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Abstract

We determine the environmental benefit of using electric buses rather than diesel
for urban transit. For diesel we calculate air pollution damages using an integrated
assessment model (AP3). For electric buses we initially use marginal damage estimates
from the literature. The environmental benefit of operating an electric bus fleet (rather
than diesel) is about $70 million per year in Los Angeles and above $9 million per year
in five other MSA’s. Thirteen MSA’s have benefits which exceed 10/c per mile, and the
benefit in Los Angeles exceeds 60/c per mile. We also explore three methods for de-
termining more spatially disaggregated estimates of marginal damages from electricity
consumption. Two of the methods use OLS, and one uses a machine learning technique
(Lasso). Using data from Texas, which allows for a rich set of controls, we show these
methods provide similar estimates for the three largest regions. Moreover, two of the
methods may work reasonably well in other parts of the country for which detailed
controls have not been available.
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1 Introduction

Economies rely on the transportation sector to move people, raw materials, and intermediate

and final goods throughout the supply chain. The energy and emission consequences of

transportation have long-made this sector a target of environmental regulations. In the

United States, traditional measures to mitigate pollution from the transportation sector

applied a mix of technology and performance standards. The earliest policies focused on the

light-duty vehicle fleet. Subsequent rules applied to heavy-duty vehicles including highway

diesel trucks and urban buses. In both cases, the regulatory apparatus focuses on tailpipe

emissions. In parallel with policies levied on the transportation sector were regulations

applied to stationary point sources. Primary among the traditionally-regulated point sources

were the fossil fuel-fired power stations. While these early and extant policies cover local air

pollution, meaningful efforts to mitigate future climate change are also likely to affect both

sectors.

Against this regulatory mosaic, and very much in the context of policy options for manag-

ing climate change, electrification of the transportation sector is proceeding. If environmental

policy efficiently managed externalities from both transportation and electricity generation,

then adoption and use of electric and internal-combustion vehicles would be socially optimal.

That is, the incentives presented by policy would ensure that the mix of electric and internal

combustion transportation would reflect both private and social costs. Of course, policies

are not efficient. One size fits all standards applied to internal combustion engine vehicle

design cannot reflect the heterogeneous impacts (per vehicle mile traveled) that depend on

where and how the vehicle is driven. In parallel, power plants are not regulated according to

plant-specific marginal damages - the theoretical first-best. And, as shown in prior work, the

uniform subsidies applied to purchases of electric vehicles do not embody variation in net en-

vironmental impact (Holland et al 2016.) This imperfect regulatory framework, within which

electrification is occurring, necessitates second-best policies that can improve the efficiency

of transportation electrification. Carefully designed second-best policy requires estimates of

benefits and costs.
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To date, much of the innovation and market penetration of electrification has occurred

with light-duty vehicles. Accordingly, the literature focuses on relative environmental im-

pacts of internal combustion and electric light-duty vehicles.1 However, cars are only one

aspect of our transportation infrastructure that could be electrified. Recently, Elon Musk

unveiled plans for a Tesla long-haul semi-truck. Some buses and trains have long been elec-

trified, using overhead power lines or electrified rails, but advances in battery technology,

wireless charging, and autonomous driving may open new possibilities for buses and trains as

well as for short-haul delivery, commercial and heavy-duty trucking, and other transportation

modes.

In light of these emerging possibilities for electrification into the transportation sector,

the present analysis examines buses used for mass-transit.2 We focus on this case for three

reasons. First, proponents of mass-transit claim that it is a means to reduce individual vehicle

use (and hence, total energy use and emissions). We offer a comparison between traditional

diesel-powered and electric buses that could affect the merits of this claim moving forward.

Second, buses are relied on heavily in cities where local pollution causes large damages.

Third, this vehicle class lies at the electrification frontier. Thus, guidance in the form of a

comparative policy analysis between internal combustion buses and electric buses may help

states and metropolitan areas prioritize investment in electrification.

The environmental benefit of electrification is the difference between the damages of the

forgone non-electrified transport and the damages from the electrified transport. In the-

ory, it is straightforward to calculate the environmental benefit of switching from gasoline

or diesel powered mode of transportation to the corresponding electric powered mode of

transportation. One simply compares the damages from emissions from the tailpipe to the

damages from the emissions from the smokestack. In practice, there are several difficulties

to carrying out this calculation, some of which have not been satisfactorily addressed by the

previous literature. First, both electrified and non-electrified transportation cause emissions

of a variety of pollutants. A complete assessment must analyze multiple pollutants. This

1Prior analyses include Archsmith et al. 2015, Graff Zivin et al. 2014, Holland et al. 2016, Holland et al.
2019, Li et al. 2017, and Michalek et al. 2011.

2See Tong et al 2017 for a review of previous studies of air pollution from various alternative fuel buses.
Tong et al 2017 analyze electric buses but use average damages from electric power plants rather than
marginal damages.
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multipollutant framework necessitates a modeling apparatus that tracks both local air pollu-

tants and greenhouse gases (GHGs). For local air pollution, we employ the AP3 model (Clay

et al., 2019; Holland et al., 2019) which is an updated version of the AP2 model (Muller,

2014; Holland et al., 2016). For GHGs, we use the social cost of carbon from the federal

government inter-agency working group meta-analysis (USIAWG, 2016).

This distinction among pollution types raises the second empirical challenge; transporta-

tion emissions occur at different locations. While greenhouse gases have the same effects

regardless of their location, the effects of emissions of local pollutants, e.g., particulate mat-

ter, depend on where they are emitted. Thus, we use AP3 to calculate impacts ($/vmt)

by county using spatially tailored estimates of the marginal damage of emissions.3 These

values reflect heterogeneity in exposure (whether emissions occur in cities or rural locations)

and variation in atmospheric conditions which dictate the fate and transport of emissions.

Relatedly, and third, emissions of electrified transportation are difficult to assess. Emissions

of a diesel bus occur directly from the tailpipe of the bus. However, an electric bus has no

tailpipe, but causes emissions from the power plants which are generating the electricity. As-

sessing emissions from electric transportation requires assigning emissions at power plants to

electricity use at various locations. Fourth, the increasing use of renewables is fundamentally

changing the dispatch of power plants in the electricity grid.

The third and fourth challenges listed above have led to issues with the measurement of

the environmental benefits of transportation electrification. The difficulty in matching elec-

tricity use to power plants creates a mis-match between spatial scales. The damages from

the direct emissions from internal combustion-powered automobiles, buses, and trains are

typically measured at the county level. This yields approximately 3100 different values.4 In

contrast, the damages from emissions of electrified transportation are typically measured in a

handful of regions such as the three interconnections or the nine North American Electric Re-

liability Corporation (NERC) regions. Increasing precision of the estimates of emissions from

electric vehicle charging (to align with the spatial precision for internal combustion-powered

vehicle emissions) creates the impetus to drill down at finer spatial scales. However, reducing

3See the Appendix for details on AP3.
4See Michalek et al., 2011 and Holland et al., 2016.
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the spatial scales at which the damages from electricity are estimated introduces economet-

ric concerns including multicollinearity and spatio-temporal correlation in generation. The

increasing use of renewables can create an additional statistical problem if renewables are

correlated with load, in which case estimates may suffer from omitted variable bias.

The present analysis starts by employing existing methodologies and parameter estimates

to calculate the environmental benefit of electric buses relative to diesel buses for each

county in the contiguous U.S. For electric buses, we multiply electricity per mile by marginal

damages from electricity use in each of the three interconnections (East, West, and Texas).

For diesel buses, we multiply emissions per mile for each pollutant by AP3 damage valuations

in each county. The resulting environmental benefit is positive on average and large in some

areas: above $9 million per year in six MSA’s from operating the bus fleet with electric buses

instead of diesel buses.

We then move to a more detailed analysis within the jurisdiction of the Electricity Re-

liability Council of Texas. This tack facilitates working at a finer geographic scale than

previous studies (Holland et al., 2016) because Texas is a nearly self-contained electricity

grid. That is, the limited ties to generation and load outside Texas uniquely enable estima-

tion of the load-generation-emission-damage relationship at smaller geographic scales. We

also have detailed data on wind, solar, and nuclear generation for Texas, which we use as

control variables in our regressions. We use three different methods to attempt to determine

marginal damage estimates at eight load regions within Texas. The first is based on OLS

regressions augmented with data on non-fossil generation as control variables. The second

uses a Lasso machine learning approach to select which region’s load shocks affect generation

and emissions at each power plant. The third uses the geographic location of each power

plant and OLS regressions to estimate marginal damages for each region. The three methods

provide similar estimates for the three largest regions but not necessarily for the remaining

regions. Moreover, our results give preliminary evidence that the second and third method

may work reasonably well even without the controls and thus may be of use in the other

interconnections (East and West) in which these controls have been unavailable.

4



2 Environmental benefits of electric buses: Baseline

results

To calculate the environmental benefits of bus electrification, we calculate air pollution

damages from electric buses and then subtract those from the corresponding damages from

the forgone diesel bus. We first detail our calculations of fuel use and emissions rates (grams

per mile) of pollutants from diesel and electric buses. We then describe the valuation of the

pollutants (dollars per gram). Multiplying emission rates by valuations and then aggregating

over pollutants gives the damages by bus type and hence the environmental benefits.

2.1 Non Electric Bus fuel use, emissions, and damages

To provide a valid comparison across electric and diesel buses, we utilize data from the

Larson Transportation Institute’s Bus Research and Testing Center, located in Altoona,

Pennsylvania. This testing center was established in 1989 with funding provided by the Fed-

eral Transit Administration under the the Surface Transportation and Uniform Relocation

Assistance Act (STURAA; Public Law 100-17) of 1987. The facility tests safety, structural

integrity, durability, performance, maintainability, noise, and fuel economy on a test track.

It also tests emissions while operating the vehicle over a simulated transit duty cycle on a

dynamometer. The tests are detailed and accurate and are likely to well represent fuel use

and emissions from actual driving.

Lowell (2013) reports emission test results for three types of buses: “Diesel,” “Diesel Hy-

brid,” and compressed natural gas “CNG” buses. All buses met the latest federal emissions

standards (last revised in 2010) and thus are reflective of emissions of current buses. For

comparison, we also collect data on emissions from the existing bus fleet from the meta anal-

ysis in Cooper et al. (2012) which we refer to as “Old Diesel”. The emissions rates for NOx,

PM2.5, and VOCs (volatile organic compounds) come directly from emissions tests. For SO2

and CO2, emissions per mile are based on the fuel used and hence calculated from the fuel

economy of the appropriate bus. For the SO2 calculation, we assume ultra low sulfur diesel

which has 15 parts per million sulfur content. For CO2, we assume 22.38 lbs of CO2 per
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gallon of diesel fuel. The resulting average emissions rates (g per mile) for the four types of

buses are shown in Table 1. The table shows the dramatic improvements in emissions rates

due to the 2010 emissions standards. Although we use the Diesel bus for the environmental

benefit calculation, the Diesel Hybrid and CNG bus have lower baseline emissions for at least

some pollutants.

Table 1: Emissions rates for non-electric buses

MPGe NOx PM2.5 VOCs SO2 CO2

Diesel 4.68 1.178 0.0065 0.0258 0.020 2171
Diesel Hybrid 5.42 1.125 0.0037 0.0078 0.0174 1873
CNG 4.62 0.465 NR 0.0283 NR 2197
Old Diesel 3.79 19.619 0.493 0.659 0.0249 2678

Notes: Emissions rates in grams per mile calculated from Lowell (2013) and Cooper et al. (2012). “MPGe”
is miles per gallon equivalent to a diesel bus. Although natural gas has lower carbon content than diesel
fuel this advantage is offset by lower fuel economy leading to similar MPGe and CO2 per mile for CNG and
Diesel. “NR” is not reported.

Damages are determined as the product of emission rates and damage valuations of the

various pollutants. We use the AP3 integrated assessment model to determine the damage

valuations (Clay et al 2019). AP3 uses air flow modeling to map the flow of emissions over

space, chemistry to specify how primary pollutants interact in the atmosphere to create am-

bient concentrations of secondary pollutants, epidemiology to map pollution concentrations

into increased mortality, and finally economics to assign dollar values of damages using the

value of a statistical life. For each of the 3109 counties in the contiguous U.S., we take

the AP3 valuation for each pollutant ($ per gram) and multiply by the emission rates in

Table 1. For CO2, we use the social cost of carbon adjusted to 2017 of $43.50 per ton of

CO2. Aggregating across pollutants gives damages (dollars per mile) for each non-electric

bus type.

2.2 Electric Bus fuel use and damages

Our electric bus is the Proterra Catalyst FC battery electric bus which used an average of

2.185 kWh per mile in the Altoona test facility in 2018.5 Proterra is the largest manufacturer

5The test procedure is based on simulated driving routes. Two NREL studies analyze Proterra electric
bus use over actual transit routes over longer time frames in southern California (Eudy and Jeffers, 2017)
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of electric buses in the US. Like electric cars, it is expected that electric buses will consume

more electricity per mile in very hot and very cold weather.6 We apply the same temperature

correction used by Holland et al. (2016) to adjust the electricity consumption per mile

according to the average monthly temperature in each county.7

To determine damages from an electric bus, we need to know the marginal damages

from consuming a unit of electricity ($ per kWh). Holland et al. (2018) estimate marginal

damages separately for the three interconnections in the U.S. electricity grid: East, West,

and Texas. They analyze the large decline in damages from 2010 to 2017 and find that

marginal damages decreased dramatically in the East but increased slightly in the West and

Texas. Using their trend estimates, marginal damages per kWh in 2017 are $0.060 in the

East; $0.029 in the West; and $0.036 in Texas.8 Multiplying the county-specific electricity

consumption per mile by the interconnection-specific marginal damage per kWh gives the

damage from an electric bus mile in each county.

2.3 Results

Figure 1 shows the air pollution damages from driving a diesel bus one mile in each county.

Damages are largest in counties that contain large urban areas, and there is significant

spatial heterogeneity despite the fact that a large share of the damages are from CO2, a

global pollutant. Figure 2 shows the air pollution damages from driving an electric bus one

mile in each county. This figure shows significant differences across the interconnections.

In particular, damages per mile from electric buses are substantially lower in the West and

and Seattle, WA (Eudy and Jeffers, 2018) and find efficiencies of 2.15 to 2.36 kWh per mile. Other buses
tested in the test facility (and their efficiencies) include: Gillig (2.268 kWh per mile) in 2018; Nova L920
(2.024 kWh per mile) in 2018; Proterra Cat E2 (2.203 kWh per mile) in 2017; Proterra BE40 (1.70 kWh per
mile) in 2015; Proterra BE35 (1.73 kWh per mile) in 2012, BYD K7 (1.36 kWh per mile for a 30 ft. bus) in
2017, and BYD Ebus (1.99 kWh per mile) in 2014.

6The test facility holds temperature constant at 73°. The NREL studies report slightly higher kWh per
mile in Seattle than in southern California, possibly due to temperature differences.

7The temperature correction assumes no penalty at an average daily temperature of 68°. For each month,
the kWh per mile is penalized based on the difference between 68°and the average daily temperature of the
month. We then average across months.

8All valuations are in 2014 dollars. Holland et al. (2018)’s methodology is to first calculate damages
from the emissions of pollution at each power plant in the contiguous U.S. using the AP3 model. They then
regress aggregate damages within an electricity interconnection on electricity usage in the interconnection
and a time trend. For example, the East is $0.060 =(0.08644-7*0.00377) based on their reported coefficients.
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Texas relative to the East. However, the figure also shows an important limitation of this

calculation: There is limited spatial heterogeneity within an interconnection. In particular,

the only spatial variation within an interconnection arises from the temperature correction.

Comparing the two figures shows that benefits of bus electrification are likely to be most

significant in the West and Texas and will be negative in some counties.

Summary statistics for data in these figures is given in the first two rows of Table 2. The

statistics are weighted by estimated bus miles for each county from the US EPA MOVES

model.9 The mean damage per mile for the Diesel bus ($0.151) is larger than the mean

damage for the Electric bus ($0.125). Diesel bus damages range from a minimum of $0.106

per mile, which largely reflects the CO2 damages, to a maximum of $0.696 per mile, which

reflects the high damage cost of local air pollution in Los Angeles. The range of Electric

bus damages is much smaller ranging from $0.064 per mile in temperate California to $0.159

per mile in the north of the East interconnection. The third row of the table shows the

environmental benefit per mile of an electric bus, which is the difference between the diesel

and electric bus damages. Although there are counties in which the environmental benefit

is negative, on average electric buses generate a positive environmental benefit. In a few

counties this benefit is quite large (up to 63 cents per mile). The table also shows summary

statistics for the damages from the other three types of buses. The Diesel Hybrid and

CNG buses are cleaner on average than the baseline Diesel bus. The range of damage from

the CNG bus is also smaller reflecting the lower damages from local pollutants particularly

NOx. The CNG bus is cleaner on average than the Electric bus although the minimum and

maximum damages are lower for the Electric bus. For comparison, the table includes the

Old Diesel bus which is on average five times more damaging than the other bus types and

has a maximum damage of a remarkable ten dollars per mile.

Table 3 shows damages aggregated to the MSA level based on estimated bus miles from

the MOVES model. The top twenty MSAs are ranked by the annual benefit, which is the

difference between damages from all bus miles in the MSA using new diesel buses and all bus

miles using electric buses. This benefit is highest in the Los Angeles MSA. In Los Angeles,

9The MOVES model estimates VMT for each US county for a variety of vehicle categories. The bus miles
category includes both transit and school buses.
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Figure 1: Diesel Bus Air Pollution Damages ($ per mile)

Figure 2: Electric Bus Air Pollution Damages ($ per mile)
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Table 2: Damages By Bus Type and Environmental Benefit of Electric Buses ($)

Mean Std. Dev. Min Max
Diesel 0.151 0.067 0.106 0.696
Electric 0.125 0.029 0.064 0.159
Benefit 0.026 0.078 -0.046 0.632

Diesel Hybrid 0.134 0.063 0.092 0.648
CNG 0.123 0.025 0.106 0.330
Old Diesel 1.003 1.194 0.167 10.381

Notes: Weighted by bus VMT from MOVES.

if the entire bus fleet were new diesel buses, air pollution damages from the buses would

be $71.4 million per year. However, if the entire bus fleet were new electric buses, damages

would be reduced to $6.6 million which is an annual benefit of $64.7 million. This large

benefit is driven by the large benefit per mile of $0.632, which is the largest in the country.

Other MSAs in the West also have large benefits per mile, e.g., Santa Ana, CA and San

Diego, CA, and thirteen MSA’s have benefits which exceed $0.10 per mile.10 Cities in the

East tend to have smaller benefit per mile but can still have substantial annual benefits. For

example, New York, NY has a benefit of $0.111 per mile and has an annual benefit of $15.0

million from adopting an electric bus fleet relative to a new diesel fleet. For comparison, the

table also reports damages from Old Diesel buses and shows substantial damages from old

diesels and hence substantial benefits from replacing pre-2010 buses. Table I in the Online

Appendix shows a similar table for all 376 MSAs in the contiguous U.S.

The results in Tables 2 and 3 calculate damages from electric buses based on the marginal

damages reported in Holland et al. (2018). While these estimates are quite robust, they have

limited spatial heterogeneity because they are determined at the interconnection level.11 In

particular, the results assume that the marginal damage from electricity use is the same

within each interconnection. In the West, this assumption implies that marginal damages

are the same in Los Angeles, CA as they are in Seattle, WA or Phoenix, AZ. In the East,

10In addition to the MSAs in Table 3, this includes Stockton, CA ($0.16 per mile), San Francisco, CA
($0.12 per mile), Modesto, CA ($0.12 per mile), Vallejo, CA ($0.14 per mile), and Santa Cruz, CA ($0.11
per mile).

11The estimates change smoothly across time periods as would be expected. The results are also robust
to endogeneity concerns and are little changed by instrumenting or by assuming fossil generation is always
marginal.
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Table 3: Damages and benefits (in millions ) by MSA

Annual Benefit Bus Old
MSA Diesel Electric Benefit per mile VMT Diesel
Los Angeles, CA 71.4 6.6 64.7 0.632 102.5 1064.0
New York, NY 33.8 18.8 15.0 0.111 135.1 426.4
Chicago, IL 41.5 28.7 12.8 0.064 200.2 424.2
Phoenix, AZ 18.9 8.3 10.6 0.087 122.0 126.0
Riverside, CA 15.5 5.7 9.8 0.115 85.2 124.7
Santa Ana, CA 12.5 3.0 9.5 0.205 46.6 142.1
Newark, NJ 29.7 20.9 8.8 0.059 149.6 302.8
San Diego, CA 11.1 2.6 8.6 0.216 39.7 125.8
Atlanta, GA 48.8 40.4 8.4 0.028 298.7 379.8
Dallas, TX 19.7 11.7 8.0 0.057 140.5 113.2
Edison, NJ 25.3 19.7 5.6 0.040 141.8 226.7
Oakland, CA 6.5 1.9 4.6 0.160 28.8 66.6
Houston, TX 11.5 7.2 4.3 0.051 84.3 62.8
Seattle, WA 7.7 3.5 4.2 0.081 52.0 49.2
Washington, DC 27.4 23.3 4.1 0.024 169.8 212.8
Sacramento, CA 5.8 2.2 3.7 0.113 32.6 47.3
Fort Worth, TX 9.2 5.6 3.6 0.054 67.1 50.5
San Jose, CA 5.1 1.6 3.5 0.139 24.9 47.6
Detroit, MI 21.9 18.6 3.4 0.026 129.8 178.9
Philadelphia, PA 11.6 8.4 3.2 0.053 60.4 114.9

Notes: “Diesel” is multiple post-2010 buses and “Electric” is the Proterra Catalyst FC battery electric bus
using 2.185 kWh per mile. VMT is bus vehicle miles traveled from MOVES in millions.“Old Diesel” uses
emission rates from meta-analysis of pre-2010 buses.
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this implies marginal damages are the same in New York, NY as in Atlanta, GA, Miami, FL,

New Orleans, LA, and Minneapolis, MN. Although it is technically feasible for electricity to

flow freely throughout each interconnection, it is likely that congestion in the transmission

network would lead marginal damages to differ across locations within an interconnection

at least during some hours of the day. In theory a regionally disaggregated approach should

be superior because it nests the aggregated model.12 However, the regionally disaggregated

approaches have been criticized and may not be robust due to the high level of correlation

between load in different regions. (Callaway et al. Forthcoming). To explore the regionally

disaggregated models more carefully, we focus on the Texas interconnection.

3 A closer look at the Texas Interconnection

We focus on the Texas for three reasons. First, the market authorities governing the Texas

electricity market (commonly called ERCOT) make extensive data available. Holland et

al. (2018) utilize hourly data on load and on fossil generation at power plants regulated by

the U.S. EPA under the Clean Air Act Air Markets. In addition to this data, Texas makes

available data on hourly generation of all small fossil power plants not regulated by the U.S.

EPA., as well as all non-fossil units including renewables (wind, solar, and hydropower) and

all nuclear units. Texas also makes available data on electricity load in all of ERCOT as well

as load for eight smaller load regions. This extensive data makes Texas ideal for our analysis.

Second, the Texas electricity market is isolated from the rest of the country. In fact, only

five relatively small direct current power lines (DC ties), for which we have some data on

hourly flows, connect Texas with the rest of the US and with Mexico. This isolated system

means that power flows can be analyzed more completely than in other regions. Finally,

electric buses in Texas are of independent interest because three Texas MSAs are in our top

twenty MSAs for benefit from electric bus adoption.

We first begin by describing the Texas data in more detail. We then analyze three

methods for estimating marginal damages across the electricity load regions within Texas. All

12More precisely, if the true coefficients are equal across regions, they should be equal in the disaggregated
model. Hence, the disaggregated model can be used to test whether or not the aggregate model is appropriate.
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three methods utilize the additional data available in Texas (renewable generation, nuclear

generation, and DC ties) as control variables. Unfortunately, these controls have not been

available nationally. The first method simply adds the controls to the standard estimation

procedure used by previous work (Holland et al. 2016 and Holland et al. 2018). The second

method utilizes machine learning techniques to let the data determine the correct regions

to include for estimating marginal damages. The third method estimates a parsimonious

model based on the geographic location of the power plant.

We apply two criteria for assessing the models. Any model for predicting marginal

damages should also reliably predict marginal generation. Because electricity cannot be

stored economically at scale, electricity generation should equal electricity load in each hour.

Therefore a regression with generation as the dependent variable and load as the independent

variable should, in theory, have a coefficient of one. Another criteria is that the estimated

marginal damages should not be changing dramatically from year to year. While the elec-

tricity grid does change over time, investment is often a multi-year process so changes in the

grid should occur gradually.

3.1 Texas Data

To estimate marginal damages in Texas, we utilize three sources of data: data on load, data

on generation from all sources, and data on emissions and generation from plants regulated

by the EPA.13 The sample covers six years from 2012 through 2017.

ERCOT reports hourly aggregate electricity load to the Federal Energy Regulatory Com-

mission (FERC) on Form 714. We refer to this aggregate quantity as Texas Load. Separately,

ERCOT posts hourly load data for eight load regions. These load regions are illustrated in

Figure 3. Summary statistics for hourly load are presented in Panel A of Table 4. The three

largest regions, North Central, Coast, and South Central, contain Dallas, Houston, and San

Antonio respectively. Electricity load is highly seasonal (highest in summer, lowest in win-

ter) and has predictable hourly patterns (e.g., peaks at 6pm in the summer months). These

seasonal and hourly patterns are illustrated in Online Appendix Figure A. For our purposes,

the most important characteristic of load is that it highly correlated across the eight load

13The first two datasets are from ERCOT, and the third is from EPA air markets
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regions. The correlation coefficients are presented in Table 5. Of the 28 correlation coeffi-

cients, 13 are above 90% and an additional seven coefficients are between 80% and 90%. The

least correlated region is the Far West, for which correlation coefficients range from 0.48 to

0.63. These high correlations across load regions may cause problems from multicollinearity

when load from various regions are used in the same regression.

Figure 3: Texas load regions

ERCOT also reports hourly net generation data at each generating unit. Summary

statistics by fuel type are presented in Panel B of Table 4, and generation by month is

shown in Online Appendix Figure B. Gas accounts for the largest generation share with

mean hourly generation of over 16,000 MWh and coal is the second largest generation share

(12,000 MWh). These fuels are the most correlated with load. Generation from nuclear has

limited variation over time and has held steady throughout this time period while hourly

generation from wind power is quite volatile but has increased steadily and in recent years
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Table 4: Summary statistics of Texas data

Panel A. Electricity Load
Mean Std. Dev. Min Max

Texas 39,025 9,160 22,528 71,093
N. Central 12,899 3,446 7,124 25,282
Coast 11,220 2,574 6,457 20,101
S. Central 6,387 1,693 3,525 12,345
South 3,241 804 1,666 5,845
Far West 1,948 375 1,134 3,164
East 1,388 322 762 2,494
West 1,111 228 632 1,902
North 831 176 509 1,559

Panel B. Electricity generation
Mean Std. Dev. Min Max

Gas 16,468 7,258 3,094 42,673
Coal 12,259 3,480 1,771 18,992
Nuclear 4,486 789 1,347 5,188
Other 740 214 19 1,365
Wind 4,848 3,179 5 15,994
Solar 78 170 0 1,052
Hydro/Bio 117 70 27 488

Panel C. Regulated generation and damages
Mean Std. Dev. Min Max

Generation 30,589 9,322 10,134 61,913
Damage 1,690 461 490 3,074

Notes: Generation in Panel B is net of electrictiy used within the plant. Regulated generation in Panel C is
gross of electricity used within the plant. 52,608 observations.

Table 5: Correlation coefficients for Texas load regions

N. Central Coast S. Central South Far West East West North
N. Central 1
Coast 0.875 1
S. Central 0.950 0.936 1
South 0.854 0.942 0.938 1
Far West 0.540 0.619 0.574 0.603 1
East 0.966 0.908 0.956 0.879 0.533 1
West 0.953 0.835 0.936 0.846 0.629 0.924 1
North 0.976 0.804 0.899 0.782 0.480 0.931 0.940 1

Notes: 52,608 observations.
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has a higher generation share than nuclear. Solar and Hydro/Biomass generation is relatively

limited in Texas.

Emissions and gross generation data for all power plants regulated under the Air Markets

program of the Clean Air Act are from the EPA CEMS database. We refer to this generation

from these plants as regulated generation. This data reports hourly emissions of SO2, NOx,

and CO2 as well as gross generation from the power plant, which we use to estimate hourly

PM2.5 emissions. The AP3 model gives us dollar values of damages per unit from each power

plant for the local pollutants. For the global pollutant CO2, we use the social cost of carbon

of $41 per ton of CO2. Summary statistics of damages and gross generation are presented

in Panel C of Table 4.14

A final source of data is hourly electricity flows on the DC ties. We collect hourly flows

from the Southwest Power Pool (SPP) beginning in 2014 for the two lines connecting ERCOT

and the SPP. Adding the DC ties data to the hourly generation data should give us a very

close match to the hourly load data. Indeed this is the case. Panel A of Figure 4 shows

that aggregate hourly load and aggregate hourly net generation match almost exactly in our

data.15 The regression of generation on load with month of sample by hour of day fixed

effects (not shown) yields a slope of 0.989 with an R2 of 0.9995. Adjusting for the DC flows

into SPP increases the R2 further and increases the estimated coefficient from 0.989 to 0.994.

Panel B of Figure 4 shows the relationship between Texas load and regulated generation.

As with Panel A, the regression has month of sample and hour of day fixed effects (not

shown). A one kWh increase in load is associated with an increase of 0.902 kWh of regu-

lated generation with an R2 of 0.928. If regulated generation were always marginal then this

estimated coefficient would be close to one, as it was in panel A. However, regulated genera-

tion differs in two ways from net generation. First, it only includes fossil generation above a

certain size threshold. Thus it does not incllude non-fossil generation, such as wind, nuclear,

and solar, and may also exclude small fossil generation. Second, it is gross generation which

includes electricity used within the plant.

14Unfortunately, the CEMS data on gross generation cannot be directly merged with the ERCOT data on
net generation at the unit level.

15More detailed versions of Figure 4 are shown in Online Appendix Figures C, D, and E.
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Figure 4: Hourly load v. generation, regulated generation, and damage

Panel C of Figure 4 shows the relationship between load and damages.16 This relationship

shows that a one kWh increase in load is associated with a $0.036 increase in damages, i.e.,

the marginal damage is $0.036 per kWh. The R2 in this regression is 0.898.

16Once again the fitted relationship is based on a regression with fixed effects but the fixed effects are not
shown.
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3.2 Method 1: Non-fossil controls

Although the fitted relationship in Panel C of Figure 4 is based on month of sample by hour of

day fixed effects, it may still suffer from omitted variable bias. Table 6 tests this relationship

for robustness to omitted variables using our controls and an instrumental variables model.

Model (1) in Table 6 corresponds to the fitted result in Panel C. In this regression there are

1,728 fixed effects (= 6 years * 12 months * 24 hours) which should capture many confounding

variables. But, because Texas has data on non-regulated generation, we assess any remaining

omitted variable bias by directly controlling for non-fossil generation and imports through

DC lines. Model (2) shows that the estimated marginal damage only increases to $0.038

when including our controls.

Table 6: Marginal damage estimates for Texas interconnection: OLS v. IV with controls

OLS OLS IV
Variables (1) (2) (3) (4) (5) (6)

Texas Load 0.0360*** 0.0380***
(0.001) (0.001)

Generation 0.0414*** 0.0409*** 0.0399*** 0.0403***
(0.000) (0.001) (0.001) (0.001)

Wind Gen. -0.0409*** -0.0024*** -0.0029***
(0.001) (0.001) (0.001)

Solar Gen. -0.0905*** -0.0522** -0.0522**
(0.025) (0.022) (0.022)

Hydro/Bio -0.1004** -0.0945** -0.0881**
(0.042) (0.039) (0.039)

Nuclear Gen. -0.0380*** -0.0023 -0.0027
(0.005) (0.005) (0.005)

DC-East -0.0267** -0.0015 0.0009
(0.012) (0.011) (0.011)

DC-North -0.1089*** -0.0683*** -0.0666***
(0.018) (0.017) (0.017)

DC Indicator 27.7810* 22.5736* 22.3319*
(14.976) (13.120) (13.102)
*** p<0.01, ** p<0.05, * p<0.1

Notes: Damage is dependent variable. Newey-West standard errors with 48-hour lags. Each regression has
52,608 observations and 1,728 fixed effects (=6 years * 12 months * 24 hours). The IV estimates use load as
an instrument for regulated generation.
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Table 6 also tests an alternative method for estimating marginal damages. Namely, if we

assume that regulated generation is always marginal and that there are no imports (both

reasonable assumptions for Texas) then marginal damages can in principle be estimated from

the relationship between regulated generation and damages. Estimating this relationship

directly likely suffers from endogeneity bias so we instrument for regulated generation with

Texas load. Models (3)-(6) of Table 6 show both the OLS and IV results. The OLS estimates

for regulated generation in (3) and (4) are larger than those for load in (1) and (2) and are

also larger than the IV estimates in (5) and (6) which correct for endogeneity. Overall,

Table 6 has four broad lessons. First, the interconnection results are robust to the omitted

non-fossil generation. Controlling for non-fossil generation changes the main OLS result by

about 5% but only changes the IV estimate by about 1%. Second, the marginal damages are

robust to the different methods. The largest difference, between (1) and (3) is about 15%.

Controlling for non-fossil generation reduces the difference to about 8%. Third, conditioning

on our controls affects the coefficients as anticipated. In particular, conditioning the OLS

regressions on the controls moves the estimates closer to the IV estimates. Finally, if we

assume that fossil generation is the only marginal generation, the estimates in (1) and (2)

should be scaled by the estimates for how regulated generation responds to load. Scaling

the estimates implies effects quite close to the IV estimates.17

The interconnection level results in Table 6 are robust to method and to additional

controls. We now ask whether we can estimate the marginal damages at smaller geographic

regions. First, we note that the relationship between regulated generation and damages

(and hence the IV strategy) cannot be estimated meaningfully at the region level since

the method assumes no imports between regions. This assumption is not realistic for Texas

regions. However, we can regress damages on load in each of the eight regions. The estimated

coefficient for a region would then be the damage from an additional kWh of electricity used

in the region conditional on the load in all the other regions. In theory, this should yield

precisely the marginal damage estimate of interest. The results from regressing damages on

load in each of the eight regions are shown in (3) and (4) of Table 7 and illustrate the problem

17The coefficients for how regulated generation responds to load are shown in Online Appendix Table A.
Using these estimates the result in (1) becomes $0.0399 (=0.036/0.902) and the result in (2) becomes $0.040
(=0.038/0.943) which are very close to the IV estimates.
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Table 7: Marginal generation and marginal damage estimates for Texas regions: All

Generation Damage
Variables (1) (2) (3) (4)

N. Central 0.766*** 0.938*** 0.039*** 0.048***
(0.081) (0.016) (0.005) (0.004)

Coast 0.655*** 0.974*** 0.035*** 0.049***
(0.076) (0.014) (0.005) (0.003)

S. Central 0.847*** 0.958*** 0.040*** 0.047***
(0.147) (0.026) (0.009) (0.006)

South 0.765*** 0.955*** 0.018 0.025***
(0.202) (0.037) (0.012) (0.009)

Far West -7.222*** 1.543*** -0.297*** 0.087***
(0.835) (0.132) (0.047) (0.034)

East 2.356*** 0.611*** -0.005 -0.087***
(0.634) (0.110) (0.039) (0.027)

West 10.436*** 0.505*** 0.310*** -0.121**
(0.988) (0.183) (0.058) (0.048)

North 0.379 1.185*** 0.054 0.081
(1.317) (0.245) (0.084) (0.063)

Controls No Yes No Yes
*** p<0.01, ** p<0.05, * p<0.1

Notes: Damage is dependent variable. Newey-West standard errors with 48-hour lags. Each regression has
52,608 observations and 1,728 fixed effects. Controls are generation from wind, solar, hydro/biomass and
nuclear and power flows on two DC ties plus an indicator for the availability of the DC flow data.

20



of multi-collinearity arising from the high correlation of the load in the regions. In (3), the

estimate for the Far West is large and negative (!) while the estimate for the West is large

and positive. Conditioning on our controls in (4) mitigates the problem somewhat, but there

are still large negative coefficients (in East and West) offset by large positive coefficients (in

Far West and North). The same issue arises when we try to predict fossil generation instead

of damages, as shown in (1) and (2). In theory, the coefficients in (1) and (2) should all

be one. However in (1) without controls, an increase in load in the Far West predicts a

decrease (!) in fossil generation. With controls in (2), the effect is positive for all regions

but is statistically different than one for some regions. High or low marginal generation in

(1) or (2) leads to high or low marginal damages in (3) or (4).18

One solution to the problem of multicollinearity is to use more data. The analysis in

Table 7 aggregates the data to the hour. However, we have data on hourly emissions and

generation at each power plant. Using this disaggregated data allows us to incorporate

more fixed effects in the models to better capture unobserved heterogeneity. Using the

disaggregated data, Online Appendix Table C has 4.9 million observations and 160,344 fixed

effects, and Online Appendix Table D, which aggregates the hourly data to the region,

has 420,864 observations and 13,824 fixed effects. The results are quite similar to those in

Table 6 and 7. In particular, the interconnection estimates are robust, but the estimates for

the regions still show unrealistically large or small (negative) marginal damage estimates.

Another possibility is to estimate effects for only a subset of the load regions. To avoid

omitted variable bias, we regress damages or generation on Texas load and on load for a sub-

set of the regions. The marginal damage for any region is either the Texas load coefficient or

the sum of the Texas load coefficient and the coefficient for the individual region.19 Online

Appendix Table B adds one additional region (ordered by load size) in each additional re-

gression model. Models (1)-(3) of Online Appendix Table B give reasonable results. However

in Model (4), the coefficient on Load is negative, which implies negative marginal damages

in the Far West, East, West, and North. Models (5) -(7) give similar unrealistic estimates.

For this reason we focus on the Big Three regions, which each contain major metropolitan

18The marginal damage estimates cannot be simply scaled by the marginal generation estimates if the
marginal damage estimate is negative.

19This is equivalent to aggregating all the omitted regions into one region.

21



areas: N. Central (Dallas and Fort Worth), Coast (Houston), and S. Central (San Antonio

and Austin). Moreover, as seen in Table 4, these regions contain the vast majority of the

overall Texas load.

Table 8 shows results from regressing regulated generation and damages on Texas load

and load in the three biggest regions. The table shows that the controls are again impor-

tant. Column (2) shows that the marginal generation (0.981) of Texas load is not statistically

different than one and the marginal generation estimate for each of three regions is not sta-

tistically different from the marginal generation of Texas load. In the preferred specification

(4), marginal damage is $0.042 per kWh in N. Central, $0.048 per kWh in Coast, $0.035 per

kWh in S. Central, and $0.017 per kWh in all other regions.

Table 8: Marginal generation and marginal damage estimates for Texas regions: Big Three

Generation Damage
Variables (1) (2) (3) (4)

Texas Load 0.711*** 0.981*** 0.007 0.017**
(0.178) (0.031) (0.010) (0.007)

N. Central 0.229 -0.049 0.036*** 0.025***
(0.204) (0.037) (0.012) (0.008)

Coast -0.199 -0.015 0.022* 0.031***
(0.214) (0.037) (0.012) (0.009)

S. Central 0.797*** -0.071 0.052*** 0.018
(0.281) (0.046) (0.016) (0.011)

Controls No Yes No Yes
*** p<0.01, ** p<0.05, * p<0.1

Notes: Regulated generation or damage is dependent variable. Newey-West standard errors with 48-hour
lags. Each regression has 52,608 observations and 1,728 fixed effects. Controls are generation from wind,
solar, hydro/biomass and nuclear and power flows on two DC ties plus an indicator for the availability of
the DC flow data.

To test the robustness of these Big Three estimates, we estimate the effects separately for

each year of data. The smaller sample size implies that the estimates will be less precisely

estimated. The yearly marginal effects are shown in Appendix Figure F. The yearly effects

are reasonably robust for the three large regions, but are noisy for the residual Texas regions.
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3.3 Method 2: Machine learning

The methods used thus far have aggregated the data across all power plants. This assumes

that power plants all respond to load in all the regions. However, some power plants may

respond to load shocks in some regions while other power plants may respond to load shocks

in different regions. We use machine learning to let the data select which region’s load shocks

predict damages or generation at each power plant.

We use the Lasso estimator (Least Absolute Shrinkage and Selection Operator) for vari-

able selection. For each power plant, we perform a Lasso regression with generation or

damage as the dependent variable and the load regions, controls, and fixed effects as our

independent variables. In general, machine learning is only concerned with prediction, but

we are interested in the estimated effects and must be concerned with omitted variable bias.

Therefore we “force” the Lasso regression to include Texas load and calculate marginal ef-

fects for a region as the coefficient for Texas load plus the coefficient (or zero if not selected)

of the region. The Lasso estimator is known to produce biased estimates, so we use Lasso

for variable selection and then use linear regression to calculate the marginal effects. The

estimates for a given plant show how the plant responds to an increase in load in a region.

The marginal effect then sums the effects across all power plants.

Table 9 shows the marginal damages for nine different Lasso models each of which includes

our fixed effects. The first model “All” forces Lasso to include Texas load and allows Lasso

to select from all eight regions, but does not include our controls. Models (1) to (8) force

Lasso to include Texas load and allow Lasso to select from the controls and from the largest

region in (1), from the two largest regions in (2), etc. The preferred model (8) forces Texas

load and selects variables from among the controls and all eight regions.20 The preferred

estimates range from $0.018 per kWh in the South to $0.058 per kWh in the West.21

Table 10 shows summary statistics for the estimated coefficients for each of the 100 plants

for the preferred Model (8). The Texas load coefficient is forced (so it is selected for all 100

plants) and ranges from a small negative at one plant to $0.0071 at one plant. This implies

20All eight regions are never selected, because it would result in perfect collinearity.
21Standard errors can be calculated for these estimates by stacking the data and running a single regression

with the selected coefficients.
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Table 9: Marginal damage estimates for Texas load regions using Lasso

Region All (1) (2) (3) (4) (5) (6) (7) (8)
N. Central 0.042 0.043 0.042 0.043 0.041 0.041 0.041 0.041 0.040
Coast 0.033 0.036 0.037 0.039 0.042 0.042 0.042 0.043 0.042
S. Central 0.032 0.036 0.036 0.032 0.036 0.038 0.038 0.037 0.038
South 0.018 0.036 0.036 0.038 0.019 0.018 0.018 0.017 0.018
Far West -0.101 0.036 0.036 0.038 0.040 0.021 0.022 0.019 0.020
East 0.074 0.036 0.036 0.038 0.040 0.040 0.041 0.041 0.041
West 0.148 0.036 0.036 0.038 0.040 0.040 0.040 0.059 0.058
North 0.036 0.036 0.036 0.038 0.040 0.040 0.040 0.039 0.045
Controls No Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Dependent variable is damage with 52,608 observations and 1,728 fixed effects for each of 100 plants.
Each Lasso requires Texas load but selects variables from among the smaller load regions and controls. Model
(n) allows Lasso to select variables from the n largest load regions. Reported marginal effect sums Texas
load and region estimates from linear regressions with hour and month by year fixed effects across all plants.
Controls include generation from wind, solar, hydro/biomass and nuclear and power flows on two DC ties
plus an indicator for the availability of the DC flow data.

that almost 20% of the entire effect results from damages at a single plant responding to

all Texas load.22 The most selected load region is the Coast which is selected for 22 plants

and has a total additional effect of $0.002 per kWh. Among our controls, wind is selected

most (for 88 plants). Other controls are also frequently selected by Lasso which indicates

the importance of these controls.

Table 11 shows Lasso results when regulated generation, rather than damages, is the

dependent variable. The model labeled (All) has no controls and allows Lasso to select from

all regions, and has unreasonable results. Models (1) to (8) allow Lasso to select from more

load regions. Although estimates are not all unity, as they should be in theory, they are not

wildly implausible again highlighting the importance of our controls. The summary statistics

for Model (8) are presented in Online Appendix Table E.

We also test the robustness of the marginal damages by estimating the effects annually.

Appendix Figure G shows the marginal damages for the preferred model with controls esti-

mated for each year in the sample. The variation of the estimates across the years is quite

small for the largest regions but increases as the regions get smaller so that some estimates

22This is the WA Parish power plant which is a coal and gas-fired power plant near Houston. It is the
second largest conventional power plant in the US.
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Table 10: Summary statistics of variables selected by Lasso: damage

Sum Min Max N
Texas Load 0.0397 -0.0001 0.0071 100
N. Central 0.0008 -0.0001 0.0006 8
Coast 0.0020 -0.0007 0.0017 22
S. Central -0.0018 -0.0009 0.0007 10
South -0.0217 -0.0126 0.0012 20
Far West -0.0200 -0.0138 0.0014 5
East 0.0017 -0.0040 0.0040 18
West 0.0184 0.0009 0.0038 7
North 0.0048 -0.0037 0.0035 8

Wind -0.0399 -0.0082 -0.0000 88
Solar -0.0676 -0.0771 0.0196 18
Hydro/Bio 0.0325 -0.0303 0.0368 18
Nuclear -0.0156 -0.0171 0.0082 24
DC-East 0.0086 -0.0025 0.0023 29
DC-North -0.0576 -0.0773 0.0046 41
DC Indicator -0.8151 -0.8151 -0.8151 1

Notes: Dependent variable is damage. 52,608 observations for each of 100 plants. Lasso selects from all load
regions and controls.

Table 11: Marginal regulated generation for Texas load regions using Lasso

Region All (1) (2) (3) (4) (5) (6) (7) (8)
N. Central 0.88 0.98 0.98 0.99 0.99 1.00 0.97 0.95 0.95
Coast 0.72 1.00 1.03 1.06 1.09 1.09 1.08 1.09 1.08
S. Central 0.98 1.00 0.96 0.92 0.95 0.96 0.93 0.89 0.91
South 0.63 1.00 0.96 0.95 0.74 0.73 0.71 0.67 0.68
Far West -2.25 1.00 0.96 0.95 0.96 0.68 0.70 0.65 0.66
East 2.51 1.00 0.96 0.95 0.96 0.96 1.51 1.56 1.57
West 5.06 1.00 0.96 0.95 0.96 0.96 0.94 1.52 1.44
North 0.68 1.00 0.96 0.95 0.96 0.96 0.94 0.91 0.83
Controls No Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Dependent variable is regulated generation with 52,608 observations and 1,728 fixed effects for each
of 100 plants. Each Lasso requires Texas load but selects variables from among the smaller load regions
and controls. Model (n) allows Lasso to select variables from the n largest load regions. Reported marginal
effect sum Texas load and region estimates from linear regressions with hour and month by year fixed effects
across all plants. Each Lasso allows controls for generation from wind, solar, hydro/biomass and nuclear
and for power flows on two DC ties plus an indicator for the availability of the DC flow data.
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for the smallest region are rather noisy and implausible. Overall, the results for all the

regions are quite robust across the years of the sample.

Although we have confirmed the importance of the controls, the analogous data have not

been available in other interconnections. So it is worthwhile to see what happens with the

Lasso procedure when the controls are not used. These results are shown in Online Appendix

Table F. Although Model (All) is unrealistic, Models (1) to (4) of Online Appendix Table F

are plausible estimates of marginal damages. The corresponding Online Appendix Table G,

which shows the estimates for marginal generation, are also reasonable for Models (1) to (4).

This suggests a possible approach for estimating marginal damages outside of Texas where

we cannot control for non-fossil generation.

Lasso uses the data to identify which load regions are most relevant to a given power

plant. This flexibility is appealing since, for example, it can choose multiple regions or no

regions based on the data. However, this flexibility can be problematic since it may identify

unlikely load regions. For example, a power plant located in the Far West is unlikely to

be responding to load shocks in the East, but Lasso may select the East if it is spuriously

correlated. Since the location of each power plant is known, we next use the plant’s location

to define which load regions might affect its damages or generation.
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3.4 Method 3: Own region interaction

We next use the geographic location of each power plant to estimate marginal damages for

each load region. We identify the own region for each power plant based on the county in

which it is located and the map in Figure 3.23 Generation or damages at any power plant is

then allowed to be affected by load in the own region as well as Texas load.

To be more precise, we estimate the following equation:

yit = ∑
j∈Reg

Ij(i)[βj ∗Loadjt + γj ∗ Texast] + δ ∗Controlt + FEif(t) + εit

where yit is damage or generation at power plant i in hour t; Reg is the set of eight load

regions; Ij(i) is an indicator function which equals one iff plant i is in region j; Loadjt is

load in region j in hour t; Texast is load in Texas in hour t; Controlt is a vector of our

controls in hour t; FEif(t) is the fixed effect for plant by month of sample by hour; and εit is

the error term. An increase in load in a region also increases the Texas load so the marginal

effect of an increase in load in region k is

βk + ∑
j∈Reg

γj,

which can then be scaled so the effect is per kWh. These marginal effects are presented in

Table 12.24 The marginal generation estimates, without controls (1) and with controls (2),

are not unreasonable and are improved by including the controls. The marginal damage

estimates in (3) and (4) are all positive and not implausible. Thus the own region method

provides another possible alternative to estimating disaggregated marginal damages in other

interconnections in which the controls are not available.

Appendix Figure H shows the yearly marginal damages for the preferred model with

controls estimated for each year in the sample. The estimates are noisier than the Lasso

estimates, but are reasonably robust across the years.

23ERCOT does not designate power plants as located in load regions. Some power plants are located
on load region borders and hence likely serve both regions. We simply assign the own region based on the
county.

24Standard errors will be calculated for these estimates.
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Table 12: Marginal generation and damages on own region

Generation Damage
(1) (2) (3) (4)

N. Central 1.016 1.026 0.039 0.040
Coast 0.884 1.094 0.039 0.048
S. Central 1.014 0.968 0.041 0.039
South 0.952 1.036 0.036 0.040
Far West 0.542 0.839 0.030 0.043
East 1.167 0.909 0.039 0.028
West 0.830 0.794 0.035 0.033
North 0.971 0.947 0.036 0.036
Controls No Yes No Yes

Notes: Dependent variable is regulated generation or damage. Plant-level analysis with 4,881,696 observa-
tions and 160,344 fixed effects.

Because the relevant variation in the independent variables is at the region level, the

model can be estimated with the data aggregated to the region if the fixed effects are also

aggregated to the region. Online Appendix Table H presents the results from estimating the

model aggregated to the region with the coarser set of fixed effects. The results are generally

robust to the aggregation although the disaggregated model fits slightly better and is our

preferred model.

3.5 Comparing the results

We have presented multiple methods for estimating marginal damages for each region. In

theory they all should give the same results, and there is no reason to prefer one to another a

priori. Figure 5 compares the results from our three preferred methods: OLS using only the

largest three regions, Lasso selecting from all eight regions, and OLS allowing each power

plant to be separately affected by load in its own geographic region. Each method controls

for non-fossil generation. There are several things to note from the comparison. First,

the three methods all give quite similar results for the three largest regions: N. Central

(Dallas), Coast (Houston), and S. Central (San Antonio). These three regions account for

approximately 80% of the Texas load, so it is reassuring to see that the methods work well
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for the main three regions.25 These results suggest that all three regions are close to the

average damage for Texas of $0.038 per kWh with the Coast being perhaps slightly dirtier.

Second, the methods are not consistent for the other five regions. The two methods with

independent estimates for the regions (Lasso and Own Region OLS) do not agree on which

regions are relatively clean or relatively dirty. The other method, which treats these regions

as the residual, implies surprisingly low estimates for these five regions.

Figure 5: Comparing marginal damages across models

Notes:
“Big Three OLS” shows estimates from Table 8 Model (4). “Lasso” shows estimates from

Table 9 Model (8). “Own Region OLS” shows estimates from Table 12 Model (4). The
horizontal line is the average Texas effect from Table 6 Model (2). All models include controls.

Online Appendix Figure I adds the OLS results with all regions to the comparison. This

comparison emphasizes how poorly the simplest OLS model performs when applied to the

highly correlated load regions.

Finally, we circle back to the substantive issue of the environmental benefit from electric

buses. Table 13 shows the environmental benefit (annual and per mile) for each MSA in Texas

25The results should on average give the same result as the overall marginal damage for Texas. Weighted by
load, the three methods have average marginal damages of $0.037, $0.038, and $0.042 per kWh respectively.
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using each of the methods considered in this paper.26 The benefits reflect the estimates in

Figure 5: higher marginal damage estimates imply lower benefits. Within the largest three

regions, the greatest variation across the three methods (OLS Big 3, Lasso, and OLS Own)

is for Houston. The largest estimate of the environmental benefit for Houston is about one

million dollars per year greater than the smallest estimate. This highlights implications of

the variation in the estimates. MSAs in the smaller regions show substantial variation across

methods.

Table 13: Comparing environmental benefit across models

Annual Benefit Benefit per mile
Big 3 Lasso Own Big 3 Lasso Own

Dallas (N. Central) 5.921 6.526 6.785 0.042 0.046 0.048
Fort Worth (N. Central) 2.630 2.919 3.043 0.039 0.043 0.045
Killeen (N. Central) 0.245 0.284 0.300 0.027 0.032 0.033
Waco (N. Central) 0.149 0.173 0.184 0.026 0.031 0.033
Houston (Coast) 2.234 3.562 2.299 0.026 0.042 0.027
Victoria (Coast) 0.006 0.050 0.008 0.002 0.018 0.003
Austin (S. Central) 1.278 1.100 1.025 0.050 0.043 0.040
San Antonio (S. Central) 1.753 1.486 1.374 0.046 0.039 0.036

Brownsville (South) 0.398 0.390 0.132 0.077 0.076 0.026
Corpus Christi (South) 0.545 0.534 0.178 0.077 0.076 0.025
Laredo (South) 0.203 0.198 0.045 0.068 0.067 0.015
McAllen (South) 0.664 0.651 0.207 0.077 0.076 0.024
Midland (Far West) 0.258 0.240 0.064 0.078 0.073 0.019
Odessa (Far West) 0.206 0.192 0.051 0.078 0.072 0.019
College Station (East) 0.367 0.119 0.260 0.082 0.027 0.058
Tyler (East) 0.390 0.142 0.283 0.087 0.031 0.063
Abilene (West) 0.339 -0.077 0.176 0.076 -0.017 0.040
San Angelo (West) 0.161 -0.036 0.084 0.077 -0.017 0.040
Sherman (North) 0.187 0.045 0.092 0.082 0.020 0.040
Wichita Falls (North) 0.216 0.043 0.100 0.079 0.015 0.036

Notes: “Big 3” uses estimates from Table 8. “Lasso” uses estimates from Table 9. “Own” uses own region
estimates from Table 12. “Annual Benefit” in millions of dollars, and “Benefit per mile” in dollars. All
estimates include controls.

26The results are not directly comparable to the results in Table 3 due to a different sample and constant
valuation of pollution damages.
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4 Conclusion

Advances in electric motors, battery technology, wireless charging, and autonomous driving

open new possibilities for electrification of transportation. Whether market forces can result

in efficient electrification depends on the extent to which pollution can be adequately regu-

lated. Understanding the benefits and costs of regulation is thus crucial to assessing public

policy toward electrification.

We find that diesel buses built before 2010 are quite dirty. Calculation of air pollution

damages from these buses shows that about 15 MSA’s have annual damages greater than

$100 million. Relative to this benchmark, both new diesel buses and electric buses generate

significant decreases in damages. But electric buses are generally cleaner: Electric buses

generate an environmental benefit relative to new diesel buses on average in the U.S. The

greatest environmental benefit per mile, as well as the greatest environmental benefit for the

entire bus fleet, occurs in Los Angeles.

Using the rich data available for Texas, we explore three different methods for determining

marginal damages of electricity consumption at a spatially disaggregated level. At this level

of spatial disaggregation, electricity consumption is highly correlated across regions. Our

three methods generally yield similar estimates for the three largest regions in Texas. For all

three methods, the results are most plausible when using control variables that are available

for Texas but have not been for other parts of the country. It may be reasonable to use the

Lasso method and the own region method without controls to obtain spatially disaggregated

estimates of marginal damages in these other interconnections.

Appendix

AP3 Model Details

This paper uses the AP3 integrated assessment model (IAM), (see Clay et al., 2019; Holland

et al., 2018 for recent applications) which is an updated version of the AP2 model (Muller,

2014; Jaramillo and Muller, 2016; Holland et al., 2016). The model links emissions of local

air pollutants to concentrations, population exposure, physical health effects (premature
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mortality risk), and monetary damages. To monetize emissions of GHGs we use the social

cost of carbon reported in the U.S. federal government’s interagency working group report

(USIAWG, 2016).

The AP3 model begins by using the 2014 National Emissions Inventory (NEI) which is

the most recent comprehensive inventory of air pollution emissions for the U.S. economy.

AP3 matches reported emissions to the location of release. So-called area source emissions

(vehicles, residences, and small businesses) are allocated to the county in which they are

reported to have occurred. AP3 attributes point source emissions to facility location for

nearly 700 large industrial emission sites (many of which are power stations). Discharges

from other point sources are allocated to the county in which the NEI reports that they

occurred.

A reduced complexity air quality model then links emissions to annual average concen-

trations. Crucially, for releases of nitrogen oxides (NOx), sulfur dioxide (SO2), ammonia

(NH3), and volatile organic compounds (VOCs), AP3 models their contribution to ambi-

ent fine particulate matter (PM2.5). AP3 also models the dispersion of primary (emitted)

PM2.5. Central to the formation of secondary PM2.5 are the processes associated with the

nitrate-sulfate-ammonium equilibrium. While formation of ammonium sulfate is modeled in

the same fashion as in AP2, AP3 employs a new regression-based approach to estimating

the formation of ammonium nitrate from NOx emissions. Specifically, in a series of offline

regression analyses, a polynomial is fitted to the process linking nitrate, free ammonia, along

with controls for temperature and humidity, to ambient ammonium nitrate (which is a con-

stituent of PM2.5). The model is fit to daily predictions from the CAMx chemical transport

model. The resulting fit of PM2.5 predicted by the AP3 model, by major species, is reported

in Sergi et al., (2019).

Population and mortality rate data is gathered from the U.S. Census and the Centers

for Disease Control and Prevention by age-group and county to estimate exposures in 2014.

Then, peer-reviewed concentration-response functions linking exposure to changes in adult

mortality rates are used to estimate the mortality risk consequences of emissions (Krewski et

al., 2009; Lepeule et al., 2012). These studies comprise the most recent updates to the two

most widely used epidemiological studies on the air pollution-mortality linkage in the policy
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analysis literature. Changes in mortality risk are valued using the Value of a Statistical Life

(VSL) approach (Viscusi and Aldy, 2013). In this study, we employ the USEPA’s preferred

VSL of $7.4 million ($2006) which we inflate to year-2014 USD.

As in prior applications, AP3 is used to calculate the marginal ($/ton) damage from

emissions of the five pollutants listed above. This computation is made by county (or source)

of emission. The process of making this tabulation begins by running AP3 with baseline

emissions (as reported by the USEPA in the 2014 NEI) to estimate associated baseline

damages. Then, one (U.S. short) ton of emissions of a particular pollutant, perhaps NOx,

is added to reported emissions at a given site. AP3 is used to calculate the change in

concentrations, exposure, physical health effects, and monetary damage. This change, of

course, manifests across many locations receiving pollution. The total’ marginal damage

is the spatial sum across receptor counties resulting from this additional emission of NOx.

Emissions at the chosen site are reset to baseline, and AP3 moves to the next source and

repeats this calculation. This algorithm is repeated over all sources and pollutants.

This process yields estimates of the ($/ton) marginal damage for all source locations

and pollutants covered by AP3. To compute the damages from vehicles (buses, in the

present application), we match the ($/ton) damages to emission rate data provided by the

USEPA (check?) for a given vehicle type and vintage. Emission rates are typically expressed

in physical units, per distance travelled (grams/mile). Unit conversion yields a ($/VMT)

estimate. Similarly, for power stations, AP3 provides marginal damage estimates, also in

($/ton). Using USDOE (check?) data on the emission rates from power stations (emission

totals (tons) are reported along with net generation (kwh)) we analogously tabulate damages

per unit output ($/kwh). Data on the electricity use per VMT thus yields the $/VMT figure

for electric buses.
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Table A: Estimates for regulated fossil generation by subregions

Gross Generation Damages
Variables (1) (2) (3) (4) (5) (6) (7) (8)

Load 0.902*** 0.943*** 0.980*** 0.036*** 0.038*** 0.017**
(0.011) (0.002) (0.031) (0.001) (0.001) (0.007)

Coast 0.972*** -0.016 0.048*** 0.031***
(0.014) (0.038) (0.003) (0.009)

N. Central 0.937*** -0.051 0.047*** 0.025***
(0.016) (0.037) (0.004) (0.008)

S. Central 0.959*** -0.069 0.047*** 0.018
(0.026) (0.046) (0.006) (0.011)

East 0.610*** -0.087***
(0.109) (0.027)

Northern 1.166*** 0.074
(0.244) (0.062)

Southern 0.956*** 0.025***
(0.037) (0.009)

West 0.496*** -0.125***
(0.184) (0.048)

Far West 1.543*** 0.087***
(0.132) (0.033)

Wind Gen. -0.941*** -0.944*** -0.941*** -0.041*** -0.041*** -0.041***
(0.003) (0.003) (0.003) (0.001) (0.001) (0.001)

Solar Gen. -0.947*** -0.972*** -0.925*** -0.090*** -0.092*** -0.087***
(0.116) (0.113) (0.113) (0.024) (0.024) (0.024)

Nuclear Gen. -0.883*** -0.884*** -0.882*** -0.040*** -0.040*** -0.040***
(0.021) (0.020) (0.020) (0.005) (0.006) (0.005)

Other Gen. 0.108** 0.109** 0.112** 0.044*** 0.045*** 0.045***
(0.047) (0.047) (0.047) (0.013) (0.013) (0.013)

DC-East -0.683*** -0.695*** -0.684*** -0.026** -0.028** -0.026**
(0.043) (0.043) (0.043) (0.011) (0.011) (0.011)

DC-North -1.048*** -1.041*** -1.042*** -0.109*** -0.109*** -0.108***
(0.077) (0.077) (0.077) (0.018) (0.018) (0.018)

DC Indicator 136.796 134.909 127.293 28.725* 27.114* 26.274*
(94.989) (92.663) (94.851) (14.706) (14.179) (14.818)

*** p<0.01, ** p<0.05, * p<0.1
Notes: Newey-West standard errors with 48-hour lags. Each regression has 52,608 observations and 1,728

fixed effects.
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Table B: Marginal damage estimates for Texas regions: Adding load regions

Variables (1) (2) (3) (4) (5) (6) (7)

Texas Load 0.0384*** 0.0270*** 0.0173** -0.0042 -0.0695*** -0.0495 0.0813
(0.001) (0.003) (0.007) (0.013) (0.021) (0.033) (0.063)

N. Central -0.0008 0.0147*** 0.0250*** 0.0508*** 0.1227*** 0.1019*** -0.0337
(0.003) (0.005) (0.008) (0.015) (0.023) (0.035) (0.065)

Coast 0.0214*** 0.0313*** 0.0523*** 0.1188*** 0.0998*** -0.0321
(0.006) (0.009) (0.014) (0.021) (0.032) (0.063)

S. Central 0.0176 0.0392** 0.1093*** 0.0891*** -0.0345
(0.011) (0.016) (0.023) (0.034) (0.061)

South 0.0297* 0.0941*** 0.0734** -0.0564
(0.017) (0.023) (0.034) (0.063)

Far West 0.1581*** 0.1258** 0.0059
(0.040) (0.059) (0.075)

East -0.0348 -0.1678**
(0.043) (0.068)

West -0.2028**
(0.088)

Controls Yes Yes Yes Yes Yes Yes Yes
*** p<0.01, ** p<0.05, * p<0.1

Notes: Damage is dependent variable. Newey-West standard errors with 48-hour lags. Each regression has
52,608 observations and 1,728 fixed effects. Controls are generation from wind, solar, hydro/biomass and
nuclear and power flows on two DC ties plus an indicator for the availability of the DC flow data. Northern
is omitted in all models.
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Table C: Main regressions with plant fixed effects

Generation Damage
Variables (1) (2) (3) (4) (5) (6)
Load 0.9728*** 1.0189*** 0.0388*** 0.0411***

(0.002) (0.002) (0.000) (0.000)
N. Central 1.0031*** 0.0510***

(0.017) (0.001)
Coast 1.0332*** 0.0524***

(0.013) (0.001)
S. Central 1.0395*** 0.0507***

(0.029) (0.002)
Southern 1.0355*** 0.0271***

(0.036) (0.003)
Far West 1.3796*** 0.0826***

(0.126) (0.011)
East 0.7271*** -0.0904***

(0.112) (0.010)
West 0.8042*** -0.1208***

(0.179) (0.015)
Northern 1.4176*** 0.0933***

(0.259) (0.022)
Controls No Yes Yes No Yes Yes

Notes: Dependent variable is regulated generation or damage. 4,881,696 observations with 160,344 fixed
effects. No standard error correction.
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Table D: Main regressions with zonal fixed effects

Generation Damage
Variables (1) (2) (3) (4) (5) (6)
Load 0.9020*** 0.9440*** 0.0360*** 0.0380***

(0.002) (0.002) (0.000) (0.000)
N. Central 0.9378*** 0.0476***

(0.018) (0.001)
Coast 0.9739*** 0.0492***

(0.013) (0.001)
S. Central 0.9583*** 0.0468***

(0.031) (0.002)
Southern 0.9546*** 0.0249***

(0.038) (0.003)
Far West 1.5429*** 0.0872***

(0.134) (0.010)
East 0.6114*** -0.0865***

(0.119) (0.009)
West 0.5049*** -0.1215***

(0.190) (0.014)
Northern 1.1849*** 0.0813***

(0.275) (0.021)
Controls No Yes Yes No Yes Yes

Notes: Dependent variable is regulated generation or damage. 420,864 observations with 13,824 fixed effects.
No standard error correction.

A.8



Supplementary material for Subsection 3.3

Table E: Summary statistics for estimates for variables selected by lasso: regulated generation

Sum Min Max N
Texas Load 0.9144 -0.0081 0.0471 100
N. Central 0.0356 -0.0061 0.0208 9
Coast 0.1683 -0.0284 0.0748 23
S. Central -0.0059 -0.0329 0.0401 10
South -0.2296 -0.1057 0.0917 22
Far West -0.2535 -0.1312 0.0362 4
East 0.6570 -0.1113 0.2333 21
West 0.5257 -0.2100 0.1906 7
North -0.0815 -0.2110 0.1706 8

Wind -0.9407 -0.0586 -0.0000 89
Solar 0.9635 -0.4496 0.5615 16
Hydro/Bio -0.3197 -1.0205 0.3266 17
Nuclear -0.5663 -0.1163 0.0438 25
DC-East 0.2358 -0.1324 0.0676 30
DC-North 0.1393 -0.3887 0.1504 41
DC Indicator -341.3611 -298.3783 -42.9828 2

Notes: Dependent variable is regulated generation. 52,608 observations for each of 100 plants. Lasso selects
from all load regions and controls.
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Table F: Marginal damage estimates for Texas load regions using lasso: No controls

Region (1) (2) (3) (4) (5) (6) (7) All
N. Central 0.046 0.046 0.045 0.044 0.046 0.045 0.042 0.042
Coast 0.032 0.028 0.029 0.031 0.033 0.032 0.033 0.033
S. Central 0.032 0.034 0.036 0.039 0.041 0.040 0.032 0.032
South 0.032 0.034 0.034 0.018 0.021 0.019 0.017 0.018
Far West 0.032 0.034 0.034 0.036 -0.075 -0.084 -0.101 -0.101
East 0.032 0.034 0.034 0.036 0.038 0.070 0.073 0.074
West 0.032 0.034 0.034 0.036 0.038 0.037 0.150 0.148
North 0.032 0.034 0.034 0.036 0.038 0.037 0.034 0.036
Controls No No No No No No No No

Notes: 52,608 observations for each of 100 plants. Lasso used for variable selection; estimates from linear
regression with hour and month by year fixed effects.

Table G: Marginal regulated generation for Texas load regions using lasso: No controls

Region (1) (2) (3) (4) (5) (6) (7) All
N. Central 1.04 1.06 1.01 1.00 1.06 0.98 0.86 0.88
Coast 0.88 0.69 0.66 0.69 0.69 0.65 0.70 0.72
S. Central 0.88 0.99 1.20 1.24 1.28 1.26 1.00 0.98
South 0.88 0.99 0.94 0.75 0.78 0.72 0.61 0.63
Far West 0.88 0.99 0.94 0.95 -1.30 -1.03 -2.18 -2.25
East 0.88 0.99 0.94 0.95 1.04 2.43 2.50 2.51
West 0.88 0.99 0.94 0.95 1.04 0.95 5.26 5.06
North 0.88 0.99 0.94 0.95 1.04 0.95 0.83 0.68
Controls No No No No No No No No

Notes: 52,608 observations for each of 100 plants. Lasso used for variable selection; estimates from linear
regression with hour and month by year fixed effects.
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Figure G: Yearly estimates for lasso marginal damages
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Supplementary material for Subsection 3.4

Table H: Marginal generation and damages based on own region

Generation Damage
(1) (2) (3) (4)

N. Central 0.939 0.984 0.036 0.038
Coast 0.818 0.956 0.036 0.042
S. Central 0.956 0.955 0.038 0.039
South 0.894 0.990 0.034 0.038
Far West 0.534 1.130 0.028 0.054
East 1.095 0.857 0.036 0.026
West 0.763 0.193 0.032 0.008
North 0.852 0.677 0.033 0.025
Controls No Yes No Yes

Notes: Dependent variable is regulated generation or damage. Region-level analysis with 420,864 observa-
tions and 13,824 fixed effects.
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Figure H: Yearly estimates for own region marginal damages
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Supplementary material for Subsection 3.5

Figure I: Comparing marginal damages across models

Notes:
“Big Three OLS” shows estimates from Table 8 Model (4). “Lasso” shows estimates from

Table 9 Model (8). “Own Region OLS” shows estimates from Table 12 Model (4). “OLS” shows
estimates from Table 7 Model (4). All models include controls
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Damages and benefits for all MSAs

Aggregate Benefit Bus Old

MSA Diesel Electric Benefit per mile VMT Diesel

Los Angeles, CA 71.4 6.6 64.7 0.632 102.5 1064.0

New York, NY 33.8 18.8 15.0 0.111 135.1 426.4

Chicago, IL 41.5 28.7 12.8 0.064 200.2 424.2

Phoenix, AZ 18.9 8.3 10.6 0.087 122.0 126.0

Riverside, CA 15.5 5.7 9.8 0.115 85.2 124.7

Santa Ana, CA 12.5 3.0 9.5 0.205 46.6 142.1

Newark, NJ 29.7 20.9 8.8 0.059 149.6 302.8

San Diego, CA 11.1 2.6 8.6 0.216 39.7 125.8

Atlanta, GA 48.8 40.4 8.4 0.028 298.7 379.8

Dallas, TX 19.7 11.7 8.0 0.057 140.5 113.2

Edison, NJ 25.3 19.7 5.6 0.040 141.8 226.7

Oakland, CA 6.5 1.9 4.6 0.160 28.8 66.6

Houston, TX 11.5 7.2 4.3 0.051 84.3 62.8

Seattle, WA 7.7 3.5 4.2 0.081 52.0 49.2

Washington, DC 27.4 23.3 4.1 0.024 169.8 212.8

Sacramento, CA 5.8 2.2 3.7 0.113 32.6 47.3

Fort Worth, TX 9.2 5.6 3.6 0.054 67.1 50.5

San Jose, CA 5.1 1.6 3.5 0.139 24.9 47.6

Detroit, MI 21.9 18.6 3.4 0.026 129.8 178.9

Philadelphia, PA 11.6 8.4 3.2 0.053 60.4 114.9

Denver, CO 5.3 2.5 2.9 0.077 37.0 33.1

Portland, OR 5.6 3.0 2.7 0.059 45.5 23.0

Warren, MI 30.0 27.4 2.6 0.014 190.6 218.8

Stockton, CA 3.1 0.9 2.2 0.164 13.3 30.9

San Francisco,CA 3.2 1.1 2.1 0.119 17.4 27.4

Charlotte, NC 18.2 16.1 2.0 0.017 118.8 123.9

Salt Lake City, UT 3.7 1.7 2.0 0.081 24.9 24.5

Camden, NJ 10.1 8.1 2.0 0.034 58.8 86.3

Las Vegas, NV 3.5 1.8 1.8 0.068 26.2 17.6

San Antonio, TX 4.8 3.2 1.7 0.043 38.4 20.9

Cincinnati-Middletown, OH-KY-IN 9.9 8.3 1.6 0.027 59.8 78.4

Baltimore-Towson, MD 12.2 10.6 1.6 0.021 76.5 91.5

Tampa, FL 7.4 5.8 1.6 0.037 42.5 61.1

Pittsburgh, PA 9.4 7.9 1.5 0.027 56.0 73.6

Bakersfield, CA 2.7 1.2 1.5 0.078 18.7 15.8

Minneapolis-St. Paul, MN 14.6 13.2 1.4 0.016 88.0 113.7

Fresno, CA 2.2 1.0 1.2 0.083 14.8 13.2

Austin-Round Rock, TX 3.3 2.1 1.2 0.047 25.7 15.7

Albuquerque, NM 2.5 1.3 1.2 0.063 19.0 11.0

Raleigh-Cary, NC 13.8 12.6 1.2 0.013 92.9 86.8

Oxnard-Thousand Oaks-Ventura, CA 1.9 0.8 1.1 0.096 11.9 13.2

Nassau-Suffolk, NY 3.9 2.8 1.1 0.056 19.9 39.3

Modesto, CA 1.6 0.6 1.0 0.116 8.9 13.2

Cleveland-Elyria-Mentor, OH 7.8 6.9 1.0 0.020 48.5 59.9

Orlando, FL 6.8 5.9 1.0 0.022 43.0 49.9

Vallejo-Fairfield, CA 1.3 0.4 0.9 0.135 6.7 12.5

Tacoma, WA 1.9 1.0 0.9 0.058 14.9 7.9

Tucson, AZ 1.8 0.9 0.9 0.061 14.2 7.6

Boise City-Nampa, ID 1.8 1.0 0.8 0.058 14.3 7.4

Columbus, OH 8.7 8.0 0.7 0.013 56.9 59.1

Flagstaff, AZ 1.6 0.9 0.7 0.053 13.5 5.3

El Paso, TX 1.3 0.6 0.7 0.069 9.7 6.6

Provo-Orem, UT 1.4 0.8 0.6 0.055 11.5 5.5

Santa Rosa-Petaluma, CA 1.1 0.4 0.6 0.092 6.9 7.1

Wilmington, DE-MD-NJ 8.9 8.3 0.6 0.010 59.8 59.0

Ft Lauderdale, FL 3.9 3.3 0.6 0.026 24.0 29.1

Reno-Sparks, NV 1.4 0.8 0.6 0.052 11.7 4.6

Salem, OR 1.3 0.7 0.6 0.060 10.1 5.2

Bethesda-Frederick-Gaithersburg, MD 4.6 4.0 0.6 0.021 28.9 34.2

Las Cruces, NM 1.2 0.6 0.6 0.061 9.3 4.9

Greensboro-High Point, NC 5.9 5.3 0.6 0.015 39.0 38.5

Dayton, OH 4.7 4.2 0.6 0.019 30.0 34.4

Colorado Springs, CO 1.0 0.5 0.5 0.059 8.2 4.3

Akron, OH 3.9 3.5 0.5 0.020 24.5 29.5

Indianapolis, IN 6.4 5.9 0.5 0.012 42.1 42.8

Louisville, KY-IN 4.4 3.9 0.5 0.016 28.3 30.6

Merced, CA 0.8 0.3 0.4 0.086 5.2 5.0

Visalia-Porterville, CA 0.9 0.5 0.4 0.062 7.2 3.9

Santa Barbara-Santa Maria-Goleta, CA 0.8 0.3 0.4 0.080 5.3 4.2

Salinas, CA 0.9 0.4 0.4 0.060 7.0 3.3

Prescott, AZ 0.9 0.5 0.4 0.054 7.7 3.0

Eugene-Springfield, OR 1.0 0.6 0.4 0.045 9.0 2.2

Spokane, WA 1.0 0.6 0.4 0.047 8.4 2.8
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Killeen-Temple-Fort Hood, TX 1.1 0.7 0.4 0.042 9.0 4.6

Santa Cruz-Watsonville, CA 0.6 0.2 0.4 0.114 3.2 4.8

Ogden-Clearfield, UT 0.8 0.5 0.4 0.053 6.7 3.1

El Centro, CA 0.8 0.5 0.4 0.052 6.8 2.9

Greeley, CO 0.7 0.4 0.3 0.062 5.3 3.1

San Luis Obispo-Paso Robles, CA 0.6 0.3 0.3 0.069 4.7 2.9

Trenton-Ewing, NJ 2.8 2.5 0.3 0.017 17.7 20.0

Farmington, NM 0.7 0.4 0.3 0.051 5.8 2.1

Coeur d’Alene, ID 0.7 0.4 0.3 0.050 5.8 2.3

Olympia, WA 0.7 0.4 0.3 0.050 5.7 2.0

McAllen-Edinburg-Pharr, TX 1.0 0.7 0.3 0.033 8.6 3.3

Madera, CA 0.5 0.3 0.3 0.070 4.1 2.7

Santa Fe, NM 0.6 0.3 0.3 0.054 5.1 2.1

Hanford-Corcoran, CA 0.5 0.2 0.3 0.077 3.5 2.9

Deltona, FL 1.4 1.1 0.3 0.031 8.3 10.8

Allentown-Bethlehem-Easton, PA-NJ 4.5 4.3 0.3 0.008 30.7 29.6

Canton-Massillon, OH 1.9 1.7 0.2 0.021 12.0 14.4

Medford, OR 0.6 0.3 0.2 0.046 5.3 1.4

Corpus Christi, TX 0.8 0.6 0.2 0.034 7.0 2.6

Kennewick-Richland-Pasco, WA 0.6 0.4 0.2 0.046 5.3 1.5

Waco, TX 0.7 0.5 0.2 0.041 5.6 2.8

Fort Collins-Loveland, CO 0.5 0.3 0.2 0.053 4.4 2.0

Idaho Falls, ID 0.5 0.3 0.2 0.052 4.3 1.9

Redding, CA 0.5 0.3 0.2 0.046 4.7 1.2

Yuma, AZ 0.5 0.3 0.2 0.049 4.2 1.5

Bremerton-Silverdale, WA 0.5 0.3 0.2 0.051 4.1 1.5

Tyler, TX 0.6 0.4 0.2 0.044 4.5 2.4

Yakima, WA 0.5 0.3 0.2 0.043 4.5 1.1

Longview, WA 0.4 0.2 0.2 0.057 3.2 1.5

St. George, UT 0.4 0.2 0.2 0.048 3.8 1.1

Brownsville-Harlingen, TX 0.6 0.4 0.2 0.035 5.1 1.9

Yuba City, CA 0.4 0.2 0.2 0.060 3.0 1.5

Cambridge-Newton-Framingham, MA 1.7 1.5 0.2 0.015 10.9 12.6

Boulder, CO 0.4 0.2 0.2 0.057 2.8 1.4

Chico, CA 0.4 0.2 0.2 0.053 3.1 1.1

Pueblo, CO 0.3 0.2 0.2 0.058 2.8 1.4

Greenville, SC 2.2 2.0 0.2 0.011 14.8 13.5

Bend, OR 0.4 0.2 0.2 0.042 3.7 0.8

Mount Vernon-Anacortes, WA a 0.4 0.2 0.2 0.044 3.5 1.0

Bellingham, WA 0.4 0.3 0.1 0.039 3.8 0.7

Abilene, TX 0.5 0.4 0.1 0.034 4.4 1.5

Napa, CA 0.2 0.1 0.1 0.096 1.5 1.7

Fayetteville, NC 3.3 3.2 0.1 0.006 23.5 18.8

Billings, MT 0.3 0.2 0.1 0.048 2.8 1.0

Winston-Salem, NC 3.7 3.6 0.1 0.005 26.1 21.2

Pocatello, ID 0.3 0.2 0.1 0.045 2.8 0.9

Worcester, MA 1.2 1.0 0.1 0.017 7.3 8.4

Midland, TX 0.4 0.3 0.1 0.035 3.3 1.3

Sarasota, FL 1.9 1.8 0.1 0.008 13.2 11.8

Atlan City, NJ 4.3 4.2 0.1 0.004 30.2 25.1

Grand Junction, CO 0.3 0.1 0.1 0.051 2.1 0.8

Reading, PA 1.4 1.3 0.1 0.011 9.4 9.4

York-Hanover, PA 1.2 1.1 0.1 0.013 7.9 8.1

Wenatchee, WA 0.3 0.2 0.1 0.044 2.4 0.7

West Palm Beach, FL 2.8 2.7 0.1 0.005 20.1 16.5

Cheyenne, WY 0.2 0.1 0.1 0.050 2.1 0.7

Lancaster, PA 1.0 0.9 0.1 0.015 6.7 7.1

Wichita Falls, TX 0.3 0.2 0.1 0.035 2.7 1.1

Odessa, TX 0.3 0.2 0.1 0.035 2.6 1.0

Sherman-Denison, TX 0.3 0.2 0.1 0.039 2.3 1.0

Missoula, MT 0.2 0.1 0.1 0.045 2.0 0.6

Spartanburg, SC 1.2 1.1 0.1 0.011 8.2 7.4

Victoria, TX 0.3 0.2 0.1 0.031 2.7 0.8

Lewiston, ID-WA 0.2 0.1 0.1 0.044 1.8 0.5

Corvallis, OR 0.2 0.1 0.1 0.048 1.6 0.5

Miami, FL 4.3 4.3 0.1 0.003 31.2 24.6

Durham, NC 6.0 5.9 0.1 0.002 43.5 32.5

Youngstown-Warren-Boardman, OH-PA 2.7 2.6 0.1 0.004 18.5 16.5

Laredo, TX 0.3 0.3 0.1 0.025 3.0 0.6

San Angelo, TX 0.2 0.2 0.1 0.034 2.1 0.7

Bridgeport-Stamford-Norwalk, CT 1.1 1.1 0.1 0.009 7.6 7.6

Hickory-Lenoir-Morganton, NC 3.2 3.1 0.1 0.003 23.1 17.6

Casper, WY 0.1 0.1 0.1 0.052 1.2 0.5

Ocala, FL 1.2 1.2 0.1 0.007 8.6 7.2

Logan, UT-ID 0.2 0.1 0.1 0.047 1.3 0.5

Lake County-Kenosha County, IL-WI 4.1 4.0 0.1 0.002 27.7 25.6

Rapid City, SD 0.2 0.2 0.1 0.027 2.1 0.6

Great Falls, MT 0.1 0.1 0.1 0.045 1.2 0.4

Anderson, SC 0.8 0.7 0.1 0.010 5.4 4.8
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Carson City, NV 0.1 0.1 0.0 0.059 0.8 0.4

Richmond, VA 10.8 10.8 0.0 0.001 79.2 58.5

Gainesville, GA 1.0 0.9 0.0 0.005 6.9 5.5

Palm Bay, FL 1.4 1.3 0.0 0.003 9.9 7.7

Springfield, OH 0.8 0.8 0.0 0.006 5.5 5.0

Punta Gorda, FL 0.5 0.4 0.0 0.008 3.1 2.8

Knoxville, TN 3.0 3.0 0.0 0.001 22.0 16.2

Anderson, IN 0.5 0.5 0.0 0.006 3.6 3.2

Milwaukee-Waukesha-West Allis, WI 4.3 4.3 0.0 0.001 29.2 27.7

Cape Coral, FL 1.4 1.4 0.0 0.002 10.0 7.6

Lebanon, PA 0.6 0.6 0.0 0.002 4.0 3.4

Danville, VA 0.6 0.6 0.0 0.002 4.2 3.1

Weirton-Steubenville, WV-OH 0.4 0.4 0.0 0.002 2.9 2.4

Muncie, IN 0.4 0.4 -0.0 -0.000 2.8 2.2

Lexington-Fayette, KY 1.0 1.0 -0.0 -0.001 7.5 5.4

Altoona, PA 0.3 0.3 -0.0 -0.004 1.9 1.4

Rome, GA 0.5 0.5 -0.0 -0.002 3.5 2.3

Columbus, IN 0.3 0.3 -0.0 -0.004 2.2 1.5

Kokomo, IN 0.2 0.3 -0.0 -0.006 1.8 1.2

Johnson City, TN 0.5 0.5 -0.0 -0.004 3.7 2.4

Mansfield, OH 0.6 0.6 -0.0 -0.003 4.6 3.4

Burlington, NC 1.1 1.2 -0.0 -0.002 8.5 5.8

Hartford-West Hartford-East Hartford, C 1.9 1.9 -0.0 -0.001 13.7 11.1

Johnstown, PA 0.5 0.6 -0.0 -0.004 4.0 2.9

Morristown, TN 0.5 0.5 -0.0 -0.004 4.0 2.5

Monroe, MI 2.2 2.2 -0.0 -0.001 15.4 12.6

Kankakee-Bradley, IL 0.6 0.6 -0.0 -0.004 4.2 3.2

Toledo, OH 3.1 3.1 -0.0 -0.001 21.7 17.8

Poughkeepsie-Newburgh-Middletown, NY 1.4 1.4 -0.0 -0.002 10.1 7.9

Goldsboro, NC 0.9 0.9 -0.0 -0.003 6.5 4.2

Fort Wayne, IN 1.3 1.3 -0.0 -0.002 9.4 7.2

Lima, OH 0.5 0.5 -0.0 -0.005 3.8 2.7

Hot Springs, AR 0.2 0.2 -0.0 -0.014 1.4 0.6

Lawrence, KS 0.1 0.1 -0.0 -0.019 1.0 0.4

Wheeling, WV-OH 0.6 0.7 -0.0 -0.004 4.8 3.3

New Haven-Milford, CT 1.1 1.2 -0.0 -0.003 8.3 6.4

Norwich-New London, CT 0.5 0.5 -0.0 -0.007 3.5 2.4

Racine, WI 0.5 0.5 -0.0 -0.007 3.6 2.8

Cleveland, TN 0.4 0.4 -0.0 -0.008 3.1 1.7

Dalton, GA 1.0 1.0 -0.0 -0.004 7.3 4.7

Kingsport-Bristol-Bristol, TN-VA 1.2 1.2 -0.0 -0.003 8.8 5.8

Roanoke, VA 1.9 1.9 -0.0 -0.002 14.2 9.9

Elizabethtown, KY 0.4 0.4 -0.0 -0.009 2.9 1.6

Chattanooga, TN-GA 2.3 2.4 -0.0 -0.002 17.5 11.8

Boston-Quincy, MA 1.7 1.7 -0.0 -0.002 12.3 10.0

Owensboro, KY 0.3 0.3 -0.0 -0.014 2.1 1.0

Gadsden, AL 0.4 0.5 -0.0 -0.008 3.4 1.9

Anniston-Oxford, AL 0.4 0.5 -0.0 -0.008 3.4 1.9

Michigan City-La Porte, IN 0.6 0.6 -0.0 -0.007 4.3 3.1

Dubuque, IA 0.2 0.2 -0.0 -0.024 1.3 0.6

Bowling Green, KY 0.4 0.4 -0.0 -0.010 3.0 1.6

Bloomington, IN 0.5 0.5 -0.0 -0.009 3.6 2.1

Vero Beach, FL 0.3 0.3 -0.0 -0.015 2.1 0.9

Janesville, WI 0.6 0.6 -0.0 -0.008 4.1 3.0

Jonesboro, AR 0.3 0.3 -0.0 -0.015 2.2 1.0

Pittsfield, MA 0.2 0.3 -0.0 -0.019 1.8 0.9

Morgantown, WV 0.5 0.5 -0.0 -0.009 3.8 2.3

Ames, IA 0.2 0.2 -0.0 -0.026 1.3 0.5

Elmira, NY 0.2 0.2 -0.0 -0.022 1.6 0.7

Parkersburg-Marietta, WV-OH 0.7 0.7 -0.0 -0.007 5.0 3.1

Sumter, SC 0.3 0.4 -0.0 -0.013 2.6 1.2

Hagerstown-Martinsburg, MD-WV 2.1 2.1 -0.0 -0.002 15.4 11.3

Lynchburg, VA 1.4 1.5 -0.0 -0.004 10.8 7.1

Vineland-Millville-Bridgeton, NJ at 2.4 2.4 -0.0 -0.002 17.7 12.6

Decatur, AL 0.6 0.7 -0.0 -0.008 4.8 2.7

Huntington-Ashland, WV-KY-OH 0.9 1.0 -0.0 -0.006 7.1 4.4

Ithaca, NY 0.2 0.3 -0.0 -0.023 1.8 0.8

Pine Bluff, AR 0.3 0.3 -0.0 -0.018 2.4 0.9

Sheboygan, WI 0.2 0.3 -0.0 -0.023 1.8 0.9

Florence-Muscle Shoals, AL 0.5 0.5 -0.0 -0.011 3.9 1.9

Sandusky, OH 0.5 0.6 -0.0 -0.011 3.9 2.4

Fond du Lac, WI 0.3 0.3 -0.0 -0.019 2.3 1.3

Elkhart-Goshen, IN 0.5 0.6 -0.0 -0.012 3.9 2.4

Danville, IL 0.4 0.5 -0.0 -0.013 3.5 1.9

Williamsport, PA 0.4 0.4 -0.0 -0.016 2.8 1.4

Athens-Clarke County, GA 0.9 0.9 -0.0 -0.007 6.9 4.0

Huntsville, AL 1.3 1.3 -0.0 -0.005 9.7 5.9

Harrisburg-Carlisle, PA 1.6 1.7 -0.0 -0.004 11.9 8.5

Lafayette, IN 0.5 0.5 -0.0 -0.013 3.7 2.0
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Auburn-Opelika, AL 0.5 0.5 -0.1 -0.014 3.7 1.6

Jackson, TN 0.4 0.5 -0.1 -0.015 3.6 1.6

Iowa City, IA 0.3 0.4 -0.1 -0.021 2.5 1.1

Charleston, WV 1.4 1.5 -0.1 -0.005 10.8 6.8

Longview, TX 0.6 0.7 -0.1 -0.011 4.8 2.5

Kingston, NY 0.5 0.6 -0.1 -0.014 3.9 2.2

Gary, IN ivision 2.2 2.2 -0.1 -0.004 15.6 12.1

Asheville, NC 3.7 3.8 -0.1 -0.002 27.7 18.7

Houma-Bayou Cane-Thibodaux, LA 0.4 0.5 -0.1 -0.016 3.7 1.5

State College, PA 0.6 0.6 -0.1 -0.013 4.6 2.6

Lawton, OK 0.3 0.4 -0.1 -0.021 2.7 1.0

Barnstable Town, MA 0.3 0.3 -0.1 -0.024 2.4 0.9

Providence-New Bedford-Fall River, RI-M 1.7 1.7 -0.1 -0.005 12.5 9.4

Tuscaloosa, AL 1.0 1.1 -0.1 -0.008 7.9 4.5

Terre Haute, IN 0.5 0.6 -0.1 -0.014 4.2 2.1

South Bend-Mishawaka, IN-MI 0.9 0.9 -0.1 -0.009 6.7 4.4

Winchester, VA-WV 0.8 0.8 -0.1 -0.010 6.0 3.4

Harrisonburg, VA 0.7 0.8 -0.1 -0.011 5.8 3.1

Clarksville, TN-KY 0.6 0.7 -0.1 -0.013 5.1 2.5

Decatur, IL 0.6 0.6 -0.1 -0.015 4.4 2.3

Waterloo-Cedar Falls, IA 0.3 0.4 -0.1 -0.025 2.6 1.1

La Crosse, WI-MN 0.3 0.4 -0.1 -0.027 2.4 1.0

Fort Walton Beach-Crestview-Destin, FL 0.5 0.5 -0.1 -0.017 3.8 1.4

Florence, SC 0.7 0.8 -0.1 -0.012 5.9 2.9

Hinesville-Fort Stewart, GA 0.5 0.5 -0.1 -0.018 3.9 1.5

Rocky Mount, NC 1.6 1.7 -0.1 -0.006 12.3 7.4

Panama City-Lynn Haven, FL 0.4 0.5 -0.1 -0.019 3.6 1.3

Essex County, MA 0.7 0.8 -0.1 -0.012 5.8 3.6

College Station-Bryan, TX 0.5 0.6 -0.1 -0.016 4.5 2.0

Texarkana, TX-Texarkana, AR 0.6 0.7 -0.1 -0.015 4.8 2.1

Port St. Lucie, FL 1.1 1.2 -0.1 -0.008 8.7 4.9

Lubbock, TX 0.4 0.5 -0.1 -0.020 3.6 1.3

Mobile, AL 1.3 1.4 -0.1 -0.007 10.3 5.8

Oshkosh-Neenah, WI 0.4 0.5 -0.1 -0.023 3.2 1.6

Appleton, WI 0.4 0.5 -0.1 -0.022 3.3 1.7

Myrtle Beach-Conway-North Myrtle Beach, 0.9 1.0 -0.1 -0.010 7.5 3.7

Bay City, MI 0.4 0.5 -0.1 -0.021 3.5 1.7

Lakeland, FL 1.8 1.9 -0.1 -0.005 13.6 8.5

Cedar Rapids, IA 0.4 0.5 -0.1 -0.022 3.5 1.6

Sioux City, IA-NE-SD 0.3 0.4 -0.1 -0.029 2.6 0.9

Cumberland, MD-WV 0.7 0.8 -0.1 -0.014 5.7 3.0

Warner Robins, GA 0.7 0.8 -0.1 -0.014 5.5 2.5

Bismarck, ND 0.3 0.4 -0.1 -0.033 2.3 0.8

Salisbury, MD 1.0 1.1 -0.1 -0.010 8.1 4.3

Hattiesburg, MS 0.5 0.6 -0.1 -0.019 4.2 1.5

Scranton–Wilkes-Barre, PA 1.6 1.7 -0.1 -0.007 11.7 8.3

Springfield, MA 0.8 0.9 -0.1 -0.013 6.5 4.0

Dothan, AL 0.5 0.6 -0.1 -0.019 4.4 1.6

Grand Forks, ND-MN 0.3 0.4 -0.1 -0.038 2.2 0.8

Glens Falls, NY 0.3 0.4 -0.1 -0.029 3.0 1.0

Amarillo, TX 0.6 0.7 -0.1 -0.018 4.9 1.7

Topeka, KS 0.5 0.6 -0.1 -0.021 4.4 1.8

Saginaw-Saginaw Township North, MI 0.9 1.0 -0.1 -0.013 6.8 4.2

Pensacola-Ferry Pass-Brent, FL 1.4 1.5 -0.1 -0.008 11.0 6.0

Pascagoula, MS 0.7 0.8 -0.1 -0.015 6.2 2.6

Holland-Grand Haven, MI 1.0 1.1 -0.1 -0.012 7.7 4.8

Naples, FL 0.8 0.9 -0.1 -0.015 6.4 2.9

Ocean City, NJ 1.6 1.7 -0.1 -0.008 12.7 7.7

Nashville-Davidson–Murfreesboro, TN 5.3 5.4 -0.1 -0.002 39.6 26.9

Bloomington-Normal, IL 0.8 0.9 -0.1 -0.015 6.3 3.3

Jackson, MI 1.8 1.9 -0.1 -0.007 13.2 9.4

Eau Claire, WI 0.5 0.6 -0.1 -0.023 4.3 2.3

Evansville, IN-KY 1.1 1.2 -0.1 -0.011 9.0 4.9

Erie, PA 0.7 0.8 -0.1 -0.018 5.4 2.8

Gainesville, FL 0.8 0.9 -0.1 -0.015 6.8 3.0

Blacksburg-Christiansburg-Radford, VA 1.2 1.3 -0.1 -0.011 9.5 5.0

Rochester, MN 0.6 0.7 -0.1 -0.021 4.8 2.6

Wausau, WI 0.4 0.5 -0.1 -0.029 3.6 1.5

Ann Arbor, MI 4.3 4.4 -0.1 -0.003 30.9 24.5

St. Louis, MO-IL 15.1 15.2 -0.1 -0.001 109.3 83.2

Alexandria, LA 0.6 0.7 -0.1 -0.020 5.4 1.8

Albany, GA 0.8 0.9 -0.1 -0.017 6.6 2.6

Springfield, IL 1.1 1.2 -0.1 -0.013 8.4 4.5

Columbus, GA-AL 1.4 1.5 -0.1 -0.010 10.8 5.6

Sioux Falls, SD 0.5 0.6 -0.1 -0.030 3.9 1.5

Champaign-Urbana, IL 1.0 1.1 -0.1 -0.014 7.9 4.2

Lincoln, NE 0.6 0.7 -0.1 -0.024 4.8 1.9

Lafayette, LA 0.9 1.0 -0.1 -0.016 7.5 3.2

Monroe, LA 0.7 0.9 -0.1 -0.019 6.3 2.4
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St. Joseph, MO-KS 0.6 0.8 -0.1 -0.022 5.4 2.2

Binghamton, NY 0.8 0.9 -0.1 -0.020 6.1 2.9

Jacksonville, FL 4.0 4.1 -0.1 -0.004 30.3 19.3

Augusta-Richmond County, GA-SC 2.5 2.7 -0.1 -0.006 19.6 11.6

Muskegon-Norton Shores, MI a 1.2 1.3 -0.1 -0.014 9.0 5.4

Columbia, MO 0.8 0.9 -0.1 -0.020 6.6 2.7

Greenville, NC 1.2 1.3 -0.1 -0.013 9.8 4.4

Valdosta, GA 0.8 1.0 -0.1 -0.018 7.2 2.6

Charlottesville, VA 1.3 1.5 -0.1 -0.012 10.7 5.3

Joplin, MO 0.9 1.0 -0.1 -0.018 7.5 3.0

Lake Charles, LA 0.9 1.0 -0.1 -0.018 7.3 2.7

Memphis, TN-MS-AR 3.5 3.6 -0.1 -0.005 26.4 16.9

Fort Smith, AR-OK 0.9 1.1 -0.1 -0.018 7.8 3.1

Gulfport-Biloxi, MS 0.9 1.1 -0.1 -0.018 7.9 2.9

Jefferson City, MO 0.9 1.1 -0.1 -0.019 7.7 3.2

Green Bay, WI 0.7 0.9 -0.1 -0.024 6.0 2.9

Fayetteville-Springdale-Rogers, AR-MO 1.1 1.3 -0.1 -0.016 9.3 4.0

Rockford, IL 1.7 1.8 -0.1 -0.012 12.6 8.3

Brunswick, GA 0.9 1.1 -0.1 -0.018 8.1 2.8

Des Moines, IA 0.8 1.0 -0.2 -0.022 6.8 3.1

Beaumont-Port Arthur, TX 1.2 1.4 -0.2 -0.015 10.0 4.3

U a-Rome, NY 0.8 0.9 -0.2 -0.025 6.3 2.7

St. Cloud, MN 0.8 0.9 -0.2 -0.025 6.3 3.3

Davenport-Moline-Rock Island, IA-IL 1.3 1.5 -0.2 -0.015 10.2 5.7

Dover, DE 4.2 4.4 -0.2 -0.005 31.7 20.6

Fargo, ND-MN 0.6 0.7 -0.2 -0.036 4.7 1.8

Shreveport-Bossier City, LA 2.1 2.3 -0.2 -0.010 16.6 8.9

Tallahassee, FL 1.1 1.3 -0.2 -0.018 9.3 3.4

Buffalo-Niagara Falls, NY 1.7 1.9 -0.2 -0.013 13.0 8.1

Wichita, KS 1.0 1.2 -0.2 -0.020 8.7 3.5

Columbia, SC 2.9 3.1 -0.2 -0.008 22.8 13.0

Macon, GA 2.3 2.4 -0.2 -0.010 18.0 9.6

Montgomery, AL 1.4 1.6 -0.2 -0.016 11.7 4.9

Birmingham-Hoover, AL 4.7 4.8 -0.2 -0.005 35.7 21.7

New Orleans-Metairie-Kenner, LA 2.9 3.1 -0.2 -0.009 22.8 12.7

Charleston-North Charleston, SC 2.0 2.2 -0.2 -0.012 16.5 7.5

Syracuse, NY 1.3 1.5 -0.2 -0.020 10.4 5.3

Jackson, MS 1.8 2.0 -0.2 -0.014 14.8 6.7

Little Rock-North Little Rock, AR 2.2 2.4 -0.2 -0.012 17.9 9.0

Lewiston-Auburn, ME 0.8 1.0 -0.2 -0.032 6.8 2.0

Peoria, IL 2.0 2.3 -0.2 -0.014 15.9 8.8

Jacksonville, NC 1.5 1.7 -0.2 -0.018 12.7 4.4

Wilmington, NC 2.7 2.9 -0.2 -0.011 21.9 10.6

Madison, WI 2.2 2.4 -0.2 -0.015 16.5 10.3

Savannah, GA 2.0 2.2 -0.2 -0.015 16.2 7.0

Baton Rouge, LA 2.9 3.2 -0.2 -0.011 23.3 12.3

Battle Creek, MI 2.8 3.1 -0.3 -0.012 21.4 13.5

Omaha-Council Bluffs, NE-IA 1.7 1.9 -0.3 -0.019 13.5 7.0

Grand Rapids-Wyoming, MI 3.4 3.7 -0.3 -0.011 25.6 16.9

Niles-Benton Harbor, MI 2.9 3.2 -0.3 -0.013 22.1 13.0

Rochester, NY 1.7 2.0 -0.3 -0.020 14.1 6.9

Springfield, MO 2.2 2.5 -0.3 -0.016 18.0 7.9

Duluth, MN-WI 1.0 1.2 -0.3 -0.035 8.1 3.0

Tulsa, OK 3.3 3.6 -0.3 -0.011 26.0 14.5

Albany-Schenectady-Troy, NY 1.7 2.0 -0.3 -0.021 14.2 6.9

Rockingham County, NH 3.1 3.4 -0.3 -0.014 23.7 14.3

Manchester-Nashua, NH 3.2 3.5 -0.3 -0.013 24.4 15.1

Kalamazoo-Portage, MI 3.2 3.5 -0.3 -0.013 24.5 14.6

Flint, MI 5.9 6.2 -0.3 -0.008 43.2 31.4

Kansas City, MO-KS 7.8 8.2 -0.3 -0.006 58.6 41.2

Virginia Beach-Norfolk-Newport News, VA 8.2 8.6 -0.4 -0.006 63.2 38.1

Lansing-East Lansing, MI 5.5 5.9 -0.4 -0.011 41.1 27.2

Oklahoma City, OK 4.8 5.3 -0.5 -0.012 38.3 21.2

Bangor, ME 1.2 1.6 -0.5 -0.040 11.2 2.0

Burlington-South Burlington, VT 1.8 2.3 -0.6 -0.035 15.7 4.3

Portland-South Portland-Biddeford, ME 4.3 5.3 -1.0 -0.027 36.9 13.2

Table I: Damages and benefits (in millions ) by MSA
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