the composite factor supply shock.

The KLEMS and WIOD data have information on all the elements of equation (19) required to

back out the composite factor supply shock Ψ̂njt+1 except for the consumption price index P̂n,t+1.

That is, we know real output growth Ŷnjt+1, real input growth X̂njt+1, TFP growth Ẑnjt+1, as well

as the changes in the price indices P̂njt+1. If we knew P̂nt+1, we could back out Ψ̂njt+1.

We rely on the model structure and the observed final expenditure shares to compute the model-

implied P̂nt+1. Standard steps yield the following expressions for the changes in price indices:

P̂nt+1 =
∏
j

(
P̂ cnjt+1

)ωjn
(20)

P̂ cnjt+1 =

[∑
m

P̂ 1−ρ
mjt+1π

c
mnjt

] 1
1−ρ

. (21)

Since we know the gross output price indices for each country and sector P̂mjt+1, and the final

consumption shares of each source country in each destination and sector πcmnjt and ωjn, we can

simply construct P̂nt+1 directly.

3.2 Counterfactuals

Having recovered both technology and non-technology shocks in each sector and country, we would

like to simulate output growth rates in the counterfactuals in which one of these shocks is turned

off. In response to counterfactual shocks, the price in sector j, country n experiences the change:

P̂njt+1 = Ẑ−1
njt+1Υ̂

1−γj
njt+1

[(
Υ̂
αj

ϕ−1
ϕ

+(1−αj)ψ−1

ψ

njt+1 P̂

αj
ϕ

+
1−αj
ψ

nt+1 Ψ̂−1
njt+1

)ηj
(22)

∑
m,i

P̂ 1−ε
mit+1π

x
mi,njt


1−ηj
1−ε


γj

.

This, together with the dependence of P̂nt+1 on the constituent P̂njt+1’s stated in (20)-(21) defines

a system of J ×N equations in prices, conditional on known initial-period data quantities (such as
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πcmnjt) and a vector of Υ̂njt+1’s. The price changes in turn determine next period’s shares:

πcnmjt+1 =
P̂ 1−ρ
njt+1π

c
nmjt∑

k P̂
1−ρ
kjt+1π

c
kmjt

, (23)

πxnj,mit+1 =
P̂ 1−ε
njt π

x
nj,mit∑

k,l P̂
1−ε
klt π

x
kl,mit

. (24)

These trade shares have to be consistent with market clearing at the counterfactual t+1, expressed

using proportional changes as:

Υ̂njt+1Υnjt =
∑
m

[
πcnmjt+1ωjm

(∑
i

ηjΥ̂mit+1Υmit + D̂mt+1Dmt

)
(25)

+
∑
i

πxnj,mit+1 (1− ηj) Υ̂mit+1Υmit

]
.

The sets of equations (22)-(25) represent a system of 2×N×J+N2×J+N2×J2 unknowns, P̂njt+1

∀n, j, Υ̂njt+1 ∀n, j, πcnmjt+1 ∀n,m, j, and πxnj,mit+1 ∀n, j,m, i that is solved under given parameter

values and under a set of shocks Ẑnjt+1 and Ψ̂njt+1.

3.3 Estimating Model Elasticities

Our framework offers a straightforward approach to estimating ρ and ε. To introduce an error

term in the estimating equations, assume that iceberg trade costs, final consumer taste shocks,

and input share shocks have a stochastic element, and denote their gross proportional changes by

τ̂mnjt+1, ϑ̂mnjt+1, and µ̂mj,ni,t+1, respectively. Straightforward manipulation of CES consumption

shares yields the following relationships between shares and prices:

log

(
π̂cmnj,t+1

π̂cm′nj,t+1

)
= (1− ρ) log

(
P̂mj,t+1

P̂m′j,t+1

)
+ log

(
ϑ̂mnjt+1τ̂

1−ρ
mnjt+1

ϑ̂m′njt+1τ̂
1−ρ
m′njt+1

)
(26)

and

log

(
π̂xmj,nit+1

π̂xm′j,nit+1

)
= (1− ε)log

(
P̂mjt+1

P̂m′jt+1

)
+ log

(
µ̂mj,ni,t+1τ̂

1−ε
mnjt+1

µ̂m′j,ni,t+1τ̂
1−ε
m′njt+1

)
. (27)

We express the final consumption share change π̂cmnj,t+1 relative to the final consumption share

change in a reference country m′. This reference country is chosen separately for each importing

country-sector n, j as the country with the largest average expenditure share in that country-sector.

(Thus, strictly speaking, the identity of the reference country m′ is distinct for each importing

country-sector, but we suppress the dependence of m′ on n, j to streamline notation.) Furthermore,

we drop the own expenditure shares π̂cnnj,t+1 from the estimation sample, as those are computed
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as residuals in WIOD, whereas final import shares from other countries are taken directly from the

international trade data. Dropping the own expenditure shares has the added benefit of making the

regressions less endogenous, as the domestic taste shocks are much more likely to affect domestic

prices.

We use two estimation approaches for (26)-(27). We first show the results with OLS. To

absorb as much of the error term as possible, we include source-destination-reference country-

time (n×m×m′× t) fixed effects. These absorb any common components occurring at the country

3-tuple-time level, such as exchange rate changes and other taste and transport cost changes, and

thus the coefficient is estimated from the variation in the relative sectoral price indices and relative

sectoral share movements within that cell. The identifying assumption is then that price change

ratio P̂mj,t+1/P̂m′j,t+1 is uncorrelated with the residual net of the n×m×m′× t fixed effects. The

remaining errors would be largely measurement error. If this measurement error is uncorrelated

with the price change ratios, then the OLS estimates are unbiased, and if not, we would expect a

bias towards zero. In the latter case, the IV estimates (described below) should be larger than the

OLS estimates, assuming the measurement error in (26) and (27) is independent of the measurement

error in the technology shock ratios.

The estimation amounts to regressing relative share changes on relative price changes. A threat

to identification would be that relative price changes are affected by demand shocks (e.g. ϑ̂mnjt+1),

and thus correlated with the residual. As a way to mitigate this concern, we also report estimates

based on the subsample in which destination countries are all non-G7, and the source and reference

countries are all G7 countries. In this sample it is less likely that taste shocks in the (smaller)

destination countries will affect relative price changes in the larger G7 source countries. Finally, to

reduce the impact of small shares on the estimates, we report results weighting by the size of the

initial shares (πcmnj,t and πxmj,ni,t).

We also implement IV estimation. We use the TFP shocks Ẑmjt+1/Ẑm′jt+1 as instruments for

changes in relative prices. The exclusion restriction is that the technology shocks are uncorrelated

with taste and trade cost shocks, and thus only affect the share ratios through changing the prices.

Even if the shock ratio Ẑmjt+1/Ẑm′jt+1 is a valid instrument for observed prices, it does not include

the general-equilibrium effects on prices in the model. To use all of the information –both the direct

and indirect GE effects –incorporated in the model, we also use the model-optimal IV approach

to construct the instrument. In our context this simply involves computing the model using only

the estimated technology shocks, and solving for the sequence of equilibrium prices in all countries

and sectors. The model-implied prices are then the optimal instrument for the prices observed in

the data. See Chamberlain (1987) for a discussion of optimal instruments, and Adao, Arkolakis,

and Esposito (2017) and Bartelme et al. (2017) for two recent applications of this approach. The

results from the model-optimal IV are very similar to simply instrumenting with the TFP shock

ratio, and we do not report them to conserve space.
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Table 3: Elasticity Estimates

(1) (2) (3) (4) (5) (6)
OLS OLS OLS IV IV IV

(G7 m,m′, (weighted) (G7 m,m′, (weighted)
non-G7 n) non-G7 n)

ρ 0.775 0.730 1.051 2.881 2.273 3.037
SE (0.055) (0.146) (0.082) (0.584) (0.966) (0.470)

First stage K-P F 92.117 30.539 89.669
FE Yes Yes Yes Yes Yes Yes

ε 0.698 0.686 0.682 2.838 0.382 1.322
SE (0.051) (0.120) (0.143) (0.578) (0.872) (0.856)

First stage K-P F 94.863 16.188 86.631
FE Yes Yes Yes Yes Yes Yes

Notes: Standard errors clustered at the destination-source-reference country level in parentheses. This table
presents results from the OLS and IV estimation of 26 and 27. The fixed effects used in each regression are
n×m×m′× t. The instruments are the relative productivity shocks Ẑmjt+1/Ẑm′jt+1, with the Kleibergen-
Papp first stage F-statistic reported. The weights in columns 3 and 6 are lagged share ratios πcmnj,t and
πxmj,ni,t.

Table 3 presents the results. Columns 1-3 report the OLS estimates of ρ (top panel) and ε

(bottom panel). The OLS estimates of ρ are all significantly larger than zero, and we cannot rule

out a Cobb-Douglas final demand elasticity. The OLS estimates for ρ are also not very sensitive to

restricting the sample to non-G7 destinations and G7 sources, or to weighting by the initial share.

The IV estimates in columns 4-6 are substantially larger than the OLS coefficients, ranging from

2.27 to 3.04, and significantly different from 1 in most cases. This difference between OLS and IV

could suggest either measurement error in (26), or greater noise in the IV estimator (Young, 2017).

Given the substantial disagreement between OLS and IV estimates of ρ, we report the results under

two values, ρ = 1, corresponding to the OLS estimates, and ρ = 2.75 based on the IV.

The OLS and IV estimates of ε display somewhat greater consensus. The OLS point estimates

are in the range 0.68, and not sensitive to the sample restriction or weighting. The IV estimates are

less stable. While the full sample (column 4) yields an elasticity of 2.8, either restricting to the non-

G7 destinations/G7 sources, or weighting by size reduces the coefficient dramatically and renders it

not statistically different from 1. Such evidence for the low substitutability of intermediate inputs

is consistent with the recent estimates by Atalay (2017) and Boehm, Flaaen, and Pandalai-Nayar

(2017), who find even stronger complementarity. We therefore set ε = 1 for all implementations of

the model.
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Table 4: Parameter values

Param. Value Source Related to

ρ 2.75 or 1 Our estimates final substitution elasticity
ε 1 Our estimates intermediate substitution elasticity

ψ 3 Chetty et al. (2013) Frisch elasticity
ϕ 3 capital supply elasticity
αj , βj KLEMS labor and capital shares
γj own estimates returns to scale
πcmnjt WIOD final use trade shares

πxmnjt WIOD intermediate use trade shares

3.4 Calibration

In implementing this model, we must take a stand on the value of a small number of parameters,

and use our data to provide the required quantities. Table 4 summarizes the assumptions and

data sources. The final consumption Armington elasticity ρ is set to either 2.75 or 1 from our

estimation procedure. The labor supply parameter ψ is set to 3, implying the Frisch labor supply

elasticity of 0.5 as advocated by Chetty et al. (2013). We have less guidance to set the capital

supply parameter, so we set it to 3 as well, implying a similarly inelastic capital supply. Note that

our non-technology shock takes the form Ψ̂njt+1 ≡
(
ϕ̂0
njt+1

)αj ϕ−1
ϕ
(
ψ̂0
njt+1

)(1−αj)ψ−1

ψ and is thus

already expressed as the primitive shock exponentiated by functions of ψ and ϕ. Nonetheless, we

do require these parameters, as they appear separately from Ψ̂njt+1 in (19) and (22). All other

parameters have close counterparts in basic data and thus we compute them directly. Capital shares

in total output αj come from KLEMS, and are averaged in each sector across countries and time.

The scale parameters γj come from our own production function estimates reported in Appendix

Table A3. Input shares πxnmjt and final consumption shares πcmnj,t come from WIOD. Appendix

B.1 outlines our algorithm for solving the model and constructing counterfactuals.

3.5 Patterns in Non-Technology Shocks Across Countries

Unlike the decomposition of GDP growth into TFP and inputs in (4), there is no decomposition

that isolates the non-technology shocks Ψ̂njt+1 as an additive component in the GDP growth rate.

Nonetheless, to provide a simple illustration of the correlations of Ψ̂njt+1 across countries, we

construct a Domar-weighted non-technology shock, to parallel the Domar-weighted TFP shock in

(5):

dlogΨnt =
J∑
j=1

wDnjt−1dlogΨnjt. (28)
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Table 5 reports the correlations in dlogΨnt among the G7 and in the full sample. We report

those correlations under both values of ρ that we consider, 2.75 and 1. The non-technology shocks

are positively correlated across countries, unlike TFP. The correlation be non-technology shocks

is around 0.170-0.210 on average in the G7 countries, which is well short of the observed GDP

correlation, but substantially higher than the average TFP correlation in this set of countries,

which is essentially zero. In the full sample, aggregated non-technology shocks have about a 0.08

correlation on average, noticeably higher than TFP correlation. This suggests that non-technology

shocks have a better chance of producing positive output correlations observed in the data. The

average correlations in dlogΨnt are very insensitive to the value of ρ, with the average correlations

under the alternative ρ’s coinciding to the third digit.

Table 5: Correlations in dlogΨnt summary statistics

Mean Median 25th pctile 75th pctile

G7 Countries (N. obs. = 21)

ρ = 2.75 0.170 0.210 0.064 0.272
ρ = 1 0.170 0.211 0.063 0.277

All countries (N. obs. = 406)

ρ = 2.75 0.076 0.086 -0.099 0.291
ρ = 1 0.076 0.085 -0.101 0.295

Notes: This table presents the summary statistics of the correlations of dlogΨnt defined in (28) in the
sample of G7 countries (top panel) and full sample (bottom panel). Variable definitions and sources are
described in detail in the text.

3.6 Impulse Responses

Analytical results or intuition about the transmission of shocks in our framework are complicated

by the large country and sector dimension of the model. Prior to simulating the model with

the observed shocks, we therefore first simulate a hypothetical 1% shock – technology and non-

technology. Figure 2 displays the change in real GDP in every other country in the world following

a 1% U.S. shock in each sector. The white bars depict the GDP responses under ρ = 2.75, while

the dark bars depict the response under ρ = 1.

The results show that the observed trade linkages do result in transmission of both shocks.

Smaller economies with large trade linkages to the U.S., such as Canada, are the most strongly

affected by the U.S. shocks. Both the technology and non-technology shocks lead to transmission

of a similar magnitude. Under the low elasticity, the mean response of foreign GDP is 0.05%, and
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Figure 2: Impulse Responses to US 1% Shocks
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Notes: This figure displays the change in log real GDP of every other country in the sample when the
United States experiences a productivity shock (left panel) or a non-technology shock (right panel) of 0.01
in every sector.

the maximum response – Canada – is about 0.2% for both shocks. On the other hand, the final

substitution elasticity matters a great deal for the size of the effects: the response of foreign GDP

to the US shocks is about twice as high for ρ = 1 than for ρ = 2.75. Indeed, under the higher

elasticity the positive shock in the US need not raise GDP in every country, though the negative

values are negligible.

Next, we simulate the real GDP responses of each country n in the sample when all other

countries (excluding n) experience a 1% technology or non-technology shock. The exercise answers

the question, if there is a 1% world shock outside of the country, how much of that shock will

manifest itself in the country’s GDP? Figure 3 displays the results. Again, both non-technology

and technology shocks lead to quantitatively similar transmission. In response to a 1% world shock,

under the low elasticity of substitution the mean country’s GDP increases by 0.5%, with the impact

ranging from less than 0.2% in the U.S. and Japan to 0.8-1% in Latvia and Lithuania. Smaller

countries are not surprisingly more affected by both the technology and non-technology shocks in

their trade partners. The magnitude of transmission is uniformly lower with the higher elasticity.

In this case, the mean impact is about 0.2% for both technology and non-technology shocks. All

in all, these results suggest that world shocks have a significant impact on most countries.

3.7 Counterfactual Results and Discussion

Tables 6 and 7 report correlations in our model simulated with both technology and non-technology

(input) shocks, as well as counterfactual economies featuring only technology or input shocks, under
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Figure 3: Impulse Responses to Rest of the World 1% Shocks
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Notes: This figure displays the change in log real GDP of every country in the sample when the rest of the world
excluding the country experiences a productivity shock (left panel) or a non-technology shock (right panel) of 0.01
in every sector.

ρ = 2.75 and ρ = 1, respectively. We hold deficits constant at initial (1995) levels.2 The first two

lines report the summary statistics for the real GDP correlations in the data and in the baseline

model in which both shocks are as measured in the data. Our model reproduces the average

observed data correlations well, for both the G7 and the full sample. The model under ρ = 1

generates baseline correlations slightly higher than in the data, whereas the model with ρ = 2.75

slightly lower, but in both cases they are close to the data.

Next, we simulate the model under only non-technology and only TFP shocks. It is immediately

apparent that the non-technology shocks are responsible for much of the comovement in the model.

For the G7 group, the model with only non-technology shocks generates 55-60% of the average

correlations implied by the model with both shocks, while the model with only technology shocks

generates only 27% of the comovement on average. The results for all countries are even more

stark: technology shocks generate 12% of the comovement of the full model on average, while

the non-technology shocks generate 60% of the comovement. These relative magnitudes are not

sensitive to the two alternative values of ρ.

The lower panels of Tables 6-7 compute all three versions of the model in autarky. On average,

the autarky correlations are not lower than the correlations under the observed trade linkages when

ρ = 2.75. The autarky correlations are modestly lower than the baseline correlations when ρ = 1.

This difference between the elasticities is consistent with the impulse responses in Figures 2-3, which

2Appendix Table A4 reports the fit of the model and counterfactual exercises where deficits are allowed to evolve
as in the data.
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Table 6: Model Fit and Counterfactuals: Correlations of dlogYnt, ρ = 2.75

Mean Median 25th pctile 75th pctile

Data 0.380 0.378 0.265 0.533
Model 0.312 0.342 0.151 0.538

Non-Technology Shocks Only 0.173 0.156 -0.035 0.403
Technology Shocks Only 0.086 0.049 -0.083 0.317

Autarky: Both Shocks 0.311 0.380 0.167 0.513
Autarky: Non-Technology Shocks Only 0.152 0.111 -0.032 0.370
Autarky: Technology Shocks Only 0.057 0.051 -0.186 0.254

All countries (N. obs. = 406)

Mean Median 25th pctile 75th pctile

Data 0.171 0.205 -0.078 0.428
Model 0.185 0.232 -0.085 0.508

Non-Technology Shocks Only 0.111 0.139 -0.127 0.346
Technology Shocks Only 0.022 0.033 -0.196 0.224

Autarky: Both Shocks 0.203 0.278 -0.072 0.514
Autarky: Non-Technology Shocks Only 0.126 0.147 -0.110 0.373
Autarky: Technology Shocks Only 0.016 0.034 -0.214 0.252

Notes: This table presents the summary statistics of the correlations of dlogYnt in the sample of G7 countries
(top panel) and full sample (bottom panel) under the different assumptions on shocks and trade linkages. Variable
definitions and sources are described in detail in the text.

shows that when ρ = 2.75 the responses of real GDP to U.S. and world shocks is more muted.

The average correlations reported in Tables 6-7 hide a great deal of heterogeneity and important

compositional patterns. To reconcile the results from the counterfactuals with the evidence of

positive transmission in the impulse responses, we compare the correlations for each country pair

under autarky and trade. Figure 4 reports for each country the number of other countries for which

its trade correlation is higher than the autarky correlation (white bars), and the share of world

GDP with which the correlation under trade is higher than the autarky correlation (dark bars).

Two patterns stand out from these figures. First, trade increases correlation systematically with

larger countries. This is evidenced by the fact that the dark bars, displaying the share of world

GDP with which correlation increases, are higher in the majority of countries. This is sensible, as

larger countries tend to be the more important trading partners. Second, not surprisingly, trade

increases correlation relative to autarky to a greater extent when ρ = 1 than when ρ = 2.75. Under
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Table 7: Model Fit and Counterfactuals: Correlations of dlogYnt, ρ = 1

Mean Median 25th pctile 75th pctile

Data 0.380 0.378 0.265 0.533
Model 0.337 0.406 0.179 0.570

Non-Technology Shocks Only 0.206 0.202 -0.031 0.443
Technology Shocks Only 0.091 0.056 -0.131 0.325

Autarky: Both Shocks 0.312 0.379 0.169 0.520
Autarky: Non-Technology Shocks Only 0.153 0.112 -0.034 0.374
Autarky: Technology Shocks Only 0.057 0.051 -0.186 0.254

All countries (N. obs. = 406)

Mean Median 25th pctile 75th pctile

Data 0.171 0.205 -0.078 0.428
Model 0.218 0.272 -0.069 0.544

Non-Technology Shocks Only 0.127 0.158 -0.108 0.371
Technology Shocks Only 0.027 0.039 -0.194 0.234

Autarky: Both Shocks 0.212 0.291 -0.063 0.524
Autarky: Non-Technology Shocks Only 0.119 0.142 -0.115 0.373
Autarky: Technology Shocks Only 0.016 0.034 -0.214 0.252

Notes: This table presents the summary statistics of the correlations of dlogYnt in the sample of G7 countries
(top panel) and full sample (bottom panel) under the different assumptions on shocks and trade linkages. Variable
definitions and sources are described in detail in the text.

the low ρ, in 24 out of 29 economies, a greater number of correlations is higher under trade than in

autarky. However, even under the high ρ, significant parts of the world economy experience higher

correlations under trade compared to autarky. For example, under the high elasticity the U.S. has

higher correlations with 70% of the countries and over 80% of world GDP under trade.

All in all, it does appear that observed international trade linkages do result in transmission of

shocks in important parts of the world economy, as measured by the difference between trade and

autarky correlation. There is enough heterogeneity in the observed trade linkages that unweighted

average correlations mask this finding somewhat.

To systematically study whether correlated shocks are the reason for observed comovement,

and to assess whether input trade plays a different role from final goods trade in the transmission

of shocks, we conduct three additional counterfactuals. In the first, we feed in uncorrelated shocks

drawn from a lognormal distribution with the same variance as the true estimated shocks. For this
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exercise, we simulate the model for 1000 periods to minimize sample correlation in the shocks. We

assess comovement with uncorrelated shocks in the model with trade (using 2004 trade linkages)

and in autarky. In the second, we assume that all trade is in intermediate inputs, but the country

consumes only its own final goods (intermediate input trade only). Finally, we assume that all

inputs are sourced domestically, and trade is only in final goods. The results from these exercises

are in Tables 8 and 9 for ρ = 2.75 and ρ = 1, respectively.

Table 8: Additional Counterfactuals: Correlations of dlogYnt, ρ = 2.75

Mean Median 25th pctile 75th pctile

Data 0.380 0.378 0.265 0.533
Model 0.312 0.342 0.151 0.538

Uncorrelated Shocks 0.013 0.020 -0.014 0.037
Autarky: Uncorrelated Shocks -0.001 -0.003 -0.012 0.010
Input Trade Only 0.326 0.409 0.164 0.566
Final Goods Trade Only 0.302 0.327 0.152 0.523

All countries (N. obs. = 406)

Mean Median 25th pctile 75th pctile

Data 0.171 0.205 -0.078 0.428
Model 0.185 0.232 -0.085 0.508

Uncorrelated Shocks 0.002 0.001 -0.028 0.033
Autarky: Uncorrelated Shocks 0.000 0.001 -0.012 0.013
Input Trade Only 0.205 0.255 -0.082 0.532
Final Goods Trade Only 0.173 0.211 -0.115 0.501

Uncorrelated shocks do not generate correlated real GDP on average. However, as above, the

heterogeneity in the impact of trade links in generating comovement is still evident. With uncor-

related shocks, 2004 trade linkages and ρ = 1, the median country-pair experiences a correlation

0.01-0.02 higher than in the model with autarky. The quantitative importance of the comove-

ment due to trade linkages is modest. The mean G7 comovement with uncorrelated shocks is 7%

of the comovement in the model with correlated shocks and trade linkages. Finally, we simulate

the model with final and intermediate trade only. The implied comovement is somewhat higher

in the intermediate-only model compared to the final-only model, but the difference is modest in

magnitude.
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Table 9: Additional Counterfactuals: Correlations of dlogYnt, ρ = 1

Mean Median 25th pctile 75th pctile

Data 0.380 0.378 0.265 0.533
Model 0.337 0.406 0.179 0.570

Uncorrelated Shocks 0.024 0.020 -0.001 0.047
Autarky: Uncorrelated Shocks 0.000 0.011 -0.015 0.029
Input Trade Only 0.323 0.383 0.172 0.562
Final Goods Trade Only 0.319 0.361 0.179 0.546

All countries (N. obs. = 406)

Mean Median 25th pctile 75th pctile

Data 0.171 0.205 -0.078 0.428
Model 0.218 0.272 -0.069 0.544

Uncorrelated Shocks 0.013 0.013 -0.011 0.035
Autarky: Uncorrelated Shocks 0.000 0.001 -0.023 0.023
Input Trade Only 0.205 0.259 -0.080 0.536
Final Goods Trade Only 0.198 0.246 -0.093 0.531

4 Conclusion

We set out to provide a comprehensive account of international comovement in real GDP. At the

heart of our exercise is measurement of both technology and non-technology shocks for a large

sample of countries, sectors, and years. Having measured these two types of shocks, we answer

two questions. First, is comovement primarily due to TFP or non-technology shocks? The answer

here is quite clear: non-technology shocks generate most of the observed international comovement.

Second, to what extent do countries comove due to correlated shocks vs. transmission of shocks

across countries? One clear answer is that correlated (non-technology) shocks are responsible for

the bulk of observed comovement. However, there is also some evidence of transmission, especially

under low substitution elasticities. In that case, the large majority of country pairs do experience

higher comovement under the observed levels of international trade than in the counterfactual

autarky scenario.
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Figure 4: Correlations: Comparison between Autarky and Trade
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Notes: This figure displays the share of pairwise correlations for each country that increase with trade (light bars)
compared to autarky for ρ = 2.75 (top panel) and ρ = 1 (bottom panel). The dark bars depict the GDP shares of
the partner countries with whom correlations increase with trade. The horizontal line is placed at 0.5. Sources are
described in detail in the text.
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Appendix A Data Appendix

Table A1: Countries in Estimation Sample

Australia Germany Netherlands
Austria Greece Poland
Belgium Hungary Portugal
Canada India Russian Federation
Cyprus Ireland Slovak Republic
Czech Republic Italy Slovenia
Denmark Republic Japan Spain
Estonia Republic of Korea Sweden
Finland Latvia U.K.
France Lithuania U.S.A.
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Table A4: Model Fit and Counterfactuals with Deficits: dlogYnt

Mean Median 25th pctile 75th pctile

G7 Countries (N. obs. = 21)

Data 0.380 0.378 0.265 0.533
Model 0.510 0.562 0.363 0.707

No Technology Shocks 0.359 0 .340 0 .286 0 .511
No Input Shocks 0.064 0.065 -0.152 0 .232

All countries (N. obs. = 435)

Data 0.185 0.214 -0.074 0.452
Model 0.217 0.254 -0.043 0.484

No Technology Shocks 0.134 0.154 - 0.108 0.376
No Input Shocks 0.027 0.014 -0.182 0.237
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Appendix B Model Appendix

B.1 Algorithm for solving the model

To solve the model, we use an initial guess for Υ̂nj,t+1 together with data on πcmnj,t and
πxmjni,t. Given these variables, the algorithm is as follows:

• Solve for P̂nj,t+1 given the guess of Υ̂nj,t+1 and the data on πcmnj,t and πxmjni,t. This step
uses equations (21), (20) and (22).

• Update πcmnj,t+1 and πxmj,ni,t+1 given the solution to (1) and the guess of Υ̂nj,t+1 using
equations (23) and (24).

• Solve for Υ̂
′
nj,t+1 using equation (25) given the prices P̂nj,t+1 obtained in step (1) and

the updated shares πcmnj,t+1 and πminj,t+1 from step (2).

• Check if max|(Υ̂′nj,t+1-Υ̂nj,t+1)| < δ, where δ is a tolerance parameter that is arbitrarily

small. If not, update the guess of Υ̂nj,t+1 and repeat steps (1)-(4) until convergence.
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