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I. Introduction 

The question of whether environmental regulation hinders economic efficiency has long 

been important and controversial. Today, especially in many rapidly-growing economies, this 

debate attracts much attention and entails significant policy ramifications. On the one hand, 

neoclassical models suggest that environmental regulations will increase production costs, 

create unemployment, and reduce the competitiveness of an economy. On the other hand, 

environmentalists and other proponents of environmental protection argue that stringent 

regulations provide incentives for polluters to develop cleaner and less costly technologies to 

reduce pollution, which can be beneficial to productivity in the long run. Notably, Porter 

(1991) argues that, if one country adopts more stringent environmental standards than a 

competitor, firms in this country will invest more in clean innovations, which in turn will 

enhance the country’s growth.1 

In this study, we estimate the causal effect of environmental regulation on firm 

productivity using a novel spatial regression discontinuity design. We exploit China’s surface 

water quality monitoring system and investigate how tighter water emission controls affect 

the total factor productivity (TFP) of Chinese manufacturing firms. We argue that, because 

water quality monitors can only pick up pollution information from upstream regions, and 

because the readings from the monitors are important for political evaluations, local 

governments have strong incentives to require upstream firms to abate emissions. As a result, 

within a small neighborhood around a water quality monitoring station, upstream firms face 

tighter environmental regulations than downstream firms. By focusing on a narrow 

geographic band that only stretches from a few townships upstream and downstream of each 

surface water monitoring station, we are able to isolate the impacts of water quality controls 

on industrial firms’ productivity from potential confounding factors. Our analysis shows that 

upstream firms in polluting industries have significantly lower TFP as compared to 

downstream firms. 

The identification relies on the assumption that upstream and downstream firms should be 

ex ante identical in the absence of any pollution controls. This identifying assumption likely 

holds because the locations of surface water quality monitoring stations were mainly 

determined by hydrological factors (such as water flow and river width) rather than socio-

                                                 
1 Evidence in favor of Porter’s hypothesis is summarized in a recent review by Ambec et al. (2013). 
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economic factors. Specifically, the Chinese government explicitly requires that water quality 

monitoring stations be established close to existing hydrological stations so that they can 

share certain facilities, to realize economies of scale and to combine water quality and 

hydrological data. Because the hydrological stations were established to monitor hydrological 

conditions rather than industrial conditions, and most of them were established between the 

1950s and 1970s, when China had relatively little industrial pollution, the location choices of 

hydrological monitoring stations should be orthogonal to firms’ economic and environmental 

performance today.  

In addition to the qualitative arguments, we document four primary patterns in the data to 

support the validity of our research design. First, we show that time-invariant socio-economic 

conditions and basic infrastructure measures are well balanced between upstream and 

downstream townships. Second, we find that only firms in polluting industries are affected by 

water quality monitoring, while firms in non-polluting industries are unaffected. Third, we 

analyze the data by year and show that the spatial discontinuity in firms’ TFP in the polluting 

industries only became evident after 2003, when the new political regime of President Hu 

Jintao started to emphasize achieving a balance between economic growth and sustainability. 

Finally, exploiting the fact that many monitoring stations are intentionally located adjacent to 

hydrological stations, we use whether a firm is upstream of a hydrological station as an 

instrumental variable for whether a firm is upstream of a monitoring station, and find 

quantitatively similar results. 

Our findings contribute to the ongoing debate on the economic costs of environmental 

regulations in several important ways. First, although the topic is of tremendous policy 

relevance in developing countries, most studies to date have focused on developed countries 

(e.g., Jaffe et al., 1995; Henderson 1996; Becker and Henderson, 2000; Berman and Bui, 

2001; Greenstone, 2002; Walker, 2011; Greenstone, List, and Syverson, 2012; Ryan, 2012; 

Kahn and Mansur, 2013; Walker, 2013). In this study, we investigate China, the largest 

developing country, manufacturer and emitter in the world, and highlight the potentially 

significant economic costs of environmental regulation in the context of a rapidly-growing 

manufacturing economy.  

Second, in addition to adopting a credible identification strategy, another appealing feature 

of our research design is that we can isolate the TFP effect of regulation from the price effect 

of regulation. Like most studies using firm-level production data, we use revenue-based TFP 

measures because firm-level production data often includes only total revenue and lacks price 
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information. As a result, changes in revenue-based TFP measures often capture a combined 

effect of changes in price and changes in total output.2 In this study, our upstream and 

downstream firms are located so close to each other that they essentially serve the same 

market. Meanwhile, these firms jointly produce only a small proportion of total national 

industrial output, so local water quality monitoring is unlikely to affect aggregated output 

market prices. Because output price remains the same for upstream and downstream firms, 

this implies that the TFP effects estimated in this study are not plagued by the price effect.  

Third, our findings on the heterogeneous effects shed light on how different types of firms 

in China respond to environmental regulations. In particular, we find that the TFP loss is 

almost exclusively experienced by private Chinese firms, so tightening environmental 

regulations in the future is likely to damage the competitiveness of private Chinese firms 

rather than state-owned or foreign firms. We conduct similar analyses separately for old and 

young firms, and find that water quality monitoring affects both old and young firms. In the 

long run, these findings imply a redistribution of production, income, environmental quality 

and social welfare between upstream and downstream regions. Our findings therefore also 

speak to several lines of literature on the impacts of environmental regulation on production 

(Becker and Henderson, 2000), employment (Greenstone, 2002; Walker, 2011), plant 

location choice (List et al., 2003), income and total welfare (Ryan, 2012), and foreign direct 

investment (FDI) (Fredriksson, List and Millimet, 2003; Hanna, 2010; Cai et al., 2016).  

Fourth, we explore the channels through which tighter environmental regulation affects the 

firms, which helps us understand the political economy behind China’s environmental 

regulations. We find that upstream firms need to pay more emission fees and taxes than do 

downstream firms, even though they do not produce more emissions or outputs. This implies 

local governments treat upstream and downstream firms differentially despite the fact that 

they are located close to each other. Facing tighter regulations, upstream firms tend to hire 

more labor and make more capital investment, possibly to abate emissions. Besides, we find 

no evidence that tighter regulation encourages research and development investment. These 

patterns seem consistent with the neoclassical explanations of environmental regulations, 

rather than with the Porter hypothesis (Porter, 1991). Using comprehensive résumé data of 

Chinese governmental officials, we show that political incentives matter. When a city leader 

                                                 
2 Please refer to Greenstone, List, and Syverson (2012) for a discussion on how price mismeasurement may 

bias the estimates.  
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has a higher probability of promotion and thus stronger political incentives, the impacts of 

water quality monitoring on TFP are twice as large. Meanwhile, around monitoring stations 

that are less susceptible to local political influence, i.e., stations that automatically send data 

to the central government, the TFP differences between upstream and downstream firms are 

more salient.  

Finally, understanding the economic costs of environmental regulations is critical for 

optimal policy design. Using a different firm-level dataset that records polluting firms’ 

environmental performance, we further estimate the impacts of water quality monitoring on 

water pollution emissions. We find that both chemical oxygen demand (COD) emissions and 

COD emission intensity (emissions per unit of output) are higher in downstream regions, 

suggesting that the total reduction in emissions comes not only from the upstream reduction 

in output but also from the upstream adoption of cleaner technologies. Combining the TFP 

estimates with the COD estimates, we can calculate the economic costs of tightening water 

pollution regulations. We estimate that a 10% reduction in COD emissions leads to a 2.49% 

decrease in TFP, and that China’s target of reducing total COD emissions by 10% between 

2016 and 2020 would cause a total loss in industrial output value of 990 billion Chinese yuan 

(159 billion US dollars) under current policy design and enforcement practices. These 

estimates imply that environmental quality comes at a cost and this cost should be taken into 

account in optimal environmental policy designs.  

The remainder of this paper is structured as follows. Section II describes the institutional 

background, research design and empirical strategy. Section III describes the data and 

presents descriptive statistics. Section IV presents the estimation results and discusses the 

findings. Section V examines the channels and tests whether emission measures also differ 

across the monitoring stations. Section VI interprets the results and benchmarks their 

economic significance. Section VII concludes the paper. 

 

II. Research Design and Empirical Setup 

A. Water Quality Monitoring and Water Pollution Controls in China 

As the world’s largest developing country, China faces a variety of pressing environmental 

challenges, including prevalent water and air pollution. According to the World Bank (2007), 

roughly 70 percent of China’s rivers were polluted and contained water deemed unsafe for 
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human consumption at the time of that report. Poor surface water quality has driven 

policymakers to propose regulations to protect water bodies and reverse the process of 

degradation. A national water quality monitoring system has been established to monitor 

surface water quality in major river segments, lakes and reservoirs. 

The Ministry of Environmental Protection (MEP) started to monitor surface water quality 

in the 1990s. Initially known as the Bureau of Environmental Protection, the MEP established 

the “National Environmental Quality Monitoring Network-Surface Water Monitoring System” 

(NEQMN-SWMS) in 1993. However, the monitoring system was intended mainly for 

scientific rather than regulatory purposes at the initial stage, and most of the station-level 

monitoring data collected were kept confidential by the government. No strict emission 

abatement targets were set by the Chinese government at the time because economic growth 

was considered the country’s priority. Along with China’s rapid economic growth, the 

country witnessed severe degradation of its ecological systems.  

In 2002, Hu Jintao became the new political leader of China, taking over from Jiang Zemin, 

and held office until 2012. Given the country’s mounting environmental challenges, the new 

president started to emphasize the importance of seeking a balance between economic growth 

and environmental sustainability. Notably, in 2003, President Hu proposed the “Scientific 

Outlook of Development” (SOD)3, which sought integrated sets of solutions to economic, 

environmental and social problems, opening an era of environmental regulation.  

Responding to the SOD slogan, the MEP increased its efforts to resolve the issue of water 

pollution. In 2003, it issued an updated version of NEQMN-SWMS and the “Technical 

Specification Requirements for Monitoring of Surface Water and Wastewater.” These new 

policy documents signaled an expansion of the national surface water quality monitoring 

system and made water pollution control an important political task in the governance system. 

During this period, the total number of state-controlled surface water quality monitoring 

stations in China’s seven major river systems increased from 419 to 574,4 and significant 

resources were allocated to controlling water pollution. Various environmental yearbooks 

started to publish station-level water quality readings in 2003.  

                                                 
3  SOD can be translated as the “Scientific Development Concept” or the “Scientific Development 

Perspective.” 
4 The most recent expansion of the system, under the administration of President Xi Jinping, further increased 

the number of state-controlled monitoring stations to 972 (with 766 for major rivers, and 206 for lakes and 
reservoirs) in 2015.  
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During President Hu’s political regime, the central government adopted a target-based 

abatement system to control environmental pollutants. In particular, during the 11th Five-

Year Plan (2006–2010), the emission abatement targets included (but are not limited to): (1) 

reducing COD emissions by 10% (from 141.4 million tons in 2005 to 127.3 million tons in 

2010), (2) reducing the percentage of monitored water sections failing to meet Grade V 

National Surface Water Quality Standards from 26.1% in 2005 to 22% by 2010, and (3) 

increasing the ratio of monitored water sections (of  the seven main bodies of water in China) 

meeting Grade III National Surface Water Quality Standards from under 41% in 2005 to 43% 

by 2010. 5  With these targets, the central government then allocated binding abatement 

requirements to each province, and provincial governors were required to sign individual 

responsibility contracts with the central government, documenting their emission abatement 

plans in detail. Provincial governors then assigned abatement mandates to prefectures and 

counties and used local environmental performance along with other criteria to assess and 

promote local government officials.  

Because rivers flow from higher to lower elevation, water quality monitoring stations can 

capture emissions only from their upstream areas, but not from downstream areas. Under the 

new political regime, local officials would have strong incentives to enforce tighter 

environmental regulations in upstream regions than in downstream regions. We exploit this 

spatial discontinuity and estimate the causal impact of tighter water pollution regulation on 

productivity. Because the Chinese government did not enforce stringent industrial pollution 

controls until 2003, we expect that, if water quality monitoring indeed influences firm 

productivity, this effect should be weaker before 2003, and become stronger afterward.  

B. Location Choice of Water Quality Monitoring Stations 

The primary target of the national surface water quality monitoring network is to achieve a 

comprehensive understanding of the country’s surface water quality. The monitoring system 

covers the country’s major rivers, important lakes, and reservoirs. A water quality monitoring 

station is required to be spatially representative of its neighborhood water body in order to 

properly reflect changes in water environmental pollutants over time. As a result, the 

locations of the monitoring stations were chosen based mainly on scientific or hydrological 

considerations. 
                                                 
5 Source: http://www.mep.gov.cn/gzfw_13107/zcfg/fg/gwyfbdgfxwj/201605/t20160522_343144.shtml  
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According to the MEP, the monitoring stations must be placed in rivers with steady flows, 

wide water surfaces, and stable river beds, and must avoid stagnant water areas, backwater 

areas, sewage outfalls, rapids and shallow water. The MEP also explicitly requires that 

monitoring stations be established to serve “long-term” purposes, ensuring that short-term 

needs (such as avoiding pollution from a specific region or a specific firm) cannot be 

accommodated.  

Another important requirement of station placement is that monitoring stations should be 

built close to hydrological stations whenever possible, to enable the government to combine 

hydrological parameters with water quality information. Most hydrological stations were 

built in the 1950s-1970s and are used to collect meteorological and hydrological data. 

In this paper, we focus on the state-controlled surface water quality monitoring stations. 

State-controlled stations are established and supervised by the MEP and the State Council of 

China. The water quality readings from the state-controlled stations are reported directly to 

the MEP to ensure data quality. The yearly average water quality readings from the state-

controlled stations are reported in various environmental yearbooks and used to assess the 

environmental performance of local governments.  

Aside from state-controlled stations, there are also local water quality monitoring stations 

and special stations designed to monitor the emissions of major polluters. The special 

monitoring stations are placed immediately downstream from the polluter to monitor its 

environmental performance. We do not have data for these stations.  

C. Research Design and Econometric Model  

We exploit the spatial discontinuity in regulation stringency around water monitoring 

stations to estimate the causal effect of regulation on TFP. The distance from a firm to the 

monitoring station serves as the running variable. We examine whether firms located 

immediately upstream from the monitoring station have lower productivity than adjacent 

downstream firms. The empirical strategy in this study is similar in spirit to recent work that 

also uses the flow of pollution along rivers as a source of identifying variation (Kaiser and 

Shapiro, 2017; Lipscomb and Mobarak, 2017). 

The identifying assumption of our research design is that, due to spatial adjacency, firms 

located immediately upstream and downstream of monitoring stations should be balanced ex 

ante along various dimensions, but will differ from each other when upstream firms become 

more tightly regulated.  
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The discontinuity can be estimated by both parametric and non-parametric approaches. 

Gelman and Imbens (2017) show that the parametric RD approach, which uses a polynomial 

function of the running variable as a control in the regression, tends to generate RD estimates 

that are sensitive to the order of the polynomial and have some other undesirable statistical 

properties. As a result, estimators based on local linear regression or other smooth functions 

are often preferred, because they can assign larger weights to observations that are closer to 

the threshold and therefore can produce more accurate estimates. We thus focus on the non-

parametric RD approach, which can be estimated by the following equation:  

ܨܶ	 (1) ௜ܲ ൌ ௜݊ݓ݋ܦଵߙ ൅ ௜ݐݏ݅ܦଶߙ ൅ ௜ݐݏ݅ܦ௜௝௞݊ݓ݋ܦଷߙ ൅                ௜ߝ

.ݏ   		.ݐ െ ݄ ൑ ௜ݐݏ݅ܦ ൑ ݄ 

where TFPi is the total factor productivity of firm i around a monitoring station. ݊ݓ݋ܦ௜ is an 

indicator variable that equals 1 if firm i is downstream from a monitoring station, and 0 

otherwise. ݐݏ݅ܦ௜ measures the distance between firm i and the monitoring station, and h is the 

bandwidth length (i.e., the acceptable distance from the discontinuity for sample inclusion). 

The choice of h involves balancing the conflicting goals of focusing comparisons near the 

monitoring stations, where the identification assumption is strongest, and providing a large 

enough sample for reliable estimation. In this study, we rely on a MSE-optimal bandwidth h 

proposed by Calonico, Cattaneo, and Titiunik (2014) and Calonico, Cattaneo, Farrell 

(forthcoming) and experiment with different kernel weighting functions.  

To account for location-specific and industry-specific TFP determinants in the non-

parametric estimations, we first absorb station fixed effects and industry fixed effects by 

running an OLS regression of TFP on a set of station-specific and industry-specific dummies, 

and then apply the non-parametric estimations on the residual TFP obtained from OLS 

estimation. This approach is suggested by Lee and Lemieux (2010), who argue that, if there 

is no violation of the RD assumption that unobservables are similar on both sides of the 

cutoff, using a residualized outcome variable is desirable because it improves the precision of 

estimates without violating the identification assumption. 

As a way to check the robustness, we also estimate the RD estimates using the parametric 

approach:  

ܨܶ         (2) ௜ܲ௝௞ ൌ ௜௝௞݊ݓ݋ܦଵߙ ൅ ݂൫ݐݏ݅ܦ௜௝௞൯ ൅ ௜௝௞൯ݐݏ݅ܦ௜௝௞݂൫݊ݓ݋ܦ ൅ ௝ݑ ൅ ௞ߜ ൅  ௜௝௞ߝ
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where TFPijk is the total factor productivity of firm i around a monitoring station j in industry 

k. ݂൫ݐݏ݅ܦ௜௝௞൯ is a polynomial in distance between firm i and monitoring station j in industry k. 

The polynomial function is interacted with the treatment dummy to allow flexible functional 

form on both sides of the cutoff, and ݑ௝ and ߜ௞ are station and industry fixed effects.  

 

III. Data and Summary Statistics 

A. Data 

Our analysis is based on several data files that together provide comprehensive information 

on the socio-economic conditions of townships, the production and performance of firms, and 

emissions from heavy polluters centered around the monitoring stations. 

Water Quality Monitoring Stations 

We collect data from water quality monitoring stations from surface water quality reports 

in various environmental yearbooks from 2003-2010, which include the China Environmental 

Yearbooks, China Environmental Statistical Yearbooks, and China Environmental Quality 

Statistical Yearbooks. Data available in more than two different sources are cross-validated. 

The number of state-controlled monitoring stations varied slightly between years in these 

reports, ranging from 400 to 500 stations. We geocoded all the water quality monitoring 

stations. 

Annual Survey of Industrial Firms Database 

Our firm-level TFP is calculated using data from the Annual Survey of Industrial Firms 

(ASIF) from 2000 to 2007. The ASIF data include all the private industrial enterprises with 

annual sales exceeding 5 million Chinese yuan and all the state-owned industrial enterprises 

(SOEs). The data are collected and maintained by the National Bureau of Statistics (NBS) 

and contain a rich set of information obtained from the accounting books of these firms, such 

as input, output, sales, taxes, and profits.  

The detailed production information allows us to construct TFP measures for each firm in 

each year. There are several approaches to estimating firm-level TFP and each requires 

different assumptions (Van Biesebroeck, 2007). In this paper, we use the consistent semi-

parametric estimator suggested by Olley and Pakes (1996) as the main outcome variable. The 

Olley-Pakes method addresses the simultaneity and selection biases in estimating TFP and is 

widely used in empirical research. The details of estimating TFP using the Olley-Pakes 
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method are discussed in Appendix A. For robustness checks, we also estimate a recently-

developed TFP measure that is proposed by Ackerberg et al. (2015). 

The ASIF data were used in several previous studies. A well-known issue is that the data 

contain outliers. We follow standard procedures documented in the literature to clean the 

data.6  We first drop observations with missing key financial indicators or with negative 

values for value added, employment, and fixed capital stock. We then drop observations that 

apparently violate accounting principles: liquid assets, fixed assets, or net fixed assets larger 

than total assets; or current depreciation larger than cumulative depreciation. Finally, we trim 

the data by dropping observations with values of key variables outside the range of the 0.5th 

to 99.5th percentile.  

The ASIF data have detailed address data for sampled firms in each year. We geocode the 

location of the 952,376 firms that appeared in the sample and then compute precise distance 

measures between each firm and its closest water quality monitoring station. 

Because our research design is fundamentally cross-sectional, despite having multiple 

observations over time for some firms, we collapse the data into cross-sectional data and 

apply the RD estimators to them. The interpretation of the coefficients is therefore an average 

effect that persists for years. To fully utilize the panel structure, however, we also apply non-

parametric RD estimators to different years and examine how the discontinuity changes over 

time.  

Environmental Survey and Reporting Database 

To investigate whether water quality monitoring indeed reduces water-related emissions, 

we collect firm-level emission data from China’s Environmental Survey and Reporting (ESR) 

database, which is run by the MEP.  

The ESR database is the most comprehensive environmental dataset in China that provides 

firm-level (polluting-source level) emissions for various pollutants. The ESR database 

monitors polluting activities of all major polluting sources, including heavily polluting 

industrial firms, hospitals, residential pollution discharging units, hazardous waste treatment 

plants and urban sewage treatment plants. In this study, we keep only the ESR firms that are 

in the same polluting industries as the ASIF firms.  

                                                 
6 More details about the construction and cleaning processes of the ASIF data can be found in Hsieh and 

Klenow (2009), Songet et al. (2011), Yu (2015), and Huang et al. (forthcoming). 
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The sampling criteria in the ESR is based on the cumulative distribution of emissions in 

each county. Polluting sources are ranked based on their emission levels of different “criteria 

pollutants,” and those jointly contributing to the top 85% of total emissions in a county are 

included in the database. In this study, we use ESR data between 2000 and 2007, the same 

period as the ASIF database.  

During our sample period, the “criteria pollutants” changed over time. In 2000, only 

chemical oxygen demand (COD) emissions and sulfur dioxide (SO2) were “criteria 

pollutants.” Polluting sources included in the database were therefore chosen based on their 

contributions to COD emissions or SO2 emissions. In 2007, ammonia nitrogen (NH3) and 

NOx also became “criteria pollutants.”  

Among all the pollutants, COD is most relevant to this study. COD is a widely-used water 

quality indicator that measures the amount of oxygen required to oxidize soluble and 

particulate organic matter in water.7 It assesses the effect of discharged wastewater on the 

water environment. Higher COD levels mean a greater amount of oxidizable organic material 

in the sample, which reduces dissolved oxygen levels. A reduction in dissolved oxygen can 

lead to anaerobic conditions, which are deleterious to higher aquatic life forms.  

We focus on COD emissions because COD is the first water-related “criteria” pollutant 

used by the MEP and the government explicitly set a 10% abatement target for COD 

emissions in the 11th Five-Year Plan. We also corroborate the findings on COD emissions by 

looking at the amount of wastewater discharge. 

Like the ASIF, this dataset also includes detailed address information. We therefore 

geocode all the ESR firms and compute their distances to the nearest monitoring sites. The 

dataset allows us to construct total emission levels and emission intensity measures (emission 

levels divided by total output value) for large polluters in each county.  

Township-level Socio-economic Data 

The National Bureau of Statistics (NBS) conducts the “Township Conditions Survey (TCS)” 

on an annual basis. It is a longitudinal survey that collects township-level socio-economic 

data for all the townships in China. We have access to the TCS data for 20 provinces in 2002 

                                                 
7 For example, COD abatement is used by the central government of China as a key performance indicator to 

assess local government efforts in environmental protection. In the 10th and 11th Five-Year Plans (2001-2005 
and 2006-2010), COD was used as a primary criterion (along with ammonia-nitrogen) to set national abatement 
targets and conduct performance appraisals. 
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and use the township-level data to assess similarities between upstream and downstream 

townships.  

Geo-data 

We obtained township-level GIS boundary data in 2010 from the Michigan China Data 

Center. We use GIS data of China’s water basin system from the Ministry of Water 

Resources. We use GIS elevation data to identify upstream and downstream relationships. 

These GIS datasets are then matched to our geocoded township and firm datasets.  

B. Data Matching 

The data matching process involves several steps. The data we have compiled are, to our 

knowledge, the most comprehensive and disaggregated collection ever assembled on water 

pollution and firm-level economic and environmental performance in China.  

Our research design is illustrated in Figure 1. We first match water quality monitoring 

stations with China’s water basin system. In some regions, the distribution of monitoring 

stations is very dense and multiple tributaries or branch rivers merge into the trunk streams, 

making it difficult to identify upstream and downstream relationships (for example, an 

adjacent upstream township for a monitoring station can be in the adjacent downstream of 

another monitoring station). We therefore exclude these water monitoring stations from our 

dataset. About a quarter of the monitoring stations are located on lakes or reservoirs, and we 

drop them as well. After these exclusions, we are able to use 161 water quality monitoring 

stations. The distribution of our sampled monitoring stations is represented in Figure 2.  

For each water quality station identified, we then determine in which township it is located 

and then draw a circle with a radius of 10 km from the town center. Based on elevation data 

and river flow directions, we then identify the upstream and downstream townships through 

which the river passes.8 This process generates our sampled regions, which include 544 

townships.  

The final step is to overlay the coordinates of all ASIF or ESR firms on the map of 

identified townships, keeping only the firms within these townships, and calculating their 

distances to the monitoring stations.  

                                                 
8 Because some townships barely intersect with this circle, the firms located in these townships can be more 

than 10 km away from the monitoring station. We keep these firms in the baseline 10 km sample and also show 
that our results are robust to using much smaller bands (5 km). 
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In the end, we are able to assemble a geocoded data set that includes township-level socio-

economic conditions, firm-level production and performance, and firm-level emissions. Our 

sample includes 12,422 unique ASIF firms and 9,888 ESR firms for 161 water quality 

monitoring stations.  

We attempted to match firms in the ASIF database with firms in the ESR database. 

However, because these two datasets use very different sampling criteria and are managed by 

different government agencies, we were able to match only 10% of ASIF firms with ESR 

firms. The matched sample is too small for us to draw any credible statistical inferences. As a 

result, in subsequent analysis, we analyze these two datasets separately.  

C. Balance Check 

The underlying assumption for our RD design is that, except for environmental regulation, 

other determinants of TFP change smoothly around the monitoring stations. At the firm level, 

environmental regulations may affect many production decisions. It is thus difficult to test 

this assumption using firm-level data, which primarily contain time-varying variables 

(arguably, even firm type and firm age can be affected by environmental regulations). In 

contrast, our township-level data include a rich set of variables that are important for firm 

production and can be informative about whether these firms face the same market 

environment.  

Because our sample includes only townships located around monitoring stations, we expect 

that the township-level statistics are largely balanced. In Table 1, we summarize comparisons 

between upstream and downstream townships. We examine three sets of covariates. Panel A 

reports the results for basic township characteristics, Panel B summarizes comparisons of 

local infrastructure, and Panel C further compares human capital measures. We present the 

means of these variables separately for upstream and downstream townships and then test the 

mean differences using different bandwidths. 

Basic township characteristics in Panel A include township area, arable area, distance to 

county center, whether the township is an old-region town, whether it is an ethnic minority 

town, the number of residents, and the number of administrative villages.9 We cannot reject 

                                                 
9  An old region refers to a Communist Party’s revolutionary base region. An administrative village is 

organized by one village committee and may include several natural villages.  
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the null hypothesis that upstream townships and downstream townships are balanced in every 

measure at the conventional significance levels.  

Infrastructure is important for production. In Panel B, we test whether basic infrastructure 

measures are similar between upstream and downstream townships. We have data on the 

length of roads, number of villages with road access, number of villages with electricity 

access, and number of villages with tap water access. Again, we find that upstream and 

downstream townships are similar along these dimensions.  

Finally, production requires labor. We examine whether human capital differs significantly 

between upstream and downstream townships. In the township data, we have two relevant 

variables: the number of primary schools and the number of students enrolled in primary 

schools. Again, we find no evidence that upstream townships differ from downstream 

townships in this regard.  

The results in Table 1 are encouraging, as they indicate that upstream and downstream 

townships are very similar. While it is, of course, impossible to rule out the presence of 

unobserved factors discontinuously affecting firm productivity, these balance checks lend 

additional credibility to our research design.  

 

IV. Results 

A. Effects of Water Quality Monitoring on TFP 

We begin the analysis by graphically presenting our main findings. Applying the Olley-

Pakes method, we estimate the log TFP for each sampled firm. Figure 3 plots log TFP (or 

residual log TFP) against distance to a monitoring station. Each dot represents the average 

log TFP for firms within a bin of distance; their 95% confidence intervals are also presented. 

A quartic polynomial function is then overlaid on the graph to illustrate the discontinuity at 

the monitoring stations.  

We divide the firms in ASIF into two categories: polluting industries and non-polluting 

industries. This categorization is based on the definition of polluting industries used by the 

MEP.10 

                                                 
10 Details of the polluting and the non-polluting industries are summarized in Appendix Table S1. 
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In Panel A, we present the RD plot for log TFP in the polluting industries. In Panel B, we 

show the RD plot for residual log TFP in the polluting industries. The difference is that 

monitoring station fixed effects are absorbed in the residual log TFP panel. In both panels, we 

see a sharp change in TFP at precisely the locations where the water quality controls take 

effect. The TFP for upstream firms is significantly lower than for downstream firms in the 

polluting industries. In contrast, in Panels C and D, we do not observe similar discontinuities 

in TFP in the non-polluting industries.  

Table 2 quantifies the graphical findings in Figure 3. Panel A presents the RD estimates 

without any controls, for both polluting and non-polluting industries. We see that polluting 

firms located immediately downstream from monitoring stations have higher TFP, but there 

is no TFP difference for the non-polluting firms. The estimates are not statistically significant 

because of large standard errors.  

Our sample covers 161 water quality monitoring stations in 34 manufacturing industries. A 

simple RD regression, as reported in Panel A, would compare upstream and downstream 

firms from different clusters (monitoring stations) and industries, creating noise in the 

statistical inference. To address this issue, we first absorb station fixed effects and industry 

fixed effects in the regressions and then estimate the RD using the residual TFP in Panels B 

and C. By doing so, we effectively compare the TFP differences station by station and 

industry by industry and then average the differences across stations and industries. After 

controlling for station and industry fixed effects, the RD estimates for the polluting industries 

become statistically significant.  

In our preferred specifications, which account for both station and industry fixed effects, 

the estimated increase in log TFP for downstream monitoring stations ranges from 0.31 to 

0.35 for the polluting industries. The estimates imply that the water quality monitoring has 

reduced upstream firms’ TFP levels by 26.7% (e-0.31-1) to 29.5% (e-0.35-1).  

The estimates for the non-polluting industries are close to zero and none of them are 

statistically significant. Comparing the RD estimates in Panels B and C to Panel A, we see 

that the magnitudes of the estimated impacts are remarkably close. This is important because 

it suggests that station- and industry-specific determinants of TFP levels are uncorrelated 

with the treatment status. However, since location- and industry-specific factors can 

substantially explain the variation in TFP, including them can significantly reduce the 

estimated standard errors of the treatment effects. The RD estimates also are robust to 

different choices of kernel functions.  
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B. TFP Effects by Firm Ownership, Year, and Firm Age 

In Table 3, we explore whether the effect of water quality monitoring on TFP varies by 

ownership, firm age and year. In light of the findings reported in Table 2, we focus on 

residual TFP with station and industry fixed effects absorbed.  

In Panel A, we estimate the RD by firm ownership type and find that the baseline TFP loss 

is driven mainly by private Chinese firms. Water quality monitoring has no significant impact 

on the TFP of state-owned enterprises (SOEs) and foreign firms. This result may reflect the 

fact that environmental regulations are not binding for SOEs or foreign firms as a practical 

matter; they generally have greater bargaining power over local governments and thus face 

less stringent enforcement. Another possible explanation is that SOEs and foreign firms 

generally have superior ex-ante environmental performance compared to private Chinese 

firms and therefore are not affected by tighter regulations. However, given the relatively 

small number of observations for SOEs and foreign firms in our sample, these sub-sample 

null results should be interpreted with caution. 

The stringency of water quality regulations has changed substantially over the course of our 

sample period. Specifically, in 2003, President Hu Jintao proposed the “Scientific Outlook of 

Development” initiative to address the pressing environmental challenges in China.  In the 

same year, the MEP upgraded the surface water quality monitoring system.  

In addition, starting in 2006, COD abatement became a key indicator in evaluating local 

environmental performance.  

We thus hypothesize that the TFP effect of water monitoring should be larger in later years 

than in earlier years, and this change should occur in or after 2003. To test this, we estimate 

the RD separately for samples before 2003 and after 2003, and summarize the results in Panel 

B. As expected, upstream and downstream polluting firms had similar TFP levels before 

2003, but upstream firms became significantly less productive than their downstream 

counterparts after 2003.  

In Figure 4, we provide RD estimates separately for each year. We find that the TFP 

differences between upstream and downstream firms exactly match the policy changes we 

have discussed. Specifically, the estimate is close to zero from 2000 to 2002, and becomes 

larger in 2003, the year President Hu took office. The effect becomes statistically significant 

starting in 2006, the first year of the 11th Five Year Plan. The corresponding RD estimates by 

year are summarized in Appendix Table S2.  
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The fact that the monitoring effect was close to zero and statistically insignificant prior to 

2003 supports our identifying assumption: in the absence of tighter water quality regulations, 

upstream and downstream firms around the same water quality monitoring station have 

similar levels of productivity. 

In Panel C, we compare the TFP loss by firm age. We are interested in whether old firms 

and young firms respond differently to water quality monitoring. We define new firms as 

firms born in or after 2003, when China’s environmental regulations became stringent. We 

then estimate the discontinuities separately for old and young firms using post-2003 data. We 

find that the TFP loss caused by water quality monitoring is statistically significant for both 

old and young firms. This finding is inconsistent with the “grandfathering” phenomenon, in 

which new environmental policies are often designed or implemented in such a way that 

older firms can be exempted from tighter regulations, because the cost of retrofitting existing 

facilities is higher than that of building new sources with cleaner technology. In the context 

of China’s water quality monitoring, both young and old upstream firms have been under 

tighter regulation than downstream firms since 2003.  

C. IV Results Using Hydrological Stations 

Our qualitative discussions on the rules of setting up monitoring stations, the balance tests 

of township level variables, the finding that the discontinuity is only evident for polluting 

industries, and the result that the discontinuity only emerges after 2003, all suggest that the 

identifying assumption in our RD design is likely to hold.   

Nevertheless, one may still be concerned about the endogenous location of monitoring 

stations. For instance, a politically connected polluting firm has strong incentives to lobby the 

local government, so that the monitoring station would be established upstream of that firm. 

If these connected firms also receive other forms of benefits from the government that could 

affect their productivity, such as subsidies or loans, our RD estimates would be biased. 

In this section, we use an instrumental variable (IV) approach to directly address this 

concern. We exploit the fact that, when monitoring stations were set up, local governments 

typically attempted to locate them closer to existing hydrological stations, so that data, 

equipment and technicians could be shared in order to achieve economies of scale in water 

monitoring.  

A hydrological station collects hydrological data such as water levels, flow velocity, flow 

direction, waves, sediment concentration, water temperature, and ice conditions, as well as 
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data on meteorological conditions such as precipitation, evaporation, air temperature, 

humidity, air pressure and wind. Because hydrological stations were set up between the 

1950s and 1970s, and because their locations were chosen based purely on hydrological 

considerations, these locations should be orthogonal to the future socio-economic conditions 

of their neighborhoods. All the hydrological stations were built and supervised by the 

Ministry of Water Resources (MWR). 

As a result, whether a firm is in the near upstream area of a hydrological station can be a 

valid IV for whether a firm is in the near upstream area of a monitoring station. The 

exclusion restriction will most likely hold because, within a small bandwidth, a hydrological 

station in the near downstream should affect a polluting firm only if it results in a monitoring 

station being placed close to it; otherwise, the downstream hydrological station should have 

no direct influence on the polluting firm’s productivity.  

Empirically, we estimate the following first-stage regression: 

௜௝݅݊݋ܯ݌ܷ (3) ൌ ߙ ∙ ௜݋ݎ݀ݕܪ݌ܷ ൅ ௝ߣ ൅ ߳௜௝ 

where ܷ݅݊݋ܯ݌௜௝ is a dummy variable indicating whether firm ݅ is in the upstream area (10 

km) of monitoring station j; ܷ݋ݎ݀ݕܪ݌௜ is a dummy variable indicating whether firm ݅ is in 

the near upstream area (10 km) of a hydro-station; ߣ௝ is the monitoring site fixed effects; and 

߳௜௝ is the error term. We then estimate the second stage regression: 

ܨܶ (4) ௜ܲ௝ ൌ ߙ ∙ ଓపఫ෣݊݋ܯ݌ܷ ൅ ௝ߣ ൅ ߳௜௝ 

where ܶܨ ௜ܲ௝ is the TFP of firm ݅ in the neighborhood of monitoring station j; ܷ݊݋ܯ݌ଓపఫ෣  is 

the predicted value from the first stage regression; ߣ௝ is the monitoring site fixed effects; and 

߳௜௝ is the error term. 

 The regression results are presented in Table 4. We estimate the effects separately for 

firms in the polluting industries and for firms in the non-polluting industries. First, we find 

that the locations of hydrological stations can indeed strongly predict the locations of water 

quality monitoring stations (Columns 1 and 3). The IV estimates show that being in the near 

upstream of a water monitoring station decreases the TFP of a polluting firm by 0.35 

logarithmic units (Column 2), but does not affect the productivity of non-polluting firms 

(Column 4).  

Note that the regression results in Table 4 are not readily comparable to those in Table 2. 

These two approaches use very different sources of variation in the data and estimate 
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different treatment effects with different identifying assumptions. The RD design estimates 

the average treatment effect at the cutoff, whereas the IV estimates the local average 

treatment effect for firms near a hydrological station. Nevertheless, the closeness of the 

magnitudes of the estimates between the two approaches (0.31 versus 0.35), and the 

consistent findings in both sets of results, suggest a causal relationship between water quality 

monitoring and firm TFP.  

D. Sorting 

Environmental policies can affect firms’ production plans and their location choices. In 

particular, the pollution haven hypothesis (PHH) posits that polluting capital would flow 

from places with more stringent environmental regulations to places with less stringent 

regulations. This issue is important because it will affect the interpretation of the RD 

estimates. For example, if water quality monitoring causes more polluting firms to relocate to 

downstream areas and if these firms have higher TFP, our RD estimates will be biased 

upward. Alternatively, if polluting firms emerging downstream tend to have lower TFP (and 

therefore would be unlikely to survive upstream), our RD estimates will be biased downward.  

However, we believe sorting is not a serious concern in our research design, for three 

reasons. First, the ASIF sample includes only large manufacturing firms, which are difficult 

to relocate. Our discussions with policy makers and firm owners suggest that relocating firms 

is costly and sometimes politically infeasible. Second, recall that water quality monitoring 

affects both old and young firms (see Table 3). Presumably, only young firms are able to 

endogenously choose their locations; thus, if sorting were a serious issue, we would observe 

different impacts of water quality monitoring on the TFP of new firms relative to old firms. 

However, the estimated impacts of water quality monitoring are similar between old and 

young firms. Third, in Figure 5 and Table 5, we plot the location distribution of firms in the 

polluting industries and conduct formal density manipulation tests on firm location 

distribution. We observe that the polluting firms are continuously distributed across the 

monitoring stations; thus, we cannot reject the null hypothesis using various density 

manipulation tests (Cattaneo et al. 2017a, 2007b). The results remain the same if we just 

focus on the new firms that were born in or after 2003.  
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E. Spillover Effects 

Spillover effects, i.e. water quality monitoring somehow also affecting downstream firms, 

would be not a concern in a perfect competitive market, where there are many firms and 

output price is unaffected by local environmental regulation. However, in a market with 

imperfect competition or more complicated structures, spillovers can exist. In our empirical 

setting, both positive and negative spillovers can emerge, depending on how upstream firms 

and downstream firms interact.   

If industries are highly concentrated and their major producers are geographically clustered 

near the water quality monitoring stations, then imposing tighter environmental regulations 

on upstream firms would cause positive spillovers to downstream firms. The reasons are 

twofold. First, because upstream and downstream firms are the main producers and 

competitors on the market, increased production costs for the upstream firms will raise the 

market price of their products. Competing downstream firms will thus benefit because of this 

change in market conditions, not just because of the environmental enforcement affecting 

their upstream counterparts. Second, tighter environmental regulations also may cause inputs, 

both labor and capital, to move toward the downstream firms. If more productive factors flow 

to downstream firms, their TFP will be higher for this reason as well. 

Negative spillovers will emerge when clustered firms are collaborating instead of 

competing. This is particularly true if clustered firms are vertically integrated along the 

supply chain. If (geographically) upstream firms produce inputs for downstream firms, or 

vice versa, environmental regulations that increase upstream firms’ marginal costs of 

production will also make downstream firms less competitive. 

In the presence of spillovers, regardless of the sign, our baseline RD estimates can still be 

properly interpreted as the partial equilibrium effects of environmental regulation on 

productivity. However, when we extrapolate these estimates to the whole country, the 

existence of a positive spillover effect will exaggerate the economic costs of regulation, while 

a negative effect will attenuate the estimated costs.  

To assess whether or to what extent our findings are confounded by the potential spillover 

effects, we conduct a placebo test using replaced downstream firms. Specifically, we first 

replace the actual downstream firms by their best matches from the sample of firms that are 

not in the neighborhood of the monitoring stations, based on pre-2003 data. We then re-

estimate the regression discontinuities for the matched firms using post-2003 data. These 

matched firms serve as placebo firms which are not affected by the potential spillovers. The 
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intuition is that, if the spillover effects are insubstantial (downstream firms are not affected 

by monitoring), the placebo firms should have TFP similar to the actual downstream firms. 

Using placebo downstream firms should lead to results that are quantitatively similar to the 

baseline estimates. 

In practice, we take the pre-2003 collapsed cross-sectional data and use a nearest neighbor 

matching strategy that finds the best matched firm from the pool of firms that are located 

outside the 10 km radius of the water monitoring stations for each downstream firm. These 

placebo downstream firms resemble the actual downstream firms in terms of TFP, industry 

type, and industrial output value before 2003. We then replace the actual downstream firms 

by the placebo firms in the post-2003 sample and estimate the regression discontinuities.  

The results are reported in Table 6. Upstream firms have significantly lower TFP than 

placebo downstream firms, suggesting that the baseline findings are not driven by a positive 

spillover effect on the downstream firms. We focus our discussion on the RD estimates after 

station and industry fixed effects are absorbed, in Panel B. Compared with placebo 

downstream firms, upstream firms’ log TFP is 0.48 to 0.61 units higher. These estimates are 

slightly larger than those in Table 3, but the differences are statistically indistinguishable. 

That implies that, if there may exist some spillover effect, this effect should be negative. 

Consequently, the estimates in Tables 2 and 3 will only understate the economic costs of 

water pollution regulation. 

F. Robustness to Different Specifications  

We check the robustness of our findings in Table 7. In Panel A, we re-estimate our models 

using a method proposed by Calonico, Cattaneo, and Titiunik (2014) in which local linear 

regression estimates can be “bias-corrected” for biases resulting from choice of bandwidth. 

They also suggest an alternative method for calculating standard errors that is more 

conservative than the conventional procedure. Using these alternative methods, we generate 

results that are qualitatively similar to the results featured in our main analysis.  

In Panel B, we use alternative bandwidth selectors. The bandwidth chosen in our main 

analysis is based on one common MSE (Mean Square Error)-optimal bandwidth selector for 

both sides across the cutoff. We supplement this analysis with five other bandwidth selectors: 

(1) MSE-two: two different MSE-optimal bandwidth selectors (below and above the cutoff) 

for the RD treatment effect estimator; (2) MSE-sum: one common MSE-optimal bandwidth 

selector for the sum of regression estimates (as opposed to the difference thereof); (3) CER 
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(coverage error rate)-optimal: one common CER-optimal bandwidth selector for the RD 

treatment effect estimator; (4) CER-two: two different CER-optimal bandwidth selectors 

(below and above the cutoff) for the RD treatment effect estimator, and (5) CER-sum: one 

common CER-optimal bandwidth selector for the sum of regression estimates (as opposed to 

the difference thereof).11 The results remain the same regardless of the bandwidth selector 

used.  

In Panel D, we conduct a placebo test using “fake” monitoring stations. We move the 

original stations upstream or downstream by 5 km or 10 km and re-estimate the RD models. 

We find that the discontinuity in TFP is only evident at actual monitoring stations and not at 

the fake stations.  

In the appendix, we present more robustness checks. In Appendix Table S3, we report the 

RD estimates using the parametric approach, Equation (2). We find quantitatively similar 

results: water quality monitoring decreases polluting firms’ TFP but has no impact on non-

polluting firms. However, the estimates from the parametric approach are more sensitive to 

the choice of the polynomial function form and inclusion of different samples. In Appendix 

Table S4, we use an alternative TFP measure suggested by Ackerberg et al. (2015) as the 

outcome variable, and again the results are unchanged.  

 

V. Channels: What Happened to the Upstream Firms? 

A. Regulation and Firm Production 

How do firms respond to tighter environmental regulations? In this section, we examine the 

channels through which tighter environmental regulation affects firms’ TFP. In Appendix B, 

we present a theoretical framework to illustrate how environmental regulation can negatively 

affect TFP. In this model, firms need to use extra labor and capital to clean up emissions and 

the government can enforce tighter environmental regulation by increasing the emission tax. 

Facing a higher emission tax, firms need to hire more labor and capital for emission 

abatement, but these extra inputs do not directly contribute to output production. As a result, 

tighter environmental regulation will lead to a reduction in firms’ TFP.  

                                                 
11 Please refer to Calonico, Cattaneo, Farrell (forthcoming) for technical details.  
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In Table 8, we estimate the impacts of water quality monitoring on several key variables 

related to the calculation of TFP and test whether these findings are consistent with our 

theoretical predictions.   

In Panel A of Table 8, we examine output-related measures: total revenue, value added, and 

profit. Although the effects of water monitoring are statistically insignificant for all the 

outcomes, we see a tendency that downstream firms can earn more profit although they 

generate less revenue.  

In Panel B of Table 8, we focus on input-related measures, including number of employees, 

net investment, and use of intermediate input. We find that upstream firms hire slightly more 

employees, make somewhat larger investments and use slightly more intermediate input.  

In Panel C of Table 8, we present results for policy-related outcomes and firm’s research 

and development investment. We find that upstream firms need to pay larger amounts of 

taxes and fees than their downstream counterparts; these effects are statistically significant.  

In Panel D of Table 8, we test the Porter Hypothesis. The outcome of interest is firms’ 

investments in research and development. The results show that tighter environmental 

regulation reduces firms’ investment in research and development, which contradicts the 

Porter Hypothesis, but the result is statistically insignificant.  

The results in Table 8 suggest that the impacts of environmental regulation on TFP are 

manifested through multiple channels. Even though many outcomes are statistically 

insignificant, the overall pattern is highly consistent and informative: facing tighter 

environmental regulations, firms need to hire more labor and/or make more capital 

investment to reduce emissions. Upstream firms, even though they do not produce more 

output than downstream firms, pay more to the government and earn less profit.   

B. Political Economy of Water Quality Monitoring 

Our empirical analyses have shown that upstream firms are negatively affected by water 

quality monitoring. Our explanation is that, because water quality readings are politically 

important, local officials have incentives to enforce tighter regulations on upstream firms 

than on those downstream. In this section, we explore the political economy behind water 

quality monitoring.  

First, we examine the political incentives of local officials. As documented in the Chinese 

meritocracy literature, China has an implicit rule that a prefecture-level governor cannot be 

promoted to a higher level if his/her age reaches 57 (for example, Wang, 2016; Xi et al., 
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2017). This creates a discontinuous drop in political incentives at the age of 56. To test 

whether the TFP effects of water quality monitoring can be explained by political incentives, 

we digitize the résumés of every prefectural party secretary (the highest-ranked political 

leader in a prefectural city) between 2000 and 2007. We define a leader as “having strong 

political incentives” if he/she is younger than 56 in a given year, and “having weak political 

incentives” otherwise. We then assign a monitoring station either to an “incentivized” or “un-

incentivized” party secretary in a given year, and analyze two subsamples based on whether 

the monitoring station is under the governance of an “incentivized” leader in a particular year. 

The RD results are summarized in Panels A and B of Table 9.  

We find that, when the prefectural city leader has strong political incentives, water quality 

monitoring has a statistically significant impact on upstream firms’ TFP. The estimated 

impacts range from 0.57 to 0.66 using different kernel functions and are nearly twice as large 

as the baseline results in Table 2. In sharp contrast, when the prefecture city leader has weak 

promotion incentives, the TFP gap remains precisely at zero in all specifications. These 

results imply that the TFP discontinuity across the monitoring stations is driven by the 

political incentives of local officials.  

Second, despite the fact that state-controlled monitoring stations are established and run by 

the central government, it is still possible that local officials can exert their administrative 

powers to influence the water quality monitoring. Our concern is that, if local governments 

can manipulate water quality readings, they may be less incentivized to regulate upstream 

firms’ emissions. These is evidence that air pollution data has been manipulated at the margin 

in some Chinese cities because air quality is important for political evaluation (Ghanem and 

Zhang, 2014).  

To test this hypothesis, we estimate the RD separately for two types of monitoring stations: 

automatic stations and manual stations. Automatic stations conduct all water quality tests 

automatically and report the data directly to the central government, while manual stations 

require technicians to conduct the tests manually. 12  Because it is difficult for local 

governments to manipulate data from the automatic stations, we expect a larger TFP gap 

around automatic stations. 

                                                 
12 Most stations were manual in the 1990s and early 2000s, but these were gradually replaced by automatic 

stations, in order to improve the accuracy of water quality reporting. Weekly water quality reports from the 
automatic stations are posted by the MEP at http://datacenter.mep.gov.cn/index and real-time water quality 
readings can be accessed at http://online.watertest.com.cn/help.aspx. 
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Panels C and D of Table 9 report the findings: while we see an upstream-downstream TFP 

gap for both types of stations, this effect is much larger for automatic stations (almost three 

times larger). As the sample size shrinks substantially, most RD estimates are statistically 

significant only at the 10 percent level.  

C. Regulation and Emissions 

The model in Appendix B also predicts that tighter environmental regulations will decrease 

both emission levels and emission intensity (emission per unit of output). In other words, 

upstream polluting firms are expected not only to reduce total emissions, but also to adopt 

cleaner technologies. In this section, we examine the impacts of water quality monitoring on 

firms’ emissions.  

Ideally, we would like to examine emissions for the same set of firms covered in our ASIF 

sample, so that we can directly link the reduction in emissions to the reduction in TFP. 

However, the ASIF sample does not include information on emissions. Instead, we use the 

ESR data, which document various types of pollutant emissions for all the major polluting 

firms in each county.  

We apply the same set of RD estimators to firm-level emission data (which is equivalent to 

polluting-source level data) from the ESR database. We examine four water pollution 

outcomes: (1) total amount of COD emitted, (2) COD emission intensity (total COD/total 

output value), (3) total amount of wastewater discharged, and (4) wastewater discharge 

intensity (total wastewater/total output value).  

Table 10 reports the local linear RD estimates for the four outcomes. Station fixed effects 

are absorbed before estimation. Different RD estimates are reported, including conventional 

local linear RD estimates, bias-corrected estimates, and bias-corrected estimates adjusted 

with robust standard errors.  

In Panel A, we can see that both COD emissions and COD emission intensity are higher for 

downstream firms, and most results are statistically significant at the 5% or 10% level. COD 

emissions by polluters immediately upstream from monitoring stations are 0.75-0.99 

logarithmic units lower than those from firms immediately downstream. This implies that 

water quality monitoring reduces COD emission levels in upstream firms by 52.8%–62.8% 

(e-0.75-1 to e-0.99-1). For COD emission intensity, water quality monitoring reduces the COD 

emission intensity in upstream firms by 38.7%–49.3% (e-0.49-1 to e-0.68-1).  
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In Panel B, we examine wastewater discharge. Downstream firms tend to discharge more 

wastewater but the results are statistically insignificant due to large standard errors. The 

results for wastewater discharge intensity, however, are statistically significant at the 5% or 

10% level.  

Combining both sets of results, we conclude that upstream firms emit less COD and 

wastewater overall and also produce fewer COD emissions or less wastewater per value of 

output (by adopting cleaner technologies), confirming the theoretical predictions. 

Recall that the ESR database samples the most polluting firms in each county. Given that 

we focus on a small region around each monitoring station, many of the upstream and 

downstream firms are located within the same county. This causes a potential selective 

attrition problem because upstream firms facing tighter regulations tend to emit less and are 

thus less likely to be sampled in the ESR database compared to downstream firms. If such 

selection exists, our results in Table 10 will be underestimated, because the upstream firms 

that reduced the most pollution are no longer included in the sample. Thus, when we evaluate 

the environmental benefits of water monitoring, the estimates in Table 10 should be regarded 

as lower bounds.  

D. Enforcement in Practice 

The results in previous sections point to an especially striking fact: while upstream firms 

emit significantly less emissions than their downstream counterparts, they pay more emission 

fees and taxes. In other words, local governments are able to charge firms with differential 

tax rates and emission fees, even though these firms are located close to each other and are 

within the same administrative jurisdiction. This double-standard phenomenon is not unique 

in our study and has been documented in some other settings as well. For example, Liu (2017) 

investigates China’s tax reform and finds that local governments of China are able to collect 

more taxes for medium-sized firms. Fan et al. (2017) study China’s value-added tax (VAT) 

system and show that firms located farther away from local tax agencies experience the 

largest increase in tax burden after VAT enforcement costs are brought down by a new 

information technology. Local governments in China have substantial discretion in the 

management of taxation and various fees.  

We also interviewed dozens of firm managers and technicians working in the monitoring 

stations during our field trips. Our discussions confirmed that upstream firms and 

downstream firms could live in dramatically different regulatory environments. Notably, not 
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only do upstream firms have to pay more fees and taxes to the government, as shown in our 

empirical analyses; they also face a variety of command and control regulations that cannot 

be easily quantified. For example, in Jiangsu Province, we learned that upstream firms’ 

production could be abruptly restricted or even suspended by local governments in order to 

improve water quality readings. In China’s most polluted river basin, Huai River basin, 

environmental inspectors were placed in the polluting firms from time to time to ensure their 

compliance with environmental standards. These inspectors visited upstream firms more 

frequently because they knew these firms had large impacts on water quality readings. In 

some extreme cases, electricity and natural gas supply could be cut off for certain firms in 

order to meet the city’s environmental abatement target.  

Regulatory documents from local governments tell a similar story. Urgent orders were 

issued when local governments realized water quality readings might fail to meet higher-level 

government policy targets. A recent example of such an order, which attracted wide media 

attention in China, is presented in Appendix C. In this example, Kunshan city in Jiangsu 

Province required 270 manufacturing firms to suspend their production in order to improve 

water quality. Sluice gates along the rivers were closed and the pumping facilities were shut 

down so that no wastewater could be discharged into the rivers, even after treatment. Special 

investigators were sent to the plants to enforce the production suspension policy. While these 

command and control policies cannot be quantitatively analyzed in our empirical analysis, 

they do help explain why China’s water quality monitoring can be so effective in reducing 

water pollution and has such a significant impact on upstream firms’ productivity.  

 

VI. Economic Significance 

A. Economic Costs under Various Scenarios 

Our baseline model estimates that water quality monitoring has caused an average loss in 

TFP of 0.31 logarithmic units for polluting firms (as shown in Panel B of Table 2), equivalent 

to a 26.7% drop. To translate this TFP loss into monetary value, one may ask what would 

happen if all of China enforced regulatory standards as stringent as those faced upstream. The 

total industrial output value (total revenue) from the polluting firms was about 11 trillion 
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Chinese yuan (1,380 billion USD) in 2006.13 If all these firms were subject to water quality 

monitoring regulations as stringent as those faced by the upstream firms in our empirical 

setting, the total annual loss in output value would exceed 4.0 trillion Chinese yuan (502 

billion US dollars) based on 2006 industrial output value.14  

However, the regulations faced by upstream firms may be too stringent to apply to all the 

other firms in the country. A more informative counterfactual would be to determine the TFP 

loss and economic costs associated with a given amount of emission abatement. Recall that 

all the firms in the ESR database together contribute 85% of China’s total emissions, and all 

of them are local large emitters regardless of industry or revenues. Because we are unable to 

match the ESR firms with ASIF firms, we cannot directly link the TFP estimates with COD 

estimates without imposing additional assumptions.  

The TFP and COD effects of water monitoring we estimated in previous tables essentially 

are the following:  

(5)        TFP୅୘୉|Revenue ൒ 5	million ൌ EሺTFPଵ െ TFP଴|Revenue ൒ 5	millionሻ 

(6)        COD୅୘୉|COD ൒ 	x ൌ EሺCODଵ െ COD଴|COD ൒ 	xሻ 

where TFP୅୘୉|Revenue ൒ 5	million  is the average treatment effect of water quality 

monitoring on TFP for firms with annual revenues over 5 million yuan, and COD୅୘୉|COD ൒

	x is the average treatment effect of monitoring on emitters that produce COD pollution more 

than a given threshold x. TFPଵ is the TFP for downstream firms, and TFP଴ is the TFP for 

upstream firms.  

The average treatment effects on TFP and COD over the entire distribution are:  

(7)      TFP୅୘୉ ൌ 	ProbሺRevenue ൒ 5	millionሻ ∙ TFP୅୘୉|Revenue ൒ 5	million	 ൅

ProbሺRevenue ൏ 5	millionሻ ∙ TFP୅୘୉|Revenue ൏ 5	million 

(8)     COD୅୘୉ ൌ ProbሺCOD ൒ xሻ ∙ COD୅୘୉|COD ൒ x	 ൅ ProbሺCOD ൏ xሻ ∙ COD୅୘୉|COD ൏ x 

where the probabilities could be written as the share of firms appearing in each sample: 

ProbሺRevenue ൒ 5	millionሻ ൌ ேಲೄ಺ಷ
ே

,  ProbሺRevenue ൏ 5	millionሻ ൌ 1 െ ேಲೄ಺ಷ
ே

; 

                                                 
13 We use the 2006 exchange rate of 1:7.97. 
14 We compute the difference between the counterfactual output of 14,973.7 billion Chinese yuan (calculated 

by 10975.7/(1-26.7%)) and the observed output of 10,975.7 billion Chinese yuan in the polluting industries in 
2006. The calculations for other parts follow the same method. 
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ProbሺCOD ൒ xሻ ൌ ேಶೄೃ
ே

,  ProbሺCOD ൏ xሻ ൌ 1 െ ேಶೄೃ
ே

. 

While we cannot directly estimate “TFP୅୘୉|Revenue ൏ 5	million” and “COD୅୘୉|COD ൏ x” 

in the data, we attempt to back them out by extrapolating the intra-sample heterogeneous 

treatment effects on TFP and COD. 

In Table 11, we estimate the heterogeneous treatment effects of water quality monitoring 

on TFP with respect to firms’ revenues, and the heterogeneous treatment effects of water 

quality monitoring on COD emission intensity with respect to firms’ total COD emissions 

using the polynomial RD approach.15 The revenue heterogeneity is estimated by using the 

polynomial RD approach with an interaction term between the downstream dummy and firms’ 

revenue (log). We use the specification in Column 1 of Table S3 as our preferred parametric 

specification because it generates the closest RD estimates to the non-parametric RD 

estimates. To allow for non-linear heterogeneity, we also include quadratic and cubic 

interactions in the regressions. Based on the regression results, we then predict the estimated 

impacts at different levels of revenues and summarize the results in Panel A. We find that the 

TFP effect is substantially larger for larger firms and non-existent for smaller firms. The 

effects of water quality monitoring on TFP for the smallest 20% of firms (among all the firms 

with an annual revenue of above 5 million Chinese yuan) become negligible. The results are 

the same if we use quadratic or cubic heterogeneity. In Panel B, we conduct a similar analysis 

for COD emission intensity and check whether the effect of monitoring varies across 

different polluting sources. We find the same pattern: larger emitters are strongly affected by 

water quality monitoring, while the treatment effect becomes essentially zero for the smallest 

20% of emitters in the ESR sample. 

In China, the government adopts a policy strategy called “Grasping the Large and Letting 

Go of the Small” (“Zhua Da Fang Xiao”). “Grasping the large” means that policymakers 

mainly target large enterprises, while “letting go of the small” means that the government 

exerts less control over smaller enterprises. The phenomenon has been widely documented in 

the context of economic reforms and policy implementation (see, for example, Hsieh and 

Song, 2015). In environmental regulation, many policies are also designed in such a way that 

                                                 
15  Ideally, we should also apply the non-parametric RD estimates to different sub-groups of firms and 

estimate the heterogeneity separately for each sub-group. However, doing so significantly reduces the sample 
size of each group and we would not have strong enough statistical power to make a reliable inference. In 
Appendix Table S5, we divide the sample into only two groups and find results that are largely consistent with 
Table 11: the impacts of water quality monitoring are primarily experienced by larger firms or emitters and are 
negligible for their smaller counterparts. 
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larger firms need to meet larger abatement targets.16 Our findings suggest that the “Grasping 

the Large and Letting Go of the Small” strategy is being applied to the context of water 

quality regulations, too.  

In addition, there is an “exit” variable in the ASIF database documenting whether a firm 

will be excluded from the sample in the following year. A firm that earns less than 5 million 

Chinese yuan in a particular year, based on the sampling criteria, is dropped from (“exits”) 

the database the next year. This outcome provides additional information on whether water 

quality monitoring affects firms at the margin. In Appendix Table S6, we find that the 

probability of exiting the ASIF database is not affected by water quality monitoring. This 

finding again shows that monitoring does not affect smaller firms at the margin.  

Given these findings, if we assume that water quality monitoring does not increase the TFP 

or emission levels of upstream firms, and that the size of the treatment effect on TFP or 

emissions is a well-behaved function with respect to revenue or emissions, then we can make 

the following extrapolations:  

(9)     TFP୅୘୉|Revenue ൏ 5	million ൌ 0 

COD୅୘୉|COD ൏ x ൌ 0 

Intuitively, as the smallest producers and emitters in our ASIF or ESR dataset already have 

zero treatment effects, the even smaller producers and emitters (those excluded from the 

ASIF/ESR dataset) also should have zero treatment effects. We can therefore simplify 

Equations 7 and 8 to the following: 

ܴܵܯ        (10) ൌ ்ி௉ಲ೅ಶ
஼ை஽ಲ೅ಶ

ൌ ேಲೄ಺ಷ
ேಶೄೃ

∙ ୘୊୔ఽ౐ు|ୖୣ୴ୣ୬୳ୣஹହ	୫୧୪୪୧୭୬
େ୓ୈఽ౐ు|େ୓ୈஹ	୶

 

The sample we use for estimation includes 6,581 firms in polluting industries from the 

ASIF database and 9,888 polluters from the ESR database. Using this equation, we can 

calculate the economic costs of water pollution abatement.   

In Table 12, we compute the economic costs for various scenarios. For easy reference, 

Panel A reproduces the key results from Tables 2 and 10, and Panel B calculates the 

economic costs. We focus on the estimates in Column 1 because they produce modest values 

across all specifications. We first focus on COD emissions. Water quality monitoring reduces 

COD emissions by 0.83 logarithmic units and decreases TFP by 0.31 logarithmic units. A 10% 

change in total COD emissions causes a 2.49% change in TFP levels in the polluting 

                                                 
16 See, for example, “The Top 10,000 Energy-Consuming Enterprise Program,” which requires only large 

firms to abate carbon emissions: http://www.ndrc.gov.cn/zcfb/zcfbtz/201112/t20111229_453569.html 
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industries.17 Using alternative specifications produces slightly different results, which are 

reported in Columns 2–4. Similar interpretations can also be applied to COD emission 

intensity. In Column 1, an upstream firm’s COD emission intensity is about 0.55 logarithmic 

units lower than that of a downstream firm. This means a 10% change in COD emission 

intensity causes a drop in TFP by about 3.75%. Other combinations create slight variations, 

as summarized in Columns 2–4. 

During China’s 11th Five-Year Plan, total COD emissions were reduced by 12.45% from 

2006 to 2010 (with the target being 10%). If we attribute the entire COD reduction from 2006 

to 2010 to the polluting industries, then this 12.45% abatement in COD emissions would 

cause a total output loss worth 352 billion Chinese yuan (44.2 billion USD) in the polluting 

industries, based on 2006 industrial output values.18 The annual reduction in COD emissions 

between 2006 and 2010 was roughly 2.5%, equivalent to an annual loss of 69 billion Chinese 

yuan (8.7 billion US dollars) in gross industrial output value per year using 2006 Chinese 

yuan.  

In 2015, the gross output value (of firms above designated size) in China exceeded 110 

trillion Chinese yuan, and about 35% of output value (38.8 trillion Chinese yuan) is 

contributed by the polluting industries. The central government aims to reduce COD 

emissions by another 10% during the 13th Five-Year Plan, from 2016 to 2020. Applying our 

estimates to the 2015 data, we can infer that the total output loss would be around 990 billion 

Chinese yuan (159 billion US dollars) under current monitoring and enforcement practices.19 

Other specifications generate slightly different estimates, ranging from 936 to 1,099 billion 

Chinese yuan (150.5 to 176.7 billion USD).   

B. Potential Sources of Bias 

There are several reasons why the estimates in Table 12 may understate the true economic 

costs of China’s water pollution controls.  
                                                 
17 The way we interpret this relationship is analogous to the Wald estimator in the two-stage setting, except 

that we do not have a readily available tool to combine the two stages from two different samples non-
parametrically and we need to adjust for sample size. Water quality monitoring reduced COD emissions by 0.83 
logarithmic units and TFP by 0.31 logarithmic units, so a 10% change in COD emissions will lead to a 
(6,581/9,888)*(0.31/0.83)*10% (= 2.49%) change in TFP.  

18 We estimate that a 10% change in total COD emissions will cause a 2.49% change in TFP, which implies 
that a 12.5% change in total COD emissions will cause a 3.11% change in TFP. We then compute the difference 
between the counterfactual output of 11,328 (10,975.7/(1-3.11%)) billion and the observed output of 10975.7 
billion in 2006. The calculations for other parts follow the same method.  

19 We use the 2015 exchange rate of 1 USD to 6.22 Chinese yuan.  
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First, we use a conservative estimate of the effect of monitoring on TFP in our calculations. 

In fact, as shown in Table 3, the TFP loss due to water quality monitoring has increased from 

0.31 to 0.40 since 2003. If we use these larger TFP estimates, the associated economic costs 

will increase.  

Second, although we provide evidence that the smaller firms or emitters in our data are not 

affected by water quality monitoring, the assumption that water quality monitoring does not 

affect even smaller (unobserved) firms or emitters at all may still be overly strong. Shutting 

down very small polluters can be a feasible policy for some local governments to enforce 

tighter environmental standards. The TFP loss due to shutdown cannot be captured in our 

estimation.  

Third, the distinction between polluting and non-polluting industries is based on two- to 

three-digit industrial codes. This distinction does not rule out the possibility that some firms 

in the non-polluting industries may also emit pollutants and are therefore regulated by local 

governments. If this is the case, the estimated TFP and economic loss are understated.  

Fourth, some regions have a high density of monitoring stations as well as multiple 

tributaries along the main streams. These monitoring stations are excluded from our sample 

because we cannot credibly identify the upstream and downstream townships. If there are 

more monitoring stations in more polluted regions, some of the most polluted regions and 

firms are excluded from our sample; if environmental regulations are even more aggressively 

enforced in more polluted regions, the TFP loss in these regions could be even larger.  

Finally, we only compute the direct economic costs caused by TFP loss. Previous research 

has shown that tighter environmental regulation can also cause unemployment, firm 

relocation, and worker migration, and can change the flow of investment. These indirect costs 

are non-trivial and should be considered when calculating the overall economic costs of 

environmental regulations.   

We are aware of only one potential bias that may attenuate our estimated costs of 

tightening water pollution controls. In China, the quality of environmental data has been 

widely questioned because of the possibility of manipulation by polluting firms or local 

governments. In our setting, polluting firms and local governments may be incentivized to 

under-report emission levels in upstream regions. If this were true, the effect of water quality 

monitoring on emissions would be overestimated, and thus the economic costs would also be 

overstated. Through our extensive discussions with policy experts and local government 

agencies, we learned that, although the efforts to reduce water pollution are real and 
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substantial, it is difficult to rule out the possibility of data manipulation. To what extent the 

Chinese government would manipulate water quality and emission data and how it affects our 

interpretations remain unknown and future research is warranted on these issues.  

 

VII. Conclusion 

As the income level of the Chinese people rises, the country starts to face a stark tradeoff 

between preserving high environmental quality and sustaining robust economic growth. This 

paper is the first study to credibly estimate the impacts of environmental regulations on 

productivity in the Chinese manufacturing sector and provides a timely assessment of the 

economic costs of China’s water pollution control policies. We exploit a regression 

discontinuity design based on the upstream-downstream relationship of water quality 

monitoring stations in China and find that tighter water quality regulations lead to significant 

TFP loss for firms located upstream from monitoring stations. This is the case for firms in 

polluting industries; such a discontinuity is not observed for firms in non-polluting industries. 

We estimate that water quality monitoring reduces TFP levels by 26.7% in firms located 

immediately upstream from monitoring stations. This TFP loss is driven mainly by private 

Chinese firms instead of state-owned or foreign firms. A closer examination of the TFP effect 

by year reveals that the impacts of water quality controls have been greater in more recent 

years, consistent with the fact that environmental regulations in China have tightened over 

the past decade.     

We also investigate the impacts of water quality monitoring on emissions. Using another 

firm-level dataset, we find that, at the extensive margin, upstream firms emit substantially 

(52.8%–62.8%) less COD and industrial wastewater than downstream firms; and, at the 

intensive margin, upstream firms adopt cleaner technology and emit less pollution per value 

of output (38.7%–49.3%).  

Combining both sets of estimates, we calculate the economic costs of China’s water 

pollution control policies. We estimate that a 10% abatement in COD emissions and COD 

emission intensity can lead to a 2.35%–2.75% and 3.43%–4.21% drop in a polluting firm’s 

TFP respectively. These estimates imply that China’s efforts in reducing COD emissions 

from 2016 to 2020 would cause a total loss in output of 936 to 1,099 billion Chinese yuan 

(150.5 to 176.7 billion US dollars) in the polluting industries, at least if current monitoring 

and enforcement practices remain unchanged.  
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Overall, our findings highlight the negative impacts of environmental regulations on 

productivity. The estimated efficiency loss is substantial. In other words, high environmental 

quality comes at high economic cost. This is particularly salient for fast-growing economies 

that rely heavily on manufacturing.  

Political incentives are fundamental to understanding China’s environmental regulation. 

We show that the effect of environmental regulation depends on local officials’ chances of 

promotion and local government’s power to manipulate environmental data. Specifically, the 

TFP difference between upstream and downstream firms becomes twice as large when the 

city leader has a greater probability of promotion, and it approaches zero when the city leader 

cannot be promoted. The effect of water quality monitoring on TFP is substantially larger for 

stations that automatically test and report water quality to the central government.  

Our findings also demonstrate that environmental regulations have profound distributional 

consequences. In the context of water quality monitoring, emission controls in upstream 

regions will improve the water environment in downstream regions. Upstream firms abate 

emissions and earn reduced profits, and jobs can be lost if polluting firms are shut down, 

while downstream regions enjoy both higher environmental quality and more rapid economic 

growth. In the long run, these effects may imply a spatial redistribution of economic activity, 

population and social welfare.  

Nevertheless, our findings do not answer the larger question of whether China’s current 

environmental regulation standards are too aggressive, because we do not know Chinese 

people’s willingness to pay for cleaner surface water. After all, little research has been 

conducted on the socio-economic costs of water pollution in China. 20  To what extent 

environmental regulations should be designed and enforced, especially in developing 

countries that rely heavily on manufacturing industries, remains an underexplored research 

area.  

We conclude by pointing out some limitations of this study and offering directions for 

future research. First, the estimates in this paper are derived in a partial equilibrium 

framework. We focus on a unique setting that affects only a small set of firms. Large-scale 

regulation will affect aggregate output and input markets, and our estimates should be 

interpreted with caution when used to evaluate large-scale environmental policies. Second, 

                                                 
20 Two exceptions are that (1) Ebenstein (2012) finds that China’s surface water pollution has caused an 

increase in deaths from digestive cancers; and (2) He and Perloff (2016) find that a deterioration in surface 
water quality from Water Quality Grade Level I to Level III is associated with higher infant mortality.  
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our sample covers a relatively short period of time, while firms might be able to better adjust 

investment and production in the long run. With the growing availability of firm-level 

longitudinal data, investigating how firms respond to regulation over long periods of time 

will be an important area for future research. Relatedly, sorting and its subsequent welfare 

implications are important for long-term impact assessment. Finally, with the expectation of 

increasingly tighter environmental regulations in China, entrepreneurs and investors may 

choose to develop businesses in non-polluting industries. Tighter environmental regulations 

in the polluting industries may create externalities affecting non-polluting industries, and 

there is a lack of rigorous empirical studies to quantify the impacts of such spillover effects 

on the economy. 
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Table 1. Covariate Balance Between Upstream Townships and Downstream Townships

Downstream Upstream ≤15km ≤10km ≤5km

(1) (2) (3) (4) (5)
Panel A. Basic Township Characteristics

Town Area 7,662 7,684 -361.34 -298.63 302.02
(Mu) (4,267) (4,171) (337.78) (378.11) (1,467.30)

Arable Area 3,220 2,779 -334.37** -356.97 -58.29
(Mu) (1,858) (1,869) (154.18) (217.43) (803.44)

Distance to County Center 2.39 2.49 0.04 0.10 0.52
(KM) (0.98) (1.06) (0.13) (0.17) (0.70)

Old-Region Town 0.22 0.18 -0.02 -0.03 -0.14
(1=Old-Region Town) (0.41) (0.39) (0.03) (0.04) (0.18)

Minority Town 0.01 0.02 0.00 -0.01 -0.00*
(1=Minority Town) (0.09) (0.14) (0.02) (0.02) (0.00)

No. of Residents Communities 1.96 1.51 -0.16 -0.58 -2.52
(5.78) (3.47) (0.65) (0.63) (4.86)

No. of Villages 25.30 23.07 -2.09 -2.12 -1.62
(16.65) (14.71) (1.42) (1.57) (5.33)

Panel B. Basic Infrastructure
Road Length 52.92 47.66 -6.11 -4.10 -3.83

(KM) (47.05) (45.38) (4.55) (6.52) (11.57)
# of Villages with Paved Road 24.01 22.38 -1.96 -2.24 -0.57

(16.09) (14.38) (1.39) (1.47) (5.51)
# of Villages with Electricity 25.30 23.03 -2.15 -2.12 -1.62

(16.65) (14.74) (1.42) (1.57) (5.33)
# of Villages with Tap Water 12.95 10.76 -1.58 -1.39 0.69

(16.17) (13.57) (1.28) (1.75) (6.02)
Panel C. Human Capital

No. of Primary School 18.11 17.53 -0.76 -0.56 2.10
(9.10) (9.46) (0.85) (1.13) (3.99)

No. of Primary School Students 7,100 6,186 -629.30 -966.96 -309.76
(4,611) (4,312) (464.15) (680.70) (2,329.78)

Obs. 237 307

Mean (within 15km)

Notes:  Data are collected from the Township Conditions Survey in 2002. Columns 1–2 report the 
means and standard deviations of township covariates. In columns 3–5, we restrict our sample to 
15km, 10km and 5km from water quality monitoring stations and test the covariate balance 
between upstream and downstream towns. The difference coefficients are obtained by running OLS 
regressions of township variables on an upstream dummy and a set of water quality monitoring 
station fixed effects. Standard errors reported in the parentheses are clustered at the water 
monitoring station level.

Mean Difference
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Table 2. RD Estimates of the Impact of Water Quality Monitoring on TFP

(1) (2) (3) (4) (5) (6)

Panel A: Water Quality Monitoring and TFP
TFP (log) - Polluting Industries 0.36 0.38 0.43 -0.00 0.02 -0.05

(0.23) (0.24) (0.28) (0.14) (0.15) (0.14)

Bandwidth (km) 4.18 3.88 2.88 4.71 4.14 4.19

Panel B: Water Quality Monitoring and Residual TFP
TFP (log) - Polluting Industries 0.25* 0.25** 0.33** -0.01 0.00 0.02

(Station FE Absorbed) (0.14) (0.13) (0.15) (0.09) (0.10) (0.11)

Bandwidth (km) 5.80 5.98 4.82 6.02 5.48 4.26

Panel C: Water Quality Monitoring and Residual TFP
TFP (log) - Polluting Industries 0.31** 0.31** 0.35** 0.02 0.03 0.03

(Station and Industry FE Absorbed) (0.15) (0.15) (0.16) (0.08) (0.08) (0.09)

Bandwidth (km) 6.56 6.54 5.41 5.553 4.918 4.329

Obs. 6,582 6,582 6,582 12,422 12,422 12,422

Kernel Triangle Epanech. Uniform Triangle Epanech. Uniform

Notes: Each cell in the table represents a separate regression. TFP is estimated using Olley and 
Pakes (1996) method. The discontinuities at monitoring stations are estimated using local linear 
regressions and MSE-optimal bandwidth proposed by Calonico et al. (2014) and Calonico (2017) 
for different kernel weighting methods. Standard errors clustered at the monitoring station level 
are reported below the estimates. * significant at 10% ** significant at 5% *** significant at 1%.

Polluting Industries Non-Polluting Industries
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Table 3. Heterogeneous Impacts of the Impact of  Water Quality Monitoring on TFP 

(1) (2) (3) (4) (5) (6)

Panel A: By Ownership
Private Firms 0.34** 0.37** 0.31* 0.04 0.04 0.03

(0.17) (0.18) (0.18) (0.08) (0.08) (0.09)
Obs. 5,636 5,636 5,636 10,084 10,084 10,084
Bandwidth 5.965 5.590 5.087 6.052 6.059 5.537

SOEs -0.31 -0.16 0.23 -0.13 -0.10 -0.01
(0.52) (0.54) (0.50) (0.25) (0.25) (0.27)

Obs. 635 635 635 1,357 1,357 1,357
Bandwidth 4.282 4.474 4.407 4.724 4.545 3.955

Foreign Firms -0.06 -0.07 -0.11 -0.12 -0.15 0.02
(0.27) (0.28) (0.31) (0.40) (0.42) (0.25)

Obs. 1,104 1,104 1,104 2,427 2,427 2,427
Bandwidth 6.927 6.541 5.479 3.287 3.070 4.286

Panel B: By Year
Before 2003 0.09 0.10 0.11 0.01 0.01 0.06

(0.19) (0.20) (0.24) (0.12) (0.13) (0.15)
Obs. 2,570 2,570 2,570 4,565 4,565 4,565
Bandwidth 5.722 5.211 3.359 4.375 4.323 3.533

After 2003 0.36** 0.35** 0.40** 0.03 0.04 0.07
(0.16) (0.16) (0.17) (0.08) (0.09) (0.10)

Obs. 5,916 5,916 5,916 10,992 10,992 10,992
Bandwidth 6.223 6.287 5.159 6.302 5.926 5.050

Panel C: By Firm Age
Old Firms 0.33* 0.39** 0.45** 0.05 0.05 0.04

(0.17) (0.19) (0.21) (0.09) (0.09) (0.09)
Obs. 4,481 4,481 4,481 8,373 8,373 8,373
Bandwidth 6.695 5.881 4.624 5.432 5.199 4.526

Young Firms 0.48** 0.51** 0.39 -0.03 -0.00 0.07
(0.19) (0.21) (0.26) (0.16) (0.18) (0.20)

Obs. 1,438 1,438 1,438 2,627 2,627 2,627
Bandwidth 3.768 3.537 3.798 5.768 5.084 4.357

Kernel Triangle Epanech. Uniform Triangle Epanech. Uniform
Notes: Each cell in the table represents a separate regression. Monitoring station and industry fixed 
effects are absorbed before estimating regression discontinuity. In columns 1–3, we report the 
estimated discontinuity for polluting industries, and in columns 4–6, we report the estimated 
discontinuity for non-polluting industries. Local linear regression and MSE-optimal bandwidth 
proposed by Calonico et al. (2014) and Calonico (2017) for different kernel weighting methods are 
used for the estimation. Conventional local linear regression discontinuity standard errors clustered 
at the monitoring station level are reported below the estimates. * significant at 10% ** significant at 
5% *** significant at 1%.

Residual TFP – Polluting Industries Residual TFP – Non-Polluting Industries
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Table 4. Instrumental Variable Estimation using Hydrological Stations

Upstream TFP (log) Upstream TFP (log)
(1) (2) (3) (4)

Upstream Hydrological Station 0.38** 0.31**
(0.18) (0.14)

Upstream Monitoring Station -0.35** -0.00
(0.16) (0.17)

Specification 1st Stage 2SLS 1st Stage 2SLS
Station FE Y Y Y Y
Observations 4,445 4,462 8,976 8,981
F Statistic 10.48 0.03 22.82 1.18
R-squared 0.47 0.16 0.44 0.09

Polluting Industries Non–Polluting Industries

Notes: Each column in the table represents a separate regression. We define "upstream 
monitoring station" as a dummy indicator for whether a firm is upstream from a monitoring station 
within a 10 km range, and similarly, we define "upstream hydrological station" as a dummy 
indicator for whether a firm is upstream from a hydrological station within a 10 km range.  Our 
outcome of interest is firm-level TFP estimated using Olley and Pakes (1996) method, our 
endogenous variable is "upstream monitoring station", and our instrumental variable is "upstream 
hydrological station". We present first-stage results and IV 2SLS results separately for firms in 
polluting industries (columns 1 and 2) and firms in non-polluting industries (columns 3 and 4). 
Monitoring station fixed effects are controlled for in all specifications. Standard errors are 
clustered at the monitoring station level.  * significant at 10% ** significant at 5% *** significant 
at 1%.
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Table 5. Density Tests for Sorting Using Local Polynomial Density Estimation
(1) (2) (3) (4)

Panel  A. All Firms, Obs = 6582
T 0.36 0.21 -2.37 0.36
P>|T| 0.72 0.83 0.02 0.72
Bandwidth Left 2.47 1.97 6.17 2.47
Bandwidth Right 2.01 1.97 6.17 2.01

Panel B, Young Firms, Obs = 2825
T 0.73 1.30 -1.02 0.08
P>|T| 0.47 0.19 0.31 0.93
Bandwidth Left 2.68 2.00 3.81 2.68
Bandwitdth Right 1.94 2.00 3.81 2.00
Bandwidth Selector Each Diff Sum Comb

Notes: This table reports RD manipulating tests using the local polynomial density estimators 
proposed by Cattaneo et al. (2017a, 2007b). We use four different bandwidth selectors to check 
the robustness of the results. "Each" means we use two distinct bandwidths based on MSE of each 
density separately for upstream and downstream firms. "Diff" bandwidth selection is based on 
MSE of difference of densities with one common bandwidth. "Sum" bandwidth selection is based 
on MSE of sum of densities with one common bandwidth. "Comb" bandwidth is selected as the 
median of "Each", "Diff" and "Sum". Technical explanations of different bandwidth selectors can 
be found in Cattaneo et al. (2017a, 2007b).
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Table 6. RD Estimates using Placebo Downstream Firms

(1) (2) (3) (4) (5) (6)

Panel A: Water Quality Monitoring and TFP
TFP (log) - Polluting Industries 0.36 0.44* 0.26 -0.18 -0.20 -0.13

(0.23) (0.26) (0.29) (0.16) (0.15) (0.18)

Panel B: Water Quality Monitoring and Residual TFP
TFP (log) - Polluting Industries 0.48** 0.52** 0.61*** 0.13 0.11 0.14

(Station and Industry FE Absorbed) (0.20) (0.21) (0.23) (0.13) (0.11) (0.12)

Obs. 4,435 4,435 4,435 8,001 8,001 8,001

Kernel Triangle Epanech. Uniform Triangle Epanech. Uniform

Polluting Industries Non-Polluting Industries

Notes: Each cell in the table represents a separate regression, where each control firm is replaced 
by its best match in the whole sample from a pre-2003 nearest neighbour matching (based on TFP, 
industry, and other basic characteristics). TFP is estimated using Olley and Pakes (1996) method. 
The discontinuities at monitoring stations are estimated using local linear regression and MSE-
optimal bandwidth proposed by Calonico et al. (2014) and Calonico (2017) for different kernel 
weighting methods. Standard errors clustered at the monitoring station level are reported below the 
coefficients in columns 1–5 and conventional local linear regression discontinuity standard errors 
clustered at the monitoring station level are reported in columns 6-8. * significant at 10% ** 
significant at 5% *** significant at 1%.
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Table 7. Robustness Checks:  Impact of Water Quality Monitoring on TFP

(1) (2) (3)

Panel A. Alternative Ways to Estimate RD and Standard Errors
Bias-corrected RD Estimates 0.35** 0.34** 0.38**

(0.15) (0.15) (0.16)
Bias-corrected Robust Estimates 0.35* 0.34* 0.38**

(0.19) (0.19) (0.19)

Panel B. Alternative Ways to Choose Optimal Bandwidth
Bandwidth Chosen by MSE-Two Selector 0.30** 0.29* 0.25
 (0.15) (0.15) (0.17)
Bandwidth Chosen by MSE-Sum Selector 0.31** 0.30** 0.34**

(0.15) (0.15) (0.16)
Bandwidth Chosen by CER-D Selector 0.38** 0.40** 0.43**

(0.19) (0.19) (0.20)
Bandwidth Chosen by CER-Two Selector 0.35** 0.39** 0.48**

(0.17) (0.17) (0.20)
Bandwidth Chosen by CER-Sum Selector 0.37** 0.39** 0.44**

(0.18) (0.19) (0.20)

Panel C. Placebo Tests
Move Monitoring Stations Upstream by 5km 0.12 0.13 0.11

(0.16) (0.16) (0.16)
Move Monitoring Stations Upstream by 10km -0.08 -0.09 -0.08

(0.11) (0.11) (0.12)
Move Monitoring Stations Downstream by 5km 0.13 0.15 0.11

(0.09) (0.09) (0.11)
Move Monitoring Stations Downstream by 10km 0.03 0.05 0.07

(0.16) (0.15) (0.17)
Monitoring Station FE Y Y Y
Industry FE Y Y Y
Kernel Triangle Epanech. Uniform

TFP – Polluting Industries

Notes:  Each cell in the table represents a separate regression. Conventional local linear regression 
discontinuity standard errors clustered at the monitoring station level are reported below the estimates (except 
Panel A). Local linear regression and MSE-optimal bandwidth selected by Calonico et al. (2014) and 
Calonico (2017) for different kernel weighting methods are used for the estimation (except Panel B). 
Monitoring station and industry fixed effects are absorbed before estimating regression discontinuity.  * 
significant at 10% ** significant at 5% *** significant at 1%.
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Table 8. Channels: RD Estimates on other Measures

(1) (2) (3) (4) (5) (6)

Panel A. Output Related
Revenue -0.09 -0.09 -0.19 -0.18 -0.19 -0.18

(log) (0.25) (0.28) (0.25) (0.28) (0.32) (0.34)
Value-Added 0.04 0.02 -0.05 -0.07 -0.05 -0.07

(log) (0.22) (0.23) (0.22) (0.23) (0.28) (0.29)
Profit 4.47 4.36 5.48 5.36 5.48 5.36

(10 million yuan) (4.07) (3.88) (4.07) (3.88) (5.58) (5.37)

Panel B. Input Related
Employees -0.16 -0.14 -0.22 -0.19 -0.22 -0.19

(log) (0.16) (0.16) (0.16) (0.16) (0.21) (0.21)
Investment -1.72 -0.60 -2.03 -0.34 -2.03 -0.34

(10 million yuan) (1.77) (2.06) (1.77) (2.06) (2.13) (2.46)

Intermediate Input -0.18 -0.16 -0.28 -0.26 -0.28 -0.26
(log) (0.25) (0.27) (0.25) (0.27) (0.33) (0.33)

Panel C. Policy-Related and RD
Tax -0.59 -0.70 -0.76 -0.87* -0.76 -0.87

(log) (0.49) (0.53) (0.49) (0.53) (0.61) (0.63)
Waste Discharge Fee -1.15** -1.07** -1.41*** -1.32** -1.41** -1.32**

(log) (0.51) (0.53) (0.51) (0.53) (0.57) (0.60)

Panel D. Porter Hypothesis
R&D -0.06 -0.17 -0.16 -0.28 -0.16 -0.28

(log) (0.39) (0.46) (0.39) (0.46) (0.58) (0.62)
Kernel Triangle Epanech. Triangle Epanech. Triangle Epanech.

Notes: Each cell in the table represents a separate regression. We use post-2003 collapsed data to 
estimate the regression discontinuities. Local linear regression and MSE-optimal bandwidth proposed 
by Calnoico et al. (2014) and Calonico (2017) for different kernel weighting methods are used for 
the estimation. Investment is calculated by subtracting previous year's value of fixed assets from this 
year's value of fixed assets after decpreciation.  Standard errors are clustered at the monitoring 
station level, and reported below the estimates. * significant at 10% ** significant at 5% *** 
significant at 1%.

Conventional  Local RD Bias-Corrected RD Bias-Corrected Robust



 

 

Table 9. Political Economy of Water Quality Monitoring

(1) (2) (3) (4) (5) (6)

Panel A. When City Leader Has Strong Political Incenitives
TFP (log) 0.57*** 0.59*** 0.63*** 0.66*** 0.63*** 0.66***

(0.19) (0.20) (0.19) (0.20) (0.21) (0.23)

Panel B. When City Leader Has Weak Political Incenitives
TFP (log) - Polluting Industries 0.01 0.08 0.00 0.07 0.00 0.07

(0.23) (0.24) (0.23) (0.24) (0.29) (0.31)

Panel C. Automatic Monitoring Stations
TFP (log) 0.92 1.01* 1.11* 1.22** 1.11 1.22*

(0.59) (0.57) (0.59) (0.57) (0.74) (0.71)

Panel D. Manual Monitoring Stations
TFP (log) 0.26* 0.26* 0.27* 0.27* 0.27 0.27

(0.15) (0.15) (0.15) (0.15) (0.18) (0.18)
Station FE Y Y Y Y Y Y

Industry FE Y Y Y Y Y Y

Kernel Triangle Epanech. Triangle Epanech. Triangle Epanech.

Conventional  Local RD Bias-Corrected RD Bias-Corrected Robust

Notes: Each cell in the table represents a separate regression. We focus on polluting firms and use post-2003 collapsed data to estimate the 
regression discontinuities. Local linear regression and MSE-optimal bandwidth proposed by Calnoico et al. (2014) and Calonico (2017) for 
different kernel weighting methods are used for the estimation. Panel A uses the subsample where the Prefecture Party Secretary has strong 
promotion incentives (age<=56). Panel B uses the subsample where the Prefecture Party Secretary has weak promotion incentives (age>56). Panel 
C uses the subsample of automatic monitoring stations and Panel D uses that of manual monitoring stations. * significant at 10% ** significant at 
5% *** significant at 1%.



 

 

Table 10. RD Estimates of the Impact of Water Quality Monitoring on Emissions

(1) (2) (3) (4) (5) (6)

Panel A: COD Emission
COD Emission (log) 0.83* 0.75* 0.99** 0.92** 0.99** 0.92*

(Station and Industry FE Absorbed) (0.44) (0.42) (0.44) (0.42) (0.49) (0.47)
COD Emission Intensity (log) 0.55** 0.49* 0.68** 0.62** 0.68** 0.62**

(Station and Industry FE Absorbed) (0.27) (0.26) (0.27) (0.26) (0.32) (0.31)

Panel B: Wastewater Discharge
Waste Water Discharge (log) 0.39 0.39 0.49 0.50 0.49 0.50

(Station and Industry FE Absorbed) (0.33) (0.35) (0.33) (0.35) (0.40) (0.42)
Waste Water Discharge Intensity (log) 0.34* 0.33* 0.42** 0.41** 0.42* 0.41*

(Station and Industry FE Absorbed) (0.20) (0.20) (0.20) (0.20) (0.23) (0.22)
Bandwidth Selector MSE MSE MSE MSE MSE MSE
Obs. 9,888 9,888 9,888 9,888 9,888 9,888
Kernel Triangle Epanech. Triangle Epanech. Triangle Epanech.

Conventional Local RD Bias-Corrected Bias-Corrected Robust

Notes:  Each cell in the table represents a separate regression. Monitoring station fixed effects are absorbed before estimating regression 
discontinuity. Local linear regression and MSE-optimal bandwidth selected by Calonico et al. (2014) and Calonico (2017) for different kernel 
weighting methods are used for the estimation. Conventional local linear regression discontinuity standard errors clustered at the monitoring 
station level are reported below the estimates. * significant at 10% ** significant at 5% *** significant at 1%.



 

 

Table 11. Predicted Effects of Water Quality Monitoring on TFP and COD
Model 1 Model 2 Model 3

(1) (2) (3)

Panel A. TFP Effects for Large and Small Firms (Measured by Industry Output Value)
20% (log Rev ~ 9.01) 0.14 0.10 0.11

(0.24) (0.23) (0.23)
40% (log Rev ~ 9.58) 0.27 0.32 0.32

(0.23) (0.22) -0.22
60% (log Rev ~ 10.16) 0.42* 0.50** 0.49**

(0.22) (0.21) 0.21
80% (log Rev ~ 10.92) 0.62*** 0.66*** 0.65***

(0.22) (0.20) (0.20)

Panel B. COD Effect for Large and Small emitters (Measured by COD Emissions)
20% (log COD ~ 5.97) 0.14 0.12 0.19

0.44 (0.43) (0.44)
40% (log COD ~ 7.46) 0.93** 0.96** 0.99**

(0.43) (0.43) (0.44)
60% (log COD ~ 8.70) 1.59*** 1.62*** 1.59***

(0.43) (0.43) (0.43)
80% (log COD ~ 10.18) 2.38*** 2.34*** 2.27***

(0.43) (0.43) (0.42)
Heterogeneity Specification Linear Quadratic Cubic

Notes: This table reports the predicted effects of water quality monitoring on TFP and 
COD emission intensity. In Panel A, we explore the TFP heterogeneity at different revenue 
levels, and in Panel B, we explore the COD intensity heterogeneity at different COD 
emission levels. We use parametric RD to estimate the heterogeneous effects using 
different heterogeneity functional forms. We choose the polynomial RD specifications that 
generate the closest estimates to the non-parametric estimates reported in Table 2 and 
Table 8 as the baselines.  We then include interactions to test the heterogeneity. "Linear" 
means that we use a linear interaction between the downstream dummy and log revenue 
(or log COD), and "quadratic" means we interact the downstream dummy with a quadratic 
function of log revenue (or log COD). Panel A shows that the monitoring effect is only 
significant for large firms, and Panel B shows that the monitoring effect is only significant 
for large emitters.



Table 12. Economic Costs of COD Abatement

(1) (2) (3) (4)

Panel A. Estimated Effect of Water Quality Monitoring
Effect on log TFP 0.31** 0.31** 0.35** 0.34**

(0.15) (0.15) (0.15) (0.15)
Effect on log COD Emission 0.83* 0.75* 0.99** 0.92**

(0.44) (0.42) (0.44) (0.42)
Effect on log COD Emission Intensity 0.55** 0.49* 0.68** 0.62**

(0.27) (0.26) (0.27) (0.26)

Panel B. Estimated Economic Costs Estimates: 
TFP Loss if all Polluting Firms are Monitored 26.66% 26.66% 29.53% 28.82%
TFP Loss per 10% COD Emission Abatement 2.49% 2.75% 2.35% 2.46%
TFP Loss per 10% COD Emission Intensity Reduction 3.75% 4.21% 3.43% 3.65%
Total Output Loss if all Polluting Firms are Monitored (billion CNY) 3988.9 3988.9 4599.6 4444.6
Total Output Loss in the Polluting Industry during the 11th Five-Year Plan (billion CNY), A 351.98 390.86 332.60 348.16
Total Output Loss in the Polluting Industry per 2.5% COD Abatement (billion CNY), A 68.64 76.01 64.95 67.91
Total Output Loss in the Polluting Industry per 10% COD Abatement (billion CNY), A 279.79 310.48 264.48 276.77
Total Output Loss in the Polluting Industry per 2.5% COD Abatement (billion CNY), B 242.91 269.00 229.85 240.34
Total Output Loss in the Polluting Industry per 10% COD Abatement (billion CNY), B 990.2 1098.8 936.0 979.5
Kernel Triangle Epanech. Triangle Epanech.
Gross Output Value in the Polluting Industry in 2006 (billion CNY), A
Gross Output Value in the Polluting Industry in 2015 (billion CNY), B 38844.9

Conventional Bias-Corrected

Notes: The gross output values were obtained from the website of the National Bureau of Statistics. A: calculation is based on gross output value (of 
industries above designated size) in 2006; B: calculation is based on gross output value (of industries above designated size) in 2015.

10975.7
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Figure 1. Illustrating the Identification Strategy
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Figure 2. Distribution of Surface Water Quality Monitoring Stations
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Figure 3. RD Plot: Effects of Water Quality Monitoring on TFP
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Figure 4. RD Estimates by Year
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Figure 5. Distribution of Firms
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Online Appendix to 

“Environmental Regulation and Firm Productivity in China: Estimates from a 

Regression Discontinuity Design” 

Appendix A. Estimation of TFP using Olley-Pakes Method 

 

Our Olley-Pakes TFP measure is constructed based on Brandt et al. (2012) using the Annual 

Survey of Industrial Firms (ASIF) dataset from 2000 to 2007. We made slight changes to the 

estimations of some key parameters to improve the accuracy of productivity measurement in the 

ASIF dataset, as suggested by Yang (2015). We explain in detail how we construct these key 

parameters. 

 

Gross Output 

Following the literature, we use production value, instead of sales, as the gross output measure. 

Production value and sales differ slightly due to the change in inventories. The former is more 

closely related to input and productivity, and thus more relevant for TFP estimation. 

When constructing output deflators, we follow Yang (2015) by using output price indexes for 

every 2-digit industry in each year from the “Urban Price Yearbook 2011” published by the National 

Bureau of Statistics. Because those price indexes are linked across different years, we can use them 

to deflate yearly nominal output to real output in 2000. 

 

Value Added 

When constructing real value added, we subtract from the aforementioned real output the goods 

purchased for resale, indirect taxes, and material inputs. 

We construct input deflators from National Input-Output tables in 1997, 2002, and 2007, to take 

into account the dynamics of input price in different sectors, as suggested by Yang (2015). By doing 

so, we are able to deflate nominal inputs in each sector in each year to the real values in 2000. 

 

Employment and Wages 

The ASIF dataset contains information on the number of employees and the compensation for 

labor, including wages, employee supplementary benefits, and insurance. We follow Brandt et al. 

(2012) to sum up wages, benefits, and insurance as a proxy for total labor compensation.  
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Capital Stock and Investment 

In the ASIF dataset, firms report the value of their fixed capital stock at original purchase prices, as 

well as capital stock at original purchased prices less accumulated depreciation. Because these values 

are the sum of nominal values in all the past years, they cannot be taken directly to proxy for real 

capital stock. To back out the real capital stock and construct real investment from this variable, we 

follow the approach suggested by Yang (2015). 

For each year after the first period, we first take the difference between “current capital stock” and 

“capital stock in the previous period,” then deflate it according to the previously calculated price 

indexes for this period. For observations in the first period of the panel, we assume that, from the 

firm’s establishment until this first period, it had on average the same increasing trend in investment 

rate as the 2-digit sector average value, which can be collected from the yearbooks published by the 

National Bureau of Statistics. Under this assumption, together with the nominal capital stock in the 

first period, nominal capital stock when established, and relevant deflators, we are able recover the 

real investment and real capital stock in the first period as well. 

 

TFP Estimation 

With the key variables constructed, we follow the literature and use the Olley and Pakes (1996) 

approach to estimate TFP. This approach addresses both simultaneity and selection problems that are 

salient in the traditional Solow-residual type TFP estimates. For implementation, we use the Stata 

package provided by Yasar et al. (2008); please refer to their manual for the details of the estimation. 
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Appendix B. Conceptual Framework  

We provide a conceptual framework that helps to explain the empirical findings. We focus on 

firms’ production decisions and address how environmental regulations can affect their TFP. We 

assume that firms produce homogeneous goods, with a Hicks-neutral continuously differentiable 

production function ܳሺܭ, ሻܮ , where ܭ  represents capital, ܮ  represents labor, and ܳ௞, ܳ௟ ൐

0; ܳ௞௞, ܳ௟௟ ൏ 0.  

When a firm produces output ܳ, emissions are generated as a by-product and are an increasing 

function of output ܳ. The firm can reduce its emissions by employing extra (non-productive) labor 

ாܮ  and/or capital ܭா . The final emission level is therefore a continuously differentiable function 

,ாܭ,ሺܳܧ ଵܧ ாሻ. We assume thatܮ ൐ 0, ଵଵܧ ൐ 0; ଶܧ ൐ 0, ଶଶܧ ൏ 0; ଷܧ ൐ 0, ଷଷܧ ൏ 0 and ܧଶଷ ൌ ଷଶܧ ൌ

0. 

We model the government’s environmental regulations as a unit tax (fine), ݐ, on firm’s emissions 

,ܭ A firm maximizes its profit by setting .ܧ ,ܮ ,ாܭ  :ா as followsܮ

(1)              max
௄,௅,௄ಶ,௅ಶ

ߨ ൌ ݌ ∙ ܳሺܭ, ሻܮ െ ݎ ∙ ሺܭ ൅ ாሻܭ െ ݓ ∙ ሺܮ ൅ ாሻܮ െ ݐ ∙ ,ሺܳܧ ,ாܭ  ாሻܮ

where ݌ represents the market output price, ݎ  represents the capital price or interest rate, and ݓ 

represents wages. 

The first order conditions for the firm’s profit maximization problem are therefore:  

(2) 
డగ

డ௄
ൌ ݌ ∙ ܳ௞ െ ݎ െ ݐ ∙ ଵܧ ∙ ܳ௞ ൌ 0 

(3) 
డగ

డ௅
ൌ ݌ ∙ ܳ௟ െ ݓ െ ݐ ∙ ଵܧ ∙ ܳ௟ ൌ 0 

(4) 
డగ

డ௄ಶ
ൌ െݎ െ ݐ ∙ ଶܧ ൌ 0 

(5)  
డగ

డ௅ಶ
ൌ െݓ െ ݐ ∙ ଷܧ ൌ 0 

Applying the implicit function theorem, we can prove the following: 

(6) 
డ௄

డ௧
൏ 0, డ௅

డ௧
൏ 0;	డ௄ಶ

డ௧
൐ 0, డ௅ಶ

డ௧
൐ 0; 

(7) 
డா డ௧⁄

ா
൏ డொ డ௧⁄

ொ
൏ 0;	 
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(8) 
డொ డ௧⁄

ொ
൏ డሺ௄ା௄ಶሻ డ௧⁄

ሺ௄ା௄ಶሻ
; 		డொ డ௧⁄

ொ
൏ డሺ௅ା௅ಶሻ డ௧⁄

ሺ௅ା௅ಶሻ
 . 

Proposition 1. An increase in the emissions tax reduces TFP.  

Proof. By definition, TFP ൌ ௣∙ொሺ௄,௅ሻ

௥∙ሺ௄ା௄ಶሻା௪∙ሺ௅ା௅ಶሻ
 ; and we therefore have the following: 

(11)              
డ୘୊୔

డ௧
ൌ

డሾ
೛∙ೂሺ಼,ಽሻ

ೝ∙൫಼శ಼ಶ൯శೢ∙൫ಽశಽಶ൯
ሿ

డ௧
ൌ ݌	 ∙

௥൤ങೂ
ങ೟
∙ሺ௄ା௄ಶሻିொ∙

ങ൫಼శ಼ಶ൯
ങ೟

൨ା௪൤ങೂ
ങ೟
∙ሺ௅ା௅ಶሻିொ∙

ങ൫ಽశಽಶ൯
ങ೟

൨

ሾ௥∙ሺ௄ା௄ಶሻା௪∙ሺ௅ା௅ಶሻሿమ
൏ 0 

where the inequality follows from Equation (8).  

Proposition 2. An increase in the emission tax ݐ reduces the emission level ܧ and emission intensity 

ாሺொ,௄ಶ,௅ಶሻ

ொ
.  

Proof. Taking the derivative of emissions with respect to the emission tax, we have:  

(9) 
డா

డ௧
ൌ ଵܧ ∙

డா

డ௧
൅ ଶܧ ∙

డ௄ಶ
డ௧

൅ ଷܧ ∙
డ௅ಶ
డ௧

൏ 0; 

where the inequality follows from Equations (6) and (7). 

 For emission intensity, we have:  

(10) 
డሺா/ொሻ

డ௧
ൌ 	

ങಶ
ങ೟
∙ொିങಶ

ങ೟
∙ா

ாమ
൏ 0 

where the inequality follows from Equation (7).  

In this model, we implicitly assume that production has no effect on the market price. This 

assumption is likely to hold in our empirical setting because we focus on a small set of firms 

concentrated in a small geographical area. On the one hand, these firms face the same market 

because they are located close to each other; on the other hand, as there are many other firms and 

buyers in the market, local water quality regulations cannot affect the output market prices. This is 

important because we cannot directly measure output quantity ܳ in our firm-level production data. 

Instead, we can only measure revenue ݌ ∙ ܳሺܭ,  ሻ. Because firms are price-takers in our setting, weܮ

can translate the effects of environmental regulation on revenue-based TFP to real (output-based) 

TFP. In the case where prices depend on marginal cost, we will underestimate the true TFP effect 

because the price increases as marginal cost of production increases. 
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Appendix C1. An Order Issued by Kunshan Government to Improve Water Quality around 

the Monitoring Stations (Scan Copy) 
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Appendix C2. An Order Issued by Kunshan Government to Improve Water Quality around 

the Monitoring Stations (Authors’ Translation) 

 

Kunshan 263 Special Action Team Office 

Kunshan 263 Office【2017】 #186 

 

 

An Urgent Order on Suspending Production of Industrial Enterprises Located 

in the River Basin of Wusong River Zhaotun (Shipu) Water Quality Monitoring 

Station and Two Other River Basins 

 

To Kunshan Development Zone, Kunshan High-tech Zone, Huaqiao Economic Development Zone 

Administrative Board, People's Governments of Townships, Municipal Water Resources Bureau, 

Municipal Environmental Protection Bureau and Municipal Water Affairs Group:  

 

 According to the recent data from the automatic water quality monitoring stations in Kunshan 

city, the water quality of several river segments used for national and provincial assessment is 

relatively poor. The situation is particularly severe for the Zhaotun water quality monitoring station 

(worse than Grade V), Zhengdong ferry station (worse than Grade V), and Qian Deng Pu Kou station 

(Grade V), all of which may fail to meet the national and provincial assessment requirements.  

 To ensure that the water quality in these river segments meets the annual national assessment 

requirement in 2018, we have decided to suspend the production of industrial enterprises (list 

attached) located near the Wusong River Basin Zhaotun (Shipu) water quality monitoring station and 

two other river basins near water quality monitoring stations, effective from December 25, 2017 to 

January 10, 2018. The suspension of production may be further extended, depending on the 

conditions of water quality readings. Relevant district and township governments should inform the 

enterprises about the decision. The inspection teams should supervise and take production cessation 

measures. Special investigators should be placed in the plants to ensure full compliance. Sluice gates 

along Wusong River, Taicang Embankment and Qian Deng Pu must be closed, and the pumping 

facilities need to be shut down and stop discharging wastewater during this period. District and 
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township governments and relevant departments shall ensure that enterprises take proper safety 

measures in the process of suspending and resuming production.  

 

 During the production suspension period, a daily reporting system will be adopted. The 

Municipal Water Resources Bureau shall inspect the status of all sluice gates and pumping facilities 

and report the inspection results to the City’s “263” Office before 4:30pm every day. District and 

township governments, special investigators based in the plants, and wastewater treatment plants 

shall check whether there are violations of the production suspension order and report the results to 

the Office  (ks263bgs@163.com) before 4:30 PM every day. 

 

 Hereby noticed, and please follow the order.  

 

 Appendix: List of industrial enterprises that shall suspend production  

 

The “263” Office of Kunshan Government 

 

24th December, 2017 

 

 

cc. Municipal Office of Kunshan, Government Office of Kunshan 

cc. Kunshan Safety Supervision Bureau, Kunshan City Fire Brigade 
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Table S1. Polluting vs Non-Polluting Industries

Industry Code Industry Code
Mining and Washing of Coal 6 Forestry 2
Mining and Processing of Ferrous 
Metal Ores

8 Extraction of Petroleum and Natural 
Gas

7

Mining and Processing of Non-
metallic Mineral

10 Mining and Processing of Non-ferrous 
Metal Ores

9

Fermentation 14 (6) Agricultural and Sideline Food 13

Beverage Manufacturing 15 Food Manufacturing 14
Textiles Mills 17 Tobacco Manufacturing 16
Leather, Fur and Related Products 
Manufacturing

19 Wearing Apparel and Clothing 
Accessories Manufacturing

18

Pulp and Paper Manufacturing 22 (1, 2) Wood and Bamboo Products Manufac 20
Petrochemicals Manufacturing 25 Furniture Manufacturing 21
Chemical Products Manufacturing 26 Paper Products Manufacturing 22
Medicine Manufacturing 27 (1, 2, 4) Printing and Reproduction of 

Recorded Media
23

Chemical Fibers Manufacturing 28 Education and Entertainment Articles 
Manufacturing

24

Non-Metallic Mineral Products 
Manufacturing

31 Medical Goods Manufacturing 27

Iron and Steel Smelting 32 (1, 2) Rubber Products Manufacturing 29
Non-Ferrous Metal Smelting 33 (1) Plastic Products Manufacturing 30
Fossil-Fuel Power Station 44 (1) Basic Metal Processing 32

Non-Ferrous Metal Processing 33
Fabricated Metal Products Manufactur 34
General Purpose Machinery Manufactu 35
Special purpose Machinery Manufactu 36
Transport Equipment Manufacturing 37
Electrical Equipment Manufacturing 39
Computers and Electronic Products 
Manufacturing

40

General Instruments and Other 
Equipment Manufacturing

41

Craftworks Manufacturing 42
Renewable Materials Recovery 43
Electricity and Heat Supply 44
Gas Production and Supply 45
Water Production and Supply 46

Polluting Industries Non-Polluting Industries

Notes: Industrial classification for national economic activities (GB/T 4754—2002). The division 
between polluting Industries and non-polluting Industries is according to the Ministry of 
Environmental Protection 
(http://wfs.mep.gov.cn/gywrfz/hbhc/zcfg/201009/t20100914_194483.htm).
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(1) (2) (3) (4) (5) (6)

Year 2000 -0.18 -0.06 -0.15 -0.22 -0.21 -0.11

(0.26) (0.20) (0.28) (0.17) (0.18) (0.16)

Obs. 1,411 1,411 1,411 2,428 2,428 2,428

Year 2001 -0.02 -0.01 -0.04 -0.07 -0.05 -0.19

(0.21) (0.21) (0.24) (0.17) (0.18) (0.17)

Obs. 1,411 1,411 1,411 2,428 2,428 2,428

Year 2002 0.04 0.09 0.05 0.03 0.01 -0.02

(0.20) (0.20) (0.25) (0.13) (0.13) (0.12)

Obs. 2,106 2,106 2,106 3,644 3,644 3,644

Year 2003 0.30 0.34 0.37* 0.04 0.04 0.04

(0.29) (0.29) (0.21) (0.16) (0.16) (0.15)

Obs. 2,367 2,367 2,367 3,888 3,888 3,888

Year 2004 0.12 0.14 0.21 0.08 0.06 0.06

(0.30) (0.32) (0.31) (0.11) (0.11) (0.11)

Obs. 3,288 3,288 3,288 5,509 5,509 5,509

Year 2005 0.31 0.35 0.35 -0.04 -0.05 -0.06

(0.24) (0.25) (0.26) (0.15) (0.15) (0.15)

Obs. 3,750 3,750 3,750 6,296 6,296 6,296

Year 2006 0.48** 0.52** 0.61** 0.01 0.01 0.03

(0.22) (0.25) (0.27) (0.14) (0.15) (0.16)

Obs. 3,981 3,981 3,981 6,969 6,969 6,969

Year 2007 0.37** 0.38* 0.42* 0.14 0.15 0.17*

(0.19) (0.20) (0.22) (0.09) (0.09) (0.10)
Obs. 4,460 4,460 4,460 8,103 8,103 8,103

Kernel Triangle Epanech. Uniform Triangle Epanech. Uniform

Residual TFP – Polluting Industries Residual TFP – Non-Polluting Industries

Notes:  Each cell in the table represents a separate regression. Monitoring station fixed effects 
are absorbed before estimating regression discontinuity. In columns 1-3, we report the 
estimated discontinuity for polluting industries, and in columns 4-6, we report the estimated 
discontinuity for non-polluting industries.  Local linear regression and MSE-optimal bandwidth 
proposed by Calonico et al. (2014) and Calonico (2017) for different kernel weighting methods 
are used for the estimation. Conventional local linear regression discontinuity standard errors 
clustered at the monitoring station level are reported below the estimates. * significant at 10% 
** significant at 5% *** significant at 1%.

Table S2. RD Estimates of the Impact of Water Quality Monitoring on TFP by Year
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Table S3. Polynomial RD Estimates of the Impact of Water Quality Monitoring on TFP 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Control for Station FE
TFP (log) 0.30** 0.33** 0.22 0.38*** 0.65*** 0.03 0.07 0.02 0.15* 0.19

(0.12) (0.16) (0.21) (0.12) (0.19) (0.07) (0.10) (0.15) (0.09) (0.14)

R-Square 0.14 0.14 0.14 0.17 0.16 0.08 0.08 0.08 0.09 0.10

Station FE Y Y Y Y Y Y Y Y Y Y

Panel B: Control for Station and Industry FE
TFP (log) 0.22** 0.29* 0.30 0.32*** 0.47** 0.00 0.10 0.17 0.13* 0.16

(0.09) (0.14) (0.20) (0.10) (0.19) (0.07) (0.09) (0.13) (0.07) (0.14)

R-Square 0.26 0.26 0.26 0.28 0.29 0.27 0.27 0.27 0.29 0.27

Station FE Y Y Y Y Y Y Y Y Y Y

Industry FE Y Y Y Y Y Y Y Y Y Y

Obs. 6,582 6,582 6,582 4,462 1,474 12,422 12,422 12,422 8,981 3,260
Polynomial Function Linear Quadratic Cubic Linear Linear Linear Quadratic Cubic Linear Linear
Sample 20km 20km 20km 10km 5km 20km 20km 20km 10km 5km

Polluting Industries Non-Polluting Industries

Notes: Each cell in the table represents a separate regression. TFP is estimated using Olley and Pakes (1996) method. We report OLS estimates of 
the coefficient on a "downstream" dummy after controlling for polynomial functions in distance from the water quality monitoring stations 
interacted with a downstream dummy. Standard errors clustered at the monitoring station level are reported below the coefficients. * significant at 
10% ** significant at 5% *** significant at 1%.
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Table S4. RD Estimates of the Impact of Water Quality Monitoring on Alternative TFP

(1) (2) (3) (4) (5) (6)

Panel A: Water Quality Monitoring and TFP
TFP (log) - Polluting Industries 0.61* 0.67* 0.83** -0.06 -0.10 -0.05

(0.35) (0.37) (0.39) (0.21) (0.22) (0.25)

Panel B: Water Quality Monitoring and Residual TFP
TFP (log) - Polluting Industries 0.55** 0.54** 0.69** 0.07 0.06 0.00

(Station FE Absorbed) (0.27) (0.27) (0.31) (0.13) (0.13) (0.14)

Panel C: Water Quality Monitoring and Residual TFP
TFP (log) - Polluting Industries 0.31 0.35 0.57* 0.15 0.14 0.08

(Station and Industry FE Absorbed) (0.23) (0.24) (0.30) (0.12) (0.13) (0.12)

Obs. 6,039 6,039 6,039 11,440 11,440 11,440

Kernel Triangle Epanech. Uniform Triangle Epanech. Uniform

Polluting Industries Non-Polluting Industries

Notes: Each cell in the table represents a separate regression. TFP is estimated using method 
proposed by Ackerberg et al. (2015). The discontinuities at monitoring stations are estimated using 
local linear regression and MSE-optimal bandwidth proposed by Calonico et al. (2014) and 
Calonico (2017) for different kernel weighting methods. * significant at 10% ** significant at 5% 
*** significant at 1%.
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Table S5. Effect of Monitoring on TFP and Emission by Size

(1) (2) (3) (4) (5) (6)

Panel A: RD Estimates for TFP (log)
Downstream 0.11 0.11 0.24 0.31** 0.32** 0.30

(0.17) (0.18) (0.17) (0.14) (0.16) (0.19)

Obs. 3,038 3,038 3,038 3,538 3,538 3,538

Panel B: RD estimates for COD Emission Intensity (log)
Downstream 0.49 0.44 0.25 0.92* 0.80* 0.48

(0.40) (0.36) (0.28) (0.47) (0.45) (0.44)

Obs. 4,901 4,901 4,901 4,906 4,906 4,906

Kernel Triangle Epanech. Uniform Triangle Epanech. Uniform

Small Firms/Emitters Large Firms/Emitters

Notes: Each cell in the table represents a separate regression. Monitoring station fixed 
effects are absorbed before estimating regression discontinuity. In columns 1–3, we report 
the estimated discontinuity for smaller firms or emitters, and in columns 4–6, we report the 
estimated discontinuity for large firms or emitters. Local linear regression and MSE-optimal 
bandwidth proposed by Calonico et al. (2014) and Calonico (2017) for different kernel 
weighting methods are used for the estimation. * significant at 10% ** significant at 5% *** 
significant at 1%.
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Table S6. Effect of Water Quality Monitoring on Firm Exit

(1) (2) (3) (4) (5) (6)

Panel A: Conventional RD Estimates
Downstream 0.07 0.07 0.11 -0.02 -0.02 -0.04

(0.09) (0.09) (0.10) (0.05) (0.05) (0.05)

Panel B: Bias-Corrected Robust RD Estimates
Downstream 0.10 0.10 0.15 -0.01 -0.02 -0.04

(0.10) (0.10) (0.11) (0.07) (0.07) (0.06)

Obs. 6,581 6,581 6,581 12,422 12,422 12,422

Kernel Triangle Epanech. Uniform Triangle Epanech. Uniform

Exit – Polluting Industries  Exit – Non-Polluting Industries

Notes: Each cell in the table represents a separate regression. Monitoring station fixed 
effects are absorbed before estimating regression discontinuity. In columns 1–3, we report 
the estimated discontinuity for polluting industries, and in columns 4–6, we report the 
estimated discontinuity for non-polluting industries. Local linear regression and MSE-optimal 
bandwidth proposed by Calonico et al. (2014) and Calonico (2017) for different kernel 
weighting methods are used for the estimation. Conventional local linear regression 
discontinuity standard errors clustered at the monitoring station level are reported below the 
estimates in Panel A; bias-corrected RD estimates and robust standard errors are reported in 
Panel B. * significant at 10% ** significant at 5% *** significant at 1%.
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