The Samurai Bond: # Credit Supply and Economic Growth in Pre-War Japan By SERGI BASCO AND JOHN P. TANG* While credit supply growth is associated with exacerbating financial crises, its impact on long-run development is unclear. Using bond payments to samurai in nineteenth century Japan as a quasi-natural experiment and exploiting regional variation, we find that bond payments are associated with persistent redistributive effects between regions and sectors. Areas with early railway access and higher bond value per capita experienced faster income growth in the tertiary sector and slower growth in the primary, with analogous effects for sectoral labor shares. Our interpretation is that the interaction between credit supply and productivity-enhancing technologies facilitated economic development and structural transformation. Keywords: credit supply, finance-led growth, market access, railways, structural change JEL codes: E51, N15, O47 ^{*} Basco: Universitat Autònoma Barcelona and Fundació MOVE (sergi.basco@gmail.com). Tang: Research School of Economics, Australian National University, 26 LF Crisp Building, Canberra, ACT 2601 Australia (john.tang@anu.edu.au). Tang acknowledges financial support from the Australian Research Council (DE120101426). We received useful feedback from Yannick Dupraz, James Fenske, Richard Grossman, Chiaki Moriguchi, Masato Shizume, Richard Sylla, Zach Ward, Eugene White, and participants from the EHA and AFSE meetings and from seminars at Hitotsubashi University, Waseda University, UC Davis, UC Irvine, Warwick University, Universidad Carlos III de Madrid, and Universidad de Barcelona. We thank Kyoji Fukao for generously sharing some of the data used in this research. Any errors are ours. How does the growth of credit supply affect financial and economic activity? In recent years, negative effects of credit supply growth have been implicated in the severity of the financial crisis of the past decade, namely through the accumulation of mortgage debt in the United States (Mian and Sufi 2009). Jordà et al. (2011) also highlight this relationship, using historical data to show that credit supply booms are associated with longer, deeper, and more persistent recessions. These studies offer a counterpoint to the existing literature on the positive relationship between finance and growth observed across countries and over time (e.g, Levine 2005). However, the causal impact of credit supply on economic growth in both the short and the long run remains an open question due to the challenges of identification and data availability. We address these problems by using a historic dataset and quasi-natural experiment starting with a large credit supply shock. In 1876, the Japanese government replaced the hereditary pensions of former samurai with government bonds. ¹ The ex-samurai represented about five percent of the population and their pensions were collectively valued at 210 million yen, which was equivalent to nearly half of the country's national income in 1876 and six times total government revenue (Flath 2014, p. 33; Yamamura 1967, p. 204).² To assess the effect of this credit supply shock, we use bond values at the time of the pension commutation to proxy for differences in credit availability between regions. Since the pension conversion was universal, compulsory, and resisted by the samurai themselves, this policy reform is plausibly exogenous to existing or anticipated local economic activity. Our identification comes from the within-country variation in samurai bond values, which is due to the historic distribution of samurai that existed before the policy change. We hypothesize that, given the high variation of per capita ¹ Samurai were a hereditary class of warriors in pre-modern Japan that were the de facto rulers during the Edo period (1603 to 1867). Their monopolies on political and military power were dissolved following the Meiji restoration in 1868; see the next section for more detail. ² There were earlier voluntary commutations of samurai pensions in 1873 and 1874, amounting to 36 million yen in cash and bonds and about one-third of eligible samurai took up the conversion. The 1876 commutation was valued at 174 million yen, paid only in government bonds, and applied to all remaining samurai liabilities. ³ "The effect of [the 1876 pension commutation law] was instantaneous and manifested itself in an epidemic of samurai riots and lawless demonstrations against the government" (McLaren 1979, p. 562). This culminated in the unsuccessful 1877 Seinan rebellion led by dissatisfied samurai. bond values between regions, this credit supply shock may account for subsequent differences in economic activity between those regions. Furthermore, since the economy was in the process of industrializing and imperfectly integrated during the late nineteenth century, our analysis of local credit supply provides evidence of both the short run impact on local economies as well as potential persistent differences in the long run. We test our hypothesis that variation in initial credit supply affects local economic activity by regressing per capita income growth on per capita samurai bond value at the regional level between 1874 and 1940. Our dataset includes intervening benchmark years, which provide more systematic evidence of trends and persistence. To better identify the channels of transmission, we separately estimate the impact by major sector, include different bond coupon rates and banking capital measures, as well as examine possible correspondence in sectoral labor shares. Our results indicate that there are two main redistributive effects: between sectors and between regions. In the short run (1874-1890), we find that per capita samurai bond value is positively associated with growth in the tertiary sector, which includes finance and services. This growth is amplified in the presence of early railway access, which also varied by region. Over the same period, the primary sector experienced a large decline in growth among regions with high bond values and railway access. In marginal terms, for rail accessible regions a 1 percent increase in per capita samurai bond value corresponded with nearly a 12 percent increase in per capita income growth for the tertiary sector and a 27 percent decrease for the primary sector. We interpret the significant effects of the interaction between bonds and railway access as showing how both credit supply and productivity-enhancing infrastructure were needed to generate growth and to allow for reallocation between sectors. Lengthening the coverage into the early twentieth century reduces the magnitude of the effect of samurai bond value on both the primary and tertiary sectors, although growth persists through the decades leading up to World War Two. In particular, a 1 percent increase in average per capita bond value is associated with a 9 percent decline in growth in the primary sector between 1874 and 1940. For the tertiary sector, growth would increase about 4 percent. All specifications for our regression model include regional control variables such as population, school enrollment, urbanization, and a lagged term of per capita income as well as year dummies. Similar results obtain when using per capita banking capital instead of bond value and using sectoral labor share ratios as dependent variables. The negative effect on primary sector growth is more modest and less persistent when regressed on banking capital, and primary sector labor shares decline relative to tertiary employment. These findings indicate that the real economy, measured in output and labor, was significantly impacted by the initial credit supply shock, and when coupled with growth-promoting investment opportunities and greater market access had short and long run distributional effects on regional economic activity and overall structural change. ### I. Background While there is a well-established link between financial sector development and economic growth across countries and overtime (King and Levine 1993; Rajan and Zingales 1998), less clear is the role of credit supply on regions within a country over the long run. Historically, periods of economic growth coincided with increased credit intensity, but the overhang of excess credit in turn magnified the severity of crises and delayed recovery through debt-deflation pressure on prices and swings in expectations (Jordà et al 2011; Schularick and Taylor 2012). Most of the literature has focused on macroeconomic aggregates or use modern data, leaving the within-country impact and its long run persistence unaddressed. This paper exploits within-country variation in credit supply via an historic public bond issuance. This empirical strategy is similar to Mian and Sufi (2009) which compares ZIP codes in the U.S. to uncover the origins of the mortgage debt boom in the late 2000s. Similarly, Guiso et al. (2004) ⁴The finance-led growth literature uses a variety of measures of financial development like credit availability, assets and liabilities, capital formation, and institutions to assess changes in income and industrial growth. The underlying rationale emphasizes the roles of transaction costs, capital allocation, and risk management in facilitating growth. exploit regulation variations within Italy to analyze the effect of local financial development within an integrated financial system. Mian et al (2017) examine the impact of credit supply shocks in the United States for the modern period starting in the 1980s. In contrast to these papers, we analyze differences in credit supply across regions in a financially and physically fragmented economy and for a longer period of time. We can thus control for aggregate country shocks and investigate the effect of credit supply growth and its persistence. Japan in the late nineteenth century provides a useful setting to examine the role of credit provision on local economic outcomes.
Starting in the Meiji Period (1868-1912), the government implemented numerous reforms and along with private sector entrepreneurs invested in infrastructure and industrial enterprises to modernize the economy. By the turn of the century, Japanese manufacturing had reached the same share of output as the United States and continued to increase in value-added and capital intensity (Perkins and Tang 2017).⁵ While its financial sector development, measured both intensively (e.g., financial assets, equities) and extensively (e.g., banks, informal intermediaries), is associated with its overall industrialization (Rousseau 1999; Tang 2013), a plausible causal trigger to its transition was an earlier large exogenous shock to its credit supply. This shock was the 1876 conversion of hereditary samurai stipends (aka, *chitsuroku*) into government bonds (aka, *kinroku*) worth 173.9 million yen, motivated by the drain on public finances from samurai payments. In the years leading up to the conversion, these payments accounted for one quarter to one third of all government expenditures in the 1870s (Beasley 1972). The bond issuance would improve the central government's fiscal position while simultaneously provide a major source of investment capital for agricultural and industrial expansion ⁵ The content of Japanese manufacturing at the time, however, was still relatively labor intensive and low value, as demonstrated by its export composition consisting mainly of textiles (Meissner and Tang, forthcoming). ⁶ This conversion was preceded by a number of events that also affected the economic and social status of samurai. First, the 1868 Charter Oath effectively ended the professional monopolies of samurai warriors on military and government power (Bary 1964). This was followed by the creation of a conscript army in 1873 and the prohibition of sword carrying in 1876. ⁷ A similar share covered government administration costs and the remainder was for military expenses. (Harootunian 1960, McLaren 1979). The conversion was also sizeable relative to the existing supply of government bonds: before the issue of the 1876 *kinroku* bonds, with public bonds totaling 51.5 million yen at that time.⁸ Table I provides the pension commutation scales into interest bearing bonds, which had a maturity of thirty years and minimum holding period of five years.⁹ ## [Table I] There were some immediate consequences following the stipend conversion. First, interest payments by the government fell from 34.6 million yen before the 1868 Meiji restoration to 12.8 million yen after the 1876 stipend conversion. Second, the banking system expanded rapidly since chartered national banks were allowed to accept these commutation bonds as investment capital. These banks increased from 6 in 1876 to 153 over the next three years, with samurai contributing three times more capital in these banks compared to all other classes combined (ibid, p. 205). Their dominant position in bank ownership remained in place through the 1880s, which coincided with the start of modern economic growth and Japan's subsequent transition to an industrialized economy (Rousseau 1999; Tang 2013). The public finance and banking narratives, however, are incomplete in that the national budget remained precarious given military expenditures, high inflation and later deflation, and the small share of samurai bonds (27 percent by value) invested in national banks (Tomita 2005). ¹³ The high inflation $^{^{8}}$ This figure includes the 16.6 million yen in public bonds for voluntary pension conversion between 1874 and 1876. ⁹ Interest payments were made in May for each year of the commutation duration, except for the first year 1877, which was made in November. Adjustments were made for pension conversions near threshold limits to ensure lower income conversion payments did not exceed those at the next higher threshold. Interest would be paid between five and fourteen years, and redemption of all *kinroku* bonds was completed by 1906. See McLaren (1979, pp 562-566) and Tomita (2005, pp. 14-16) and Table I for details. ¹⁰ The 1876 National Bank and *Kinroku* Public Bond Instrument Issue Ordinances allowed national banks to be established with government bonds paying a (lower) four percent interest rate and the (higher) ratio of paid-in capital of government bonds to 80 percent (Tomita 2005). All bonds would be redeemed up to thirty years after issuance. To facilitate securitization and capital mobilization, stock exchanges were set up in Osaka and Tokyo in 1878. ¹¹ The 1879 breakdown of capital contribution was 76.0 percent samurai (including the *kazoku* nobility), 14.6 merchants, 3.5 farmers, and 5.7 others. For a list of major financial reforms in the late nineteenth century, see Tang (2013), table 1. ¹² The overall macroeconomic effect of the stipend conversion is disputed, however, with some studies alleging samurai incompetence in investment and management as well as an exaggerated influence of the national banks (Harootunian 1960; Yamamura 1974). ¹³ Yamamura (1967) finds the samurai contribution to modern Japanese banking modest, and that commoners played a more important role when private and quasi-banks are included. period immediately following the pension commutation may have also created uncertainty around the government's commitment to fulfill its bond obligations, motivating samurai to invest their bonds in enterprises or to redeem them as soon as possible. Exacerbating these initial conditions was the lack of capital market integration in Japan, which persisted until the 1890s once the central bank was established and its branch network reduced interest rate spreads (Mitchener and Ohnuki 2007). Bonds were not limited to bank capitalization: between 1876 and 1889, businesses owned by samurai also grew extensively and varied from small companies to joint-stock corporations (Harootunian 1960). By focusing on the role of banking, the contribution of the bond issue on tertiary sector growth that includes financial services would be obscured as well. The premise of our identification strategy is since the ex-samurai and their bond payments were unequally distributed across regions, their contribution to local economic activity via additional credit may account for the short and long run regional differences measured more broadly in industrial activity, income growth and labor productivity (Moriguchi and Saez 2008; Fukao et al 2015). In the period preceding World War Two, regional inequality rose significantly due to shifts away from primary to secondary production, which did not decrease until after the war (Fukao and Paul 2017). Major metropolitan areas like Tokyo and Osaka experienced rapid industrialization, and more populated areas grew at the expense of smaller and more isolated ones following the expansion of the national railway system (Fukao et al 2017; Tang 2014). In the remaining sections, we analyze the extent by which regional differences in credit supply may have affected economic activity and whether these persisted over time. ### II. Research Design #### A. Data To investigate the relationship between the local credit supply shock and subsequent development, we use historic data that provide regional measures of output, employment, market access, and demography. Collectively, these data span the period between 1874 and 1940 and are disaggregated by the 47 regions (aka, prefectures) that comprise Japan. Output and labor force data by prefecture are available for a number of benchmark years in the pre-war period: 1874, 1890, 1909, 1925, 1935 and 1940 (Fukao et al 2015). These data are also separable by region into the three major sectors of primary, secondary, and tertiary categories for the entire period. Data on bonds issued to samurai by region in 1876 were collected by the Japanese Ministry of Finance (Meiji Zaiseishi 1971). Railway data are from a handbook of rail station construction, which provide both dates and locations of all stations built starting in the 1870s (Chuo Shoin 1995; Tang 2014). Average per capita bond values in nominal yen are shown in the last column in Table II. Extreme values include Tokyo (40.42 yen per capita) and Yamanashi (0.14 yen per capita), which can be attributed in part to the high share of wealthy samurai living in the former (who received 5 percent coupon bonds) and the lack of in the latter. Moreover, there are eight prefectures that did not exist at the time of the 1876 commutation, so no bond values for these regions are available, bringing the sample in the analysis down to 38 prefectures. ¹⁴ Table III shows the breakdown of chartered national banks, which received much of their paid-in capital from these samurai bonds. These bank counts and samurai ownership shares underscore the relative immobility of financial capital between regions during this period, despite efforts by the $^{^{14}}$ The eight prefectures missing bond data are Fukui, Kagawa, Miyazaki, Nara, Okinawa, Saga, Tokyshima, Tottori, and Toyama. government to create a national system during this period. ¹⁵ The lack of integration in the short run demonstrated by the dispersion of capital may thus allow for localized economic impacts from the bond issuance, which were not fully redeemed until the first decade of the 1900s. ¹⁶ ## [Tables II and III] Prefectural output measures in per capita terms and by sector are shown in the top and third panels of Table IV, covering the years between 1874 and 1940. Throughout this period, Japan steadily increased its per capita income in real terms, with the shares of value from secondary and tertiary sectors growing at the expense of primary production. The period between 1874 and 1909 shows a doubling of secondary sector value, which reached nearly one third of national output by 1940 largely due to a shift away from primary production. This is true for both all prefectures in the country and for those with available bond data.
The second and bottom panels show a similar breakdown for employment, which also shifted away from primary production into the secondary and tertiary sectors, doubling their proportions of the labor force by the end of the period. ## [Table IV] ### B. Theoretical Motivation How should the bond conversion of former samurai pensions affect the economic activity? Numerous anecdotes of former samurai (e.g., Yasuda Zenjiro of Yasuda Mutual Life Insurance, Iwasaki Yataro of Mitsubishi, and Fujioka Ichisuke of Tokyo Electric Light) illustrate their success in establishing new firms and investing in banks (Yamamura 1974, Tokyo Dento 1936). While there were nascent equity exchanges in Tokyo and Osaka, most ¹⁵ Shizume and Tsurumi (2016) describe the evolution of the national banking system starting with the 1876 National Bank Act up to the creation of the central bank, the Bank of Japan, in 1882. ¹⁶ Redemption of 7 percent coupon bonds, which represented 62 percent of the total bond issue, was completed in September 1891; 6 percent interest bearing bonds (14 percent) were all redeemed in April 1893; and 5 percent interest bearing bonds (18 percent) in April 1906; see Tomita (2015). Special bonds bearing 10 percent interest (5 percent total bond value) were all redeemed by June 1886. firm capital formation was through network finance without necessarily using banks as intermediaries. At the same time, banking played a role in mobilizing financial capital and using the samurai bonds as collateral as intended with the National Banking Act of 1876 (Tomita 2015). In this section, we briefly summarize the theoretical channels through which financial development may affect the economy and how we can empirically test its effect. Financial development is a loose word that is broadly used to describe different functions that financial systems provide. Levine (2005) emphasizes five functions: (i) produce information and improve capital allocation, (ii) monitor investment after providing finance, (iii) increase diversification and reduce uncertainty, (iv) mobilize and pool savings and (v) facilitate exchange of goods and services. Samurai bonds may have helped to improve Japanese financial institutions in more than one of the above categories, for example, by creating new assets in the economy to generate growth (Acemoglu and Zillibotti 1997). Moreover, the use of samurai bonds to capitalize chartered national banks could be conducive to increasing the number of firms (Holmstrom and Tirole 1997). Finally, by helping to mobilize resources, samurai bonds may have helped to fund large projects that could not have been funded by individual investors (Bagehot 1873). While it is beyond the scope of this paper to disentangle which specific channel the samurai bond conversion affected the economic development of Japan, we can empirically assess the effect of financial development (proxied by samurai bonds per capita) on subsequent economic activity. Similar to Mian et al (2007), we analyze how the economic growth of different regions within a country are affected by their initial level of financial development. The empirical framework follows the tradition of cross-country growth regressions to estimate the effect of financial development on economic growth, as employed by King and Levine (1993). Our contributions are to use the provision of a financial instrument instead of changes in regulation, an ¹⁷ Although there exists a large literature which analyzes episodes of financial liberalization (e.g., Kaminski and Schmukler, 2008) we view the samurai bond event as an increase in credit supply, which affected the level of financial development of the country, more than a financial liberalization. There exist more papers which run similar cross-country financial development-economic growth regressions. For example, Loayza et al. (2006), which emphasize that financial intermediation may have a negative short-run effect but a positive in the long run. Similarly, Arcand et al. (2015) argue that too much financial development may have a negative effect on growth. identification strategy with a quasi-experimental setting for a plausible causal interpretation, and a long run data series that allows for analysis of both short run effects and potential long run persistence.¹⁸ Furthermore, given that we have sectoral disaggregation, we can study the differential effect of financial development across sectors and time. This follows the seminal work of Rajan and Zingales (1998), who show that the effect of financial development should depend on the characteristics of the industries. In particular, the effect of financial development should be larger in more financially dependent industries. We perform a similar exercise but within a country and at a higher level of aggregation. Consistent with their predictions, we should find that the effect of samurai bonds on economic activity is exacerbated in financial dependent sectors (like heavy industry and finance) and it should have a lower or negative effect on less financial dependent sectors as agriculture. One additional contribution not found in the financial development literature is the effect of productivity-enhancing technology, for which we use railway access as our proxy. The positive effect of railways on economic development is well-established, and we extend this scholarship by testing the hypothesis that financial development has a more positive effect on regional development if it occurs simultaneously with local latent demand, particularly investment opportunities that improve access to technology or markets (Summerhill 2005; Atack et al 2008; Herranz-Loncan 2011; Donaldson, forthcoming). This conditional effect of the availability of profitable investment opportunities has anecdotal support in the historical record, with many samurai and entrepreneurs failing in their ventures due to the immaturity of the economy and non-viable ventures (Harootunian 1960, p. 443). In the context of pre-war Japan, we argue that per capita railway stations serve as a reasonable proxy for local credit demand and potential growth. Furthermore, the placement of the railways throughout the 1880s was exogenous to the government's bond policy, dictated by geographical constraints on ¹⁸ There have been several papers which have related historical events with persistent long-run effects. For example, the seminal paper of Acemoglu et al (2001) emphasize that the type of institutions that Europeans adopted in the different colonies had long and persistent effects. construction (Tang 2014, Yamazaki 2017). Thus, the intersection between the two effects of bond availability and railway access can be compared against regions that received just one or the other and highlight their relative importance to growth. ### C. Empirical Strategy Following our previous discussion, we consider the baseline specification to assess the effect of bond per capita on economic development of Japan: (1) $$\Delta GPPpc_{it} = \beta_0 + \beta_1 * ln(GPPpc_{it-1}) + \beta_2 * Bond_{i0} + \beta_3 * Bond_{i0} * Stations_{i1} + \delta_t + e_{it},$$ where $\Delta GPPpc_{it} = ln(GPPpc_{it}/GPPpc_{it-1})$, $GPPpc_{it}$ is gross prefecture product per capita in prefecture i and year t, $Bond_{i0}$ is the bond value per capita in 1876, and $Stations_{i1}$ is the number of railway stations per capita in prefecture i in year 1885. To control for possible income convergence over time between regions we include a lag term for per capita output. Our preferred specification also includes prefectural-level control variables of population (i.e., market size), per capita student enrollment share (i.e., human capital), and low gradient land population density (i.e., urbanization). We use railways in 1885 in our baseline specification because that year coincides with both the end of the Matsukata deflationary period, which promoted private investment, and the start of the railway boom, but we also consider for robustness the number of stations per capita in 1880. As shown in Tang (2014), initial market conditions create path dependency and industrial agglomeration, so we anticipate a larger growth effect in areas that joined the national railway network and market earlier in the period. Per capita regional output from 1874 to 1940 is measured in constant 1934-36 yen (Fukao et al. 2015). The main variable of interest is the interaction between 1876 per capita bond values (aka, credit supply) and 1885 per capita railway stations (aka, credit demand). $\beta_2 > 0$ implies that the effect of credit supply on regional economic development is exacerbated if the prefecture has railway access. We then compute the total effect of credit supply for the average prefecture with the average number of railway stations on income growth all in per capita and constant yen terms. Finally, we run this regression for different time periods, from the short run (1874 to 1890) through the long run (1874 to 1940) and intervening years. Since our base year of 1874 precedes the bond issue, our model can identify the change in growth due to that shock. We expect that the effect of the credit supply shock on GPP growth per capita attenuates over time, varies by sector, and differs by early rail access. We are also interested in the possible effect of credit supply shock on the structural transformation of Japan. In order to perform this complementary exercise, we run the following regression, (2) $$\Delta LaborRatio_{12it} = \beta_0 + \beta_1 * LaborRatio_{12it-1} + \beta_2 * Bond_{i0} + \beta_3 * Bond_{i0} * Stations_{i1} + \delta_t + e_{it},$$ where $\Delta LaborRatio_{12it}$ is the change in the ratio of the labor force for one sector over another for all three sectoral combinations. Included covariates are the same as in the previous model, with lag term for labor force ratio capturing earlier reallocation. As with our output model, we interpret a positive average total effect from
per capita bond value as facilitating the transition between the numerator sector relative to that in the denominator and show results for the three possible combinations. These regressions are run for each subperiod up through the entire period between 1874 and 1940. Per earlier scholarship (Fukao et al. 2015, Fukao and Paul 2017), we expect high values of bonds per capita to facilitate movement away from the primary sector into the other two sectors. #### III. Results ## A. Output Growth To generalize the economic effects to output as a whole as well as to differentiate between use of credit supply, we examine regional per capita output growth over the short and long run and include the adoption of railways. Table V provides results for the first period 1874 to 1890, starting with individual control variables for per capita bond value and rail stations, and then adding their interaction term and additional prefectural controls. In other words, these specifications decompose the effect from the credit supply shock (i.e., bonds per capita in 1876) from the productivity shock (i.e., per capita rail stations in 1885) and their interaction. In the top panel, there is no statistically significant relationship between overall output growth and the included variables across most of the specifications as the F-statistic is not significant. Only with the full complement of control variables in the last column is there a meaningful relationship, with per capita bond value negative and significant at the 10 percent level. However, taking account of the inclusion of per capita rail stations and their interaction, there is no overall joint significance.¹⁹ ## [Table V] The remaining panels perform the same decomposition exercise for the three sectors of the economy. For the primary sector, bonds per capita by itself do not have any significant on primary income growth (column A). However, when interacted with railways stations (columns C and D), the coefficient is negative, indicating that given early access to railway stations, higher per capita bonds reduce primary income growth. When we repeat this exercise for the secondary sector, we do not find significant effects from either bonds or rail stations per capita. The bottom panel reports the coefficients for the regression on tertiary income growth. Note that we obtain the opposite results ¹⁹ This is calculated from the average natural log of per capita bond value (all sectors) of -0.292 and the average per capita (thousand) station count of 0.0025 across prefectures. compared to those for primary income growth, which may account for the lack of an overall income growth effect. For each of the two sectors, the signs on the coefficients for railway access and its interaction with bonds are the same (negative for primary, positive for tertiary), suggesting a complementarity of credit demand and supply. These results also underscore the redistributive effects of the credit supply shock: given early access to railways, areas with higher bond value per capita experienced higher (lower) growth in tertiary (primary) income. The full set of period regressions is shown in Table VI, starting with 1874 to 1890 and expanding to each subsequent year of available data (up to 1940). There are three results that we would like to highlight. First, we do not observe any significant effect of the credit supply shock for aggregate output growth in any period. Second, we find a significant and persistent effect of the credit supply shock on the redistribution of income between regions and sectors. The coefficient on the interaction between bond value and rail access is negative and significant in all specifications for primary income growth and positive and significant for tertiary income growth. Third, the redistributive effects are persistent but attenuate over time. This can be seen in both the magnitudes of the coefficients on the interaction of bonds and rail stations per capita as well as in the calculated average total effect. For the latter, the cumulative effect of bonds and railways is associated with a shrinking primary sector for the entire 1874 to 1940 period, while for the tertiary sector the total growth effect persists until 1925. ## [Table VI] Before looking at the impact on labor shares, we first examine another more direct channel of finance, banking capital, on real output growth. In our theoretical discussion, we emphasized the development of financial institutions as the most likely mechanism through which bonds per capita could affect economic activity. According to this narrative, we should find similar results when using total banking capital per capita instead of bonds per $^{^{20}}$ Note that the first column in this table is the same as column D in Table V. capita in our regressions. That said, there are two limitations to this approach. First, total banking capital (85.2 million yen) represented less than half of all bonds value (173.8 million yen), and samurai ownership in national banking capital less than one sixth (30.7 million yen). Second, bank capital is already included in the tertiary sector. Therefore, we would expect that total bank capital had a negative effect on primary sector and a more muted effect on tertiary sector growth. ### [Table VII] Table VII reports the coefficients on the same regressions as in Table VI but with total bank capital per capita in 1884 instead of bond value per capita in 1876. One parallel between the two measures of financial capital is that banking capital per capita also did not have any effect on overall growth across periods. Also, the quantitative effect of total bank capital on primary income growth is similar both in the marginal effect from the interaction term and in the average total effect. The main difference with the previous table is that since banking capital is already included in the tertiary sector, we fail to observe a positive effect on the tertiary sector growth. In any event, these results paint a picture consistent with the view that financial development was the transmission mechanism of the pension commutation into the real economy. As discussed earlier, there exist opposing views on the role of samurai on the industrialization process of Japan. Even though resolving this debate is outside the scope of this paper, we can contribute by analyzing the effect of bank capital owned by samurai. To do so, we use the share of national bank capital ownership by samurai to construct a samurai capital measure and use that instead of bonds per capita. This allows us to investigate whether prefectures dominated by banks owned by samurai exhibited different patterns from the other prefectures in real output growth.²¹ ²¹ Jha, Mitchener, and Takashima (2015) employ a similar approach in assessing the contributions of samurai on the political economy of Meiji Japan. ## [Table VIII] Table VIII reports the coefficients from this exercise, and the results from this table along with our bond per capita analysis are consistent with both sides of the samurai contribution debate. On the one hand, we can observe that prefectures with higher samurai bank capital did not experience higher overall growth in any of the subperiods. On the other hand, we do find that output in the secondary sector grew faster in prefectures with higher samurai bank capital, but only in the pre-WWI period. We do not find any significant effect on primary or tertiary sectors. As in our previous results, the positive effect of samurai bank capital also hinges on early access to railway stations and this effect was persistent up to 1909. These results suggest that industrial activity increased in prefectures where samurai managed to concentrate more resources in national banks and also had access to railways, but not in other sectors nor when total banking capital or the full value of bonds are considered. Another related concern with our results is that the distribution of wealthy versus poor samurai among prefectures is uneven, with Tokyo as an extreme example (cf. Table II). This is due to the 5 percent coupon bonds, of which former samurai living in Tokyo received the 96 percent of the national total. Removing these bonds from the total bond value mitigates this bias (Tokyo's bond value share falls to 7 percent), so we repeat the same regression analysis in the earlier tables with the subset of higher coupon bonds. ## [Table IX] Table IX reports the coefficients of running our baseline specifications with higher coupon bond value per capita (i.e., excluding 5 percent bonds) instead of total bond value per capita. The coefficients are similar both qualitatively and quantitatively to our baseline specification in Table VI. We observe that as before the credit supply shock had a redistributive effect both between regions and sectors. That is, regions with more bonds per capita and access to railways experienced faster growth in tertiary output and slower growth in primary output. ## . B. Structural Transformation Several studies have emphasized the barriers to structural transformation as the reason why the Japanese economy started its industrialization process later than other economies (see, for example, Fukao and Paul 2017). Some specific limits to this structural transformation include legal constraints that limited urban emigration (Hayashi and Prescott 2008) or geographical constraints that determined the location of economic activity (Davis and Weinstein 2001). In this section we analyze whether the shock to credit supply contributed to the structural transformation of the pre-war Japanese economy. There exists a large literature emphasizing the role of financial frictions on the allocation of factors (e.g., Banerjee and Duflo 2014). Thus, we would expect that the credit supply shock facilitated the reallocation of labor from the primary to the secondary and tertiary sectors. ## [Table X] Table X reports the coefficients of running
equation (2). It is the same model specification as the one used earlier for output growth but with the dependent variable measured as the change in the labor ratio between two sectors. The three panels show the results from the three combinations of primary, secondary, and tertiary sectors, and we interpret a positive sign on a coefficient as evidence that this variable contributed to structural transformation. For example, in the top panel comparing secondary to primary sector labor, the coefficient on the interaction term is positive and statistically significant. This implies that, given early access to railways, a higher bond value per capita is associated with the reallocation of workers from the primary to the secondary sector. Although the interaction is positive in all subperiods, it is only statistically significant between 1874 and 1890. In the middle panel, the dependent variable is the change in the ratio between labor in the tertiary and primary sectors. The coefficient on the interaction term is positive and usually statistically significant. This positive coefficient indicates that the shock in credit supply was associated with a decline in the primary sector labor force relative to that in the tertiary sector, and this is fairly persistent over time even as it decreases in magnitude. The statistical significance of the reallocation between these sectors compared with the secondary sector is consistent with our findings on output growth. Finally, in the bottom panel the dependent variable is the change in the ratio between labor in the tertiary and secondary sector. This variable does not have a direct implication for structural transformation but we include it for completeness. The coefficient on the interaction term is positive but not statistically significant in any of the subsamples. This result implies that the shock to credit supply did not have a significant effect on the reallocation of labor between the secondary and tertiary sector. To conclude, the results presented in this section indicate that the shock to credit supply is associated with the structural transformation of the Japanese economy. Similar to the results on output growth, the effect of credit supply was dependent on early access to railways, which was in part driven by geographical constraints. In this sense, our findings are consistent with the findings of Davis and Weinstein (2001), which highlight the importance of location and path dependence. ### V. Concluding Remarks Studies on the impact of credit supply on economic growth usually emphasize the negative relationship with financial crises, neglecting to highlight potential short and long run benefits and heterogeneity between regions within a country. Our analysis of an exogenous credit supply shock in late nineteenth century Japan indicates that there are persistent redistributive effects both between regions and between sectors. We find evidence that bonds per capita amplified the effects of early access to railways and generated faster output growth in the tertiary sector and slower growth in the primary sector. These effects were larger in the initial period (1874-1890) and attenuated over time up to 1940. We find analogous results for the reallocation of labor. Bonds per capita were also conducive to the structural transformation of the economy, reallocating labor from the primary to the tertiary sector. An important contribution of our work is to emphasize the complementarity between shocks to credit supply and the initial characteristics of the country, including latent demand and market access. Does the pre-war Japanese case generalize to other economic scenarios as well? Understandably, in the late nineteenth century the Japanese economy was fragmented and financially underdeveloped, which may account for the large observed effects. That said, the exogenous credit supply shock was also extremely large in relative terms, and thus it may be unrealistic to expect similar magnitudes in a modern context. Nevertheless, the persistence of a positive impact for the entire pre-war period is remarkable given the rapidity of industrialization and market integration, and shows that initial conditions can play a strong role in continued and long run development. Extensions to this work would include more precisely identifying the channels through which the interaction of credit supply and demand had the most impact as well as whether there may be negative effects obscured at the current level of regional analysis, especially for within regional inequality and returns to labor. #### REFERENCES Acemoglu, Daron, Simon Johnson and James A. Robinson (2001). "The Colonial Origins of Comparative Development: An Empirical Investigation." *American Economic Review*, 91(5): 1369-1401 Acemoglu, D. and F. Zilibotti (1997). "Was Prometheus unbound by chance? Risk, diversification, and growth." *Journal of Political Economy*, 105:709–775. Arcand, J.L., Berkes, E. and U. Panizza (2015): "Too much finance?" *Journal of Economic Growth*, 20:105-148. Atack, Jeremy, Michael Haines, and Robert Margo (2008). "Railroads and the rise of the factory: evidence for the United States, 1850-70." NBER Working Paper 14410. Cambridge: National Bureau of Economic Research, October. Bagehot, W. (1873). Lombard Street: A Description of the Money Market, 1962 ed. Irwin: Homewood, IL. - Banerjee, A. and E. Duflo (2014). "Do Firms Want to Borrow More? Testing Credit Constraints Using a Directed Lending Program," *Review of Economic Studies*, (2014) 81: 572-607. - Beasley, W.G. (1972). *The Meiji Restoration*. Stanford: Stanford University Press. - Chuo Shoin (1995). *Ekimei Jiten* [Rail Stations in Japan], 5th edition. Japanese language text. Tokyo: Chuo Shoin Henshubu. - Davis, Donald and David E. Weinstein (2002). "Bones, Bombs, and Break Points: The Geography of Economic Activity," American Economic Review, 92(5), 1269-1289. - Dehejia, Rajeev and Adriana Lleras-Muney (2007). "Financial development and pathways of growth: state branching and insurance laws in the United States, 1900-1940." *Journal of Law and Economics*, 50(2): 239-272. - Donaldson, David. "Railroads of the raj: estimating the impact of transportation infrastructure." *American Economic Review*, forthcoming. - Flath, David (2014). *The Japanese Economy*, third edition. Oxford: Oxford University Press. - Fukao, Kyoji, Jean-Pascal Bassino, Tatsuji Makino, Ralph Papryzycki, Tokihiko Settsu, Masanori Takashima, and Joji Tokui (2015). *Regional Inequality and Industrial Structure in Japan: 1874-2008*. Tokyo: Maruzen Publishing Company. - Fukao, Kyoji and Saumik Paul (2017). "The Role of Structural Transformation in Regional Convergence in Japan: 1874-2008." Institute of Economic Research Discussion Paper No. 665. Tokyo: Institute of Economic Research. - Google Maps (2016). Map of Japan (online). Accessed 22 September 2016: www.maps.google.com.jp - Guiso, Luigi, Paola Sapienza, and Luigi Zingales (2004). "Does local financial development matter?" *Quarterly Journal of Economics*, 119(3): 929-969. - Harootunian, Harry (1960). "The economic rehabilitation of the samurai in the early Meiji Period." *Journal of Asian Studies*, 19(4): 433-444. - Hayashi, Fumio and Edward C. Prescott (2008). "The Depressing Effect of Agricultural Institutions on the Prewar Japanese Economy." *Journal of Political Economy*, 116(4): 573-632. - Herranz-Loncan, Alfonso (2011). "The role of railways in export-led growth: the case of Uruguay, 1870-1913." *Economic History of Developing Regions* 26(2): 1-33. - Holmstrom, B. and J. Tirole (1997). "Financial Intermediation, Loanable Funds, and the Real Sector." *Quarterly Journal of Economics*, 112(3): 663-691. - Japan Statistical Association (1962). *Nihon Teikoku Tokei Nenkan* [Statistical Yearbook of the Japanese Empire]. Tokyo: Tokyo Ripurinto Shuppansha. - Japanese Bankers Association (2012). *Bank Database Change History*. Accessed 1 June 2012: www.zinginkyo.or.jp/library/hensen/ - Jayaratne, Jith and Philip Strahan (1996). "The finance-growth nexus: evidence from bank branch deregulation." *Quarterly Journal of Economics*, 111(1996): 639-671. - Jha, Saumitra, Kris Mitchener, and Masanori Takashima (2015). "Swords into Bank Shares: Financial Instruments, Violent Conflict Resolution, and Reform in Meiji Japan." Conference presentation, 3-7 August 2015, XVII World Economic History Congress, Kyoto, Japan. - Jorda, Oscar, Moritz Schularick, and Alan M. Taylor (2011). "When credit bites back: leverage, business cycles, and crises." NBER Working Paper 17621. Cambridge: National Bureau of Economic Research, November. - --- (2017). "Macrofinancial history and the new business cycle facts." *NBER Macroeconomics Annual 2016*, volume 31. Eds. Martin Eichenbaum and Jonathan A. Parker. Chicago: University of Chicago Press. - Kaminsky, G.L. and S. L. Schmukler (2008). "Short-Run Pain, Long-Run Gain: Financial Liberalization and Stock Market Cycles." *Review of Finance*, 12(2): 253–292. - King, Robert and Ross Levine (1993). "Finance and growth: Schumpeter might be right," *Quarterly Journal of Economics* 108(3): 717-737. - Levine, Ross (1997). "Financial development and economic growth: views and agenda." *Journal of Economic Literature*, 35(2): 688-726. - Loayza, Norman V. & Romain Ranciere (2006). "Financial Development, Financial Fragility, and Growth." *Journal of Money, Credit and Banking*, 38(4): 1051-1076. - McLaren, W.W. (1979). *Japanese Government Documents*. Tokyo: Asiatic Society of Japan. - Meiji Zaiseishi (1971). *The Financial History of the Meiji Period* [Japanese language text], volume 8, reprint. Tokyo: Yoshikawa Kokubunka. - Meissner, Christopher M. and John P. Tang. "Upstart industrialization and exports: evidence from Japan, 1880-1910." *Journal of Economic History*, forthcoming. - Mian, Atif and Amir Sufi (2009). "The Consequences of Mortgage Credit Expansion: Evidence from the U.S. Mortgage Default
Crisis." *Quarterly Journal of Economics*, 124(4): 1449-1496. - Mian, Atif, Amir Sufi, and Emil Verner (2017). "How do credit supply shocks affect the real economy? Evidence from the United States in the 1980s." Washington Center for Equitable Growth Working Paper 2017-07. - Miyajima, Shigeki and Warren Weber (2001). "A comparison of national banks in Japan and the United States between 1872 and 1885." *Monetary and Economic Studies* 19-1. Tokyo: Bank of Japan. - Mitchener, Kris and Mari Ohnuki (2007). "Institutions, competition, and capital market integration in Japan." *Journal of Economic History*, 69(1): 138-171. - Nakamura, James (1966). Agricultural production and the economic development of Japan, 1873-1922. Princeton: Princeton University Press. - Morikawa, Hidemasa (1992). *Zaibatsu: the rise and fall of family enterprise groups in Japan*. Tokyo: University of Tokyo Press. - Perkins, Dwight and John P. Tang (2017). "East Asian Industrial Pioneers: Japan, Korea, and Taiwan." *The Spread of Modern Industry to the Periphery since 1871*. Eds. Kevin O'Rourke and Jeffrey Williamson. Oxford: Oxford University Press. - Rajan, Raghuram and Luigi Zingales (1998). "Financial dependence and growth." *American Economic Review*, 88(1998): 559-586. - --- (2001). "Financial systems, industrial structure, and growth." *Oxford Review of Economic Policy*, 17(4): 467-482. - Rajan, Raghuram, and Rodney Ramcharan (2015). "The Anatomy of a Credit Crisis: The Boom and Bust in Farm Land Prices in the United States in the 1920s." *American Economic Review*, 105(4): 1439-77. - Rousseau, Peter (1999). "Finance, investment, and growth in Meiji-era Japan." *Japan and the World Economy*, 11: 185-198. - Schularick, Moritz and Alan M. Taylor (2012). "Credit booms gone bust: monetary policy, leverage cycles, and financial crises, 1870-2008." *American Economic Review*, 102(2): 1029-1061. - Shizume, Masato and Masayoshi Tsurumi (2016). "Modernizing the financial system in Japan during the 19th century: national banks in Japan in the context of free banking." WINPEC Working Paper Series No. E1607. Tokyo: Waseda Institute of Political Economy. - Summerhill, William (2005). "Big social savings in a small laggard economy: railroad-led growth in Brazil." *Journal of Economic History*, 65(1): 72-102. - Tang, John P. (2013). "Financial intermediation and late development in Meiji Japan, 1868 to 1912." *Financial History Review*, 20(2): 111-135. - --- (2014). "Railroad expansion and industrialization: evidence from Meiji Japan." *Journal of Economic History*, 74(3): 863-886. - Tokyo Dento (1936). *The Fifty-Year Anniversary of Tokyo Electric Light*. Tokyo: Tokyo Dento. - Tomita, Toshiki (2005). "Government bonds in the Meiji restoration period." NRI Papers No. 87. Tokyo: Nomura Research Institute, March. - Umemura, Mataji, Keiko Akasaka, Ryoshin Minami, Nobukiyo Takamatsu, Kurotake Arai, and Shigeru Itoh (1988). *Manpower*. Volume 2 in *Estimates of Long-tern Economic Statistics of Japan since 1868*. Eds. Kazushi Ohkawa, Miyohei Shinohara, and Mataji Umemura. Tokyo: Toyo Keizai Shinposha. - Yamamura, Kozo (1967). "The role of samurai in the development of modern banking in Japan." *Journal of Economic History*, 27(2): 198-220. - --- (1974). A Study of Samurai Income and Entrepreneurship: Quantitative Analyses of Economic and Social Aspects of the Samurai in Tokugawa and Meiji Japan. Cambridge: Harvard University Press. - Yamazaki, Junichi (2017). "Railroads, technology adoption, and modern economic development: evidence from Japan." Institute of Social and Economic Research Discussion Paper 1000. Osaka: Institute of Social and Economic Research. Table I—Samurai Pension Commutation Scales, 1876 | Original Annual Income Value (yen) ^a | Conversion Factor ^b | Bond Interest (%) ^c | |---|--------------------------------|--------------------------------| | 70,000 yen or higher | 5.0 | 5 | | 60,000 to 70,000 | 5.25 | 5 | | 50,000 to 60,000 | 5.5 | 5 | | 40,000 to 50,000 | 5.75 | 5 | | 30,000 to 40,000 | 6.0 | 5 | | 20,000 to 30,000 | 6.25 | 5 | | 10,000 to 20,000 | 6.5 | 5 | | 7,000 to 10,000 | 6.75 | 5 | | 5,000 to 7,000 | 7.0 | 5 | | 2,000 to 5,000 | 7.25 | 5 | | 1,000 to 2,000 | 7.5 | 5 | | 900 to 1,000 | 7.75 | 6 | | 800 to 900 | 8.0 | 6 | | 700 to 800 | 8.25 | 6 | | 600 to 700 | 8.5 | 6 | | 500 to 600 | 8.75 | 6 | | 450 to 500 | 9.0 | 6 | | 400 to 450 | 9.25 | 6 | | 350 to 400 | 9.5 | 6 | | 300 to 350 | 9.75 | 6 | | 250 to 300 | 10.0 | 6 | | 200 to 250 | 10.25 | 6 | | 150 to 200 | 10.5 | 6 | | 100 to 150 | 11.0 | 6 | | 75 to 100 | 11.5 | 7 | | 50 to 75 | 12.0 | 7 | | 40 to 50 | 12.5 | 7 | | 30 to 40 | 13.0 | 7 | | 25 to 30 | 13.5 | 7 | | Below 25 | 14.0 | 7 | Source: McLaren (1979) and Tomita (2005). "For incomes in perpetuity. Non-hereditary life incomes receive the same interest rates but for half the duration. Non-hereditary fixed term incomes also receive the same interest rates but for shorter durations than hereditary incomes: above 10 years (40 percent); 8 to 10 years (35 percent); 6 to 8 years (30 percent); 4 to 6 years (25 percent); 3 to 4 years (20 percent); and 2 years (15 percent). "Scaling factor to convert annual income into total bond capitalization value; e.g., a 6,000 yen annual income would be converted into bonds worth 42,000 yen paying 5 percent interest per year. "Redemption of bonds bearing 7 percent interest was completed in 1891, 6 percent interest in 1893, and 5 percent interest in 1906. See text for more detail. TABLE II—SAMURAI BOND DISTRIBUTION BY PREFECTURE | | 5 percent | 6 percent | 7 percent | Total ^b | Per capita ^c | |--------------------|------------|------------|-------------|--------------------|-------------------------| | Japan ^a | 31,412,405 | 25,003,741 | 108,242,785 | 173,844,631 | 5.68 | | Aichi | 27,815 | 935,810 | 4,982,120 | 5,945,745 | 4.71 | | Akita | 0 | 216,910 | 2,515,130 | 2,732,040 | 4.42 | | Aomori | 0 | 68,840 | 1,602,315 | 1,671,155 | 3.41 | | Chiba | 0 | 279,310 | 1,465,980 | 1,745,290 | 1.39 | | Ehime | 15,570 | 683,025 | 4,108,920 | 4,807,515 | 5.90 | | Fukuoka | 34,850 | 1,945,165 | 676,140 | 8,741,465 | 8.14 | | Fukushima | 0 | 20,740 | 1,171,980 | 1,192,720 | 1.75 | | Gifu | 19,480 | 402,755 | 1,650,485 | 2,072,720 | 2.69 | | Gunma | 0 | 646,795 | 1,779,590 | 2,426,385 | 4.05 | | Hiroshima | 26,470 | 327,050 | 1,820,130 | 2,173,650 | 1.73 | | Hokkaido | 43,345 | 730 | 185,595 | 236,300 | 1.56 | | Hyogo | 9,290 | 516,130 | 3,212,560 | 3,737,980 | 2.74 | | Ibaraki | 0 | 113,151 | 2,025,530 | 2,138,681 | 3.01 | | Ishikawa | 206,780 | 3,524,630 | 8,813,805 | 12,545,215 | 17.64 | | Iwate | 0 | 30,975 | 914,820 | 945,795 | 1.30 | | Kagoshima | 84,895 | 242,355 | 4,351,275 | 13,146,225 | 15.62 | | Kanagawa | 0 | 44,645 | 967,670 | 1,012,315 | 1.44 | | Kochi | 292,585 | 2,578,055 | 5,763,650 | 9,110,350 | 16.63 | | Kumamoto | 14,295 | 2,310,420 | 3,560,705 | 5,885,420 | 5.93 | | Kyoto | 0 | 464,115 | 1,934,690 | 2,398,805 | 2.62 | | Mie | 9,060 | 424,075 | 1,403,505 | 1,836,640 | 2.27 | | Miyagi | 0 | 5,470 | 1,273,330 | 1,278,800 | 2.58 | | Nagano | 0 | 268,740 | 2,116,420 | 2,385,160 | 2.40 | | Nagasaki | 247,160 | 1,905,985 | 5,863,435 | 8,016,580 | 11.57 | | Niigata | 0 | 101,080 | 2,300,335 | 2,401,415 | 1.57 | | Oita | 0 | 373,720 | 2,604,435 | 2,978,155 | 4.11 | | Okayama | 0 | 216,920 | 2,758,210 | 2,975,130 | 3.25 | | Osaka | 0 | 124,375 | 1,061,860 | 1,187,045 | 1.16 | | Saitama | 0 | 356,200 | 965,590 | 1,321,790 | 1.91 | | Shiga | 8,665 | 366,220 | 2,149,105 | 2,531,845 | 4.22 | | Shimane | 42,930 | 1,208,645 | 3,841,395 | 5,092,970 | 8.14 | | Shizuoka | 0 | 1,225 | 3,838,490 | 3,839,715 | 4.43 | | Tochigi | 0 | 44,290 | 652,745 | 697,035 | 1.06 | | Tokyo | 30,261,480 | 2,157,555 | 7,208,285 | 39,846,950 | 40.42 | | Wakayama | 23,325 | 740,515 | 2,070,915 | 2,834,755 | 4.84 | | Yamagata | 0 | 279,410 | 3,072,000 | 3,351,640 | 5.00 | | Yamaguchi | 13,835 | 1,058,930 | 5,432,035 | 6,518,215 | 7.52 | | Yamanashi | 0 | 12,150 | 42,295 | 54,445 | 0.14 | Source: Ministry of Finance (1904). ^aIncludes 5 percent bonds valued at 30,575 yen distributed to the imperial household, which are not prefecture specific. Fukui, Kagawa, Miyazaki, Nara, Saga, Tokushima, Tottori, and Toyama prefectures did not exist (i.e., were part of other prefectures) at the time of the pension commutation, and Okinawa was not formally incorporated into Japan until 1879, after the pension commutation. ^bIncludes 1 percent bonds, which account for 9,185,700 yen (5.3 percent) of the total bonds distributed. ^cIn nominal yen. TABLE III—DISTRIBUTION OF BANKING CAPITAL BY PREFECTURE, 1884 | | National Bank
Count ^a | National Bank
Capital ^b | Samurai
Ownership % | Other Banking
Capital ^b | |-----------|-------------------------------------|---------------------------------------|------------------------|---------------------------------------| | Japan | 142 | 52,536 | 58.5 | 32,667 | | Aichi | 4 | 670 | 40.0 | 913 | | Akita | 1 | 100 | 31.6 | 0 | | Aomori | 2 | 300 | 78.4 | 181 | | Chiba | 2 | 215 | 73.7 | 275 | | Ehime | 4 | 440 | 53.3 | 536 | | Fukui | 4 | 430 | 91.2 | 282 | | Fukuoka | 4 | 640 | 72.2 | 504 | | Fukushima | 5 | 930 | 20.4 | 676 | | Gifu | 5 | 760 | 30.6 | 580 | | Gunma | 2 | 570 | 47.4 | 823 | | Hiroshima | 2 | 440 | 50.5 | 0 | | Hokkaido | 2 | 330 | 40.7 | 100 | | Hyogo | 7 | 790 | 37.1 | 460 | | Ibaraki | 4 | 420 | 76.4 | 416 | | Ishikawa | 2 | 190 | 63.9 | 0 | | Iwate | 2 | 150 | 64.9 | 20 | | Kagoshima | 2 | 530 | 90.8 | 67 | | Kanagawa | 4 | 3,100 | 27.0 | 2,124 | | Kochi | 4 | 650 | 64.0 | 0 | | Kumamoto | 3 | 265 | 96.9 | 100 | | Kyoto | 4 | 400 | 38.4 | 330 | | Mie | 4 | 350 | 65.8 | 0 | | Miyagi | 1 | 250 | 42.4 | 32 | | Miyazaki | 2 | 100 | 80.8 | 511 | | Nagano | 4 | 760 | 34.9 | 2,786 | | Nagasaki | 3 | 370 | 35.7 | 435 | | Niigata | 5 | 1,300 | 15.8 | 3,238 | | Oita | 3 | 340 | 73.1 | 584 | | Okayama | 2 | 380 | 81.5 | 689 |
| Okinawa | 0 | 0 | 0 | 100 | | Osaka | 11 | 2,590 | 12.7 | 1,642 | | Saga | 2 | 390 | 94.1 | 795 | | Saitama | 1 | 200 | 25.8 | 1,459 | | Shiga | 3 | 500 | 17.7 | 210 | | Shimane | 1 | 80 | 70.6 | 79 | | Shizuoka | 3 | 750 | 17.7 | 3,661 | | Tochigi | 1 | 300 | 27.3 | 314 | | Tokushima | 1 | 260 | 76.3 | 636 | | Tokyo | 16 | 28,046 | 73.2 | 3,983 | | Tottori | 1 | 200 | 86.9 | 24 | | Toyama | 1 | 300 | 21.1 | 744 | | Wakayama | 1 | 200 | 74.1 | 117 | | Yamagata | 4 | 590 | 37.5 | 174 | | Yamaguchi | 2 | 680 | 89.9 | 0 | | | - | -00 | | • | *Source:* Japan Statistical Association (1962) and authors' calculations. ^aExcludes branches. ^bIn thousand nominal yen. Other capital includes private banks and quasi-banking institutions. Table IV—Pre-War Prefectural Output and Labor, 1874-1940 | | 1874 | 1890 | 1909 | 1925 | 1940 | |-------------------------------|--------|---------|---------|---------|---------| | All Prefectures | | | | | | | Gross Prefectural Product | 83,976 | 113,156 | 175,413 | 311,803 | 519,881 | | Per capita income | 113.2 | 127.8 | 152.7 | 214.5 | 285.5 | | Primary (%) | 48.5 | 42.4 | 40.6 | 30.8 | 21.3 | | Secondary (%) | 7.1 | 11.0 | 15.0 | 19.4 | 32.3 | | Tertiary (%) | 44.3 | 46.5 | 44.4 | 49.8 | 46.4 | | Labor force (thou) | 470.4 | 500.0 | 499.6 | 586.4 | 717.8 | | Primary (%) | 70.1 | 60.0 | 57.8 | 50.9 | 47.6 | | Secondary (%) | 12.7 | 20.8 | 20.6 | 23.0 | 25.0 | | Tertiary (%) | 17.1 | 19.2 | 21.6 | 26.1 | 27.4 | | Bond Prefectures ^a | | | | | | | Gross Prefectural Product | 91,211 | 125,076 | 198,592 | 357.5 | 601,687 | | Per capita income | 113.9 | 131.0 | 157.8 | 221.5 | 292.394 | | Primary (%) | 49.1 | 42.1 | 39.3 | 29.8 | 20.8 | | Secondary (%) | 7.3 | 11.3 | 15.3 | 19.6 | 32.9 | | Tertiary (%) | 43.6 | 46.6 | 45.4 | 50.6 | 46.3 | | Labor force (thou) | 569.4 | 605.2 | 604.8 | 709.9 | 868.9 | | Primary (%) | 70.9 | 60.3 | 57.4 | 50.3 | 46.9 | | Secondary (%) | 12.7 | 20.8 | 20.8 | 23.3 | 25.5 | | Tertiary (%) | 16.4 | 18.9 | 21.8 | 26.5 | 27.6 | *Source*: Fukao et al (2015) and authors' calculations. Gross prefectural product and per capita income in thousand constant 1934-36 yen; see Fukao et al (2015). ^aExcludes prefectures that did not receive bond payments; see footnote in Table II. ^bBased on average per capita value of commutation bonds by prefecture; see Table II. TABLE V—BOND VALUE OUTPUT GROWTH REGRESSIONS, 1874-1890 | DV: ΔLn(Output per capita) | A | В | С | D | |---|----------------------|-----------------------|------------------------|-----------------------| | All sectors | | | | | | Ln(1876 bond value per capita) | -0.048
(0.029) | | -0.060*
(0.035) | -0.055*
(0.029) | | 1885 rail stations per thou | | 0.036
(4.051) | 2.628
(10.039) | -6.990
(7.570) | | Interaction of bond value and rail access | | , | 5.280
(7.846) | -0.980
(5.848) | | Average total effect | 0.014
(0.009) | 0.0001
(0.010) | 0.017
(0.019) | 0.0001
(0.015) | | R-squared | 0.144 | 0.052 | 0.168 | 0.457 | | F-statistic | 1.64 | 1.14 | 1.67 | 4.11*** | | Primary sector | | | | | | Ln(1876 bond value per capita) | -0.075
(0.064) | | -0.035
(0.039) | 0.012
(0.036) | | 1885 rail stations per thou | | -18.653***
(5.542) | -42.244***
(10.350) | -46.982***
(7.486) | | Interaction of bond value and rail access | | | -27.159***
(9.719) | -26.687***
(7.192) | | Average total effect | 0.,022
(0.019) | -0.047***
(0.014) | -0.057***
(0.020) | -0.083***
(0.015) | | R-squared | 0.191 | 0.289 | 0.556 | 0.763 | | F-statistic | 7.14*** | 22.49*** | 6.89*** | 13.39*** | | Secondary sector | | | | | | Ln(1876 bond value per capita) | 0.002
(0.075) | | -0.004
(0.053) | -0.059
(0.054) | | 1885 rail stations per thou | (0.075) | 28.328**
(10.888) | 34.195
(24.718) | 15.025
(25.534) | | Interaction of bond value and rail access | | (, | 6.282
(20.654) | -0.577
(19.128) | | Average total effect | -0.001
(0.022) | 0.071**
(0.027) | 0.078*
(0.045) | 0.055
(0.047) | | R-squared | 0.062 | 0.217 | 0.221 | 0.339 | | F-statistic | 0.88 | 4.43** | 1.89 | 3.13*** | | Tertiary sector | | | | | | Ln(1876 bond value per capita) | -0.080***
(0.024) | | -0.109***
(0.023) | -0.102***
(0.027) | | 1885 rail stations per thou | | 1.995
(4.762) | 11.225***
(3.141) | 11.084***
(4.025) | | Interaction of bond value and rail access | | | 14.729***
(2.709) | 11.679***
(3.359) | | Average total effect | 0.023***
(0.007) | 0.005
(0.012) | 0.039*** (0.009) | 0.041***
(0.010) | | R-squared | 0.329 | 0.116 | 0.463 | 0.520 | | F-statistic | 7.25*** | 3.15* | 10.58*** | 8.84*** | | Observations | 38 | 38 | 38 | 38 | Significance: ***1 percent, **5 percent, *10 percent. Robust standard errors in parentheses. All specifications include year dummies and a lagged output growth variable and exclude the nine prefectures with missing bond data; see Table II. Column D includes time-varying control variables of population, per capita student enrollment share, and low gradient land population density; see text for details. Bond values and gross prefectural product per capita income in 1934-36 constant yen. TABLE VI—BOND VALUE OUTPUT GROWTH REGRESSIONS, ALL PERIODS | TABL | E VI—DOND VALO | JE OUTFUT GROW | I I KEUKESSIONS, A | ALL I EKIODS | | |---|----------------------|----------------------|----------------------|----------------------|---------------------| | DV: ΔLn(Output per capita) | 1874-1890 | 1874-1909 | 1874-1925 | 1874-1935 | 1874-1940 | | All sectors | | | | | | | Ln(1876 bond value per capita) | -0.055*
(0.029) | -0.039*
(0.0200 | -0.028*
(0.015) | -0.018
(0.017) | -0.014
(0.013) | | 1885 rail stations per thou | -6.990
(7.570) | 0.197
(3.691) | 1.117
(2.854) | -2.189
(3.146) | -1.801
(2.436) | | Interaction of bond value and rail access | -0.980
(5.848) | 3.241
(3.097) | 4.607*
(2.300) | 0.922
(2.479) | 0.423
(1.910) | | Average total effect | 0.0001
(0.015) | 0.007
(0.008) | 0.005
(0.007) | -0.002
(0.007) | -0.001
(0.006) | | R-squared | 0.457 | 0.372 | 0.470 | 0.469 | 0.456 | | F-statistic | 4.11*** | 8.38*** | 15.27*** | 19.84*** | 21.90*** | | Primary sector | | | | | | | Ln(1876 bond value per | 0.012 | 0.030 | 0.031 | 0.037** | 0.025 | | capita) | (0.036) | (0.021) | (0.020) | (0.017) | (0.015) | | 1885 rail stations per | -46.982*** | -29.154*** | -19.212*** | -15.697*** | -9.365** | | thou | (7.486) | (8.392) | (6.278) | (4.970) | (4.410) | | Interaction of bond value | -26.687*** | -20.817*** | -15.084** | -13.634*** | -9.086** | | and rail access | (7.192) | (7.379) | (5.624) | (4.424) | (3.899) | | Average total effect | -0.083***
(0.015) | -0.052***
(0.013) | -0.036***
(0.009) | -0.031***
(0.008) | -0.018**
(0.007) | | R-squared | 0.763 | 0.577 | 0.456 | 0.459 | 0.380 | | F-statistic | 13.39*** | 15.09*** | 14.94*** | 42.10*** | 22.22*** | | Secondary sector | | | | | | | Ln(1876 bond value per | -0.059 | -0.034 | -0.008 | -0.011 | -0.007 | | capita) | (0.054) | (0.035) | (0.032) | (0.029) | (0.025) | | 1885 rail stations per | 15.025 | 5.568 | 4.334 | 0.456 | 1.217 | | thou | (25.534) | (17.601) | (10.979) | (9.621) | (7.302) | | Interaction of bond value | -0.577 | 3.054 | 2.352 | 1.360 | 1.116 | | and rail access | (19.128) | (12.073) | (8.318) | (7.304) | (5.634) | | Average total effect | 0.055 | 0.019 | 0.010 | 0.002 | 0.004 | | R-squared | (0.047)
0.339 | (0.034)
0.213 | (0.021)
0.114 | (0.019)
0.089 | (0.015)
0.208 | | F-statistic | 3.13*** | 3.27*** | 2.43** | 1.40 | 9.80*** | | 1-statistic | 3.13 | 3.27 | 2.43 | 1.40 | 9.80 | | Tertiary sector | | | | | | | Ln(1876 bond value per capita) | -0.102***
(0.027) | -0.075**
(0.034) | -0.056***
(0.018) | -0.039**
(0.018) | -0.027**
(0.013) | | 1885 rail stations per | 11.084*** | 9.906** | 7.884** | 3.019 | 1.541 | | thou | (4.025) | (4.449) | (3.142) | (2.918) | (2.410) | | Interaction of bond value | 11.679*** | 9.987** | 11.638*** | 6.505*** | 4.551** | | and rail access | (3.359) | (3.837) | (2.330) | (2.315) | (1.829) | | Average total effect | 0.041*** | 0.033*** | 0.020** | 0.010 | 0.005 | | | (0.010) | (0.012) | (0.008) | (0.008) | (0.006) | | R-squared | 0.520 | 0.408 | 0.547 | 0.680 | 0.668 | | F-statistic | 8.84*** | 10.99*** | 28.16*** | 80.47*** | 78.88*** | | Observations | 38 | 76 | 114 | 152 | 190 | | | | | | | | Significance: ***1 percent, **5 percent, *10 percent. Robust standard errors in parentheses. All specifications include time-varying control variables of population, per capita student enrollment share, and low gradient land population density, year dummies, and a lagged output growth variable, and exclude the nine prefectures with missing bond data; see text for details and Table II. Bond values and gross prefectural product per capita income in 1934-36 constant yen. TABLE VII—BANKING CAPITAL REGRESSIONS, ALL PERIODS | | | | , | | | |--|-----------------------|-----------------------|-------------------------------|----------------------|---------------------| | DV: ΔLn(Output per capita) | 1874-1890 | 1874-1909 | 1874-1925 | 1874-1935 | 1874-1940 | | All sectors | | | | | | | Ln(1884 banking capital per capita) | 0.016
(0.030 | 0.011
(0.019) | 0.005
(0.012)
-4.369*** | 0.002
(0.013) | 0.003
(0.011) | | 1885 rail stations per
thou | -3.207
(3.592) | -3.056
(2.054) | -4.369***
(1.424) | -3.064**
(1.204) | -2.040*
(1.028) | | Interaction of banking capital and rail access | -2.447
(5.908) | 2.339
(3.280) | 3.771
(3.234) | 1.012
(2.893) | 0.372
(2.433) | | Average total effect | -0.009
(0.012) | -0.001
(0.006) | -0.003
(0.005) | -0.005
(0.005) | -0.004
(0.004) | | R-squared | 0.366 | 0.339 | 0.457 | 0.463 | 0.452 | | F-statistic
 3.37*** | 6.62*** | 11.96*** | 22.41*** | 21.89*** | | Primary sector | | | | | | | Ln(1884 banking capital per capita) | -0.009
(0.031) | -0.024
(0.018) | -0.026
(0.016) | -0.027*
(0.015) | -0.020
(0.014) | | 1885 rail stations per
thou | -3.250
(3.993) | 3.894
(3.677) | 3.183
(3.958) | 2.935
(3.879) | 2.728
(3.434) | | Interaction of banking capital and rail access | -35.468***
(7.013) | -27.862***
(7.177) | -17.425**
(7.258) | -12.816*
(6.455) | -7.781
(5.572) | | Average total effect | -0.077***
(0.008) | -0.048***
(0.008) | -0.030***
(0.006) | -0.022***
(0.006) | -0.012**
(0.006) | | R-squared | 0.807 | 0.643 | 0.487 | 0.469 | 0.384 | | F-statistic | 28.97*** | 20.24*** | 31.05*** | 31.02*** | 20.45*** | | Secondary sector | | | | | | | Ln(1884 banking capital | 0.025 | 0.018 | 0.029 | 0.019 | 0.020 | | per capita) | (0.068) | (0.045) | (0.029) | (0.025) | (0.021) | | 1885 rail stations per | 10.992 | -0.931 | -1.223 | -3.664 | -2.331 | | thou | (18.222) | (8.225)
7.495 | (4.584)
5.480 | (3.850)
5.403 | (2.839)
4.511 | | Interaction of banking capital and rail access | 10.306
(15.045) | (10.346) | (8.150) | (6.609) | (5.231) | | Average total effect | 0.052 | 0.015 | 0.013 | 0.005 | 0.007 | | | (0.041) | (0.027) | (0.017) | (0.014) | (0.011) | | R-squared | 0.339 | 0.218 | 0.128 | 0.097 | 0.216 | | F-statistic | 7.14*** | 7.00*** | 4.29*** | 2.40** | 10.60*** | | Tertiary sector | | | | | | | Ln(1884 banking capital per capita) | 0.047
(0.037) | 0.029
(0.030) | 0.010
(0.018) | 0.002
(0.015) | -0.001
(0.011) | | 1885 rail stations per | 3.019 | 0.673 | -5.148* | -4.056* | -3.438** | | thou | (4.918) | (4.758) | (2.809) | (2.067) | (1.464) | | Interaction of banking | -0.481 | 3.374 | 7.426* | 4.241 | 3.185 | | capital and rail access | (7.259) | (5.275) | (4.320) | (3.324) | (2.759) | | Average total effect | 0.017* | 0.014 | 0.003 | -0.002 | -0.003 | | R-squared | (0.009)
0.346 | (0.010)
0.334 | (0.008)
0.513 | (0.006)
0.668 | (0.005)
0.660 | | F-statistic | 3.08** | 6.72*** | 12.23** | 46.42*** | 41.49*** | | | • | - · · · - | | - | | | Observations | 38 | 76 | 114 | 152 | 190 | Significance: ***1 percent, **5 percent, *10 percent. Robust standard errors in parentheses. All specifications include time-varying control variables of population, per capita student enrollment share, and low gradient land population density, year dummies, and a lagged output growth variable, and exclude the nine prefectures with missing bond data; see text for details and Table II. Bank capital and gross prefectural product per capita income in 1934-36 constant yen. TABLE VIII—SAMURAI BANK CAPITAL REGRESSIONS, ALL PERIODS | DV: ΔLn(Output per capita) | 1874-1890 | 1874-1909 | 1874-1925 | 1874-1935 | 1874-1940 | |---|-----------------------------|-----------------------------|------------------------------|------------------------------|------------------------------| | All sectors | | | | | | | Ln(1884 samurai bank | -0.031 | -0.008 | -0.009 | -0.003 | 0.0005 | | capital per capita) | (0.037) | (0.022) | (0.016) | (0.017) | (0.013) | | 1885 rail stations per | 6.882 | 1.715 | 4.146 | -0.548 | -0.935 | | thou | (8.948) | (5.692) | (4.667) | (5.033) | (4.122) | | Interaction of banking | 5.112 | 1.614 | 3.108* | 0.930 | 395 | | capital and rail access | (3.556) | (2.084) | (1.684) | (1.930) | (1.553) | | Average total effect | 0.067 | 0.017 | 0.015 | 0.002 | -0.006 | | | (0.091) | (0.056) | (0.040) | (0.042) | (0.034) | | R-squared | 0.383 | 0.330 | 0.456 | 0.463 | 0.451 | | F-statistic | 4.01*** | 8.01*** | 9.60*** | 18.15*** | 19.17*** | | Primary sector Ln(1884 samurai bank capital per capita) 1885 rail stations per thou | -0.026 | -0.023 | -0.023 | -0.020 | -0.018 | | | (0.052) | (0.031) | (0.027) | (0.025) | (0.019) | | | -50.226** | -32.050** | -14.019 | -8.032 | -0.855 | | | (20.359) | (13.944) | (10.680) | (9.588) | (7.227) | | Interaction of banking capital and rail access | -13.048 | -10.184 | -3.845 | -1.944 | 0.294 | | | (10.411) | (6.784) | (4.723) | (4.012) | (2.891) | | Average total effect | 0.006 | 0.028 | 0.041 | 0.040 | 0.041 | | | (0.124) | (0.078) | (0.069) | (0.064) | (0.048) | | R-squared | 0.720 | 0.560 | 0.418 | 0.416 | 0.356 | | F-statistic | 14.11*** | 25.51*** | 17.15*** | 35.71*** | 27.77*** | | Secondary sector | | | | | | | Ln(1884 samurai bank | -0.123 | -0.090* | 0.001 | 0.001 | 0.014 | | capital per capita) | (0.076) | (0.046) | (0.036) | (0.032) | (0.025) | | 1885 rail stations per | 82.341*** | 42.770** | 16.971 | 8.818 | 4.681 | | thou Interaction of banking | (21.294) | (16.204) | (13.235) | (10.779) | (8.555) | | | 30.779*** | 17.890*** | 6.894 | 4.389 | 2.070 | | capital and rail access | (8.072) | (5.670) | (4.675) | (3.767) | (2.989) | | Average total effect | 0.347* | 0.234** | 0.004 | -0.004 | -0.033 | | | (0.190) | (0.115) | (0.091) | (0.081) | (0.064) | | R-squared | 0.441 | 0.258 | 0.129 | 0.095 | 0.212 | | F-statistic | 10.44*** | 8.31*** | 10.69*** | 4.04*** | 12.59*** | | Tertiary sector | | | | | | | Ln(1884 samurai bank capital per capita) | 0.001 | 0.015 | -0.010 | -0.004 | -0.006 | | | (0.059) | (0.038) | (0.026) | (0.019) | (0.015) | | 1885 rail stations per | 6.512 | 1.159 | 8.050 | 2.271 | 2.416 | | thou | (14.220) | (10.636) | (7.803) | (5.824) | (4.531) | | Interaction of banking | 1.148 | -0.831 | 4.459 | 2.008 | 2.042 | | capital and rail access | (6.029) | (3.604) | (2.695) | (2.016) | (1.645) | | Average total effect | 0.008 | -0.030 | 0.023 | 0.005 | 0.010 | | R-squared
F-statistic | (0.147)
0.282
3.43*** | (0.098)
0.304
9.74*** | (0.066)
0.505
10.99*** | (0.050)
0.667
44.87*** | (0.039)
0.660
37.73*** | | Observations | 38 | 76 | 114 | 152 | 190 | Significance: ***1 percent, **5 percent, *10 percent. Robust standard errors in parentheses. All specifications include time-varying control variables of population, per capita student enrollment share, and low gradient land population density, year dummies, and a lagged output growth variable, and exclude the nine prefectures with missing bond data; see text for details and Table II. Samurai-owned national bank capital and gross prefectural product per capita income in 1934-36 constant yen. TABLE IX—HIGH COUPON BOND VALUE REGRESSIONS, ALL PERIODS | DLE IA—IIION COU | FON DOND VALUE | KEUKESSIONS, AI | LL I EKIODS | | |------------------------|---|----------------------|--|----------------------| | 1874-1890 | 1874-1909 | 1874-1925 | 1874-1935 | 1874-1940 | | | | | | | | -0.058*
(0.030) | -0.041*
(0.021) | -0.028*
(0.015) | -0.018
(0.0178) | -0.014
(0.014) | | -13.383 | -1.235 | 0.796 | -2.421 | -2.091 | | , , | | | , , | (2.493)
0.149 | | (5.931) | (3.506) | (2.476) | (2.472) | (1.669) | | -0.002 | 0.007 | 0.004 | -0.001 | -0.001 | | (0.015) | (0.008) | (0.007) | (0.008) | (0.006) | | | | | | 0.456 | | 4.47*** | 8.28*** | 18.07*** | 23.94*** | 24.19*** | | | | | | | | | | | | 0.025 | | | | | | (0.015) | | -52.139***
(15.322) | -29.955**
(12.584) | -21.085**
(8.436) | -18.340***
(6.302) | -12.163**
(5.118) | | -26.394** | -18.802* | -14.877** | -14.348*** | -10.515*** | | (12.551) | (10.292) | (6.706) | (4.884) | (3.861) | | -0.085*** | -0.050*** | -0.035*** | -0.031*** | -0.019** | | | | | , , | (0.007) | | 10.15*** | 13.53*** | 15.20*** | 30.29*** | 0.382
21.52*** | | | | | | | | 0.060 | 0.020 | 0.010 | 0.012 | 0.000 | | | | | | -0.009
(0.025) | | | | | ` ′ | -0.0084 | | (37.568) | (22.528) | (13.300) | (12.124) | (8.781) | | -21.460 | -5.715 | -1.589 | -1.591 | -0.877 | | (26.702) | (16.021) | (9.904) | (8.935) | (6.449) | | 0.034 | 0.013 | 0.007 | 0.0004 | 0.002 | | ` ' | | , , | | (0.014)
0.208 | | | | | | 10.93*** | | 5.57 | 4.01 | 1.57 | 1.55 | 10.73 | | | | | | | | -0.102*** | -0.075** | -0.056*** | -0.038** | -0.027** | | | | | | (0.013) | | | | | | 2.466
(2.421) | | | | | | 4.866*** | | (3.823) | (3.861) | (2.189) | (1.826) | (1.516) | | 0.044*** | 0.035*** | 0.021*** | 0.011 | 0.006 | | (0.010) | (0.011) | (0.008) | (0.008) | (0.006) | | 0.526 | 0.416 | | 0.681 | 0.668 | | 10.35*** | 12.33*** | 51.23*** | 82.09*** | 79.20*** | | 38 | 76 | 114 | 152 | 190 | | | -0.058* (0.030) -13.383 (8.248) -6.260 (5.931) -0.002 (0.015) 0.486 4.47*** 0.014 (0.040) -52.139*** (15.322) -26.394** (12.551) -0.085*** (0.020) 0.703 10.15*** -0.060 (0.054) -10.788 (37.568) -21.460 (26.702) 0.034 (0.053) 0.375 5.37*** -0.102*** (0.027) 12.806*** (4.670) 12.088*** (3.823) 0.044*** (0.010) 0.526 10.35*** | -0.058* | 1874-1890 1874-1909 1874-1925 -0.058* | -0.058* | Significance: ***1 percent, **5 percent, *10 percent. Robust standard errors in parentheses. All specifications include time-varying control variables of population, per capita student enrollment share, and low gradient land population density, year dummies, and a lagged output growth variable, and exclude the nine prefectures with missing bond data; see text for details and Table II. High coupon bond values (six percent or more) and gross prefectural product per capita income in 1934-36 constant yen; see Table I. Table X—Labor Share Growth Regressions By Bond Value, All Periods | | | | | , | | |---|-----------------------|---------------------|----------------------|----------------------|----------------------| | | 1874-1890 | 1874-1909 | 1874-1925 | 1874-1935 | 1874-1940 | | DV:
Δsecondary/primary labor force | | | | | | | Ln(1876 bond value per capita) | -0.078
(0.054) | -0.089*
(0.050) | -0.068*
(0.037) | -0.051*
(0.030 | -0.051*
(0.028) | | 1885 rail stations per | 76.371***
(16.498) | 20.918
(27.909) | 10.500
(15.948) | 7.251
(10.388) | 1.498
(9.255) | | Interaction of bond value and rail access | 77.911***
(15.187) | 21.798
(25.586) | 15.464
(14.137) | 12.271
(8.984) | 5.721
(7.964) | | Average total effect | 0.104***
(0.021) | 0.048 (0.036) | 0.024
(0.024) | 0.016
(0.018) | 0.011 (0.016) | | R-squared | 0.611 | 0.738 | 0.706 | 0.726 | 0.716 | | F-statistic | 15.03*** | 38.97*** | 46.93*** | 45.95*** | 43.47*** | | DV: Δtertiary/primary labor force | | | | | | | Ln(1876 bond value per capita) | -0.171**
(0.064) | -0.161**
(0.064) | -0.136***
(0.049) | -0.110**
(0.043) | -0.087**
(0.034) | | 1885 rail stations per | 33.812***
(10.019) | 11.771
(18.302) | 3.680
(11.968) | 9.652*
(5.344) | 7.920*
(4.249) | | Interaction of bond value and rail access | 35.973***
(9.718) | 18.883
(15.930) | 11.491
(10.928) | 17.371***
(4.833) | 15.229***
(4.003) | | Average total effect | 0.084***
(0.021) | 0.050*
(0.028) | 0.033
(0.021) | 0.032**
(0.015) | 0.024**
(0.012) | | R-squared | 0.462 | 0.439 | 0.413 | 0.407 | 0.483 | | F-statistic | 9.68*** | 22.41*** | 33.60*** | 44.16*** | 50.73*** | | DV: Δtertiary/secondary labor force | | | | | | | Ln(1876 bond value per capita) | -0.019
(0.021) | -0.030
(0.037) | -0.038*
(0.022 | -0.036*
(0.018) | -0.020
(0.014) | | 1885 rail stations per | 5.442
(5.611) | 1.772
(4.600) | 3.435
(4.009) | 2.989
(3.796) | 2.340
(4.420) | | Interaction of bond value and rail access | 0.479
(5.097) | 4.079
(5.001) | 3.484
(3.499) | 3.729
(3.172) | 3.377
(3.609) | | Average total effect | 0.018*
(0.010) | 0.007
(0.012) | 0.015
(0.009) | 0.013
(0.008) | 0.007
(0.008) | | R-squared | 0.612 | 0.779 | 0.743 | 0.725 | 0.676 | | F-statistic | 8.56*** | 41.76*** | 121.70*** | 128.04*** | 113.42*** | | Observations | 38 | 76 | 114 | 152 | 190 | Significance: ***1 percent, **5 percent, *10 percent. Robust standard errors in parentheses. All specifications include time-varying control variables of population, per capita student enrollment share, and low gradient land population density, year dummies, and a lagged labor share ratio variable, and exclude the nine prefectures with missing bond data; see text for details and Table II. Bond values in 1934-36 constant yen.