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1 Introduction

In many product markets, innovation leads to substantial changes in product quality from

one point in time to the next. Research relating innovation to consumer demand tends to

emphasize the impact of new products on individuals’ choices, behavior and welfare. Going

back to Hicks (1932), economists have recognized that consumer behavior can also drive

innovation. The idea is that innovation is not a random scientific process. Rather, profit-

seeking firms direct their inventive activity (e.g., R&D investments) in an effort to develop

new products that meet potential demand. This type of demand-driven innovation (some-

times referred to as “demand pull” (Schmookler, 1966; Scherer, 1982)) implies a possible

externality since atomistic consumers do not account for the impact of aggregate behavior

on the innovation process when making decisions (Jovanovic and MacDonald, 1994; Wald-

fogel, 2003; Finkelstein, 2004; Goettler and Gordon, 2011). A potential implication is that

pricing the externality could improve consumer welfare by accelerating the introduction of

new products.

Several features of the market for pharmaceuticals make it an interesting context to study

demand-driven innovation. First, medical products have two dimensions of quality: efficacy

and side effects and consumer preferences are heterogeneous. Thus, it is not generally mean-

ingful to see one product as strictly better than another and many differentiated products

can coexist in a given market. Innovations can also be better on one dimension and worse

along another, a leading example being effective new medicines with harsh side effects. Sec-

ond, in medical markets product quality is often uncertain, especially when products are

new. Experimentation is therefore common among consumers and helps to drive innova-

tion (Bolton and Harris, 1999; Dranove et al., 2014). Patients often resort to experimenting

when they are sick and lack access to better options. It is thus often the most desperate

among consumers who drive medical innovation, which benefits healthier patients along with

generations of potential future patients.1 Correctly pricing the externality could thus not

only improve efficiency, but also equity. The reasoning is that incentivizing experimentation

among all consumers (rather than relying solely upon the sickest patients) could accelerate

innovation as in other markets, but also distributes the burden of innovating more evenly

across patients.

In this paper, we specify and estimate a structural model of demand-driven innovation. In

the model, individual consumers maximize their lifetime utility by choosing from a menu of

medical treatments, which includes the option to experiment with new products. Consumers

1This point is linked to the model of endogenous growth in Romer (1986) where producer innovations
may generate profits for potential future producers.
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experiment by choosing products they have never tried before and become fully aware of their

qualities only after they have used a product at least once. Alternatively, they can use new

technologies that are not yet on the market. In software, this is known as beta-testing; in

medicine, this is done through participation in clinical trials. Experimental products may

be superior to products already on the market, but they may also be of dangerously low

quality.

A key feature of the model is that innovation is endogenous to aggregate demand. In par-

ticular, we estimate a stochastic process of product innovation that is conditioned on shifting

market shares, including rates of trial participation. Since products are multi-dimensional,

market shares affect can affect both the speed of innovation and also its direction, i.e., the

relative magnitude of shifts in efficacy versus side effects given the current state of medical

technology. When making choices, consumers use this innovation process to form beliefs

about future innovations and resulting evolving choice sets. Thus, consumers are neither

fully aware of how the product market will evolve, nor fully unaware, in which case technol-

ogy shifts would be treated as unexpected regime changes. Consumers also account for the

impact of aggregate behavior on future products when making choices. To fix ideas, con-

sumers in relatively good health may face incentives to avoid new or experimental medical

treatments if they expect large numbers of other consumers to participate in clinical trials

and thus generate better drugs in the future.

We match our model to data on the realized path of innovations, product quality and

consumer choices over a long time horizon in a maturing product market: HIV drugs.2 HIV

is a medical condition that reduces the ability of the immune system to fight off routine in-

fections (a condition known as AIDS).3 It reached epidemic proportions in several countries

starting in 1984 leading to just over 613,000 deaths in the U.S. by 2008.4 The benefit of

observing a long panel in the market for HIV drugs is that we can see how the path of inno-

vation unfolded over time. In developed countries, where access to medication is widespread

and subsidized, technological advancement means that HIV is currently a manageable con-

dition and the side effects of medications are fairly mild. This was not always the case. In

the early years of the epidemic, available treatments were not only largely ineffective, but

also had uncomfortable, painful and even deadly side effects. Each year brought innovations,

most of which were small. Some new medications were worse than existing technology since

2HIV stands for human immunodeficiency virus.
3AIDS stands for acquired immunodeficiency syndrome.
4For comparison, over the same period in the U.S., there were 508,000 homicides and U.S. deaths in

World War II were just under 420,000. Currently, there are roughly 50,000 new infections and 13,000 deaths
per year in the U.S. that are attributed to HIV/AIDS. Globally, the number of deaths due to HIV/AIDS
stands at roughly 35,000,000.
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since they were more toxic without being more effective. In the mid-nineties, a new set of

treatments (collectively known as HAART) was introduced, which transformed HIV from

a virtual death sentence to a chronic condition.5 Within two years, mortality rates fell by

over 80% among HIV+ men (Bhaskaran et al., 2008). HAART therefore marked a clear

departure from existing products in the market for HIV treatments. However, HAART also

involved drugs that were highly toxic, leading to side effects that were often intolerable and

drove some people to avoid using them. Strikingly, innovations occurring after HAART had

fewer side effects, but were generally not more effective than earlier versions of HAART. To

explain this pattern, we examine the possibility that, once a level of efficacy was achieved

that insured patient survival, patient demand for drugs with fewer side effects helped to

drive innovation towards treatments with fewer side effects.

Our results reveal that individuals’ preferences tilt the path of innovation towards treat-

ments with fewer side effects, away from the invention of more effective treatments. Moreover,

individuals have a strong distaste for experimentation that can slow the diffusion of new,

superior products as well as the development of future treatments in clinical trials. Because

individuals are atomistic and they do not incorporate the consequences of their actions in the

path of technology, a social planner could improve welfare by fostering experimentation. As a

measure of the externality, we compute the marginal increase in aggregate welfare generated

by a planner who sends the marginal person to clinical trials at the atomistic equilibrium.

Since the marginal person does not want to join a trial, he loses a little more than $600 when

he is forced to participate. However, because trial participation spurs innovation by pushing

up the expected quality and the expected number of new products, the net social gain is

about $2,000 per individual. Finally, we find that a more realistic policy that relies on a flat

subsidy to induce a marginal increase in trial participation also generates net social gains.

Therefore, our results indicate that providing monetary incentives for trial participation can

be welfare improving by accelerating the progress of innovation.

This study contributes to a literature on dynamic demand under uncertainty. Following

Petrin (2002), each product in our model is a bundle of characteristics, in our case, efficacy

and side effects.6 Moreover, similar to (Gowrisankaran and Rysman, 2012), we allow product

characteristics to have dynamic impacts on consumers. An important feature of our model

is that we allow rational consumers to experiment with new products. In our context, there

5HAART stands for highly active anti-retroviral treatment. There is no vaccine or cure for HIV or AIDS,
but HAART is the current standard treatment. In general, 1996 is marked as the year when two crucial
clinical guidelines that comprise HAART came to be commonly acknowledged. First, protease inhibitors
(made widely available towards the end of 1995) would be an effective HIV treatment. Second, several
anti-retroviral drugs taken simultaneously could indefinitely delay the onset of AIDS.

6Studies pioneering the ‘characteristics approach’ include Stigler (1945), Lancaster (1966) and Rosen
(1974).
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are two motivations. First, following Erdem and Keane (1996) and Crawford and Shum

(2005), we allow consumers to gain by experimenting with unfamiliar products, which they

can continue to use in the future.7 Second, we allow dynamically optimizing consumers to

participate in clinical trials to use products that are otherwise unavailable, may be worse than

the state of the art, but may provide early access to lifesaving new technologies. Modeling

trial participation as a rational choice relates our work to Chan and Hamilton (2006), who

model the decision to remain in a clinical to maintain access to good HIV medicine.

A key departure from literature on dynamic demand with experimentation is that we

explicitly model how these decisions driven innovation and thus future products, which con-

sumers forecast when making their current decisions. Several papers have demonstrated

that market size affects the speed of innovation. For example, Finkelstein (2004) shows that

policies promoting vaccine use accelerate the development of vaccines. Also in the medical

context, Dranove et al. (2014) identify a “social value” of pharmaceutical innovation, show-

ing that Medicare Part D spurred the development of some drugs. A common idea in this

literature is that if consumer behavior drives innovation, which benefits other consumers,

it follows that a demand externality arises. Waldfogel (2003) uses the term “preference ex-

ternalities” to describe the mechanism through which market shares can influence products,

thus benefitting consumers with similar tastes.8 More closely related to us, Bolton and Harris

(1999) argue that a free-riding problem emerges if experimentation accelerates innovation.

In our context, if clinical trials provide social benefits by spurring innovation, individually

rational consumers may choose to participate less than is socially optimal.

We also contribute to research on structural estimation by providing a simulation-based

econometric method to estimate models of endogenous innovation. Methodologically, our

approach builds on Hotz and Miller (1993) and Hotz et al. (1994) in using conditional

choice probabilities (henceforth, CCPs) and forward simulation techniques to incorporate

how individuals form expectations about future innovations.9 In our context, the choice

set that individuals face evolves stochastically over time, which means the problem is non-

stationary. To make our model tractable, we summarize the current state of technology using

a non-stationary reference point (or centroid) that emerges endogenously from consumer

7Empirical models of learning and experimentation also include Miller (1984) and Hincapié (2017).
8He also highlights the individuals with different tastes benefit less. Demand externalities have been

discussed in a variety of scenarios, including sorting into neighborhoods (Bayer and McMillan, 2012) and the
emergence of food deserts (Allcott et al., 2015). In the context of obesity, Bhattacharya and Packalen (2012)
provide evidence that individual efforts to prevent obesity can shrink the market size for obesity treatments,
which slows technological progress. If so, individuals may over-invest in preventative care compared to the
social optimum.

9We also build on Altuğ and Miller (1998) in providing an empirical dynamic model with aggregate
shocks.
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demand. We then define a non-parametric, stationary distribution of innovations identified

from the distance between the centroid and new products in the following period. We model

consumer beliefs about future choice as technology paths simulated using this innovation

distribution.

Our approach to handling non-stationarity in modeling innovation is similar to the ap-

proach in Goettler and Gordon (2011), who develop a model relating market structure to

innovation in the market for microprocessors. They find that, in contrast to a monopoly,

the presence of a second firm can slow innovation (since firms do not expect to capture all

profits), but that consumer surplus falls in the absence of a competing firm due to monop-

olistic prices. To handle non-stationarity, in each period, the state of the art becomes the

starting point for future innovations, which is analogous to the the role the centroid plays in

our model. Despite these similarities, there are some important differences in their setting

and thus their modeling choices. In their setting, product quality is one-dimensional and

the innovation distribution is effectively binary (either improving by a fixed amount or not).

They also assume consumers are homogeneous, which means that the choice set in their

context is also effectively limited to upgrading to the best technology or staying with the

current one. In contrast, in our case, product quality is multi-dimensional, which means that

product quality can evolve in many different directions on a two-dimensional plane. Also, as

we show, the empirical distribution of innovations for HIV drugs is not well-approximated

as movements with a fixed distance. Finally, we must account for a larger choice set since

multiple dimensions of product quality coupled with consumer preference heterogeneity im-

ply that many products can co-exist in a single market. A weakness in our approach in

comparison to Goettler and Gordon (2011) is that we are unable to explicitly model firm in-

teraction, which limits counterfactuals we can perform. A benefit of our approach, however,

is that we are able to examine welfare implications of counterfactual policies in a setting

where consumer behavior not only affects the speed of innovation, but also the direction it

takes by tilting the path of technology towards more favorable products, in our case, those

with lower efficacy and fewer side effects.10

The remainder of this paper is organized as follows. Section 2 describes the data set we

use. In Section 3, we specify the structural model and in Section 4 we discuss estimation.

In Section 5, we present parameter estimates and describe model implications for the distri-

bution of innovations. In Section 6, we study counterfactual technology paths and the link

between consumer choice and innovation. In Section 7, we examine the choice externality

10In particular, we are unable to conduct policy analysis related to market structure using our framework.
An interesting extension of the current paper would be to merge the two approaches by integrating firm
decision-making into a model where products have multiple qualities.
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and consumer welfare. Section 8 concludes.

2 Data

In this section we introduce the data set used in this paper and describe some of the key

empirical patterns we use to identify structural parameters. We use the public data set

from the Multi-Center AIDS cohort Study (MACS). The MACS is an ongoing longitudinal

investigation (beginning in 1984) of HIV infection in men who have sex with men (MSM)

conducted at four sites: Baltimore, Chicago, Pittsburgh and Los Angeles.11 At each semi-

annual visit, survey data are collected on HIV+ men’s treatment decisions, out-of-pocket

treatment expenditures, physical ailments, which can reflect drug side effects, along with

sociodemographic information, such as labor supply, income, race, and education.

In addition, blood tests are administered at each visit to objectively measure health

status. Our main objective measure of immune system health is CD4 count, defined as the

number of white blood cells per cubic millimeter of blood. Absent HIV infection, a normal

range is between 500 and 1500. For HIV+ individuals, a count below 500 indicates that the

immune system has begun to deteriorate due to HIV, but can still fight off infections such

that the individual is not symptomatic. When CD4 count drops below about 300, a patient

is said to suffer from AIDS.12 AIDS means that the immune system becomes unable to fight

off routine infections and survival probability drops. The MACS data set is particularly

well-suited for an analysis of demand-driven innovation. Few data sets have a continuous,

precise measure of underlying health, additional data on physical health outcomes, detailed

treatment data along with information on economic outcomes.

2.1 Summary Statistics

The full MACS data set contains information on 6,972 subjects at 49 possible semi-annual

visits for a total of 111,271 observations in the form of subject-visit dyads. We limit our

11Data in this manuscript were collected by the Multi-Center AIDS Cohort Study (MACS) with centers
(Principal Investigators) at The Johns Hopkins Bloomberg School of Public Health (Joseph B. Margolick,
Lisa P. Jacobson), Howard Brown Health Center, Feinberg School of Medicine, Northwestern University,
and Cook County Bureau of Health Services (John P. Phair, Steven M. Wolinsky), University of California,
Los Angeles (Roger Detels), and University of Pittsburgh (Charles R. Rinaldo). The MACS is funded
by the National Institute of Allergy and Infectious Diseases, with additional supplemental funding from
the National Cancer Institute. UO1-AI-35042, 5-MO1-RR-00052 (GCRC), UO1-AI-35043, UO1-AI-35039,
UO1-AI-35040, UO1-AI-35041. Website located at http://www.statepi.jhsph.edu/macs/macs.html.

12AIDS stands for acquired immunodeficiency syndrome. The CD4 cutoff below which AIDS occurs varies
between 200 and 350.
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attention to HIV+ individuals, leaving us with 47,753 observations. Due to lack of data on

gross income and out-of-pocket treatment costs at earlier visits, we drop observations prior

to visit 14 (roughly, late 1990) and for robustness in the reporting of survival we also drop

observations after visit 47 (about 2008). These sample period restrictions leave us with 29,523

observations and 2,420 individuals. Next, we drop observations where data are missing on at

least one of the variables used in subsequent analysis (though we conduct various robustness

checks to insure that our results are not driven by these exclusions). After these exclusions,

the remaining analytic sample consists of 1,719 unique individuals and 16,851 observations.

Summary statistics by individual are reported in Table 1. The first column presents

statistics for the analytic sample.13 68% of sample subjects are white, 22% are black and

about 9% are hispanic. Race variation in our sample is important since previous research has

emphasized difficulties in recruiting blacks into clinical trials, which may reflect different costs

associated with treatments or variation in expected health outcomes (Harris et al., 1996).

About 86% of the sample received some secondary education or more and nearly a quarter

(23%) attended graduate school. Consistent with previous research studying medication

choice using the MACS data set, there is evidence of substantial variation in labor supply

(Papageorge, 2016). 74% of the sample is observed working at least once and 68% of the

sample is observed not working at least once.

Underscoring the seriousness of HIV infection, about 40% of the HIV+ subjects we

observe at least once over the sample period die prior to the end of the sample period.

However, product market innovation led to drastic changes for HIV+ men. The most striking

example is the introduction of HAART in the mid-1990s, which was much more effective at

improving underlying health compared to the treatments that preceded it. Conditional

on surviving until the invention of HAART, 20% of subjects are observed dying. This

understates the impact of HAART since the sample under study is an aging cohort, i.e.,

observed survival rates are much higher even when the cohort is older after HAART becomes

available. Further, according to Table 1, about 83% of subjects are observed using a market

product at least once. Moreover, nearly a quarter (24%) opt for early access by participating

in a clinical trial at least once during the sample period, suggesting that patients are willing

to try experimental products where quality is uncertain.

13For comparison, the third column reports statistics for a larger sample of 2,420 individuals, where we
have not dropped observations due to missing data on any particular variable.
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2.2 Consumer Demand

In this section, we study consumer demand in the maturing market for HIV drugs. We

emphasize two key patterns in the data. First, consumers are willing to use drugs with

side effects when drugs are also effective. Otherwise, they often avoid drugs altogether.

Second, consumers participate in clinical trials when they are very sick and when existing

technologies are of low quality. Once good technology comes available, willingness to ex-

periment plunges. Together, these patterns in the data support two ideas that underlie our

theoretical model developed in Section 3. First, product quality in the medical context is

multi-dimensional. Second, experimentation is a rational choice to gain access to unavailable

and possibly superior technology.

In conducting our preliminary analysis of consumer demand, we pay close attention to

comparisons of behavior before and after the introduction of HAART. Since HAART marked

a large innovation on earlier treatments, it induced strong and observable consumer responses

that help to identify consumer preferences over medications. Summary statistics for subject-

visit dyads are found in Table 2 for the full analytic sample (column [1]) and then separately

for the pre and the post-HAART eras (columns [2] and [3], respectively). We split the sample

by HAART era to illustrate substantial changes to choices and outcomes after HAART was

introduced.

Perhaps the most striking example of the impact of HAART on consumers is through

its effect on survival. In Figure 1, we plot the probability of dying between periods t and

t + 1 conditional on survival until t. Death rates are much higher prior to HAART intro-

duction and despite a multitude of new treatments coming available. After HAART, death

rates plunge, and continue to fall until 2007, as smaller innovations occur that make drugs

incrementally more effective and less toxic. HAART introduction also affected immune sys-

tem health, as measured by CD4 count. According to Table 2, average CD4 count among

HIV+ men in our sample is 407 in the pre-HAART era, rising to 524 in the post-HAART

era. In Figure 2(a), we plot average CD4 count over time for people on market drugs and

no treatment for HIV. Over time, health for people taking no drugs remains fairly constant

while health for individuals in a market drug rises.14

Given the impact of HAART on health, it is important to understand why many con-

sumers did not use it. In Figure 3(a), we plot the proportion of HIV+ consumers using

an HIV treatment. Notice that treatment consumption is about 50% in 1990 and actually

falls prior to HAART introduction. This reflects that products available on the market are

14Notice that average age rises and labor supply and income decline after HAART, consistent with the
fact that we observe an aging cohort, which is more likely to retire and report lower gross income over time.
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of fairly low quality. Still, if quality were uni-dimensional, even a low quality drug would

be better than no drug at all. Moreover, even after HAART is invented, though there is a

considerable rise in market product usage, there is a substantial proportion of HIV+ men

not using treatment.

Treatment costs are one possible explanation. In Table 2, we see that treatment costs

rise after HAART introduction, from about $179 to $327 for six months of treatment. In

other words, even in the post-HAART era, costs are fairly low given that individual earnings

average about $37,000 per year. It is worth mentioning, moreover, that non-users of market

drugs pay non-zero costs for drugs, perhaps spending more money on medication to fight

opportunistic infections. In other words, the incremental out-of-pocket cost of effective HIV

treatments does not appear sufficient to explain why some people avoid HIV treatments.

Another possibility is that drug quality is multi-dimensional in which case demand reflects

a distaste for another feature of HIV drugs. Given data on physical ailments, we explore

the possibility that consumer demand reveals a distaste for side effects. Interestingly, after

HAART introduction, the proportion of individuals reporting physical ailments declines only

slightly (45% to 41%). The small change reflects the net effect of two countervailing dynamics

(Papageorge, 2016). HAART improved health on average, which lowered reported ailments

attributable to symptoms of HIV. However, HAART also led to side effects among users,

thereby increasing reports of ailments. The increase in side effects also reflects how use of HIV

treatment rose with the introduction of HAART, from 45% to 76%. We also plot physical

ailments over time in Figure 2(b). For non-users of HIV medications, ailments remain fairly

steady. For users of HIV medications, ailments drop prior to HAART introduction and then

rise after HAART, which is consistent with HAART being a highly effective drug with side

effects. However, after 2001, ailments decline for individuals using HIV drugs. This reflects

later improvements to medications, which lowered their side effects.

Further evidence in support of the idea that there are two important dimensions of quality

that influence demand comes from market consumption by CD4 count, plotted in Figure 3(a).

Sicker people are far more willing to take low effective medications despite side effects in the

years before HAART. After HAART, notice a striking convergence in the proportion of men

using medications, driven largely by healthy individuals going onto medication. Thus, the

rise in consumption of HIV treatments after HAART was introduced suggests that patients

are more likely to use drugs despite side effects if the utility cost of suffering ailments is offset

by expected improvements to health. HAART was more effective than earlier drugs, which

encouraged people to use it despite its side effects. This would explain the rapid rise in use

of HIV treatments after HAART is introduced since individuals would be more willing to

use drugs with side effects as long as drugs are effective at improving underlying health.

9



Another option for individuals in the product market we study is to join a clinical trial to

gain early access to new products. Studying how individuals experiment with new drugs by

joining a clinical trial further highlights how consumers respond to innovations in the market

for HIV drugs. Trial participation over time and by health status is plotted in Figure 3(b).

The figure reveals several dynamics. First, early trial participation is driven largely by

individuals with low CD4 counts. This suggests that, as individuals become ill, they also

become more willing to experiment with new products of uncertain qualities. Second, in

the years just prior to HAART introduction, the drugs that comprise HAART, including

protease inhibitors, marked a substantial improvement over drugs available on the market.

In those years, trial participation gave individuals early access to much better products. This

relates to the idea of beta testing in markets where some consumers are willing to experiment

with new products with high potential quality.

After HAART trial participation plunges and there is a marked convergence by health

status in the proportion of patients in trials. These patterns suggest that, once effective

drugs are available, trial participation is no longer driven by sick people willing to face

uncertainty in exchange for early access to a possibly high-quality product. The reason is

that, once HAART is available on the market, individuals no longer need to participate in

a trial to access good drugs. Shifts in trial participation over time suggest that this form

of experimentation is a rational choice to gain access to new technology, especially in a

maturing market where existing technology is not particularly good. Patients, especially

sick ones whose survival is at risk, are willing to experiment to gain access to something

better, but are less willing to do so when good treatment is available on the market.

2.3 Market-Level Innovation

The previous section examined consumer demand patterns in light of shifting product quality

over time, highlighting that side effects seem to play a larger role in demand after survival

is more or less assured. In this section, we consider market-level innovation. To start, we

illustrate innovation and diffusion of new products over time in the market for HIV treatment

using a “heat map” displayed in Figure 4. For the approximately 90 drugs that were most

used, we compute market share over our sample period.15 Dark blue corresponds to low

(or zero) market share and warmer colors indicate higher market shares. Several patterns

15Appendix A is a data appendix that contains additional information on individual drugs and treatment
combinations. Table ?? discusses which drugs or combinations are taken in clinical trials. Table S1 lists the
chemical compositions of each drug. Table S2 shows how some drugs are combined into treatments. Table
S3 presents our market products, which are the main sets of treatments we observe, including the individual
drugs they are composed of, whether or not they count as HAART and their entry and exit visits.
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emerge from this heat map. In earlier years, there are fewer treatments with high market

shares. Over time, as many treatments are introduced, market shares drop, which suggests

there is heterogeneity in preferences. In fact, low market shares are common in the years

following HAART introduction, when many new treatments were introduced, most of which

were effective, but with strong side effects. After HAART, moreover, many drugs became

obsolete, suggesting that new drugs are improvements on old ones.16 As the market matured,

some treatments were developed that were effective and offered fewer side effects, yielding a

concentrated market once again.

2.4 Relating Innovation to Demand

Finally, we discuss evidence for the idea that the observed innovation path is a response

to consumer preferences. In Figure 5, we plot drug qualities (effectiveness and side effects)

for different periods of time. The figure illustrates the path of technology over time. After

HAART’s large innovation in efficacy in the mid-1990’s, new drugs were less likely to be

improvements on the efficacy dimension. Indeed, after the mid-1990’s, average CD4 count

rises to healthy levels, but stays below 600 (relative to 1000, which is roughly the average

for HIV− people). This means that once products were developed that allowed patients to

recover healthy (but not uninfected-level) CD4 counts, there is instead a rightward shift as

innovations lead to reductions in side effects without noticeable improvements in efficacy.

Consumer demand patterns suggest a preference for drugs with fewer side effects — espe-

cially when survival is less of a concern. The path of innovation seems to have followed

this pattern. This is not surprising given that profit maximizing firms would presumably

direct their inventive activities towards products where potential demand is high. In the

following section, we formalize this idea, specifying a model where innovation is endogenous

to aggregate consumer demand.

3 Model

This section describes a model of innovation in the market for HIV treatments. Each treat-

ment is multidimensional: it can improve health, but can also have side effects that lead

to physical ailments. Health and side effects can have both short-run and long-run conse-

quences, affecting utility, labor market outcomes, future health and survival. New products

are developed in clinical trials and both the entry of new products along with the exit of

incumbent products are governed by stochastic processes that are endogenous to aggregate

16An exception is AZT, which remained a standard component of HAART.
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consumer demand. The entry and exit processes we specify capture, in reduced form, how

firms and government institutions (e.g., the FDA) interact to develop and introduce new

medical treatments.

The data set we use provides rich information on consumers and so we model demand

in greater detail than supply. Agents in the model maximize lifetime utility by choosing an

HIV medical treatment. They can choose a product that is available on the market, access

an experimental treatment by participating in a clinical trial, or opt for no treatment at

all. Conditional on consumer characteristics, all treatments on the market cost the same.

When making treatment decisions, consumers face several sources of uncertainty. They are

uncertain about current-period outcomes, including their income and realized treatment side

effects. They are also uncertain about the evolution of other individual-specific state vari-

ables, including their health, which affects future ailments and survival. Finally, consumers

face uncertainty over the evolution of the product market resulting from entry and exit of

products.

We highlight two features of the model. First, innovation is explicitly tied to consumer

behavior. New products are drawn from a distribution that is a function of the share of

patients in clinical trials along with endogenous market shares, both of which aggregate dy-

namically optimal individual choices. Second, when making treatment choices, consumers

form beliefs over evolving choice sets arising from innovation and the exit of older products.

In modeling consumer beliefs over future innovations, we avoid two simplifying assumptions.

We do not assume that consumers have perfect foresight over future products. Nor do we

assume that they are fully unaware of the innovation process, in which case changes to the

choice set would amount to regime shifts. Rather, we model consumers as forming beliefs

using the same stochastic processes governing entry and exit that we specify to capture

supply. To understand these model features, consider the following example. A relatively

healthy consumer may avoid choosing effective drugs with strong side effects in the current

period if he believes that the introduction of effective drugs with fewer side effects is immi-

nent. In contrast, a sick consumer may not want to avoid medication despite side effects

if he fears that he may not survive until better drugs are introduced. Moreover, if sicker

patients’ choices accelerate innovation, this can further incentive healthier patients to delay

using treatments.

Section 3.1 discusses the supply of treatment, including entry of new products and exit of

incumbent products from the market. Section 3.2 specifies consumer demand for treatment,

including choice sets, utility and individual state-to-state transitions.
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3.1 Supply

We specify a reduced-form model of supply that captures the evolution of product charac-

teristics. We do not model firm behavior, strategic pricing, R&D decisions or the role of

government institutions.17 Entry and exit occur at the end of the period immediately before

the next period begins. We start by describing the aggregate state at the beginning of period

t, followed by specifications for product entry and exit.

3.1.1 The Aggregate State

The aggregate state is denoted Ξt and summarizes market-level quantities at period t. It

contains current and lagged product qualities Pt, market shares St, and the distribution of

consumer characteristics Ft, each described below. The aggregate state is given by:

Ξt = {Pt,St,Ft}

Product Characteristics: Let Pt be the characteristics of products available at t. Pt denotes

the set of characteristics for treatments available on the market in periods t, t− 1 and t− 2:

Pt = {Pt,Pt−1,Pt−2}

Market Shares: Let st−1 denote a set containing the shares of products available at t− 1. St
is a set of product market shares for periods t− 1 and t− 2.

St = {st−1, st−2}

Consumer Characteristics: Ft is the current distribution of consumer characteristics.18

3.1.2 Entry

We now explain product entry for new products that are available starting at the beginning

of period t+ 1. The entry process is conditional on information that is in the state space at

the start of period t. Entry of new products is modeled as a two-dimensional conditional dis-

tribution of new product characteristics Fθ|ωt conditioned on an endogenous reference point

for innovation or centroid, denoted ωt along with a distribution of number of new products

17Modeling supply in this way limits the sorts of counterfactuals we can perform. For example, our model
would be ill-equipped to evaluate policies affecting market structure. We return to this point when discussing
the counterfactual policy simulations we perform with the estimated structural model.

18The initial distribution of consumer characteristics is denoted F0.
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FN . Each of these objects is described in greater detail below.

Centroid: At any period t, the centroid for innovation ωt is a two-dimensional weighted

average of product characteristics for treatments available on the market in period t − 1,

where the weights are endogenous market shares:

ωt = fS1 (St,Pt)

=
∑

k∈Pt−1

skt−1θk. (1)

Each HIV treatment has two characteristics: its effectiveness at raising CD4 count, which

we denote θhk , and its propensity to cause side effects, denoted θxk . The characteristics of

product k are collected into a vector denoted θk ∈ R2. Market share for product k is denoted

skt−1, defined as the ratio of individuals who consume treatment k relative to the number

of individuals who consume any treatment. The centroid essentially summarizes the evolv-

ing state of the product characteristics, serving as a baseline around which new products

emerge.19

Characteristics of Trial Products and New Products: New products are developed in trials.

Hence, the characteristics of the trial product at t as well as the characteristics of every new

product introduced at t + 1 are derived from the same process. The characteristics θkt+1 of

product k available at t + 1 (either trial or newly introduced) are defined as an innovation

around the previous period centroid as follows:20

θkt+1 = (ωt+11{k = trial}t+1 + ωt (1− 1{k = trial}t+1)) + ν∗kt+1 (2)

where 1{k = trial}t+1 is an indicator for whether product k is trial or newly introduced at

t+ 1. Notice that the difference between the trial product at t+ 1 and the newly introduced

products is that the latter are innovations around last period’s centroid. The magnitude and

the direction of the innovation depend on the previous level of experimentation in clinical

trials:

ν∗kt+1 = Θν
0 + Θν

1 · TrialsSharet + νk (3)

19If nobody uses a treatment the base for innovation remains the same, i.e. ωt = ωt−1.
20In estimation, we tested alternative specifications of equation (2) in which the characteristics of the pre-

vious trial product determine the characteristics of new products. Although these specifications are intuitive
if, for instance, better trial products lead to better new market products, the relation between current trial
product characteristics and the characteristics of future market products is statistically insignificant.
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In equation (3), Θν
0 and Θν

1 are two-dimensional vectors of parameters. Θν
1 captures how

participation in clinical trials can shift the magnitude and the direction of innovation.21 The

share of individuals who consumed a trial product in t is denoted TrialsSharet, which is an

endogenous object derived from the consumers’ decision problems. To express this point, we

write it as a function of product and consumer characteristics as follows:

TrialsSharet = fS2 (Pt,Ft). (4)

The size of the innovation also depends on νk, a two-dimensional vector of mean-zero ex-

ogenous disturbances in technology drawn from a two-dimensional stationary distribution,

denoted Fν . We do not specify a parametric form for Fν . As will be explained in Section

4, when we discuss estimation, Fν is a non-parametric distribution estimated using the full

history of observed innovations around the centroid.

Using equations (1)-(3), we are now able to define the distribution of new product

characteristics θk1+1, denoted Fθ|ωt . The distribution is a translation of Fν centered on

(ωt + Θν
0 + Θν

1 · TrialsSharet).

Number of New Products: We now specify the process governing the number of new products

drawn from Fθ|ωt and which enter the market at t + 1. The number of new products is

denoted Newt+1 and is distributed according to FN . We specify FN as a negative binomial

that permits dispersion in the mean:

Newt+1 ∼ Poisson (µ∗t )

µ∗t ∼ Gamma
(
1/αN , αNµt

)
µt = exp(βN0 + βN1 Qt + βN2 TrialsSharet−1)

lnαNt = αN0 + αN1 Qt

(5)

The binomial model is conditioned on the magnitude of innovations introduced at time t,

denoted Qt, along with trial participation during period t−1. The inclusion of the trial share

is motivated by empirical evidence showing that more experimentation can be conducted if

larger proportions of consumers participate in clinical trials. We include Qt to capture

the fact that large breakthroughs tend to be followed by a relatively large number of new

products. This may occur if breakthroughs spur innovative activity as firms attempt to

capture market share. The magnitude of previous innovations measures the distance (in

21For instance, larger parameter values imply that increased trial participation leads to larger innovations
on average. Alternatively, parameter values could also imply that higher levels of trial participation lead to
larger effectiveness versus side effects innovations if the parameter mapping TrialSharet to effectiveness is
larger than the parameter mapping it to side effects.
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characteristics space) between products at time t and the previous period centroid around

which they were drawn:22

Qt = fS3 (St,Pt)

=
∑

r∈{h,x}

maxθr new at t

{
θr − ωrt−1

}
maxθrnew at τ,∀τ

{
θr − ωrτ−1

} (6)

In summary, ωt, Fθ|ωt , and FN imply that the path of innovation is endogenous to con-

sumer demand. Individual choices, aggregated into market shares, affect the centroid in

equation (1). By affecting ωt, market shares affect the characteristics of each new product

θkt, as well as the future trial product, according to equation (2). Intuitively, treatments

that keep patients alive and those associated with fewer ailments capture larger shares of

the market. These more popular treatments hold greater weight in the centroid around

which innovations are drawn. Additionally, aggregate participation in clinical trials affects

both the speed and the direction of innovation, captured by equation (3). Finally, both trial

participation and the magnitude of previous innovations affect the expected number of new

products introduced into the market.

3.1.3 Exit

Exit of incumbent treatments happens at two different levels: exit for switchers and overall

exit. Exit for switchers happens when the product is no longer available for individuals who

have yet to use it, but is still available for those who were consuming the product in the

prior period. Overall exit happens when the product is no longer available to any consumer.

Exit happens according to the following rules that aim to reconcile empirical observations

and theory.23

1. If the ratio of people switching to product k relative to the total number of individuals

switching onto a new product falls bellow σ̃1 during three consecutive periods, the

product is withdrawn from the market. σ̃1 is chosen as the minimum conditional share

observed in the data and the number of consecutive periods (three) is chosen so that

a single period of low demand does not lead to a premature exit.

22The relative change is computed for each of the two dimensions of product characteristics (health and lack
of ailments) and is scaled by the maximum change observed over the sample period. In order to compute Qt
we need the scaling quantities maxθr new at τ,∀τ

{
θr − ωrτ−1

}
for r ∈ {h, x} which are estimated consistently

by their data counterparts.
23Expected shares must be positive due to model assumptions on the taste shocks of consumers. Distri-

butional assumptions on taste shocks are stated below, when we discuss the demand portion of the model.
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2. If the ratio of people consuming product k (either by staying or by switching onto

it) relative to the total number of people consuming any market product falls below

σ̃2 during two consecutive periods, the product is withdrawn from the market. σ̃2 is

chosen as the minimum conditional share observed in the data.

The exit criteria can be written in terms of the aggregate state of the problem as follows:

ProductsWithdrawnt+1 = fS4 (St,Pt,Ft)

3.1.4 The Evolution of the Aggregate State

Given the current aggregate state Ξt and the exogenous distribution of innovations Fν ,

aggregate choices induce a new distribution of consumer characteristics Ft+1. Through the

entry and exit mechanisms, a new set of available products comes available and is denoted

Pt+1, which is used to form Pt+1. Finally, consumer choices can be summarized into market

shares St, which are used to form St+1. Thus, we have all the components of the one-period-

ahead aggregate state Ξt+1, which captures the supply of medical treatment. We now turn

to consumer demand.

3.2 Demand

The individual chooses medical treatment to maximize expected discounted lifetime utility.

In making decisions, he observes his current state which includes individual-specific vari-

ables, such as health, along with market-level variables, such as the current state of medical

technology. Individuals use market-level variables to form expectations over the future path

of innovation. In specifying the individual’s problem, we discuss state variables, the choice

set, flow utility and stochastic processes governing outcomes and state-to-state transition

probabilities. Next, we discuss consumer information and aggregate state forecasts. We

conclude this section by specifying the value function.

3.2.1 State Variables

The state for individual i at period t is denoted Zit, where

Zit ≡ 〈zit, εit〉 (7)
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zit is a set of state variables that is further sub-divided into a set of individual-specific

variables, denoted zIit, and a set of aggregate variables denoted zMt :

zit ≡
〈
zIit, z

M
t

〉
(8)

The individual-specific state variables, zIit, are

bi : a set of race indicators

edui : a set of time invariant education indicators

hit−1 ∈ R+ : health at the start of period t

ait−1 ∈ {25, 25.5, . . .} : age at the start of period t

lit−1 ∈ {0, 1} : worked during the prior period t− 1

qit−1 =
{
qxit−1, q

h
it−1

}
∈ R2 : characteristics of product consumed last period

ηi : person-specific income characteristic

The individual is either white, black or Hispanic and has one of four mutually exclusive

educational categories: high school, some college, college or more than college. His health,

measured by CD4 count, is a continuous positive number.24 His age is measured in half-year

increments, corresponding to the frequency of MACS data collection. lit−1 indicates whether

the individual worked last period. If the individual consumed a market product in the prior

period, the characteristics of that product, denoted qit−1, are part of his current state space.

qxit−1 measures lack of side effects of the treatment and qhit−1 measures treatment effectiveness.

ηi is an exogenous person-specific characteristic that affects his income generating potential.

Besides individual-specific variables, zit contains aggregate level components, collected in

zMt , which individuals use to forecast the evolution of the market. zMt will be described

further in Section 3.2.5. Individuals also receive a vector of choice-specific additive utility

disturbances εit which are assumed independent across time, individuals and choices.25

3.2.2 Choices

At each period t the individual chooses whether or not to use medication. If he opts for

medication, he may choose the same product he consumed in the previous period or he may

choose from the set of other treatments currently available on the market. Alternatively, he

may choose a trial treatment. The individual faces uncertainty about the quality of both

market and trial treatments.

24CD4 ranges from 0 to 2915 in our analytic sample with a median of 448. Healthy CD4 counts are those
above 500 units per mm3 and typically range between 500 and 1,500.

25In estimation, ηi and εit will be unobserved to the econometrician.
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Market Products: We begin by describing how consumers choose market products. The indi-

vidual learns about the quality of a product immediately after using it. Hence, if he chooses

the same market treatment he consumed last period, he faces no uncertainty regarding its

characteristics.26 Alternatively, if he decides to try a different market drug, his alternative is

to choose one among several groups or clusters, which contain drugs with similar qualities.

The agent is then randomly assigned a drug within the cluster he selected.

Formally, at every period t there is a set of market products Pt clustered in several groups

collected in Gt with typical element gt. Gt denotes both the collection of clusters available at

t and the cardinality of the collection (i.e., the total number of clusters). When individual

i decides to consume a market treatment that is different from the one he consumed last

period, he must choose a cluster gt ∈ Gt. By selecting gt, he chooses random assignment to

one of all products in gt. Our clustering process is a device to make the model tractable

and estimation feasible by substantially reducing the state space while still allowing individ-

uals to choose among numerous medical treatments. This approach also captures the idea

that consumers often choose drugs after observing product labels without knowing specific

drug characteristics beyond the fact that certain labels are associated to a particular mean

and variance of characteristics. Product clusters at t yield from a k-means algorithm (see

Appendix B). At any given period we set the maximum value of Gt at Gmax = 3 so that

the individual knows how many groups will be available every period. Our choice of Gmax

guaranties that there is a non-negligible number of consumers choosing each cluster.

Conditional on choosing a cluster, the probability of being assigned one of the products

within the cluster is given by weights that depend on the treatment characteristics and the

number of products in the cluster. The weight of product k in cluster gt is given by the

following equations

s̃k|gt =
E
[
sk|gt |Xw

k,t

]∑
r∈gt E

[
sr|gt |Xw

k,t

] (9)

E
[
sk|gt|Xw

k,t

]
= exp

(
Xw
k,tβ

w
)

(10)

where Xw
k,t includes a constant term, the ranking (within its cluster) of the characteristics of

the product, the number of members in the cluster, whether the product is new, and several

interactions. We assume that agents do not observe the characteristics of each individual

product. Rather, consumers at t observe the first two moments of the cluster distribution

implied by the weights. These cluster-level characteristics observed by the consumer are

26As discussed above, his state space includes the characteristics of the drug consumed in the prior period
qit−1.
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denoted

Wt = fD1 (Pt). (11)

Trial Products: If the individual chooses neither a cluster nor to stay in his previous treat-

ment, he may instead join a clinical trial to get an experimental treatment. Trial product

characteristics are unknown, but are draws around the centroid ωt−1 according to equa-

tion (2).27 Thus, consumers are aware that product characteristics of trial treatments are

distributed according to Fθ|ωt , which is equivalent to the distribution of new product charac-

teristics. A key difference between choosing a cluster of products gt and the trial treatment is

that, after choosing group gt and once the quality of the assigned product is learned, the con-

sumer has the chance of choosing the same treatment with certainty the next period. In the

case of a trial, the consumer must always take a new draw from the innovation distribution.

Having described each option, we now formally specify the choice set. Let djit be the

choice indicator that takes the value of one if agent i in period t chooses medical treatment

j in the choice set Cit. The choice set is time-specific because the characteristics of available

products evolve with entry and exit of products. The choice set is also individual specific

since individuals who chose a market treatment in the prior period may choose that treatment

again. If the individual did not choose a market treatment in the prior period his choice set

is:

Cit =



0 No Treatment

1 Cluster gt = 1

2 Cluster gt = 2
...

...

Gmax Cluster gt = Gmax

Gmax + 1 Trial

(12)

If the individual chose a market treatment in the prior period, his choice set Cit is augmented

by one alternative to include the possibility of consuming his previous period treatment with

full knowledge of its characteristics.28

27One way to think about this point is that consumers entering a trial see ωt−1 as the quality of a placebo
drug administered in a trial. This makes sense in the context of HIV since new drugs are not tested against
no drug at all, but are instead tested against “current best practices” (see Ickovics and Meisler (1997)).

28To clarify, if a consumer chooses a cluster in period t, in period t + 1 he may choose the treatment he
was randomly assigned to in period t. Alternatively, he may choose the same cluster, which means he is
randomly assigned once again to a treatment in the cluster.
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3.2.3 Utility

For choice j ∈ Cit and state zit, the utility at period t for individual i is a function of his

health, ailments and net income, given by

yjit + εjit = αm(mjit − ojit) + αjit (zit) + αxpxjitd0it + εjit (13)

The first expression on the right-hand-side of equation (13) is gross income mjit minus out-

of-pocket payments for medical treatment ojit, so that αm captures consumption utility.

The second expression captures choice-specific utility. αjit (zit) is the sum of choice-specific

preference parameters that depend on race, age and health and is defined as follows:

αjit (zit) ≡ α′jbbi + αjaait−1 + αjhhit−1 (14)

For clusters, market treatment demand is modeled using a characteristics approach, which

means that we omit cluster-specific dummy variables in the utility function and instead

assume that variation in cluster choices is fully captured by cluster characteristics (effective-

ness and side effects). This implies that parameters α′jb, αja, and αjh are constant across

clusters. The utility function also includes separate sets of parameters for clinical trials

participation and for staying on a current treatment in the next period. This captures how

experimentation in treatment choices can imply additional costs or benefits. In the case of

clinical trials, utility parameters capture, for example, the fear of trying an experimental

drug or preferences for altruism since trial participation may help future patients. In the

case of continuing to use the same product, utility parameters may capture a preference

for certainty, which could help to explain consumer reluctance to switch even when better

products enter the market.

Health affects lifetime utility through its impact on future health and survival. It also

affects the probability of suffering physical ailments, which affect utility directly and through

earnings. These processes are described in Section 3.2.4. In addition, we allow health to

directly affect flow utility by interacting it with the indicator variable for trial participation.

This captures the possibility that the time and psychic costs of finding a trial slot can vary

by health if, for example, doctors are more willing to encourage experimentation or if trial

slots are more readily available for sicker patients. Similarly, we interact lagged health with

choosing a cluster to capture how individuals may be more willing (or encouraged by doctors)

to choose random assignment to a cluster treatment when in poor health. We normalize αjh

to zero for those who continue using the same product. Therefore, αjh captures the additional

effect that health has on the utility of experimenting with a new treatment, either through
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cluster use or trial participation.

The third expression in equation (13) captures the utility cost of physical ailments. xjit =

1 indicates that the individual does not suffer from physical ailments and d0it is an indicator

for not consuming a medical treatment. The interaction captures how distaste for ailments

can vary depending on whether or not a treatment is being consumed. For example, distaste

for physical ailments may be less strong for individuals using a treatment, in which case

ailments are a sign of effectiveness. We normalize the utility cost of ailments while using a

treatment to zero. Hence, αxp represents the differential distaste for ailments for individuals

who are not taking a treatment.

The fourth expression in (13) is εjit, which are unobserved choice-specific taste shocks.

They are Extreme Value Type I distributed and are assumed independent across choices,

individuals and time. Finally, for identification purposes, we normalize the non pecuniary

benefits from not consuming a treatment to zero (Magnac and Thesmar, 2002; Arcidiacono

and Miller, 2015)

3.2.4 Outcomes and Transitions

In this section, we specify the stochastic processes governing the evolution of state variables in

zit as well as the outcome variables: income, out-of-pocket payments, ailments, and survival.

Income: Gross income is a function of today’s state, zit, and ailments, xjit. It is given by

mjit = Xm
jitΓ

m + ηi + εmit (15)

where Xm
jit = [1, hit−1, . . . , h

7
it−1, ait−1, a

2
it−1, bi, edui, lit, xjit] and ηi is the individual-specific

income generating potential. Gross income does not include product cost, which is accounted

for in the payments equation below. Individuals observe the income iid shocks εmit before

making their treatment choice.

Payments: Out-of-pocket payments are censored at zero. They are given by the following

tobit specification

ojit = o
(
Xo
jit, ε

o
it; Γo

)
(16)

where Xo
jit = [1, hit−1, . . . , h

6
it−1, ait−1, a

2
it−1, bi, edui, {djit}5

j=0, lit, xjit] and εoit is the error term

in the underlying equation. Since we do not directly observe prices, and in order to simplify

the problem, we assume a constant cost of participating in a trial as well as a constant cost

of consuming a market product.29

29End-users customarily pay a standardized deductible that is a fraction of the brochure price of the drug
paid by the insurance company. Median out-of-pocket drug costs are about $300 every six months for a
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Labor Supply: We do not model labor supply explicitly as a choice as it is not the main

purpose of this paper. However, labor supply may be affected by treatment choices, e.g.,

through health status and physical aliments. Moreover, labor supply affects income and

therefore utility. To capture this, we treat labor supply as a state variable that individuals

know at the beginning of the period before making their treatment decision. Individuals

draw their labor market participation from the distribution characterized by

Pr[lit = 1|X l
it] =

1

1 + exp(X l
itΓ

l)
(17)

where X l
it = [1, lit−1, hit−1, . . . , h

4
it−1, ait−1, a

2
it−1, bi, edui].

Physical Ailments: First, define a mapping from the choice to the characteristics of the

treatment

θ(djit) = {θx(djit), θh(djit)} (18)

where θ(djit) = qit−1 if the individual consumes his prior-period market treatment. θ(djit) is

a stochastic variable if the individual chooses a cluster or if he joins a trial. A production

function transforms drug characteristics and health into aliments. Let xjit be an indicator

that takes the value of 1 if the individual does not suffer ailments in t after choosing alter-

native j ∈ Cit. The probability of not having physical ailments for individual i is modeled

as:

Pr [xjit = 1|·] =
exp

(∑5
m=0 γ

x
mh

m
it−1 + θx (djit)

)
1 + exp (·)

(19)

Health: CD4 count is our objective measure of health. Like ailments, health at the beginning

of period t is a function of previous health and drug characteristics. The production function

of health is specified as:

hjit =
5∑

m=0

γhmh
m
it−1 + θh (djit) + εhit (20)

We assume that E[εhit|·] = 0, where the expectation is conditional on the vector of regressors

of the health production function.30

Survival: At the end of any period t individuals may survive into the next, denoted by

Sit+1 = 1, with the following probability

Dit+1 (zit+1) ≡ Pr[Sit+1 = 1|zit+1] =
1

1 + exp(Xd
itΓ

d)
(21)

regime of drugs that would cost the insurance company between $5,000 and $15,000.
30We do not make parametric assumptions on the health disturbance. It is estimated non-parametrically

using the residuals of the health production function.
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where Xd
it = [1, hjit, . . . , h

5
jit, ait, a

2
it, bi, edui, xjit].

3.2.5 Consumer Information and Aggregate State Forecasts

We assume that consumers have rational expectations, but they do not observe the entire

aggregate state Ξt. Instead, they observe the reduced aggregate state zMt , which is a mapping

from Ξt, and integrate over the treatment characteristics that they do not observe. The

aggregate portion of the individual’s state is given by

zMt ≡ 〈ωt,Wt,Ft〉 (22)

The individual observes the centroid for innovation ωt, described in Section 3.1, which de-

termines the expected characteristics of trial products. His information set also contains the

characteristics Wt of the clusters of products he observes, described in Section 3.2. Finally,

he observes the current distribution of consumer characteristics Ft. When agents form expec-

tations over future innovations, they are likewise assumed to observe cluster characteristics

rather than the characteristics of each treatment. A timeline of the model can be found in

Appendix B.

3.2.6 The Value Function

We define the value function conditional on choice j ∈ Cit, net of taste shocks, for individual

i at time t as follows:

vjit(zit) = Ey[yjit|zit] + βEz
[
Dit+1 (zit+1)Eε

[
max
c∈Cit+1

{vcit+1(zit+1) + εcit+1}
]∣∣∣∣ zit, j] (23)

Expectations are taken over product characteristics affecting the flow utility and the evolu-

tion of both observed and unobserved state variables. The first expectations operator, Ey,
denotes expectations over outcomes that affect flow utility, including income and physical

ailments. The second operator, Ez, denotes expectations over the evolution of observed state

variables zit. The third operator, Eε, denotes expectations taken over the joint distribution of

future unobserved choice-specific taste shifters. The value function is fairly standard except

for the time and individual subscripts on the choice set Cit+1. These subscripts capture the

evolving choice set due to product innovation, which makes the problem non-stationary and

therefore not estimable using standard methods typically used to evaluate conditional value

functions. We now turn to a discussion of how we estimate the structural model.
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4 Estimation

We use GMM to estimate model parameters. In Section 4.1, we provide an overview of

the estimation procedure, summarizing the algorithm, which includes 5 steps. The first

four steps constitute the “first stage,” used to obtain quantities that do not change with

utility parameters, including simulation of future choice and technology paths. We compute

these quantities a single time and use them in the “second stage” to construct moments

used in GMM estimation of utility parameters. In Section 4.2, we provide further details

on the GMM estimator. We first describe the theoretical moment conditions and their

sample analogs. We also discuss our forward simulation procedure, which is designed to

incorporate non-stationarity, endogenous innovation. Finally, we discuss estimation of the

non-parametric distribution of innovations. A more extensive treatment of the estimation

procedure is found in Appendix C.

4.1 Overview

Our estimation procedure can be summarized in the following steps:

1. Products. We start by defining a product as a combination of single-product com-

ponents. AZT or the combination of AZT+3TC+Saquinavir are both examples of

products in our framework. We define one single trial product per period as the one

used by those individuals joining a clinical trial. Given this definitions, we estimate

product characteristics together with the health and no-ailment processes (in equations

(19) and (20)) using equations (S5) and (S6) in Appendix C.31

2. Clusters. Using the estimated product characteristics in step 1, we use a k-means

algorithm to obtain clusters of products for every period (see equation (S1) in Appendix

B). Then, using the characteristics of the products in each cluster, we obtain within

cluster weights for each product in each cluster (see equations (9) and (10)). Finally,

using within cluster weights we compute cluster characteristics—mean and variance

matrix.

3. Innovation. We back out centroids for innovation for each period (see equation (1))

using product characteristics from step 1. Then, since every product (new and trial)

is modeled as a draw around the centroid (see equation (2)), for every new and trial

product at a given period we compute the realized innovation as the residual from

31Product characteristics are obtained using product indicators in the estimating equations (S6) and (S5)
in Appendix C.
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subtracting the relevant centroid from the product characteristic (step 1). Using the

realized innovations we estimate the parameters of the innovations equation (3). Next,

we non-parametrically estimate the stationary distribution of innovations Fv using the

residuals νkt+1 from estimating equation (3). Finally, we use the number of new prod-

ucts per period to estimate the distribution of number of new products (see equations

(5) and (6)).

4. Outcomes. We estimate processes for income, out-of-pocket payment, labor supply and

survival (see equations (15), (16), (17), and (21)).

5. Utility Function. We estimate the utility parameters in equation (13) using a GMM

estimator and moment conditions that equate two alternative representations of differ-

ences in conditional value functions, one based on current conditional choice probabil-

ities (CCPs) and the other based on future CCPs and simulated continuation values.

In order to obtain these moments we estimate flexible parametric CCPs using cluster

characteristics from step 2, centroids from step 3 and other aggregate and individual-

specific state variables (see Appendix C). We then use forward simulation to generate

choice and technology paths as well as future individual states that serve as inputs

to the simulated continuation value. In our forward simulation we use the estimated

CCPs as well as all estimated results from steps 1 through 4.

4.2 Moment Condition

Our moment conditions rely on differences between alternative representations of the differ-

ence in conditional value functions vjit(zit) − voit(zit).32 The first represesntation is the log

odds ratio formed with current-period conditional choice probabilities. The second repre-

sentation relies on the results in Proposition 1, which yields the conditional value function

as a mapping of future conditional choice probabilities and utility parameters.

Proposition 1. Let V (zit, εit) be the value function for individual i at period t who has
a state given by zit and εit. Let pjit (zit) be the probability that individual i chooses option
j at time t conditional on his state zit. Define E [ | j, doi ] as the expectation conditional on
decision j at t and optimal behavior, denoted doi , up to some period T ∗ > t.33 Define
ψkit (zit) ≡ Eε [εkit|doit = k, zit] as the expected value of the kth taste shock conditional on
alternative k being optimal. Finally, let γ be the Euler constant. Then, the conditional value

32These moment conditions appeal to well-known results following from our assumption that the taste
shocks εjit are iid Extreme Value Type I distributed (Hotz and Miller (1993)).

33Recall that Dit+s is the one-period-ahead probability of survival, defined in Section 3.2
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function can be written as

vjit(zit) = Ey[yjit|zit]

+

T∗∑
s=1

βsE

( s∏
r=1

Dit+r (zit+r)

) ∑
k∈Ct+1

pkit+s (zit+s) [ykit+s (zit+s) + ψkit+s (zit+s)]

∣∣∣∣∣∣ zit, j, doi


+βT
∗+1E

[(
T∗∏
r=1

Dit+r (zit+r)

)
V (zit+T∗+1, εit+T∗+1)

∣∣∣∣∣ zit, j, doi
]

(24)

and

ψkit (zit) = γ − ln (pkit (zit)) (25)

Proof: see Appendix C

Let J = 6 be the maximum possible cardinality of the individual’s choice set and let w (zit)

be a vector of instruments orthogonal to the difference between alternative representations.

Using equation (24) we can form the following moment conditions:

E

w (zit)⊗


ln
(
poit(zit)
p1it(zit)

)
+ v1it(zit)− voit(zit)

...

ln
(

poit(zit)
pJ−1it(zit)

)
+ vJ−1it(zit)− voit(zit)


 = 0. (26)

4.2.1 Sample Analog and Forward Simulation

To form sample analogs of the moments in equation (26), we first substitute the theoretical

log odds ratio using the estimated CCPs. Second, we use Proposition 1 to obtain differences

in conditional value functions using forward simulation (Hotz et al., 1994). In our forward

simulation procedure, for every individual i at time t facing choice set Cit, we fix choice j

and use the estimated stochastic processes governing outcomes and transitions to simulate

his state variables at t+ 1. We then use the estimated parameters of the CCPs to simulate

t+ 1 choices conditional on the new simulated state. We continue the same process until T ∗,

the value of which is set high enough so that the product βT
∗+1
∏T ∗

r=1Dit+r (zit+r) approaches

zero, eliminating further differences in conditional value functions beyond T ∗.

Forward simulation is used in a variety of settings to compute conditional valuation

functions. The procedure we use is designed to capture how individuals making decisions

form beliefs aware of the stochastic processes linking aggregate behavior to the evolution

of choice sets. In particular, we first simulate aggregate behavior forward, which allows us

to construct paths of technological innovation. We construct one such artificial path for

each observation in the data. In other words, for every individual i at period t we forward
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simulate the choices of all individuals in the sample at period t, and gather the technological

path generated by their collective choices. Then, because individuals are atomistic, for

each observation we can generate several sequences of future choices and payoffs taking

as given a random subset of artificial technological paths.34 This serves two purposes. It

maintains the assumption, needed for consistency of the estimator, that the sample draws

from the moment conditions—the contributions from each observation—are independent

from each other. Additionally, using a random selection of artificial technological paths for

every observation prevents simulation errors in technology paths from propagating across all

observations.

The CCPs used in the forward simulation procedure condition on zMt , which is the

market-level information we assume consumers observe, rather than the full aggregate state

Ξt. This captures how agents in the model make decisions using limited information about

the aggregate state. In particular, we obtain individuals’ expectations by simulating future

paths of the full aggregate state Ξt using choices generated by individuals who make decisions

with limited information zMt .35

4.2.2 Estimating the Non-Parametric Distribution of Innovations Fν

The forward simulation of future choice sets relies on the distribution of innovations. Ac-

cording to equations (2) and (3), the characteristics of trial products and of new products

entering the market today are determined by the centroid (current or previous), previous

trial participation and a draw from the distribution of innovations Fν .
36 After computing

centroids for innovation ωt given by equation (1), for the trial product and for each new

product at t, characterized by θkt, we compute a realized innovation vector as

νθ∗kt = θkt − (ωt1{k = trial}t + ωt−1 (1− 1{k = trial}t))

We do not impose that innovation vectors cannot be strictly negative. In other words,

relative to the centroid, inferior products with lower quality in both dimensions (health

34We generate twenty sequences of choices and payoffs per observation.
35Because we simulate the future path of Ξt, we can also obtain the simulated future path of the subset

zMt .
36To estimate the innovation equation (3) and the distribution of innovations we use all periods in the

MACS data with relevant information on treatment consumed, health and ailments (1986 to 2008). Over
the time span in our data we observe 76 realized innovations from newly introduced market products and
22 realized innovations from trials products. Consistent with our definition of market products, we only
consider trial products that entail at least 40 users.
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and ailments) may be introduced.37 We use the realized innovations vectors to estimate

parameters Θν
0 and Θν

1 in equation (3). Using the residuals from this exercise, we estimate

Fν non-parametrically.

5 Parameter Estimates and Choice Dynamics

In this section we describe estimates that affect innovation (Section 5.1), present our es-

timated utility parameters (Section 5.2), and discuss parameters governing state-to-state

transitions and outcomes (Section 5.3). Finally, in Section 5.4 we assess model fit.

5.1 Innovation

The innovation process is described in equations (2) and (3). Estimates of Θν
0 and Θν

1

from equation (3) are found in the top panel of Table 3. Recall, both parameters are two-

dimensional vectors that map trial participation to the characteristics of new treatments.

The first panel of Table 3 contains parameters relating trial participation to trial treatment

and new treatment effectiveness and side effects. According to the estimates of Θν
1, higher

rates of consumer participation in clinical trials lead to improvements in new drugs on both

dimensions of quality. However, the magnitude of this effect varies across quality dimensions.

To see this, consider the differences in constants (Θν
0), both of which are negative, suggesting

that new drugs would on average be worse (relative to the centroid) if no consumers partic-

ipated in trials. While expected health innovations are positive for lagged trial shares above

5.6%, the same is true for expected innovations on the ailments dimension when trial partici-

pation is 7.7%. As average trial participation in our sample is 7% (Table 2), if we ignored the

role of the centroid, on average the quality of products would appear to improve over time

in terms of health quality but would remain largely unchanged in terms of the ailments they

cause through side effects. However, new products are drawn around the centroid, which

is time-varying and a function of market shares. Therefore, if individuals prefer treatments

with fewer side effects, the centroid will move in that direction of the characteristics space,

which means more innovations will be drawn from that part of the space. In this sense,

future products tend to be similar to products with larger market shares.

The stochastic component of an innovation is a draw from the non-parametric distri-

bution Fν showed in Figured 6. Fν which is mechanically centered on (0, 0), is unimodal.38

37This is not at odds with what we observe in the data, and theoretical reasons why this may happen have
been provided in the literature (Miller, 1988).

38Fν is centered on (0, 0) because it is estimated from the residuals of equation (3). In a separate exercise,
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Hence, conditional on trial participation, most innovations are small improvements. Because

products are multidimensional, it is possible for the stochastic component to generate prod-

ucts that are more efficacious, but which cause worse ailments via side effects, or vice versa.

However, according to the bottom panel of Table 3, which shows the covariance matrix of

the distribution of innovations, there is a positive correlation of about 0.24 between the two

quality dimensions of an innovation. Therefore, improvements to effectiveness tend to have

fewer side effects than existing technologies once we have conditioned on trial participation

rates.

Estimates of the distribution of the number of new products are shown in Table 4.

Estimates suggest that large positive innovations in previous periods lead to larger numbers

of new products. The magnitude of previous innovations also reduces the dispersion around

the number of new products that enter. Both patterns are consistent with firms vying for

market share following breakthroughs by producing similar products. The share of consumers

opting to participate in a clinical trial in the prior period also increases the likelihood of

more products entering the market. Our interpretation is that as more consumers select

trial products firms increase their experimental activity. This leads to an increase in the

quantity of viable new treatments that can be introduced into the market. The estimated

distribution of the number of new products fits the data very well, according to Figure 7,

which plots the empirical distribution along with the average (over time periods) of the

predicted probabilities generated by the model.

5.2 Utility Parameter Estimates

Utility parameters are reported in Table 5. Individuals gain positive utility from income

net of out-of-pocket treatment costs, which captures consumption utility. Moreover, a lack

of physical ailments enters positively into the flow utility.39 Prior literature has shown that

even in the context of a deadly infection (HIV) individual treatment choices reflect a distaste

for side effects (Chan and Hamilton, 2006; Papageorge, 2016). Recall, we have normalized to

we estimate the non-parametric distribution of innovations using directly the realized innovations from
equation (2), ignoring equation in (3). This yields a bimodal distribution of innovations with one of the
modes located approximately at the status quo point (0, 0), and a second mode located north of the first one
along the health axis. As shown in Figure 6, Fν is no longer bimodal once we control for previous aggregate
experimentation in clinical trials.

39Even though both net income and physical ailments parameters become insignificant once the standard
errors are corrected for the two stage procedure, Table S4 in Appendix D shows that if the estimated
ancillary parameters of the CCPs were the true parameters, both net income and physical ailments would be
highly significant. We highlight this fact because the final specification in (13) is informed by the statistical
significance of results before the correction of standard errors, which is computationally intensive and is done
only in the end.
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zero the impact of ailments for those consumers using a treatment. Therefore, the positive

utility parameter for not suffering ailments while not consuming a treatment is relatively

large. In other words, the cost of ailments is larger when consumers are not consuming a

treatment. This finding is consistent with the idea that the utility cost of ailments from

side effects of medical treatment may be less than the cost of ailments due to illness. One

possible reason why is that consumers perceive ailments due to product side effects as an

indicator of that effective treatments are working. Alternatively, ailments due to sickness

may be more frightening than those due to medication that treats sickness.

Utility parameters for treatment choices are interacted with race and age. Since the

non-pecuniary flow utility from no treatment is normalized to zero across groups, the non-

pecuniary flow utility for different groups is relative to what they gain from not taking a

treatment. According to parameter estimates, once we have accounted for dynamic payoffs,

using treatments is costly for all consumers, with higher costs accruing to non-white con-

sumers. Black men face a particularly high penalty of trial participation, a finding that is

consistent with a broad literature investigating historical reasons why African Americans are

reluctant to enter trials to use experimental drugs (Harris et al., 1996; Alsan and Wanamaker,

2016). However, age helps to mitigate the utility costs of treatment, reflecting how older

agents are more accustomed to taking medications or have more contact with the medical

community.

Recall that health is interacted with treatment choices that involve experimentation

(either participation in a clinical trial or choosing a new drug through a cluster). We find

that better health leads to larger utility costs of experimentation. This is consistent with

more frequent contact with doctors among less healthy patients, who may thus face lower

costs of switching to new or experimental treatments. In the case of trials, there may be

more slots available for sicker patients if a goal is to test drugs on patients who most need

them.

Finally, the utility of remaining on a treatment is positive, which means that it is preferred

over taking no treatment at all (assuming the individual is suffering from ailments, which

is normalized to zero) and over choosing a cluster or trial treatment. This underscores the

idea that individuals are reluctant to experiment with new drugs. Taken together, utility

estimates imply that the highest flow utility accrues to individuals who are not suffering

ailments and who are not taking any treatment.
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5.3 Transitions and Outcomes

Next, we discuss the processes describing how state variables produce outcomes or transition

to other states. Processes for health and ailments are estimated together with product

characteristics using equations (S5) and (S6) in Appendix C. Given the large number of

treatments, to conserve on space, we present estimated treatment characteristics in Table

S5 in Appendix D.40 Apart from specific treatments, current health also affects current

physical ailments along with future health. To capture non-linearities in these relationships,

we condition on a fifth-order polynomial in health. The estimated relationships (see Table

S6 in Appendix D) are plotted in the top panels of Figure 8. While the slight concavity

of the production function for health could be well approximated by a linear function, the

production function for ailments is very non-linear. The figures suggest that in the region

of CD4 counts below 250 units, changes in health generate much larger larger shifts in the

log odds ratio of suffering ailments. The reason is that HIV infection has a gradual negative

impact on immune system health, as measured by CD4 count. However, the impact of CD4

count on ailments is not gradual. It is virtually non-existent until CD4 count has dropped

below about 250 and AIDS-related symptoms emerge.

We next consider processes governing income, out-of-pocket payments, labor supply and

survival. As before, instead of interpreting parameters on a high-order polynomial in health,

we simply plot the non-linear relationships in the remaining panels of Figure 8. According to

the figure, health exhibits strongly non-linear relationships with other outcomes, which helps

to explain sharp differences in optimal choices for individuals with fairly similar CD4 counts.

Again, this is due to large changes in physical health once the AIDS threshold is reached.

These relationships underscore the importance of modeling the relationship between health

and outcomes in a non-linear fashion for HIV-positive individuals.

Estimates for processes governing income, out-of-pocket payments, labor supply and

survival are found in Tables 6, 7, 8 and Table 9, respectively. Beyond the relationships with

health discussed above, several key patterns emerge. Individuals who do not suffer ailments

have higher income as their productivity is likely to be higher. Income is concave in age and

it increases with employment and education, though racial minorities earn less on average.

Conditional on positive out-of-pocket medical expenditures, these payments increase with

age. Minorities spend less and more educated people spend more. Similarly, individuals that

40Product characteristics also determined the process of within cluster assignment. As mentioned in
Section 3, we do not model the shares of products within clusters. Instead, individuals who switch from a
market product, a trial product, or no product, can choose a cluster of similar products and are assigned a
product within the cluster, where the assignment probabilities are determined by the characteristics of the
products in the cluster. Estimates of this process, described by equations (9) and (10) are presented in Table
S7 in Appendix D.
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suffer ailments face higher expenditures, perhaps because they are managing other health

conditions. Employment increases expected payments, which may reflect different pricing

schemes for public versus private insurance. Labor force participation is stochastic in our

model and it is revealed to individuals at the beginning of the period. Estimates show that

the log odds ratio of working versus not working increases with age until about age 40, after

which point it decreases. The odds of working increase with education. Moreover, there

is strong persistence in employment, reflected by a large increase in employment odds for

individuals who worked in the previous period. At the end of every period individuals face

the possibility of death. Estimates in imply that the log odds ratio of death versus survival

decreases with age until about age 35 and then increases. The likelihood of death is smaller

for black individuals and for individuals who are not suffering ailments.

5.4 Simulated Choice Dynamics and Model Fit

In Figure 9, we plot observed treatment choices over time along with those generated by the

model given the state at every point in time.41 The estimated model captures key trends

remarkably well, including the rise in treatment usage as drugs improve through innovation,

and trial participation dynamics. We cannot fully reproduce the spike in trial participation

shortly before HAART introduction. The reason for this may be that, although our model

accounts for changes in the demand for trials, there was also a shift in the supply of trials

as a number of new drugs were tested that would eventually comprise the breakthrough.

Hence, the spike in trial participation would not be fully captured by our model as it focuses

on patient demand.

6 The Evolution of Technology

Through the lens of our model, the observed path of technological innovation is a draw

from an underlying stochastic process that relates the supply of new treatments to consumer

behavior. Because we have estimated this stochastic process, conditional on an aggregate

set of state variables, we can simulate counterfactual technological paths and compare them

to the realized path we observe. In Section 6.1), we assess the probability of the observed

path by comparing it to a distribution of simulated paths using the estimated parameters

of the innovation process. In Section 6.2, we examine how consumer behavior affects the

distribution. In particular, we show that demand can slow the progress of innovation due to

consumer reluctance to use new drugs, which affects the position of the centroid. Moreover,

41The fit of our parametric ccps is discussed in Appendix C.
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consumer distaste for side effects can tilt the path of innovation towards new products with

fewer side effects, but lower efficacy.

6.1 The Distribution of Technology Paths

We first assess the likelihood of the observed innovation path compared to what would have

been predicted by the estimated innovation process. As the innovation process is used to

model consumer beliefs about future innovations, this exercise also amounts to comparing

the realized path of innovations to what a rational consumer would have expected starting at

different points in time as the market for HIV drugs mature. To simulate technology paths,

we use estimated parameters of the innovation process and draw from the non-parametric

distribution Fν . We simulate 100 innovation paths until we have reached the end of the

realized path of innovations in 2008. We use two different observed periods as initial states:

the first semester of 1991 and the second semester of 1996. 1991 captures the state of

the market prior to the introduction of breakthroughs and health among HIV+ men was

in decline. By 1996, HAART had been introduced, which led to upward shifts in average

health of HIV+ men. Technology paths are plotted in Figures 10 and 11, where the solid

line is the realized average and the light grey lines are the 100 simulates.

In Figure 10, we compare realized and simulated average health, ailments and survival

probabilities. The panels on the left use 1991 market characteristics as starting values and

the right panels start in 1996. Figure 11 shows centroid quantities and market shares over

time. The upper-left panel of Figure 10 CD4 counts using 1991 as the starting point. In

the first few years, simulated average health tracks realized average health quite closely,

though is on average a bit worse. A larger difference emerges after 1996, however, once

HAART in introduced. The reason is that HAART marks a departure from the expected

path of innovations and thus average health, which the simulations show. In other words,

the estimated stochastic process treats the introduction as a low probability even, though

by no means treats it as a zero-probability event. Indeed, though most of the simulated

paths starting in 1991 underperform relative to HAART in the health dimension, there is a

small number of paths that outperform HAART. Thus, with some probability, innovations

might have emerged with even higher efficacy than HAART. In we instead use 1996 as the

starting point (see the panel on the top right), the market generally underperforms relative

to the simulations. Innovations did not raise average health after about 2000 even though

the innovation process would have predicted steady improvements to efficacy and thus higher

average health by 2005.

In the second row and third rows of Figure 10, we repeat the exercise with physical

34



ailments and average probability of survival, respectively. The observed share of individuals

suffering physical ailments is somewhat higher than the simulated paths starting in 1991.

The introduction of HAART led more individuals to use medication than expected, which

increased average ailments over time. If the starting point is 1996, however, the observe

path of ailments is similar to the average from the simulations, which means rational agents

forming expectations in 1996 would have expected population averages to evolve as they did.

Simulated survival in the population is consistent with HAART being a surprise. Rational

consumers forming beliefs in 1991 on average would expect lower survival than occurred due

to the introduction of HAART. Starting in 1996, however, the same consumers would have

expected slightly higher survival rates arising from continued innovations, which the market

did not deliver, again due to the lack of subsequent innovations that improved efficacy.

Turning to market aggregates, Figure 11 simulates two quantities that determine the

position of the centroid, the first capturing the weighted average of efficacy and the second

capturing market average of side effects technology. Beginning in 1996, simulated paths of

technology in the efficacy dimension show a trend similar to the realized path. However,

HAART is a tail event and after it is introduced, the market outperforms most simulated

distributions. Beginning in 1996, however, the market underperforms relative to expectations

as the centroid is expected to continue moving towards higher efficacy drugs, which is not

observed. For side effects innovations, the market underperforms if we simulate beginning in

1991 and 1996. An exception is that around 2001, when side effects innovation begin to occur,

which means that by about 2005, the market outperforms relative to rational expectations

formed in 1996. Finally, we consider market shares. Simulated market shares starting in

1991 track observed usage fairly well until about 1996. However, even without HAART,

market shares rise in the years after 1997, likely because individual health would have been

expected to continue its decline, which would have driven patients onto market drugs even

if they were not very effective. This is in line with earlier research showing that individuals

avoid effective drugs with side effects when in good health, but will use less effective drugs

in spite of side effects when in poor health (Papageorge, 2016).

6.2 Demand Pull: How Consumer Choices Affect Innovation

In the structural model, the distribution of innovations is a function of aggregate consumer

behavior. To illustrate this feature of the model, we consider two policies. First, we study

the evolution of product quality when the process of innovation is independent of demand.

Second, we assess product quality when demand is allowed to affect innovation, but con-

sumers are randomly assigned to products. Both policies exogenously separate consumer
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dynamic optimization from the process of innovation.

We start by studying innovation that is independent of consumer demand. To achieve

this we redefine the centroid to be a simple average of products in the market and reestimate

the process of innovation in Section 5.1.42 Thus, product entry is no longer dependent on

product demand. We also separate product exit from demand by adopting new exit rules

designed to resemble the actions of a scientific authority tasked with keeping only the best

products on the market. We consider two ways in which products of inferior quality are

exogenously removed from the market. The first method, denoted frontier, removes all

products from the market that are not on the technological frontier. This policy provides

an upper bound for how quickly innovation can proceed according to model estimates. The

second method, which captures expert intervention in a more realistic fashion, is denoted

thick frontier. In this regime, the number of products leaving the market is given by the exit

rate which we set at the baseline average, and the worst products are dropped independent

of demand.43

Results in Figure 12 indicate that exogenous product removal from the market can lead to

rapid improvements in product quality. However, more realistic exogenous interventions have

limited gains in quality over demand-driven selection. The figure presents simple averages of

health (right) and ailments (left) qualities of the products in the market. In the figure, the

solid black line is the simulated path of innovation using model estimates, where innovation

is endogenous to aggregate demand. The frontier regime paths are shown using dashed lines.

According to the lines, exogenously removing all but the best products speeds innovation,

leading to much much better products on both dimensions of quality, which is reflected in

higher average health and fewer average suffering of ailments. In contrast, under the thick

frontier policy, where only the worst products are exogenously removed from the market in

each period, the path of product quality evolution is not very different from the path delivered

by consumer dynamic optimization, i.e., the baseline. The reason is that consumers rarely

use the worst products, so removing them exogenously has relatively little impact on the

position of the centroid and, therefore, on subsequent innovations. Still, the thick frontier

policy does lead to health improvements. The reason is that the worst products that are

removed from the market tend to be of especially low efficacy, but are still chosen by a subset

of consumers since they have few side effects.

The second policy we consider assumes that consumers are randomly assigned to prod-

42For simulation, we still need a path of trial participation to feed into the distribution of the number
of new products and the innovation process in equation (3). We use the average path from the baseline
simulations.

43The selection of which are the worst products in the thick frontier regime is explained in Appendix D.
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ucts, but otherwise does not change the innovation process, i.e., the definition of the centroid,

and the distributions of innovations and number of new products. We fix the distribution

for random choices to match the unconditional shares in the first year so that consumers do

not respond to shifting technology or state variables. Results are shown in Figure 13 which

presents average paths, computed over 500 simulations, for consumer characteristics and the

status of technology captured by the centroid. The baseline solid lines in Figure 13 are the

average of the grey lines in Figures 10 and 11.

One key result from this exercise is that random assignment improves health an d survival,

but also leads to more physical ailments. The reason is that individuals prefer medical

treatments with fewer side effects despite the detrimental impact on their health. This

tilts the path of innovation towards new products with fewer side effects, but lower efficacy.

In contrast, random assignment decouples consumer preferences from innovation, tilting

innovation towards higher efficacy drugs, which improves health and raises survival rates.

This can be seen by looking at average health, the position of the centroid or the likelihood

of survival.

In general, results in this section underscore the importance of preferences in driving

not only the speed, but also the direction of technological innovation. Consumers’ distaste

for side effects means they are willing to sacrifice efficacy for treatments with fewer side

effects even if doing so increases the likelihood of poor health in the future. This behavior

reveals that consumers do not make medical decisions to maximize longevity, but instead

maximize lifetime utility, which includes quality of life and a lack of physical ailments. If the

innovation process were independent of consumer demand, it would be difficult to argue that

there is a role for a social planner to improve consumer welfare. However, as this section has

shown, private choices affect public health through innovation by slowing the development

of more efficacious treatments. In the next section we ask whether individual welfare can be

improved by targeting the externalities with an array of interventions.

7 Policies to Address Demand Externalities

Our estimates show that individuals prefer to avoid experimentation. They face utility

costs for using market products for the first time and for participating in clinical trials to

access new products. These preferences affect consumer behavior and thus the evolution

of technology. Moreover, since individuals are atomistic consumers do not internalize the

marginal effects of their choices on the speed and direction of innovation. As a result, a

social planner could improve welfare by shifting choices.
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In this section we examine interventions that assign consumers to treatment options and

assess which of these policies can improve average welfare. Given the size of the individual’s

state space, numerically solving the problem of an unrestricted planner with full information

quickly becomes intractable. We simplify the analysis by exploring the nature of the exter-

nalities using a one-period planner that is constrained to act on a subset of the individuals’

information or who has a reduced set of alternatives to choose from.44 Because the planner is

constrained, the magnitude of the welfare improvement, if any, is a lower bound to what an

unconstrained planner could achieve. First, we consider policies where the social planner has

limited information about consumer health and previous-period treatment choices. Second,

we examine a planner that has full information about observed consumer characteristics, but

whose only policy tool is to shift the probability that some consumers are randomly assigned

to participate in clinical trials.

7.1 Optimal Assignment Rules under Limited Information

The first constrained one-period planner we consider assigns individuals to choices on the

basis of their health and their previous treatment. In particular, when assigning individuals

to choices, the planner considers two levels of health (high and low) and two categories of

previous treatment choices (market treatment and either no treatment or a trial treatment).

Compared to the amount of information in the individual’s state Zit, the amount of informa-

tion available to the constrained planner is minimal. Nevertheless, adding more dimensions

of information increases very rapidly the number of assignment rules that we would need to

evaluate.

For every individual in a 〈health, previous treatment〉 category, the planner assigns one

of the six choices available or, alternatively, allows the the individual act freely. Given the

structure of the model, the planner can impose that a consumer stay on treatment only if

the consumer chose a market treatment in the prior period. Hence, the constrained planner

can choose one of 72 ∗ 62 = 1, 764 possible assignment rules. Since the constrained planner

has less information than the individual, it may be optimal for her to let some groups act

freely even though those groups will not internalize the full costs or benefits of their behavior

on the evolution of the technology. This setup is attractive because it allows the planner to

choose the same solution as atomistic individuals. We solve the problem of the one-period

planner in the first semester of 1991. To do this, we compute lifetime utility ten times for

44An additional reason behind our choice of one-period planner policies is that they are unexpected shocks
to consumers. Hence, we can still compute lifetime utility using the CCPs estimated in Section 4. Otherwise,
individuals would adjust their choices anticipating planner policies, rendering our estimated CCPs invalid
for assessment of lifetime utility under counterfactual policies.
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each consumer in 1991 for each of the 1,764 possible assignment rules.

Results from this exercise are found in Table 10, where we present details for the top ten

and the bottom ten assignment rules in terms of average welfare along with the atomistic

solution. According to estimates, average welfare at the atomistic solution is $346,110.

The best possible planner rule generates average welfare of $351.990, which means that the

planner can deliver a small welfare improvement of about 2% over atomistic agents who make

individually rational choices. This is a lower bound for the size of the externality. The worst

assignment rules can lead to average welfare that is roughly 60% lower than the atomistic

solution, with the worst plan generating average welfare of $166,230.

Table 10 also provides details about each planner solution. Recall, the planner observes

enough information to categorize consumers into four categories. 50% are in good health

with no previous treatment in the prior period. 26% are in good health and chose a market

treatment last period. Low-health non-treatment users and treatment users in the previous

period comprise 5% and 19% of patients, respectively. In the best rule, individuals in good

health with no prior treatment information are assigned to no treatment. Those in good

health who chose a market treatment in the prior period are left to freely choose. Notice,

consumers who like the qualities of the treatments they have just chosen are able to choose the

same products, while those who did not like the treatment can choose something else. This

is an important component of the assignment rule since the planner is essentially exploiting

the fact that these individuals have information about cluster treatments that the planner

does not. The third group of individuals, those in poor health and with no prior treatment

experience, are likewise left to choose freely in the optimal plan. Finally, individuals in

poor health who chose a market treatment in the prior period are assigned the no treatment

option.

Many of the top ten rules exhibit similar features, with some exceptions. For example,

in some cases, the planner assigns individuals with prior experience to their previous choice,

thus avoiding the costs of experimentation. Moreover, a few of the top ten rules involve ex-

perimentation, though this only occurs among the relatively small group of sicker patients,

for whom costs of experimentation are relatively low. Many of the bottom ten assignment

rules share two common features. One, the planner imposes experimentation onto healthy

patients who dislike experimentation the most. Two, the planner discards the information

possessed by individuals who used treatments in the prior period, by reassigning these in-

dividuals to new treatments rather than assigning them to their previous treatment (thus

avoiding experimentation costs) or allowing them to choose freely.
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7.2 Optimal Trial Participation

In our second exercise we focus on the externality that arises from atomistic individuals who

do not incorporate the marginal effects of their clinical experimentation on the evolution of

technology, and who are then likely to participate in clinical trials in levels that do not max-

imize average welfare. One reason we focus on trial participation is that, despite the social

benefits of clinical trials, individuals are generally not allowed to be financially compensated

for participation. Since the market fails to price an activity that generates social benefits,

an inefficient level of experimentation can arise.

We consider a one-time, constrained planner who observes the individuals’ states but

whose only available policy tool is to assign individuals to clinical trials or to let them

choose freely among the other alternatives. To assign individuals optimally, the planner

ranks individuals according to how much lifetime utility they loose if they are assigned to

a clinical trial. At the top of the ranking are individuals who would have chosen a trial

in the absence of the planner. These individuals loose nothing and are ranked based on

their gains over their second best alternative. Next are individuals who loose welfare from

being assigned to a trial. They are ranked based on their losses over their best alternative.

When increasing trial participation from the atomistic equilibrium, the planner begins with

individuals whose welfare losses are small. This problem nests the atomistic solution if the

planner assigns trial participation solely to individuals who would have chosen to participate

on their own. We solve the constrained planner’s problem in the first semester of 1991 and

again in the second semester of 1996.45

Results are presented in Table 11. In 1991, the planner’s optimal share of participation

in clinical trials is virtually identical to the atomistic share, yielding an average welfare of

about $345,000. This result suggests that the costs of increased experimentation outweigh

the benefits of new drugs in a time when no good treatments have been invented and previous

innovations have been small. Given the location of the centroid and the maximum size of

previous innovations, assigning individuals to trials does not improve welfare sufficiently to

justify the costs of increased experimentation.

By 1996, large innovations had occurred and further innovations were therefore more

probable. Conditional on the state of the market at the second semester of 1996, the planner’s

optimal share is twice as large as the atomistic share and provides an average welfare of about

$360,000, about 2% higher than the atomistic average welfare. The solid line in Figure 14

indicates average welfare for different assignment rates above the atomistic share in 1996,

45To find the optimal rate of trial participation, for each rate, we simulate the evolution of the market
1000 times and average per person lifetime utility over all simulations.
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showing that the maximum is roughly 19%, compared to the atomistic rate of 9%. At rates

between 9% and 19% the gain from increased participation outweighs individual losses due

to experimentation. However, at rates above 19%, average welfare drops precipitously. This

is because individuals are assigned to trials who face larger losses relative to their optimal

choice, and the returns to additional experimentation are not large enough.

To measure the magnitude of the externality in 1996, we compute the net social benefit

from assigning the marginal consumer, to a trial. This is the consumer who would otherwise

choose something else, but who faces the smallest lifetime utility loss from assignment to

a trial. This is equivalent to computing the derivative average welfare with respect to the

trials share, evaluated at the atomistic share. We find that the marginal consumer loses

roughly $600 (Table 11). However, because trial participation spurs innovation by pushing

up the expected quality and the expected number of new products, the net social gain is

over $2,000 per person. In our sample of 445 individuals in 1996, this means that a $600

loss from raising trial participation by 1 person (roughly 0.22 percentage points) leads to a

welfare gain of roughly $1,000,000.46

These results suggest a substantial externality. However, it is doubtful that a government

agency would attain the necessary information to rank individuals by unobservable utility

and thus be able to minimize losses. Moreover, there are ethical concerns if a government

body ever attains the authority to assign individuals to clinical experimentation. As history

has shown, who is sent to experimentation depends heavily on the weights allocated to

individuals of a given group in the social welfare function (Harris et al., 1996).

A more realistic and ethical solution would be to provide economic incentives for individ-

uals to participate in clinical trials. We study a flat subsidy that is paid to all participants in

clinical trials, including individuals who would have chosen to join a trial absent a subsidy.

When using a flat subsidy to induce more experimentation in clinical trials, the government

agency faces an increasing cost per participant. The reason is that the amount needed to

attract the highest-cost participant must be paid to all enrollees. Figure 14 shows that the

optimal share attained through a flat subsidy is 13.5%, which is substantially lower than

the optimal trial share of the informed planner of 18.5% (Table 11). The subsidy needed to

induce this level of experimentation is $8,500 per trial participant. Despite these costs, the

flat subsidy increases average lifetime utility (net of the subsidy) to $357,000 which is about

1% above the atomistic average value of $354,000 or about $3,000 per person. Therefore,

our results suggests that providing monetary incentives for trial participation can be welfare

improving.

46Since the line in Figure 14 is fairly bumpy, we use a fifth degree local smoothing polynomial to evaluate
the marginal gains.
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8 Conclusion

We build a structural model to assess how consumer choices affect the evolution of technol-

ogy in the market for HIV drugs. We capture several mechanisms through which consumer

demand affects innovation, including experimentation with new drugs by participating in

clinical trials, which accelerates innovation. By joining a trial, individuals gain access to

experimental products that may be high-quality breakthroughs, but may also be less effica-

cious or painfully toxic. Additionally, consumer decisions can bend the technological path

if firms avoid innovating around unpopular products. Because individuals are atomistic, an

externality arises.

Our results show that consumer behavior can slow the process of innovation and bend

it towards less efficacious products that hamper survival probabilities. They also show that

atomistic individuals sometimes engage in levels of experimentation that are not welfare

maximizing. We explored these issues by considering constrained planner problems, which

provides lower bound measures for the size of the externality. We find that a constrained

planner can increase average welfare by around two percent (approximately $6,000 per in-

dividual). Additionally, we show that welfare-enhancing levels of trial participation can be

achieved using a flat subsidy. In other words, our results suggest that providing monetary

incentives for trial participation can be welfare improving.

Given our data, we have focused on how demand and consumer heterogeneity affect the

path of technological progress. Other studies have placed more emphasis on the supply side

(Carranza, 2010; Goettler and Gordon, 2011; Gowrisankaran and Rysman, 2012). A natural

step forward, although by no means a simple one, is to model competition among firms and

firm decisions to innovate by investing in R&D, while also maintaining an acceptable level of

consumer heterogeneity and a role for demand pull. This approach would allow for a richer

set of counterfactual policies that incorporate the interaction between consumer demand and

firm strategic behavior.
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9 Figures and Tables

Table 1: Summary Statistics: Subjects. Visit 14-47 (1990-2007)

Restricted Sample

Subjects 1719

mean std dev
Black 0.22
Hispanic 0.09
White 0.68
High School 0.14
Some College 0.29
College 0.34
More than College 0.23
Died 0.40
Died Conditional 0.20
Ever Take Market Product 0.83
Ever Take Trial Product 0.24
Ever Work 0.74
Ever Not Work 0.68
Age in 1991 36.04 (8.72)

Notes: Standard deviation in parentheses. Data for unique individuals. Ever Market Product stands for ever
consumed a market product during the period from visit 14 to visit 47. Similar definition holds for Ever Trial
Product. Died Conditional is the proportion of individuals who died conditional on surviving until year 1995.
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Table 2: Summary Statistics: Subjects-Visits. Visits 14-47 (1990-2007)

Analytic Sample Pre Haart Post Haart
Obs 16851 6972 9879
Ailments 0.43 0.45 0.41
Market Product 0.65 0.49 0.76
Trial Product 0.07 0.09 0.05
Work 0.63 0.70 0.58
Age 44.48 40.89 47.01

(8.03) (6.99) (7.75)
CD4 475 407 524

(297) (298) (287)
Gross Income 17567 19036 16531

(8787) (8733) (8677)
Out-of-pocket Pay 266 179 327

(706) (598) (767)

Notes: Standard deviation in parentheses. Income and Out-of-pocket are semestral and measured in real dollars of
2000. Pre HAART era corresponds to visit <= 24 or (roughly) year <= 1995.

Table 3: Innovation Components

Conditional Mean of Innovations ν∗

Health Innovation ν∗hrt+1 Ailments Innovation ν∗xrt+1

coef. se coef. se
TrialsSharet 433.11 (19.95) 1.93 (0.34)
Constant -24.14 (1.47) -0.15 (0.03)

Covariance Matrix of the Distribution of Innovations Fν
Health NoAilments

coef. se coef. se
Health 396.07 (27.85)

NoAilments 1.77 (0.34) 0.14 (0.01)
Notes: Top panel corresponds to estimates from equation (3). Bottom panel shows the covariance matrix of the
distribution of innovations. In parentheses, standard errors computed using subsampling with 100 subsamples.
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Table 4: Distribution of Number of New Products, FN

coef. se
µ
Qt 0.432 (0.074)

TrialsSharet−1 6.177 (0.495)
lnα

Constant -0.206 (0.051)
Qt -1.019 (0.139)

Notes: Model specified in (5). The variableQt measures the distance between the previous period’s new products and
the previous period’s centroid. It captures the relatively higher number of new products that follow the appearance
of better innovations. The variable TrialsSharet−1 is the share of individuals going into a trial the previous period.
According to the model in (5), E[Newt+1] = µt and V ar[Newt+1] = µt(1 + αµt). In parentheses, standard errors
computed using subsampling with 100 subsamples.

Table 5: Utility Parameters, yit

parameter variable coef. se
α4w Clusterit ·Whitei -3.546 (0.744)
α4b Clusterit ·Blacki -4.190 (0.762)
α4l Clusterit ·Hispanici -3.967 (0.958)
α4a Clusterit · Ageit−1 0.043 (0.011)
α4h Clusterit ·Healthit−1/103 -2.021 (0.423)
α5w Trialit ·Whitei -1.468 (0.280)
α5b Trialit ·Blacki -2.553 (0.334)
α5l Trialit ·Hispanici -1.585 (0.356)
α5a Trialit · Ageit−1 0.032 (0.005)
α5h Trialit ·Healthit−1/103 -2.461 (0.203)
α6w Stayit ·Whitei 0.502 (0.567)
α6b Stayit ·Blacki 0.276 (0.613)
α6l Stayit ·Hispanici 0.707 (0.454)
α6a Stayit · Ageit−1 0.009 (0.007)
αxp NoAilmentsit ·NoProductit 1.019 (1.767)
αm GrossIncomeit −OutPocketPayit 0.057 (0.057)

Notes: Estimation of equation (13). Discount factor β = .95. Clusterit indicates whether the individual chose one
of the three clusters of products available. Trialit indicates whether he chose a trial treatment. Stayit indicates
whether he decided to continue using the same treatment he used last period. NoProductit indicates whether he
did not consume a product. Healthit−1 is defined as the number of white blood cells per cubic millimeter of blood.
In parentheses, standard errors computed using subsampling with 100 subsamples.
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Table 6: Gross Income, mit

variable coef. se
hit−1 0.018 (0.001)

h2
it−1/103 -0.064 (0.007)
h3
it−1/107 1.138 (0.171)

h4
it−1/1010 -1.030 (0.213)
h5
it−1/1014 4.854 (1.414)
h6
it−1/1018 -11.270 (4.712)
h7
it−1/1020 0.101 (0.062)
ait−1 0.482 (0.034)
a2
it−1 -0.006 (0.0004)

black -5.534 (0.115)
hispanic -4.167 (0.222)

some college 2.497 (0.141)
college 5.812 (0.157)

more than college 8.203 (0.151)
lit 5.738 (0.074)
xit 0.207 (0.024)

constant -2.095 (0.801)
Notes: Estimation of equation (15). Random effects regression of gross-income on covariates. mit is measured in
thousands of real dollars of 2000. Health is given by the CD4 count measured in hundreds of cells per microliter.
In parentheses, standard errors computed using subsampling with 100 subsamples.
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Table 7: Tobit Model for Out-of-pocket Payments, oit

variable coef. se
hit−1 -0.002 (0.0004)

h2
it−1/103 0.009 (0.002)
h3
it−1/107 -0.133 (0.032)

h4
it−1/1010 0.090 (0.029)
h5
it−1/1014 -0.266 (0.118)
h6
it−1/1018 0.279 (0.181)
ait−1 0.037 (0.004)
a2
it−1 -0.0002 (0.0001)

black -0.240 (0.014)
hispanic -0.119 (0.016)

some college 0.169 (0.016)
college 0.318 (0.018)

more than college 0.336 (0.018)
market product 0.429 (0.016)
trial product 0.313 (0.021)

lit−1 0.105 (0.009)
xit -0.122 (0.008)

constant -1.459 (0.099)

σo 0.862 (0.027)
Notes: Estimation of equation (16). MarketProductit =

∑4
k=1 dkit. Out-of-pocket Payments oit are measured on

thousands of real dollars of 2000. Health is given by the CD4 count measured in hundreds of cells per microliter.
In parentheses, standard errors computed using subsampling with 100 subsamples.

Table 8: Logit Model for Labor Supply, lit

variable coef. se
hit−1 0.009 (0.0003)

h2
it−1/103 -0.013 (0.001)
h3
it−1/107 0.075 (0.005)

h4
it−1/1010 -0.013 (0.002)
ait−1 0.102 (0.009)
a2
it−1 -0.001 (0.0001)

black -0.168 (0.025)
hispanic -0.040 (0.044)

some college 0.312 (0.031)
college 0.537 (0.029)

more than college 0.613 (0.033)
lit−1 4.458 (0.028)

constant -5.914 (0.190)
Notes: Estimation of equation (17). Health is given by the CD4 count measured in hundreds of cells per microliter.
In parentheses, standard errors computed using subsampling with 100 subsamples.
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Table 9: Logit model for Death, 1− Sit+1

variable coef. se
hit−1 -0.028 (0.001)

h2
it−1/103 0.079 (0.005)
h3
it−1/107 -1.104 (0.102)

h4
it−1/1010 0.704 (0.088)
h5
it−1/1014 -1.610 (0.285)
ait−1 -0.116 (0.021)
a2
it−1 0.002 (0.0002)

black -0.509 (0.069)
hispanic 0.034 (0.076)

some college 0.060 (0.057)
college -0.353 (0.053)

more than college -0.512 (0.060)
xit -1.140 (0.050)

constant 1.682 (0.474)
Notes: Estimation of equation (21). Health is given by the CD4 count measured in hundreds of cells per microliter.
In parentheses, standard errors computed using subsampling with 100 subsamples.

Table 10: Constrained Planner: Assignment Rules

Groups
Group Share 0.50 0.26 0.05 0.19

Average Welfare ($1000) highH, nop/trial highH, mk lowH, nop/trial lowH, mk

Top ten rules

351.99 6 7 7 6
351.41 6 7 6 6
350.89 6 4 7 6
350.88 6 4 6 6
349.42 6 7 6 7
349.31 6 7 3 6
349.11 6 7 1 6
348.92 6 4 5 6
348.79 7 4 5 7
348.65 6 7 6 4

...
Atomistic 346.11 7 7 7 7

...

Bottom ten rules

169.72 1 5 5 5
169.32 3 5 6 5
169.17 3 5 7 5
168.96 3 5 1 5
168.11 1 5 6 5
167.56 1 5 2 5
167.55 3 5 5 5
167.37 1 5 1 6
167.19 1 5 3 6
166.23 1 5 3 5

Notes: Best and worst assignment rules of a one-time constrained planner that solves her assignment problem in
1991. Groups are determined by health status (high or low) and previous treatment status (consumed a market
treatment or not). The population shares of each of the groups are shown on top of their labels. Numbers 1 to 3
correspond to the three clusters available in 1991. Number 4 corresponds to staying in previous market treatment.
Number 5 stands for trial and 6 stands for no treatment. Finally, number 7 stands for individually optimal choice;
in other words, the planner renounces to her right to impose a choice and lets the individual in the group decide
based on their richer information set.
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Table 11: Constrained Planner: Optimal Experimentation

Planner optimal trial share 0.100 0.185
Atomistic trial share 0.102 0.092
Average lifetime utility at planner solution 345 360
Average lifetime utility at atomistic equilibrium 345 354
Increment in trial share for marginal person sent to trials at atomistic equilibrium 0.001 0.002
Individual loss for marginal person sent to trials at atomistic equilibrium -0.178 -0.628
Social gain from sending marginal person to trials at atomistic equilibrium -1133 1051
Cost to attain marginal increment (at atomistic equilibrium) using flat subsidy - 26.4
Flat subsidy optimal share - 0.135
Subsidy per trials participant - 8.50
Average lifetime utility at flat subsidy optimal share - 357

Notes: Constrained planner’s problem solved at the first semester of 1991 and the second semester of 1996. Monetary
values in $1,000s.
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Figure 1: Death rate in the sample. More than 1500 surveyed individuals died for
AIDS-related causes during our analysis period.

53



30
0

40
0

50
0

60
0

cd
4

1991 1996 2001 2006
Year

Non Takers Market Takers
HAART Introduction

(a)

30
40

50
60

%

1991 1996 2001 2006
Year

Non Takers Market Takers
HAART Introduction

(b)

Figure 2: Health and side effects summary trends over time. Panel 2(a) shows the mean
CD4 over time by consumption status. Panel 2(b) contains mean ailments over time by
consumption status.
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Figure 3: Consumer demand over time. Panel 3(a) shows treatment consumption over
time by health status. Panel 3(b) shows trial participation over time by health status.
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Figure 4: Diffusion of Products Over Time

Notes: HIV treatments from 1984 to 2008. Each id—or row—represents a product. Color indicates the share of the
market that the product captures. Shares are conditional on consuming a product. Early on there are few products
with high shares, as time passes new products strip market share from incumbents and less popular products exit.
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Figure 5: Treatment Evolution

Notes: Figure shows snapshots of the evolution of the state of the product market at the different stages. Products
are two-dimensional. On the x-axis is a measure of a treatments ability to not cause side effects. On the y-axis is a
measure of its contribution to underlying health. Dimensions are measured in different scales. Incumbent products
are shown in black. New products are shown in red. Withdrawn products are shown as x. The green square is a
measure of the prevalent technology in the previous period.

56



0

0.005

50

0.01

1.5

0.015

1

0.02

Health

0
0.5

No Ailments

0.025

0
-0.5-50

-1

Figure 6: The Distribution of Innovations, Fν .

Notes: Fν is estimated non-parametrically from the realized innovation vectors νk implied by equations (2) and (3).

57



0 2 4 6 8 10
number of new products

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
r

data predicted

Figure 7: Distribution of Number of New Products
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of the predicted probabilities using the estimated parameters in Table 4.
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Figure 8: Health Effect on Future Health and Outcomes

Notes: CD4 Count measured in hundreds of cells per microliter. LOR stands for log odds ratio. Semestral income
measured in thousands of dollars of 2000.
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Notes: Simulated and empirical choice rates over time.
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Figure 10: Distribution of Technology Paths: Consumers

Notes: 100 simulated paths conditional on the state of the world at 1991 and 1996.
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Figure 11: Distribution of Technology Paths: Technology and Product Consumption

Notes: 100 simulated paths conditional on the state of the world at 1991 and 1996.
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Figure 12: Alternative Regimes: Exogenous Scientific Intervention

Notes: Figure shows differences across regimes in terms of the average quality of products in the market. The
baseline is the estimated model where products are dropped in response to low demand. In the frontier regime all
dominated products in terms of quality are exogenously dropped from the market every period. The thick frontier
sets the exit rate of products at the average baseline rate and exogenously drops the worst products. Statistics are
computed from 500 simulations that are conditional on the state of the world at the first semester of 1991.
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Figure 13: Alternative Regimes: Random Choice

Notes: Alternative choice regimes are: (i) baseline and (ii) random choice. The baseline regime is the estimated
model where individuals make optimal dynamic choices. Individuals in the random choice regime select randomly
using the aggregate shares on the baseline model to randomize. Averages computed from 500 simulations that are
conditional on the state of the world at 1991.
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Figure 14: Optimal Assignment to Clinical Trials with a Flat Subsidy

Notes: The solid line represents the average welfare generated by a constrained planner in the second semester of
1996 that sends individuals to trials according to a rank based on how individuals like going to trials relative to
their individually optimal choice. The dashed line indicates the average cost of using a flat subsidy to induce a given
level of trial participation over the atomistic share. The dotted line indicates the planner’s optimal share.
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A Data Appendix

Beginning in 1984, the Multi-Center AIDS Cohort Study (MACS) started gathering infor-

mation regarding natural and treated histories of HIV infection in homosexual and bisexual

men. The study is conducted in Baltimore, Chicago, Pittsburgh and Los Angeles. At each

semi-annual visit, data are collected on demographics, psychosocial characteristics, sexual

behavior, and antiretroviral (AV henceforth) drugs consumption and trial participation. In

addition, blood tests are administered to measure health status and serostatus (whether the

individual is HIV+). Data collection started with 4,954 men enrolled. Two more enrollments

have taken place: one in 1987-1991 (668 additional men) and another in 2001-2003 (1,350

additional men). We only use data from the first two enrollments. Since data is semi-annual

each period t corresponds to 6 months.

Health (hit−1): at every visit individuals undertake a physical examination that includes

a blood sample which provides a measure of underlying health status: the individual’s CD4

count. We denote as hit−1 the CD4 count at of the individual at the start of period t.

According to the official U.S. government’s website for HIV:47

The CD4 count is [...] a snapshot of how well your immune system is func-

tioning. CD4 cells (also known as CD4+ T cells) are white blood cells that fight

infection. [...] These are the cells that the HIV virus kills. As HIV infection

progresses, the number of these cells declines. When the CD4 count drops below

200 [cells per microliter] due to advanced HIV disease, a person is diagnosed with

AIDS. A normal range for CD4 cells is about 500-1,500.

Labor supply (lit−1): whether the individual worked full time (35 hours or more) during

period t.

Income (mit): starting at visit 14, individuals answer the question “Which of the fol-

lowing categories describes your annual individual gross income before taxes?” For visit 14,

categories are brackets that increase every $10,000 and are censored by the last category

“$70,000 or more.” For visits 15 to 35 the brackets are censored at $50,000 and for visits

36 to 41 the brackets are censored at $60,000. We censor at $50,000 to obtain a uniform

question over time. Then we assign the middle point to individuals in the bracket. For the

highest bracket we assign the upper limit ($50,000). In our model gross income is divided

by two since our periods are half-years. Gross income as well as out-of-pocket payments

(below) are in constant dollars of 2000.

47See https://www.hiv.va.gov/patient/diagnosis/labs-CD4-count.asp
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Out-of-pocket payments (oit): starting at visit 14, individuals are asked a version of the

following question “Please, estimate the TOTAL out-of-pocket expenses that you or other

personal sources (your lover, family or friends) paid for prescription medications since your

last visit.” This question is open so values are not categorized.

Ailments (xit): starting at at visit 4, individuals are asked about physical symptoms.

We focus on unusual bruises lasting at least two weeks, unintentional weight loss of at least

10 pounds, fatigue, diarrhea, fever, night sweats, and tender/enlarged glands. The last 5

ailments must be felt for at least 3 days during the period. Although individuals are asked

explicitly about side effects starting at visit 13, we choose not to use this part of the data

because it lacks consistency over time and more importantly, because individuals are most

likely unable to correctly distinguish between side effects and symptoms. Thus, in our model

xit takes the value of 1 if an individual reports having any of the problems mentioned above.

Race (bi) and Age (ait): individuals are either white, black or hispanic, and their age at

the beginning of period t, ait, increases by half a year every period.

A.1 Products and Product Components

Starting at visit 6 individuals are asked about their medication. From visit 13 forward,

as the number of treatments available increase, they answer separate survey modules for

antiretroviral drugs (ARVs) and non antiretroviral drugs (NARVs). We focus on ARVs since

these are the drugs used to treat HIV infection. Since our analysis entails estimating the

health and ailments of people using different treatments, we focus on observations where

individuals have reported a treatment along with their current and previous health (hit and

hit−1), as well as their ailments (xit).

Trial Products. Individuals are asked to name specifically which drugs they took as well

as whether or not they took the drug as part of a research study. In the original data, some

of the reported drugs are themselves coded as trials. We regard these instances as individuals

participating in trials. If an individual consumes one of his drugs as part of a trial we regard

the individual as consuming a trial product in that period.

Market Products. We define a market product as a combinations of components where

no component is consumed in trial. For instance one product is AZT and another is AZT

plus 3TC plus ddI. This definition results from noting that the sum of effects of consuming

an individual drugs does not equal the effect of a treatment formed by the sum of the drugs

because the interactions between components matter. Table S1 describes the individual

components of market products and their usage. Some components in the original data

are themselves fixed-dose combinations of other components (Table S2). In our sample, if
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individual i is consuming the fixed-dose combination (A+B) and individual i′ is consuming

components A and B, we assign consumers i and i′ to the same treatment. Finally, we recode

and add all uncoded components (96 observations) to the “Other ARVs” category.

Appendix Table S1: Product Components

Component Chemical Formula Observations
Isoprinosine C52H78N10O17 87
Ribavirin C8H12N4O5 62
Interferons (α and β) 210
Foscarnet CH3O5P 92
AZT C10H13N5O4 7436
ddC C9H13N3O3 1123
AL-721 egg lecithin 147
Dextran-Sulfate H(C6H10O5)xOH 65
Acyclovir C8H11N5O3 2550
ddI C10H12N4O3 3069
d4T C10H12N2O4 3807
Nevirapine C15H14N4O 2210
Delavirdine C22H28N6O3S 176
3TC C8H11N3O3S 5250
Saquinavir C38H50N6O5 1279
Ritonavir C37H48N6O5S2 3230
Indinavir C36H47N5O4 2255
Nelfinavir C32H45N3O4S 1278
Kaletra C37H48N4O5 1883
Abacavir C14H18N6O 1549
Agenerase C25H35N3O6S 372
Efavirenz C14H9CIF3NO2 3362
Adefovir C8H12N5O4P 44
Enfuvirtide (T-20) C204H301N51O64 160
Tenofovir C9H14N5O4P 2488
Emtricitabine C8H10FN3O3S 263
Atazanavir C38H52N6O7 1583
Lexiva C25H36N3O9PS 418
Etravirine C20H15BrN6O 155
Darunavir C27H37N3O7S 315
Raltegravir C20H21FN6O5 384
Ampligen Double-stranded RNA compound 25
Peptide T C35H55N9O16 30
DTC C5H10NS2Na 10
CD4 2
Other protease 31
Vistide (cidofovir) C8H14N3O6P 2
Tipranavir (PNU-140690) C5H10NS2Na 30
Other ARVs 158

Notes: Source: Wikipedia (November, 2014). The Observations column indicates how many individuals in the sample used
the combination component as part of a treatment.

Our definition of market products, as combinations of drug components, generates 1, 835

different treatments. We reduce the number of market products using the following algo-

rithm:
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Appendix Table S2: Combination Components

Name Combination Observations
Combivir AZT + 3TC 2673
Trizivir AZT + 3TC + Abacavir 778
Truvada Emtricitabine + Tenofovir 1933
Epzicom Abacavir + 3TC 724
Atripla Efavirenz + Emtricitabine + Tenofovir 968

Notes: The Observations column indicates how many individuals in the sample used the drug as part of a treatment.

1. We select a set of “core market products” as those treatments that have more than

40 observations in the sample.48 We acknowledge that our definition of core market

products is biased against treatments appearing near the end of the time period studied.

We address this issue by excluding the last 4 periods of data. Our core market products

are listed in Table S3 which shows that there are 70 core market products overall

and they have at most five components. Out of 20,142 subject-visit observations of

consumers taking market products, 13,767 are covered by treatments classified as core

market products.

2. We code the remaining 6,375 subject-visit observations of consumers taking a non-core

market product as core market products. Each step sequentially assigns the remaining

observations that were not assigned in previous steps.

(a) Non-core market product A is assigned to core market product B if B is the core

market product with the highest number of components that is contained by A. Of

the remaining 6,375 subject-visit observations of non-core market products, this

rule assigns 2,963 uniquely and leaves 3,412 with no unique assignment (1,647

that were assigned to multiple core market products plus 1,765 that were not

assigned to any core market product).

(b) If assigned to multiple core market products in Step (a):

i. First, we use the past history of the individual. If at period t the individual is

consuming non-core market product W that was assigned to both core market

products A and B in Step (a), and he was observed consuming core market

product A in period t − 1, then his treatment at t is assigned uniquely as

A. We repeat this procedure until no further gains are obtained. Out of the

remaining 1,647 subject-visit observations assigned to multiple core market

products, 428 are assigned uniquely in this step.

ii. Second, we use the future history of the individual. If at period t the indi-

vidual is consuming non-core market product W that was assigned to both

48We tried different minimum observations criteria and product classification did not change substantially.
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core market products A and B in Step (a), and he was observed consuming

core market product B in period t + 1, then his treatment at t is assigned

uniquely as B. We repeat this procedure until no further gains are obtained.

Out of the remaining 1,219 subject-visit observations assigned to multiple

core market products, 274 are assigned uniquely in this step.

iii. Third, we use the core market product with the highest share at t. If at period

t the individual is consuming non-core market product W that was assigned

to both core market products A and B in Step (a), and treatment A’s market

share at t is greater than B’s, his treatment at t is assigned uniquely as A.

This final step assigns uniquely the remaining 945 subject-visit observations

assigned to multiple core market products.

(c) If not assigned to a core market product in Step (a): we regard all 1,765 subject-

visit observations as “fringe treatments” since they do not contain any core market

product. We aggregate all fringe treatments that appear at period t into one single

“fringe mix,” and assign to it all users consuming this product over time. We

only consider fringe mixes that have at least 40 users. This reduces the number

of observations by 345 (which represents 1.6% of the number of observations of

treatment consumers). This aggregation leads to 16 fringe mixes that we pool

with the set of core market products, which amounts to a total of 86 market

products overall.

3. In the paper we specified that a treatment gets withdrawn from the market if it has

zero share for 2 consecutive periods. However, in the data, a treatment may have zero

share for more than 2 consecutive periods and then reappear again. 78 out of 86 core

market products have unique spells without “reappearance.” We regard the remaining

treatments with multiple spells as measurement error and follow the next procedure

to ensure that treatments have unique spells without reappearance. For every core

market product B with reappearance:

(a) We identify all spells that treatment B has in the data. Notice that under this

definition a single spell may contain some periods with zero share.

(b) From those spells we select the one that contains the period in which treatment

B’s share was the highest. We drop all observations of individuals consuming

market product B in other spells.

Out of 19,797 (20,142-345) subject-visit observations of consumers taking market prod-

ucts, this smoothing procedure drops 42 observations leaving 19,755 subject-visit ob-
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servations of consumers taking market products. As evidence of the relevance of the

spells selected by this procedure the maximum share in the selected spell is on average

about 24 times larger that the maximum share in other spells of the same market

product.49 Table S3 presents our market products as well as their entry and exit dates

implied by this spell smoothing procedure.

B Model Appendix

B.1 k-means Clustering Algorithm

Our k-means clustering algorithm approximates the solution of the following objective func-

tion:50

min
1{k∈g}k∈Pt |Gt

Gt∑
g=1

∑
k∈Pt

1 {k ∈ g}
∥∥∥θ̃k − θ̃ck∥∥∥2

s.t.
∑
g∈Gt

1 {k ∈ g} = 1 for all k ∈ Pt (S1)

where the centroid of cluster k, θ̃ck, is defined as

θ̃ck =

∑
k∈Pt 1 {k ∈ g} θ̃k∑
k∈Pt 1 {k ∈ g}

(S2)

We implement the following version of the k-means algorithm. At every period t:

1. We select the products for which the exit switching rule has not been applied. In other

words, we select products that are still available for people to switch into at period t.

Denote this set of products available for clustering at t, At.

2. In order to keep comparability we re-scale the characteristics of all products available

for clustering at t by computing

θ̃r =
θr

maxδ∈At |δr|
, for r = h, x (S3)

49We also tried (i) selecting the spell with the highest average share and (ii) selecting the spell with the
highest sum of shares. All criteria result in very similar entry and exit dates so we stick to the maximum-share
criteria.

50See Duda and Hart (1973) and Andrew W. Moore’s K-means and Hierarchical Clustering tutorial at
http://www.cs.cmu.edu/∼awm/tutorials.html.
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Appendix Table S3: Market Products

Market Product Haart Entry Exit Market Product Haart Entry Exit
AZT 0 1987 S1 - ddI , d4T, Nevirapine 1 1997 S2 -

Interferons (α and/or β), AZT 0 1987 S2 1995 S2 ddI , 3TC, Nelfinavir 1 1997 S2 -
AL-721 egg lecithin 0 1987 S2 1991 S2 ddI , d4T, Efavirenz 1 1998 S2 2008 S1

AZT, Acyclovir 0 1989 S2 2000 S1 3TC, Abacavir, Efavirenz 1 1998 S2 -
Acyclovir 0 1989 S2 2000 S1 AZT, Nevirapine, 3TC, Abacavir 1 1999 S1 -

AZT, Acyclovir, ddI 0 1990 S1 1997 S1 AZT, 3TC, Abacavir, Efavirenz 1 1999 S1 -
Acyclovir, ddI 0 1990 S1 2000 S1 AZT, 3TC, Efavirenz 1 1999 S1 -

AZT, ddC 0 1990 S1 2001 S2 AZT, 3TC, Abacavir 0 1999 S1 -
AZT, ddI 0 1990 S1 2004 S2 d4T, 3TC, Efavirenz 1 1999 S1 2006 S1

ddI 0 1990 S1 - Nevirapine, 3TC, Abacavir 1 1999 S2 -
AZT, ddC, Acyclovir, ddI 0 1991 S1 1997 S1 d4T, 3TC, Kaletra 1 2001 S1 2006 S1

AZT, ddC, Acyclovir 0 1991 S1 1999 S2 3TC, Kaletra, Abacavir 1 2001 S2 -
AZT, ddC, ddI 0 1991 S1 1995 S2 AZT, 3TC, Kaletra 1 2001 S2 -
ddC, Acyclovir 0 1991 S1 1997 S2 AZT, 3TC, Kaletra, Abacavir 1 2002 S1 -

ddC 0 1991 S1 1999 S1 3TC, Abacavir, Efavirenz, Tenofovir 1 2002 S1 -
d4T 0 1993 S1 - AZT, 3TC, Abacavir, Tenofovir 1 2002 S1 -

AZT, Acyclovir, 3TC 0 1994 S2 2000 S1 AZT, 3TC, Kaletra, Tenofovir 1 2002 S1 -
AZT, 3TC 0 1995 S1 - Nevirapine, 3TC, Tenofovir 1 2002 S1 2007 S1

Acyclovir, d4T, 3TC 0 1995 S2 2000 S1 3TC, Kaletra, Tenofovir 1 2002 S1 -
AZT, 3TC, Saquinavir 1 1996 S1 2005 S1 Kaletra, Efavirenz, Tenofovir 0 2002 S1 -

d4T, 3TC 0 1996 S1 - 3TC, Efavirenz, Tenofovir 1 2002 S1 -

AZT, 3TC, Saquinavir, Ritonavir 1 1996 S2 -
AZT, 3TC, Kaletra, Abacavir,

Tenofovir
1 2002 S2 -

AZT, Acyclovir, 3TC, Indinavir 1 1996 S2 2000 S1 ddI , Kaletra, Tenofovir 1 2002 S2 -
Acyclovir, d4T, 3TC, Indinavir 1 1996 S2 2000 S1 ddI , Efavirenz, Tenofovir 1 2002 S2 -
AZT, 3TC, Ritonavir, Indinavir 1 1996 S2 2006 S2 Abacavir, Efavirenz, Tenofovir 1 2002 S2 -
d4T, 3TC, Ritonavir, Indinavir 1 1996 S2 2006 S2 Kaletra, Abacavir, Tenofovir 1 2002 S2 -

d4T, 3TC, Saquinavir, Ritonavir 1 1996 S2 2004 S2 3TC, Ritonavir, Abacavir, Atazanavir 1 2003 S2 -
ddI , d4T, Indinavir 1 1996 S2 2004 S2 Efavirenz, Tenofovir, Emtricitabine 1 2003 S2 -

d4T, 3TC, Indinavir 1 1996 S2 2008 S1
Ritonavir, Efavirenz, Tenofovir,

Emtricitabine, Atazanavir
1 2004 S1 -

AZT, 3TC, Indinavir 1 1996 S2 -
3TC, Ritonavir, Abacavir, Tenofovir,

Atazanavir
1 2004 S1 -

d4T, Nevirapine, 3TC 1 1997 S1 - ddI , Ritonavir, Tenofovir, Atazanavir 1 2004 S1 -

AZT, Nevirapine, 3TC 1 1997 S1 -
Ritonavir, Tenofovir, Emtricitabine,

Atazanavir
1 2004 S1 -

AZT, 3TC, Nelfinavir 1 1997 S1 - Nevirapine, Tenofovir, Emtricitabine 1 2004 S1 -
ddI , d4T, Nelfinavir 1 1997 S1 2005 S2 Kaletra, Tenofovir, Emtricitabine 1 2004 S2 -

d4T, 3TC, Nelfinavir 1 1997 S2 -
Ritonavir, Tenofovir, Emtricitabine,

Lexiva
1 2005 S1 -

Fringe Mixes

Isoprinosine, Ribavirin, Interferons (α
and/or β)

0 1987 S1 1992 S1
Nevirapine, 3TC, Ritonavir, Kaletra,

Tenofovir
0 2003 S1 -

Interferons (α and/or β), 3TC,
Saquinavir, Indinavir, Efavirenz

0 1997 S1 2007 S1
3TC, Ritonavir, Kaletra, Abacavir,

Tenofovir, Atazanavir
0 2004 S1 -

Nevirapine, 3TC, Saquinavir,
Ritonavir, Indinavir

0 1997 S2 2006 S2
Ritonavir, Tenofovir, Emtricitabine,

Atazanavir, Lexiva
1 2004 S2 -

Nevirapine, 3TC, Saquinavir,
Ritonavir, Nelfinavir

0 1998 S1 2006 S2
Saquinavir, Ritonavir, Tenofovir,

Emtricitabine, Atazanavir
1 2005 S1 -

Nevirapine, Saquinavir, Ritonavir,
Abacavir, Efavirenz

1 1999 S1 2005 S2
3TC, Ritonavir, Abacavir, Tenofovir,

Atazanavir, Lexiva
1 2005 S2 -

Nevirapine, Ritonavir, Nelfinavir,
Abacavir, Efavirenz

0 1999 S2 -
Saquinavir, Ritonavir, Abacavir,

Tenofovir, Emtricitabine
1 2007 S1 -

Nevirapine, Ritonavir, Kaletra,
Abacavir, Efavirenz

0 2001 S2 2008 S2
3TC, Ritonavir, Tenofovir,
Emtricitabine, Raltegravir

1 2008 S1 -

Nevirapine, 3TC, Nelfinavir, Abacavir,
Tenofovir

1 2002 S2 -
Ritonavir, Tenofovir, Emtricitabine,

Darunavir, Raltegravir
1 2008 S2 -

Notes: Entry and exit dates implied by the smoothing of spells in Step 3 of the algorithm used to reduce market products in
Section A.1. S1 and S2 indicate the semester within a year. Many products had not exited by the end of the sample. The
Haart column indicates whether a market product is a member of the Highly Active Antiretroviral Treatment class. For

Fringe Mixes we only include the 5 or 6 most used products in the mix.

72



Thus, by construction θ̃r ∈ [−1, 1].

3. We select the first k centroids using the scaled characteristics vectors θ̃ of k randomly

selected products from At .

4. We allocate all remaining products in At to clusters sequentially. At each step the

product selected for allocation is the one whose scaled characteristics θ̃ are closest to

one of the existing clusters. This point is then allocated to the closest cluster and the

centroid of the cluster is updated. This process is repeated until all points are allocated

to a cluster.

5. We undertake a reallocation step in which, taken the centroids as given, all points are

allocated to their closest centroid.

6. We calculate the value of (S1) for the current allocation.

7. We repeat 200 times Steps 3 to 6 using the scaled characteristics θ̃ of different groups

of k randomly selected products in At as initial centroids. The allocation with the

lowest value of (S1) is chosen. In estimation, whenever we simulate clusters we only

repeat the process 50 times.

B.2 Timing

The aggregate state in period t is denoted Ξt and consists of current and previous product

characteristics Pt, previous market shares St, and the distribution of current-period consumer

characteristics Ft. Together, these factors determine a summary of the state of technology

ωt, entry (the number of new products and their characteristics), and exit of products that

are withdrawn from the market prior to the start of next period.

The consumer observes his individual state Zit, along with his choice set Ct, upon enter-

ing period t. His state consists of individual-level components zIit (e.g., health) along with

aggregate market components zMit . When choosing an alternative, he takes account of how

each choice affects current outcomes (e.g., side effects, income) and future states (e.g., health,

labor participation). He also forecasts the characteristics of future alternatives, which may

affect the relative payoffs to his current choice. The consumer’s choice of treatment max-

imizes his expected discounted lifetime utility. Once a consumer makes a choice, outcome

variables are realized and he receives his flow utility. Thereafter, their state variables update

and the consumer enters the next period. The timing of the problem is illustrated in Figure

S1.
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Appendix Figure S1: Timing

Supply

Agg. State Experiments Entry Exit Update
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Withdrawnt
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Ξt+1 = {Pt+1, St+1,Ft+1}

Pt+1 = {Pt+1,Pt,Pt−1}

St+1 = {st, st−1}

Demand

State Choices Utility Forecast Transitions

Zit ≡ 〈zit, εit〉

zit ≡
〈
zIit, z

M
t

〉 Wt = fD1 (Pt)

choose j ∈ Cit

yjit + εjit Ct+1

Wt+1

Zi,t+1 ≡ 〈zi,t+1, εi,t+1〉

zi,t+1 ≡
〈
zIi,t+1, z

M
t+1

〉

C Estimation Appendix

C.1 Product Characteristics

We estimate market product characteristics using data on individual treatment usage and

subsequent health and ailments. The estimation equations mimic equations (19) and (20),

which individuals use to form expectations over their health and ailments conditional on

their choice. The key difference is that here our aim is to obtain characteristics of each

market product. Let δrit be an indicator that market product r was used by individual i at

time t. The characteristics of market product r are denoted

θr =
{
θxr , θ

h
r

}
∈ R2 (S4)

The components of θr are estimated as the coefficients of δrit in the health and no-ailments

regressions

Pr [xit = 1|·] =
exp

(∑5
m=0 γ

x
mh

m
it−1 +

∑
r θ

x
r δrit

)
1 + exp (·)

(S5)

hit =
5∑

m=0

γhmh
m
it−1 +

∑
r

θhr δrit + εit (S6)
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Estimation of equations (S5) and (S6) also provides the vectors of parameters γx and γh to

be used in equations (19) and (20).

C.2 Proof of Proposition 1

The proof of Proposition 1 boils down to the representation of the conditional value function

vjit in terms of future utility flows induced by all available choices, weighted by the future

probabilities of those choices and corrected by the fact that the choice may not be optimal.

Notably, the weighted average of corrected flow payoffs of a given period is discounted by

the probability of survival up to that period conditional on today’s state and choice, as

well as conditional on optimal behavior. To decrease notation baggage, drop the individual

subindex i. Let do denote optimal behavior, dokt be an indicator for choice k being optimal at

t, and let St+r (zt+r) and Dt+r (zt+r) be as in equation (21). The conditional value function

is given by

vjt(zt) = Ey [yjt|zt] + βE [V (zt+1, εt+1) |zt, j]

= Ey [yjt|zt] + βE

St+1 (zt+1)Eε

 ∑
k∈Ct+1

dokt+1 (zt+1) [ykt+1 (zt+1) + ψkt+1 (zt+1)]

∣∣∣∣∣∣ zt, j


+β2E [St+1 (zt+1)V (zt+2, εt+2) |zt, j, do]

= Ey [yjt|zt] + βE

St+1 (zt+1)
∑

k∈Ct+1

pkt+1 (zt+1) [ykt+1 (zt+1) + ψkt+1 (zt+1)]

∣∣∣∣∣∣ zt, j


+β2E [St+1 (zt+1)V (zt+2, εt+2) |zt, j, do]

= Ey [yjt|zt] + βE

St+1 (zt+1)
∑

k∈Ct+1

pkt+1 (zt+1) [ykt+1 (zt+1) + ψkt+1 (zt+1)]

∣∣∣∣∣∣ zt, j


+β2E

St+1 (zt+1)St+2 (zt+2)
∑

k∈Ct+1

pkt+2 (zt+2) [ykt+2 (zt+2) + ψkt+2 (zt+2)]

∣∣∣∣∣∣ zt, j, do


+β3E [St+1 (zt+1)St+2 (zt+2)V (zt+3, εt+3) |zt, j, do]

= Ey [yjt|zt] +
T∗∑
s=1

βsE

( s∏
r=1

Dt+r (zt+r)

) ∑
k∈Ct+1

pkt+s (zt+s) [ykt+s (zt+s) + ψkt+s (zt+s)]

∣∣∣∣∣∣ zt, j, do


+βT
∗+1E

 T∗∏
r=1

Dt+r (zt+r)

V (zt+T∗+1, εt+T∗+1)

∣∣∣∣∣∣ zt, j, do
 (S7)

That

ψkit (zit) = γ − ln (pkit (zit)) (S8)

follows from the joint distribution of the taste shifter εit, which is Extreme Value Type-I.

Q.E.D.
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C.3 GMM Estimation

In order to form the sample analog of the moment condition in (26) we use the results from

Proposition 1 to obtain a simulated version of the conditional value function truncated at

T ∗ for each individual i and choice j at every period t. The truncated conditional value

function is

Ey [yjit|zit] +
T∗∑
s=1

βsE

( s∏
r=1

Dit+r (zit+r)

) ∑
k∈Cit+1

pkit+s (zit+s) [ykit+s (zit+s) + ψkit+s (zit+s)]

∣∣∣∣∣∣ zit, j, doi
 (S9)

Let NS denote the number of simulated technology paths for each observation (subject-

visit) and let the superscript ns be a simulation index. For individual i and decision j at

period t we write the simulated counterpart of equation (S9) as

1

NS

∑
ns

Ey [ynsjit|zit] +

T∗∑
s=1

βs

( s∏
r=1

Dit+r
(
znsit+r

)) ∑
k∈Cns

it+1

dnskit+s
(
znsit+s

) [
ynskit+s

(
znsit+s

)
+ ψnskit+s

(
znsit+s

)]
 (S10)

The forward simulation depends on the current individual state zit, the current aggregate

state Ξit, and the current choice j. For a given vector of parameters of the utility function,

simulation must be undertaken NS times for each individual i available at period t for all

J choices, which amounts to NS × T × N × J simulations. Further, notice that within

each of those individual simulations we must simulate optimal paths for all N individuals

in order to obtain the aggregate behavior and technological paths. In other words, we must

simulate NS × T × N × J × N individual paths. Given our data this amounts to about

NS × 33 × 1669 × 6 × 1669 = NS × 551, 541, 078 individual paths of length T ∗. Because

this is too computationally taxing, we instead implement the following procedure. We first

simulate one path of aggregate behavior unique to every observation (subject-visit) in the

data, which allows us to construct as many paths of technological innovation as there are

observations. Notice that this entails forward simulating the choices of all individuals in

the sample at period t for every individual observed at t. Then, because individuals are

atomistic, for each observation i at period t and choice j we generate sequences of future

choices and payoffs taking as given a subset of NS = 20 artificial technological paths chosen

at random from the already generated subset of technological paths that start at date t.51

Let v̄kit (zit) denote the truncated simulated conditional value function in equation (S10),

let o denote a base choice, and let δit be an indicator of whether individual i is in the data

51Notice that we could rely on Hotz et al. (1994) and set NS = 1 and still obtain consistency. However,
we choose NS = 20 after trying different values for robustness.
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at period t. The sample analog of the moment condition in (26) is

1∑
i

∑
t δit

N∑
i=1

T∑
t=1

δitw (zit)⊗



...

ln
(
poit(zit)
p1it(zit)

)
+ v̄1it(zit)− voit(zit)

...

ln
(

poit(zit)
pJ−1it(zit)

)
+ v̄J−1it(zit)− voit(zit)

...


= 0 (S11)

C.3.1 Simulation of Aggregate Paths

In order to obtain v̄kit (zit) we first create the set of simulated technological paths following

the steps bellow for each individual i at period t taking as given their observed choice j,

their current state zit, and the current aggregate state Ξit:

1. Let s = 1.

2. Number of new products. Simulate a number of new products at t + s, Newnst+s, using

the stochastic process for entry in (5).

3. Characteristics of new products. If Newnst+s > 0, for each simulated new product draw

simulated product characteristics using equations (2) and (3). As a by-product of steps

1 and 2 obtain Qns
t+s using equation (6).

4. Exit. For all incumbent products, apply both exit rules described in Section 3 (overall

exit and exit for switchers). Old products minus exits plus simulated new products

yields the simulated set of products in t+ s, Pnst+s.

5. Clusters. From the simulated set of products Pnst+s that have not exited for switchers,

form clusters Gnst+s following the clustering algorithm explained in Appendix Section B.

Compute moments of the simulated clusters, denoted W ns
t+s.

6. Centroid. If s = 1, Pnst+s−1 ≡ Pt. Compute the simulated centroid ωnst+s using equation

(1). Steps 2 through 6 provide the aggregate part of the simulated state, zM,ns
t+s . Denote

the future choice set induced by the simulated evolution of products as Cnst+s.

7. Future individual state. For all individuals i′ at t: (i) If s = 1, define hnsi′t+s−1 ≡ hi′t+s−1

and dnsi′t+s−1 ≡ di′t+s−1. If 1 < s < T ∗, simulate health at the beginning of t + s,

hnsi′t+s−1, using equation (20). This entails drawing a health shock εh,nsi′t+s−1 and using

the previous choice dnsi′t+s−1 and when necessary the realization of the within cluster
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treatment assigned at t + s − 1. If dnsi′t+s−1 is the trial alternative, draw trial-product

characteristics for computing equation (20) using equations (2) and (3). (ii) Draw a

simulated labor state lnsi′t+s using equation (17). (iii) Compute deterministic transitions

(e.g. age). This step yields the individual-specific part of the simulated state zI,nsi′t+s.

8. CCPs and simulated choice. For all individuals i′ at t: using zM,ns
t+s , zI,nsi′t+s, and equations

(S26), (S27) and (S28) compute simulated ccps pnski′t+s
(
znsi′t+s

)
for every alternative

k ∈ Cnst+s and draw a decision dnsi′t+s
(
znsi′t+s

)
.

9. Cycle back. If s = T ∗ end the loop. Otherwise, let s = s+ 1 and go back to Step 2.

As a result from this algorithm we obtain as many simulated technological paths as there

are observations in the data. Denote the set of simulated paths starting at t as Tt.

C.3.2 Simulation of Individual Paths

Since individuals are atomistic and we want to minimize simulation error, for each individual

i at period t and choice j we generate NS sequences of future choices and payoffs taking as

given a subset of NS = 20 artificial technological paths chosen at random from Tt. Hence,

for each individual i at period t for choice j and artificial technological path ns we take the

following steps:

1. Let s = 1.

2. Future individual state. Same as above but only for individual i. When j is not equal

to the observed choice for individual i at period t a state must be simulated when s = 1

as well.

3. Survival probability. Compute the simulated probability of surviving up to t + s − 1

as52

s−1∏
r=1

Dit+r

(
znsit+r

)
(S12)

4. CCPs and simulated choice. Same as above but only for individual i.

52We do not simulate dead and instead weight the individual future payoffs by his simulated probability
of survival.
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5. Static payoff. (i) Simulate expected income using equation (15).53 (ii) Simulate ex-

pected out-of-pocket payments using equation (16).54 (iii) Simulate the expected

probability of no-ailments using equation (19) and the relevant distribution of prod-

uct characteristics implied by the simulated choice dnsit+s. For instance, whenever the

choice is a cluster, use the within cluster weights. (iv) Compute expected flow payoffs

ynsit+s
(
znsit+s, d

ns
it+s

)
using equation (13). (v) Compute the correction term ψit+s

(
znsit+s, d

ns
it+s

)
using equation (25).

6. Cycle back. If s = T ∗ end the loop. Otherwise, let s = s+ 1 and go back to Step 2.

C.3.3 Initial Counterfactual State and Payoff

When simulating the path following choice j′ 6= j, where j is the observed choice at t, we also

need to simulate health at the beginning of period t + s for s = 1 and current payoffs. We

back out the realized health residuals using equation (S6) and use equation (20) to simulate

health hnsit . If individual i was in a trial in period t we do not observe the characteristics of

the trial product ex post, so we draw a health shock as well as trial product characteristics

to simulate health.

In order to obtain current-period simulated expected payoffs Ey[y
ns
j′it|zit] for counterfactual

choice j′ we need expected income, out-of-pocket payments, and ailments. Whenever j′

corresponds to a cluster alternative we use the within cluster distribution of characteristics

to compute expected ailments. For out-of-pocket payments we need the realized error term

of the out-of-pocket payment equation (16) at t given by

ε̂oit = o∗jit −Xo
jitθ

o (S13)

However, we only observe o∗jit if o∗jit > 0. Hence, if o∗jit ≤ 0, we draw a simulated error εo,nsit

from a truncated normal conditional on εo,nsit ≤ −Xo
jitθ

o.

53Even though individuals know their idiosyncratic income shocks εmit we do not need to simulate these
shocks as they are iid, have mean zero, and enter linearly in the flow utility, which results in them averaging
out to zero in the moment condition.

54Defining Xo,ns
it+s

(
dnsit+s

)
as in equation (16):

E
[
oit+s

(
dnsit+s

)∣∣ dnsit+s] = Φ
(
Xo,ns
it+s

(
dnsit+s

)
θo/σo

)
Xo,ns
it+s

(
dnsit+s

)
θo + σoφ

(
Xo,ns
it+s

(
dnsit+s

)
θo/σo

)
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C.3.4 Estimator

We use a GMM estimator to obtain the parameters of the utility function. Define B as the

K−dimensional vector of parameters of the utility function. Following Hotz et al. (1994) we

estimate B as the vector that maximizes the following objective function

(
(NT )−1

N∑
i=1

T∑
t=1

δitw (zit)⊗Ait(zit, B)

)′
Wn

(
(NT )−1

N∑
i=1

T∑
t=1

δitw (zit)⊗Ait(zit, B)

)
(S14)

Ait(zit, B) ≡



...

ln
(
poit(zit)
p1it(zit)

)
+ v̄1it(zit)− voit(zit)

...

ln
(

poit(zit)
pJ−1it(zit)

)
+ v̄J−1it(zit)− voit(zit)

...


(S15)

where Wn is a square weighting matrix. Using the linear structure of the utility function in

equation (13) we collect and factor terms in order to write the jth component of the vector

Ait(zit, B) as the linear form

ỹjit − x̃′jitB (S16)

Define Y as a vector with (J − 1)NT rows that stacks all ỹjit, and X as a (J − 1)NT ×K
matrix that stacks all x̃jit. Define Z as the NT × R matrix whose columns contain the
R instruments orthogonal to the difference in alternative representations of the conditional
value functions.55 Thus

Y =



ỹ1,1,1

ỹ1,1,2
...

ỹ1,N,T−1

ỹ1,N,T
...

ỹJ−1,1,1

ỹJ−1,1,2
...

ỹJ−1,N,T−1

ỹJ−1,N,T



, X =



x̃1,1,1,1 . . . x̃1,1,1,K

x̃1,1,2,1 . . . x̃1,1,2,K
...

...

x̃1,N,T−1,1 . . . x̃1,N,T−1,K

x̃1,N,T,1 . . . x̃1,N,T,K
...

...

x̃J−1,1,1,1 . . . x̃J−1,1,1,K

x̃J−1,1,2,1 . . . x̃J−1,1,2,K
...

...

x̃J−1,N,T−1,1 . . . x̃J−1,N,T−1,K

x̃J−1,N,T,1 . . . x̃J−1,N,T,K



, Z =


w (z11)1 . . . w (z11)R
w (z12)1 . . . w (z12)R

...
...

w (zNT )1 . . . w (zNT )R



(S17)

55Hence Wn is a (J − 1)R-dimensional square matrix.
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Finally, let I[J−1] be a (J − 1)-dimensional identity matrix and define

Z̃ = I[J−1] ⊗ Z (S18)

Then we can write the objective function in (S14) as(
(NT )−1 Z̃ ′ (Y −XB)

)′
Wn

(
(NT )−1 Z̃ ′ (Y −XB)

)
(S19)

Equation (S19) is a linear arrangement so we can obtain a close form solution for B̂ as the

optimal GMM estimator. It entails a first stage estimator given by

B̂1S =
(
X ′Z̃Z̃ ′X

)−1 (
X ′Z̃Z̃ ′Y

)
(S20)

and a second stage estimator given by

B̂2S =
(
X ′Z̃Ŝ−1Z̃ ′X

)−1 (
X ′Z̃Ŝ−1Z̃ ′Y

)
(S21)

where

Ŝ =
1

N∗
Z̃ ′DZ̃ (S22)

andD is theN (J − 1) square diagonal matrix with diagonal elements û2
jit =

(
yjit − x′jitB̂1S

)2

.

The variance-covariance matrix of the second stage estimator is

V̂ 2S = N∗
(
X ′Z̃Ŝ−1Z̃ ′X

)−1

(S23)

and

N∗ =
N∑
i=1

T∑
t=1

J−1∑
j=1

1 {decision j available for i at t} (S24)

which accounts for the fact that some individuals cannot stay in their lagged treatments at

some periods (for instance, if their lagged choice was no treatment or a trial product).

We use as instruments lagged health hit−1, lagged labor state lit−1, income fixed effect

ηi, race and education indicators, age ait−1, the centroid ωt and the lagged share of trial

participation, as well as interactions between these variables.

C.4 Standard Errors

The uncorrected standard errors for our utility parameters yield from the variance-covariance

matrix in equation S23. In order to obtain corrected standard errors we undertake subsam-
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pling taking as given the following objects obtained from the full sample: the definition of

products (i.e. what their components are, for instance, AZT or AZT + ddI), their corre-

sponding entry and exit dates, and the exit thresholds σ̃1 and σ̃2 specified in Section 3. We

draw R = 100 subsamples containing a proportion p̃ = 0.9 of the individuals in the sample

drawn without replacement, and estimate all parameters in the model using each subsample.

This includes estimating product characteristics, parameters governing transition and out-

come processes, and simulating forward paths of technology to obtain utility parameters. For

any parameter γ with estimated value γ̂r from the rth subsample, the subsampling standard

errors are obtained as

se(γ̂) ≈ se(γ̂r) ·
√
p̃ (S25)

where se(γ̂r) is estimated as the standard deviation of the R quantities γ̂r.

C.5 Estimated CCPs

The probability that an individual chooses one of the alternatives depends on the individual

and aggregate elements of his state. Individuals decide between one of G clusters, yesterday’s

product (if any), a trial product, and no product. Let Wjit be the characteristics describing

alternative j for individual i at period t: mean health, mean ailments, and the variance

matrix. Let WjitWjit denote a vector of interactions between the elements of Wjit. Let x̃it

and z̃it be subsets of the individual-specific components of the state.56 Let ωtWjit denote a

vector of interactions between the centroid and the elements of Wjit. Similarly, let Wjitz̃it be

a vector of interactions between the components of Wjit and individual-specific state com-

ponents and let ωtWjitz̃it be defined in a similar fashion. Finally, let F̃t denote a set of non

parametric moments describing the joint distribution of aggregate characteristics, Ft.57 For

each of the alternatives, the CCPs are expressed as follows:

Cluster ccps (j = 1, . . . ,G)

pjit =
exp

(
γ0x̃it + β0Wjit + β1WjitWjit + β2ωtWjit + β3Wjitz̃it + β4ωtWjitz̃it + β5WjitF̃t

)
1 +

∑G+2
k=1 exp (·)

(S26)

γ0 is constant across clusters and over time. For a given cluster j and period t, Wjit is in

fact constant across individuals so Wjit = Wjt.

56z̃it includes hit−1, ait−1, bi, lit while x̃it includes a constant, ait−1, bi.
57We specify these moments as shares of people with different sets of characteristics.
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Trial ccps (j = G + 1)

pjit =
exp

(
γj x̃it + β0Wjit + β1WjitWjit + β3Wjitz̃it + β5WjitF̃t

)
1 +

∑G+2
k=1 exp (·)

(S27)

For the trial alternative, Wjit is constant across individuals so WG+1it = WG+1t. Since

some of the components of Wjt are linear functions of ωt−1 + µν (see equation (2)) we avoid

collinearity by not including terms ωtWjt and ωtWjtz̃it in the trials ccps.

Staying ccps (j = G + 2)

pjit =
exp

(
γj x̃it + β0Wjit + β1WjitWjit + β2ωtWjit + β3Wjitz̃it + β4ωtWjitz̃it + β5WjitF̃t

)
1 +

∑G+2
k=1 exp (·)

(S28)

When individuals choose to stick to their previous product WG+2it becomes heterogeneous

as individuals may have consumed different products last period.

No product ccps (j = 0)

pjit = 1−
G+2∑
k=1

pkit (S29)

Although the characteristics of the choice set are non stationary, by interacting our time-

varying regressors z̃it with the characteristics of the choice for individual i, Wjit, we are

able to control for the state of the world inside the ccps. By following this approach avoid

estimating period-specific logits for the ccps. Notably, this procedure gives us ccps for any

simulated world as long as our observed worlds cover the space of possible worlds reasonably

well. Additionally, we include in the ccps parameters that are invariant to the state of the

technology, denoted γ, which capture stationary taste differences between staying in a choice

(when possible), trying a new market product, going to a trial, or not consuming anything.

Also, since conditional on cluster characteristics all clusters are equivalent to “trying a new

market product” we impose γj = γj′ = γ0 for any j, j′ = 1, . . . ,G. Figures S2, S4, and

?? display the mean predicted conditional choice probability using equations (S26) to (S29)

over time against the correspondent share of the population who chose the alternative. Our

ccps map the choices in the data fairly well.58

58We further explore the fit of our ccp estimates comparing the relatives shares that clusters received in
reality against the predictions from our estimated ccps. We ranking the three clusters at every period by
the share they received and compare this ranking against the ranking obtained from our estimated ccps. A
cross tabulation of these rankings suggests that the predicted ranks match the real ranks in about 80% of
the periods.
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Appendix Figure S2: Average CCPs for Staying
Notes: The figure shows the average estimated conditional choice probability against the share of people choosing the

alternative. Dashed lines represent 95% confidence intervals around the predicted CCPs. Three periods of special relevance
are highlighted in the Figure: two periods during which enrollment into the sample was undertaken and the period in which

products belonging to the HAART class were introduced.

Appendix Figure S3: Average CCPs for Trial
Notes: The figure shows the average estimated conditional choice probability against the share of people choosing the

alternative. Dashed lines represent 95% confidence intervals around the predicted CCPs. Three periods of special relevance
are highlighted in the Figure: two periods during which enrollment into the sample was undertaken and the period in which

products belonging to the HAART class were introduced.

D Results Appendix

D.1 Utility Parameters
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Appendix Figure S4: Average CCPs for No Product
Notes: The figure shows the average estimated conditional choice probability against the share of people choosing the

alternative. Dashed lines represent 95% confidence intervals around the predicted CCPs. Three periods of special relevance
are highlighted in the Figure: two periods during which enrollment into the sample was undertaken and the period in which

products belonging to the HAART class were introduced.
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Appendix Table S4: Utility Parameters, yit

parameter variable coef. uncorrected se se
α4w Clusterit ·Whitei -3.546 (0.179) (0.744)
α4b Clusterit ·Blacki -4.190 (0.190) (0.762)
α4l Clusterit ·Hispanici -3.967 (0.647) (0.958)
α4a Clusterit · Ageit−1 0.043 (0.004) (0.011)
α4h Clusterit ·Healthit−1/103 -2.021 (0.104) (0.423)
α5w Trialit ·Whitei -1.468 (0.136) (0.280)
α5b Trialit ·Blacki -2.553 (0.142) (0.334)
α5l Trialit ·Hispanici -1.585 (0.300) (0.356)
α5a Trialit · Ageit−1 0.032 (0.003) (0.005)
α5h Trialit ·Healthit−1/103 -2.461 (0.078) (0.203)
α6w Stayit ·Whitei 0.502 (0.130) (0.567)
α6b Stayit ·Blacki 0.276 (0.145) (0.613)
α6l Stayit ·Hispanici 0.707 (0.354) (0.454)
α6a Stayit · Ageit−1 0.009 (0.002) (0.007)
αxp NoAilmentsit ·NoProductit 1.019 (0.260) (1.767)
αm GrossIncomeit −OutPocketPayit 0.057 (0.010) (0.057)

Notes: Estimation of equation (13). Discount factor β = .95. Clusterit indicates whether the individual chose one
of the three clusters of products available. Trialit indicates whether he chose a trial treatment. Stayit indicates
whether he decided to continue using the same treatment he used last period. NoProductit indicates whether he
did not consume a product. Healthit−1 is defined as the number of white blood cells per cubic millimeter of blood.
In parentheses, uncorrected standard errors and corrected standard errors computed using subsampling with 100
subsamples.

D.2 Product Characteristics

Tables S6 and S5 present the estimates of equations (S5) and (S6). Table S5 is an exhaustive

list of estimated product characteristics and Table S6 presents the health parameters of both

equations.59 Table S7 presents estimates of the process determining within cluster weights,

given by equations (9) and (10).

59In separate exercises not shown here we run several versions of equations (S5) and (S6) using lower and
higher degree polynomials. A fifth degree polynomial seems to be the best fit for the data.
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Appendix Table S5: Product Characteristics

Ailments, θx Health, θh Ailments, θx Health, θh

Market Product coeff se coeff se Market Product coeff se coeff se
AZT -0.500 (0.020) -12.004 (0.736) ddI , d4T, Nevirapine 0.753 (0.175) 44.240 (3.781)

Interferons (α and/or β), AZT -0.600 (0.061) -55.796 (3.102) ddI , 3TC, Nelfinavir -0.810 (0.083) 47.816 (6.848)
AL-721 egg lecithin -0.433 (0.087) -19.655 (3.917) ddI , d4T, Efavirenz -0.626 (0.078) 41.280 (2.772)

AZT, Acyclovir -0.539 (0.050) -12.752 (1.670) 3TC, Abacavir, Efavirenz 0.108 (0.047) 53.341 (1.501)
Acyclovir -0.783 (0.047) -0.017 (2.678) AZT, Nevirapine, 3TC, Abacavir 0.038 (0.131) 39.379 (3.369)

AZT, Acyclovir, ddI -0.851 (0.037) -16.474 (1.497) AZT, 3TC, Abacavir, Efavirenz 0.348 (0.080) 78.914 (3.549)
Acyclovir, ddI -0.348 (0.043) -4.159 (2.479) AZT, 3TC, Efavirenz 0.342 (0.079) 43.526 (3.073)

AZT, ddC -0.439 (0.029) -5.155 (1.309) AZT, 3TC, Abacavir -0.442 (0.078) 54.824 (3.175)
AZT, ddI -0.571 (0.061) -16.615 (2.488) d4T, 3TC, Efavirenz -0.346 (0.069) 47.978 (3.876)

ddI -0.375 (0.071) 15.263 (2.587) Nevirapine, 3TC, Abacavir -0.470 (0.099) 17.866 (12.148)
AZT, ddC, Acyclovir, ddI -0.789 (0.115) -13.351 (7.73) d4T, 3TC, Kaletra -0.310 (0.123) 35.611 (5.199)

AZT, ddC, Acyclovir -0.514 (0.086) -13.186 (2.168) 3TC, Kaletra, Abacavir -0.934 (0.124) 51.570 (5.325)
AZT, ddC, ddI -1.440 (0.047) -32.700 (1.801) AZT, 3TC, Kaletra -0.655 (0.140) 49.838 (3.967)
ddC, Acyclovir -0.310 (0.093) 2.415 (4.370) AZT, 3TC, Kaletra, Abacavir 0.298 (0.234) 9.855 (9.404)

ddC -0.358 (0.084) -18.630 (3.389)
3TC, Abacavir, Efavirenz,

Tenofovir
-0.308 (0.070) 31.845 (3.848)

d4T -0.717 (0.054) 39.776 (2.210) AZT, 3TC, Abacavir, Tenofovir -0.652 (0.074) 19.273 (5.651)
AZT, Acyclovir, 3TC -0.527 (0.096) 42.267 (3.394) AZT, 3TC, Kaletra, Tenofovir -0.552 (0.067) 32.227 (2.681)

AZT, 3TC 0.064 (0.051) 34.398 (1.875) Nevirapine, 3TC, Tenofovir -0.258 (0.163) 27.246 (4.619)
Acyclovir, d4T, 3TC -0.509 (0.100) 33.792 (4.664) 3TC, Kaletra, Tenofovir -0.092 (0.082) 51.672 (2.709)

AZT, 3TC, Saquinavir -0.271 (0.052) 38.283 (1.992) Kaletra, Efavirenz, Tenofovir -0.966 (0.100) 47.617 (2.684)
d4T, 3TC -0.104 (0.112) 37.173 (4.070) 3TC, Efavirenz, Tenofovir -0.011 (0.108) 47.790 (5.468)

AZT, 3TC, Saquinavir, Ritonavir -0.591 (0.085) 57.776 (10.571)
AZT, 3TC, Kaletra, Abacavir,

Tenofovir
-0.738 (0.141) 19.980 (4.226)

AZT, Acyclovir, 3TC, Indinavir -0.479 (0.056) 63.734 (2.201) ddI , Kaletra, Tenofovir -0.276 (0.112) 18.396 (4.015)
Acyclovir, d4T, 3TC, Indinavir -0.295 (0.108) 78.559 (3.665) ddI , Efavirenz, Tenofovir -0.420 (0.117) 2.381 (2.505)
AZT, 3TC, Ritonavir, Indinavir -0.567 (0.102) 35.032 (6.629) Abacavir, Efavirenz, Tenofovir -0.762 (0.140) 39.457 (3.150)
d4T, 3TC, Ritonavir, Indinavir -0.767 (0.049) 33.510 (3.321) Kaletra, Abacavir, Tenofovir -0.820 (0.198) 14.891 (2.601)

d4T, 3TC, Saquinavir, Ritonavir -0.444 (0.085) 42.631 (5.409)
3TC, Ritonavir, Abacavir,

Atazanavir
-0.061 (0.039) 26.850 (1.181)

ddI , d4T, Indinavir -0.048 (0.137) 32.286 (3.981) Efavirenz, Tenofovir, Emtricitabine 0.118 (0.082) 54.798 (2.464)

d4T, 3TC, Indinavir -0.395 (0.096) 53.128 (4.546)
Ritonavir, Efavirenz, Tenofovir,

Emtricitabine, Atazanavir
0.306 (0.053) 83.823 (1.706)

AZT, 3TC, Indinavir -0.075 (0.066) 65.041 (2.809)
3TC, Ritonavir, Abacavir,

Tenofovir, Atazanavir
-0.403 (0.163) 38.313 (10.521)

d4T, Nevirapine, 3TC -0.386 (0.052) 46.846 (2.962)
ddI , Ritonavir, Tenofovir,

Atazanavir
0.049 (0.108) 47.800 (2.837)

AZT, Nevirapine, 3TC 0.109 (0.087) 46.275 (4.061)
Ritonavir, Tenofovir, Emtricitabine,

Atazanavir
0.138 (0.104) 53.028 (3.940)

AZT, 3TC, Nelfinavir -0.432 (0.072) 50.776 (3.924)
Nevirapine, Tenofovir,

Emtricitabine
-0.205 (0.079) 37.227 (2.303)

ddI , d4T, Nelfinavir -1.049 (0.060) 57.227 (3.672) Kaletra, Tenofovir, Emtricitabine -0.183 (0.093) 46.723 (5.990)

d4T, 3TC, Nelfinavir -0.881 (0.134) 48.018 (9.588)
Ritonavir, Tenofovir, Emtricitabine,

Lexiva
-0.372 (0.116) 30.226 (3.328)

Fringe Mixes

Isoprinosine, Ribavirin, Interferons
(α and/or β)

-1.017 (0.110) -21.950 (6.644)
Nevirapine, 3TC, Ritonavir,

Kaletra, Tenofovir
-1.265 (0.113) 45.683 (4.934)

Interferons (α and/or β), 3TC,
Saquinavir, Indinavir, Efavirenz

-0.054 (0.243) 65.353 (5.179)
3TC, Ritonavir, Kaletra, Abacavir,

Tenofovir, Atazanavir
-0.465 (0.077) 28.440 (2.687)

Nevirapine, 3TC, Saquinavir,
Ritonavir, Indinavir

0.068 (0.134) 6.457 (7.335)
Ritonavir, Tenofovir, Emtricitabine,

Atazanavir, Lexiva
-0.612 (0.142) 42.050 (3.579)

Nevirapine, 3TC, Saquinavir,
Ritonavir, Nelfinavir

-0.689 (0.156) 30.293 (7.841)
Saquinavir, Ritonavir, Tenofovir,

Emtricitabine, Atazanavir
-0.665 (0.120) 31.824 (3.879)

Nevirapine, Saquinavir, Ritonavir,
Abacavir, Efavirenz

-1.121 (0.161) 19.278 (4.112)
3TC, Ritonavir, Abacavir,

Tenofovir, Atazanavir, Lexiva
-0.210 (0.078) 26.678 (5.890)

Nevirapine, Ritonavir, Nelfinavir,
Abacavir, Efavirenz

-0.697 (0.099) 31.044 (4.027)
Saquinavir, Ritonavir, Abacavir,

Tenofovir, Emtricitabine
0.072 (0.142) 32.865 (4.856)

Nevirapine, Ritonavir, Kaletra,
Abacavir, Efavirenz

-0.410 (0.174) 43.495 (5.757)
3TC, Ritonavir, Tenofovir,
Emtricitabine, Raltegravir

0.032 (0.094) 33.352 (2.728)

Nevirapine, 3TC, Nelfinavir,
Abacavir, Tenofovir

-0.467 (0.109) 27.893 (3.250)
Ritonavir, Tenofovir, Emtricitabine,

Darunavir, Raltegravir
-0.221 (0.067) 47.736 (2.929)

Notes: Product characteristics are estimated as indicators for treatment usage using equations (S5) and (S6). Equation (S5) is
a logit model where the independent variable is whether the individual did not suffer ailments during period t. Equation (S6)

is a linear model where the independent variable the CD4 count at the end of period t. In parentheses, standard errors
computed using subsampling with 100 subsamples. For Fringe Mixes we only include the 5 or 6 most used products in the mix.
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Appendix Table S6: Health Parameters of Equations (19) and (20)

Ailments, γx Health, γh

Variables coeff se coeff se
CD4t−1 0.008 (0.0004) 1.152 (0.013)

CD42
t−1/103 -0.013 (0.001) -0.519 (0.043)

CD43
t−1/107 0.109 (0.017) 4.375 (0.546)

CD44
t−1/1010 -0.040 (0.010) -2.016 (0.298)

CD45
t−1/1014 0.054 (0.021) 2.803 (0.546)

Constant -0.929 (0.038) -5.874 (1.350)
Notes: Parameters estimated using equations (S5) and (S6). Equation (S5) is a logit model where the independent variable is
whether the individual did not suffer ailments during period t. Equation (S6) is a linear model where the independent variable

the CD4 count at the end of period t. In parentheses, standard errors computed using subsampling with 100 subsamples.

Appendix Table S7: Within Cluster Weights Function

variable coef. se
Ailments Rk -0.427 (0.124)

Ailments Rk × Health Rk 0.074 (0.020)
Health Rk 2 -0.029 (0.008)
Ailments Rk 2 -0.019 (0.006)

N -0.509 (0.048)
Health Rk × N 0.046 (0.009)
Ailments Rk × N 0.063 (0.010)

Ailments Rk × Health Rk × N -0.007 (0.002)
New -0.352 (0.508)

New × N 0.027 (0.404)
Constant 0.786 (0.121)

Notes: Parameters estimates from equations (9) and (10) which describe a nonlinear regression of shares within a cluster as a
function of product characteristics. Ailments Rk stands for the ranking of the ailments component of the characteristics as

compared to the other treatments within a cluster; Health Rk is defined similarly. N is the number of treatments in the
cluster. New indicates whether the product just entered the market. In parentheses, standard errors computed using

subsampling with 100 subsamples.
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D.3 Alternative Regimes

We explore the consequences of the following alternative regimes on the innovation process:

1. Science regimes. In these regimes we separate the process of innovation from demand.

On the entry margin we transform the centroid to be just a simple average of the

characteristics of products currently available in the market—as opposed to the share

weighted average in the baseline model (see equation (1)). Because this definition

changes the realized innovation values in equation (2), we also estimate new parameters

for equation (3), and new distributions of innovations and number of new products,

which are associated with the realized innovations directly and through Qt in equation

(5). However, since we need a trial participation path to determine the distribution of

the number of new products, we set the trial participation path at the average from

the baseline simulated paths. In this way we keep that part of the comparison constant

relative to the baseline. On the exit margin we exogenously drop products from the

market based on their quality. For this we follow one of two procedures as explained

below:

↪→ Frontier. Any product that is not in the technological frontier is dropped from

the market.

↪→ Thick frontier. The exit rate path is set at the average from the baseline simulated

paths. This exit rate determines the number of products nt to be dropped. Then,

given nt, the products that are dropped from the market are chosen from inside

the thick frontier, which is formed with the following algorithm. Given the set of

products available at t (Pt), define the set I1 ≡ Pt. Then starting from iteration

k = 1, follow the steps:

(a) Build the kth frontier as:

Fk = {θ ∈ Ik : @θ′ ∈ Ik s.t. θ′ ≥ θ} (S30)

(b) Define the new inside set as:

Ik+1 = Ik \ Fk (S31)

(c) If #Ik+1 > nt, set k = k + 1 and go back to Step (a).

(d) If #Ik+1 ≤ nt, drop all products in Ik+1 and randomly drop (nt−#Ik+1) from

Fk. Stop.
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2. Random choice. In this regime we study the evolution of product quality when the

process of innovation responds to demand but demand is random. Random demand

neutralizes the dependence of the technological path on the preferences and character-

istics of consumers without changing the nature of the process on the supply side. In

practical terms, we maintain the definition for the centroid as a share-weighted average

(see equation (1)). As a consequence, the distributions of innovations and number of

new products remain unchanged. Moreover, we aim to avoid a spurious effect of arbi-

trary aggregate shares on the process of innovation. Therefore, instead of allocating

arbitrary unconditional probabilities for each choice (f.i. 1/G for a choice set of size

G), we fix the unconditional probabilities of the random choice regime to match the

unconditional shares in the baseline.

D.4 One-Time Planners

We study the policy decisions of one-time planners that internalize the externalities in our

model but who act only for one period. These planners do not change the regime character-

istics, which allows us to use the conditional choice probabilities obtained in estimation to

construct continuation values induced by the planners’ choices. We do not solve the plan-

ners’ problems analytically. Instead, we search over all possible policy rules and choose the

one that maximizes average utility. This process is computationally burdensome because

we need to simulate forward for each policy rule, and there can be millions depending on

how the state space is sliced. To address this issue we rely on two devices. First, we either

constrain the information the planner has or her choice set. Second, we precompute a set

of continuation values and match them with planner rules using the state induced by the

planner’s rule. Both procedures are further explained below.

D.4.1 Constrained Planners

Information constraint. The first planner we consider is constrained in the amount of infor-

mation she has. This planner can only observe whether a person’s health at the beginning

of the period is high or low and whether the person decided to consume a market treatment

last period (either by staying on his previous market product or by trying a cluster). Hence,

the planner’s policy rules can be based only on four different categories. Using her limited

information, the planner can send individuals to any of the six alternatives available, insofar

as they are feasible for the individual.60 We nest the baseline individually optimal solution by

60The six choices are: three clusters, staying in previous market product, trial treatment and no treatment.
Recall that only people who consumed a market treatment last period get to stay in a market product.
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adding one alternative to the planner’s choice set: we let the planner rely on the individual’s

information by letting the individual choose his optimal treatment given his information.61

Hence, the planner has 7 alternatives and can base her policy rules on 4 categories. Since

only two of the four categories can stay in a previous market treatment, this amounts to

72 × 62 = 1, 764 policy rules. An example of a policy rule is presented in Table S8.

Appendix Table S8: Example of an Information-Constrained Planner’s Policy Rule

Category Alternatives
Health status Product t− 1 Cluster 1 Cluster 2 Cluster 3 Trial Stay No product Free

high yes x
high no x
low yes x
low no x

Notes: Product t− 1 column indicates whether individuals in this category consumed a market product in t− 1 either by
staying on their previous market product or by trying a cluster. Free column indicates that the planner relies on the

individual’s information by letting the individual choose his individually optimal treatment given his information.

Choice constraint. The second planner we consider is constrained in the choices she has.

This planner has full information of the individual’s state but can only do one of two things:

send the person to trials or let the person choose what is individually optimal among the

remaining five alternatives. The policy rules for this planner are levels of trial participation.

Since this planner if fully informed she orders people in terms of who gains/losses the most

from going to trial relative to their second best alternative. Then, for a given policy rule,

she assigns to trials the individuals who like the alternative the most until she reaches the

policy rule’s level of trial participation. This planner problem nests the individually optimal

solution when the planner’s policy rule is exactly the individually optimal share of trial

participation. For policy rules below the individually optimal share of trial participation

the planner incurs a welfare costs by preventing people from joining a trial who wanted to

join. For policy rules above the individually optimal share of trial participation she incurs

a welfare costs by forcing people to join a trial who did not want to join. The welfare gains

come from the externality via experimentation in clinical trials. The number of policy rules

to be evaluated depend on how finely we discretize the increments in trial participation,

which is itself constrained by the number of people in the sample.62 We evaluate policies in

increments of 0.5 percent points, which amounts to 202 policy rules.

61This requires that the individual does not act strategically in respond to his position as a free chooser
relative to people who are assigned choices. Otherwise, the conditional choice probabilities would have to be
adjusted to account for this strategic behavior.

62The minimum increment size possible is 1/N .
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D.4.2 Continuation Values

To facilitate the solution of the planner problems above we avoid forward simulating a number

of continuation values for every rule and averaging over the simulated paths. Instead, we

implement the following steps to reduce computational burden:

1. We create a collection of 500 continuation value vectors (each row in a vector is an

individual) computed for as many next-period states. We denote this collection A,

where each component m ∈ A contains a continuation value Bm and a next-period

associated state Ξm.

2. For each rule n in a given planner problem, we compute each individual’s current payoff

and their future state, as well as the implied aggregated next-period state Ξn
t+1.

3. We match rule n with the continuation value in A corresponding to the next-period

state in A that is closest to Ξn
t+1. In other words, we match rule n with the continuation

value Bm? given by the indicator m that solves:

m? = min
k, Ξk∈A

||Ξn
t+1 − Ξk|| (S32)

We use a measure of Euclidean distance yielding from discretizing the aggregate states

Ξn
t+1 and Ξk into vectors with R = 196 components. We scale each component r in

every aggregate state vector to be between zero and one by dividing over the largest

component r across all vectors.

4. We repeat steps 2 and 3 200 times for every rule n and average over repetitions.

Smoothing. When finding the solution to the problem of the planner who is choosing the

optimal level of trials participation, our method to speed up computation generates some

noise around the mapping from planner rules into average consumer life-time utility (see

Figure S5). Hence, we use a local polynomial to smooth the mapping in an interval starting

at the individually optimal share and going 15 percent points above it (from .09 to .24 in

Figure S5). This produces Figure 14 and the results associated with it in Table 11.
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Appendix Figure S5: Optimal Assignment to Clinical Trials
Notes: The solid line represents the average welfare generated by a constrained planner in the second semester of 1996 that

sends individuals to trials according to a rank based on how individuals like going to trials relative to their individually optimal
choice. The dotted line indicates the individually optimal share. The dashed line indicates the planner’s optimal share.
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