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ABSTRACT  38 
We estimate effects of on-demand ride-hailing services Uber and Lyft on vehicle 39 

ownership, travel, energy, and environmental outcomes using a set of difference-in-difference 40 
propensity score-weighted regression models that exploit staggered market entry across the U.S. 41 
from 2010 to 2017. Specifically, we use state-level data to estimate effects of Uber market entry 42 
on vehicle registrations, gasoline consumption, travel distances, and emissions, and we use 43 
zipcode-level data to estimate effects on vehicle registration patterns, air quality, and transit use 44 
in urban areas. We find evidence that TNC entry causes a 3% decline in per-capita vehicle 45 
registrations when averaged across states but a 0.7% increase when averaged across urban areas. 46 
This difference is due, in part, to heterogeneity in the effects of TNC entry on different cities: 47 
TNC entry appears to increase ownership in large dense cities and small family-focused cities 48 
with low per-capita vehicle registrations, while the effect on other groups of cities is not 49 
statistically significant in our clustering results. Our results regarding transit ridership, travel 50 
distances, gasoline consumption, and several air pollutants are not conclusive, but we also find 51 
evidence of a negative association between TNC entry and EPA-estimated emissions of highway 52 
vehicle volatile organic compounds (VOCs).  53 
 54 
Keywords: transportation network company, ride-hailing, vehicle ownership, energy, VMT, 55 
emissions, air quality, transit  56 
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1.  INTRODUCTION 57 
 Transportation now contributes more carbon dioxide emissions than any other U.S. 58 
economic sector1, and new personal transportation options are rapidly changing transportation. 59 
Transportation network companies (TNCs), like Uber and Lyft, now provide on-demand 60 
mobility services that complement and compete with personal vehicle ownership and transit use, 61 
changing urban travel patterns and affecting energy and environmental implications of 62 
transportation. By 2017, Uber had entered 46% of U.S. urban areas (Figure 1). TNCs made more 63 
than 170,000 vehicle trips in San Francisco (15% of all intra-San Francisco vehicle trips) on an 64 
average weekday in 20162 and more than 90,000 rides in Seattle (more than total average 65 
weekday ridership on Seattle’s light rail) on an average weekday in 20183. Prior studies have 66 
examined effects of this rise in TNC use on outcomes as varied as traffic congestion, drunk 67 
driving, local entrepreneurship, ambulance use, and vehicular deaths, but the net effect of these 68 
services on vehicle ownership, travel, energy, and the environment is either unexplored or still 69 
debated in the literature.  70 
 71 

 72 
Figure 1  Comparison of Uber and Lyft market launch dates by combined statistical area (CSA). 73 
Some CSA labels are omitted for readability; data points, in chronological order, are: San 74 
Francisco, New York City, Seattle, Chicago, Washington (DC), Los Angeles, Philadelphia, San 75 
Diego, Atlanta, Boston, Dallas-Fort Worth, Denver, Minneapolis-St. Paul, Phoenix, Baltimore, 76 
Sacramento, Rhode Island (where Uber entered the entire state at once), Charlotte, Houston, 77 
Pittsburgh, Louisville, Cleveland, Tampa Bay, Miami, Orlando, St. Louis, and Portland (OR). 78 

 79 
On-demand mobility is part of a larger ongoing transformation of shared mobility—a 80 

broader term used to describe a set of transportation modes where passengers travel using 81 
vehicles owned by another party on an as-needed basis. Transportation modes such as 82 
carpooling, bike-sharing, and shuttle services have long fit into this category. Historically, trends 83 
in vehicle travel and transportation-related air pollutant emissions have been relatively 84 
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predictable: for example, since 2005 vehicle registrations have increased by approximately 1% 85 
annually (except for declines during the recession from 2008–2011) and emissions of volatile 86 
organic compounds have declined 5% annually (EPA’s Tier 2 emissions standards were phased-87 
in from 2004–2009). More recently, car-sharing services have expanded customers’ mobility 88 
options, introducing such options as renting a fleet-owned vehicle that is regularly available to 89 
other customers for either round-trip (e.g., Zipcar) or point-to-point (e.g., car2go) journeys. 90 
Furthermore, the growth and capabilities of smartphones enabled TNCs like Uber and Lyft to 91 
introduce on-demand mobility. Uber and Lyft launched in March 2010 and June 2012, 92 
respectively, in their first market: San Francisco, California. In 2018, Uber announced the 93 
completion of 10 billion total trips4 and Lyft announced one billion total trips5. These services 94 
opened the door for dynamic ridesharing, where algorithms efficiently route on-demand mobility 95 
services to serve several customers with different destinations in the same physical vehicle.  96 

Despite rapid TNC growth in recent years, there is limited knowledge about how they 97 
influence vehicle ownership patterns, energy consumption, travel patterns, and environmental 98 
outcomes. TNCs may reduce an individual’s reliance on a personal vehicle, ultimately resulting 99 
in fewer vehicle registrations, or stimulate new vehicle purchases by TNC drivers, increasing 100 
registrations. TNCs may increase VMT by requiring vehicles to travel between passenger trips 101 
(“deadheading”) and by increasing travel demand or shifting demand from mass transit to light-102 
duty vehicles. But they may also reduce vehicle miles traveled (VMT) through ride pooling, by 103 
providing a “first/last-mile” solution that encourages partial use of public transportation, or by 104 
providing travelers with the option to pay per trip as an alternative to making a “lumpy” 105 
investment in a personal vehicle and observing low marginal costs of additional travel. TNCs 106 
might increase or decrease energy consumption and emissions by changing VMT, by shifting 107 
VMT to vehicles with different efficiency and emissions rates, and by changing the portion of 108 
VMT traveled at hot operating temperature, when vehicles are more efficient and have lower 109 
emission rates. 110 
 111 
1.1.  Prior Literature 112 
 Peer-reviewed studies of the effects of TNCs on vehicle ownership, travel, energy, and 113 
environmental outcomes are limited: Rayle et al.6 found that while find 33% of surveyed TNC 114 
users in San Francisco would have traveled via bus or rail if the TNC service were not available, 115 
“ridesourcing probably did not influence car ownership behavior”. Hall et al.7 use a difference-116 
in-difference econometric model in 147 U.S. metropolitan areas and conclude that, while transit 117 
ridership does not change immediately after Uber entry, transit ridership increases by five 118 
percent two years after Uber entry, on average, and that this heterogeneous effect is larger in big 119 
cities with small transit agencies. They also find that Uber entry decreases commute times for 120 
transit users while increasing vehicular congestion. There are no peer-reviewed journal 121 
publications of TNC effects on energy or emissions, to our knowledge.  122 

Some working studies and internal reports have suggested that TNCs have affected 123 
vehicle ownership, use, and emissions, but the estimated effects vary. Both Hampshire et al 124 
(2017)8 and Clewlow and Mishra (2018)9 use survey methods to infer a reduction in overall 125 
vehicle ownership attributable to Uber and Lyft: Hampshire et al. surveyed former users of Uber 126 
after Uber left Austin, TX in 2016 and found a 9% increase in reported vehicle ownership among 127 
those former Uber users, and Clewlow and Mishra report that 9% of survey respondents who use 128 
ride-hailing across a group of 7 U.S. metropolitan areas disposed of one or more household 129 
vehicles. In contrast, Schaller (2018)10 and Gong et al (2017)11 find that Uber is associated with 130 
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an increase in vehicle ownership: Schaller observes that while TNCs were operating in the nine 131 
largest U.S. metropolitan areas from 2012–2016, growth in vehicle ownership outpaced that of 132 
population, and Gong et al. apply a difference-in-difference regression model in China and 133 
estimate an 8% increase in new vehicle registrations associated with Uber entry.  134 

Vehicular travel effect estimates from working studies and internal reports have also 135 
varied (the two peer-reviewed studies mentioned earlier found different and even heterogeneous 136 
effects). Li et al (2016)12 find that TNCs are associated with reductions in some travel metrics: 137 
they use a difference-in-difference regression to estimate a 1.2% decline in overall congestion 138 
and associated travel times and fuel consumption. But other studies suggest an increase: 139 
Clewlow and Mishra (2018) suggest, based on survey responses from ride-hailing users across a 140 
group of 7 U.S. metropolitan areas, that 49% to 61% of ride-hailing trips are associated with an 141 
increase in VMT; Hampshire et al. (2017) find a 23% reduction in the likelihood to take a trip 142 
among former Uber users surveyed in Austin, TX that transitioned to a personal vehicle after 143 
Uber and Lyft left; and Schaller (2018) finds, based on a comparison of eight surveys from other 144 
working studies, that 60% of ride-hailing trips would have otherwise happened via transit, 145 
walking, or biking (or not have happened at all) in a group of nine U.S. metropolitan areas. 146 
 TNC services can have effects not only on the number of vehicles registered, but also on 147 
how those vehicles are used. Recent analysis suggests that less than 60% of miles traveled by a 148 
TNC vehicle are productive miles spent moving a passenger from an origin to a destination—the 149 
remaining 40% of TNC vehicle empty-mile travel is spent cruising in search of the next fare, 150 
driving to passenger pick-up, or driving after passenger drop-off14. Additionally, the travel 151 
demand that is shifted to vehicles from other modes (i.e., from walking, biking, and transit) due 152 
to the convenience of on-demand ridesharing services was estimated to be as high as 85% in 153 
Denver, CO14, though Hall (2018) concludes that Uber is more of a complement to transit. 154 
Despite potential increases in the number of trips and the total number of miles travelled to 155 
complete each trip, chaining trips in the same set of vehicles may reduce criteria air pollutant 156 
emissions by reducing the number of cold starts15.  157 
 In summary, literature of the effects of TNCs on vehicle ownership, travel, energy, and 158 
environmental outcomes is inconclusive, and there are few peer-reviewed studies. We contribute 159 
to this literature by exploiting the staggered entry timing of Uber and Lyft across U.S. cities 160 
seeking to identify causal relationships between TNC entry and our outcomes of interest.   161 
 162 

2.  METHODS  163 
We use difference-in-difference (DiD) models to estimate effects of the intervention 164 

(TNC entry) by comparing the trends of treated and untreated groups before and after the 165 
intervention occurs. DiD methods have been used previously to evaluate the effect of TNCs on 166 
other outcomes, including traffic congestion12, vehicle-related homicides17, entrepreneurial 167 
activity18, and new vehicle ownership in China11.  168 
 169 
2.1 Difference-in-Difference Model 170 

Our regression model is informed by models used in prior literature for our outcomes of 171 
interest. Regression analysis is conducted using inverse probability of treatment weighting 172 
(described below) and the following baseline specification: 173 
 174 
 𝑦"# = 𝛃&𝐱"# + 𝛂&𝐳"# + 𝛾" + 𝛿# + 𝜀"# (1) 175 
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 176 
where 𝑦"# is the dependent variable of interest for group 𝑔 and year 𝑡. At the state level 𝑔 177 
indexes U.S. states, and we examine four types of dependent variables: 1) vehicle registrations 178 
per capita; 2) VMT per capita; 3) gasoline use per capita, or 4) per capita passenger vehicle 179 
emissions estimates for each of the following: CO, NH3, NOx, PM10, PM2.5, SO2, and VOCs. At 180 
the urban area level 𝑔 indexes urban areas, as defined by the U.S. Census, and 𝑦"# is 1) vehicle 181 
registrations per capita, 2) the percentage of registered vehicles that are electric, 3) 182 
concentrations of each of several vehicle-related air pollutants (carbon monoxide, oxides of 183 
nitrogen, benzene, toluene, and xylene), or 4) transit ridership. 𝐱"# is the vector of treatment 184 
effects (in our base model the vector has length 1 and represents the presence or absence of Uber 185 
in group 𝑔 in year 𝑡) with coefficient vector 𝛃. 𝐳0# is a vector of controlsi, with corresponding 186 
coefficients 𝛂. 𝛾" and 𝛿" are fixed-effects dummies for group 𝑔 and year 𝑡, respectively, and 𝜀"# 187 
is unobserved error.  188 

The estimates of a difference-in-difference model provide unbiased causal effect 189 
estimates when its assumptions are satisfied, including that the intervention is exogeneous, trends 190 
are parallel, and there are no spillover effects.  We discuss each in turn.  191 

• Exogeneous Intervention: A potential concern arises if treatment (TNC entry) is 192 
conflated with other attributes of the treated and untreated groups (e.g.: if densely 193 
populated cities are treated more frequently than less densely populated cities). To 194 
control for systematic differences between treated and untreated groups, we apply both 195 
control variables and inverse probability of treatment weights in a weighted least-squares 196 
model. This model compares post-treatment trends in treated units with weighted trends 197 
in non-treated units, probabilistically weighted to resemble the treated states along 198 
attribute dimensions that are correlated with treatmentiii. After estimating the probability 199 
of treatment, we compare measures of balance to confirm that the propensity score 200 
weights succeed in matching the control states’ weighted pretreatment characteristics to 201 
those of the unweighted treatment states (that is, that the weighted control and 202 
unweighted treatment group are balanced).  203 
An additional concern arises if the decision to treat a location is influenced by changes in 204 
the dependent variable (e.g.: if changes in vehicle registrations in a region encourage 205 
Uber to enter that region). To address this possibility, we perform event studies to 206 
identify whether in any case the change in dependent variable preceded treatment. 207 
Through informal discussions with Uber we also learned that early decisions to enter U.S. 208 
cities used information including Google searches for “Uber” and “Lyft” to help 209 
determine where to enter first. It is plausible that changes in some of our dependent 210 
variables (e.g.: registrations) may be correlated with Google searches for “Uber” and 211 
“Lyft”, which could bias our estimates. Publicly available Google Trends data are too 212 
imprecise during this time period to be useful in our analysis, and we are still seeking 213 
usable Google search history trends to control for this possibility.   214 

• Parallel Trends: To examine the parallel trends assumption, we plot outcomes for 215 
individual states and groups of states to compare trends prior to intervention. We also 216 
examine a model variant that includes different linear time trends for each group. Finally, 217 

                                                
iii For our state-level analysis, these are state population, income, gasoline price, emissions standards, and largest city population, density, and 
GDP. For our urban area and zipcode level analysis, these are population, portion of population over age 16 and over 65, population density, 
unemployment rate, income, and percent of population commuting by transit. 
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we use an event study to check whether or not we find evidence of an effect following 218 
treatment without requiring the parallel trends assumption. 219 

• Spillover: The model assumes that treating one location will not affect other locations. It 220 
is plausible that experience with ridehailing services during travel to other cities could 221 
affect vehicle ownership or travel behavior in a home city that does not have access to 222 
ridehailing services, but we assume such effects are negligible. 223 

 224 
2.2 Propensity Score 225 
 We estimate propensity scores using gradient boosting20, which previous studies have 226 
shown as superior to simple logistic regression models for propensity score estimation21, to 227 
approximate the logistic model: 228 
 229 

 log 4 567(𝐳67)
:;567(𝐳67)

< = ∑ 𝑓?(𝐳"#)? + 𝜖"# (2) 230 

 231 
where 𝑝"# is the probability of treatment for group 𝑔 and year 𝑡; 𝐳0# is a vector of covariates for 232 
group 𝑔 and year 𝑡,i and 𝜖"# is unobserved error. We estimate the additive function 𝑓? using 233 
gradient boosting, given the treatment and covariate data, and compute estimated probability of 234 
treatment 𝑝̂"# for each state and year. The resulting estimates for probability of treatment are 235 
then used in a weighted regression for Eq(1). 236 
 237 
For the particular case where 𝑦"# is a measure of air pollution concentrations at nearby air quality 238 
monitoring sites, we are hesitant to apply IPTW because air quality monitoring sensors are not 239 
distributed randomly – rather, locations are “treated” with sensors for specific reasons, such as to 240 
comply with regulation or monitor an industrial facility. Because of this, we abandon the attempt 241 
to estimate causal effects for this case and examine only associations identified in an unweighted 242 
OLS model. We discuss implications in the results section. We are continuing to investigate 243 
methods to account for non-random sensor placement in future work. 244 
 245 
2.3 Robustness 246 

We apply several statistical tests to check model assumptions and test for robustness (see 247 
SI Sections 4 and 5)v. Model assumptions are informed by generalized additive models (GAMs) 248 
for independent variable functional form, and final model fit is checked using visual inspection 249 
of residual errors to confirm no structural error.  Additionally, for each model, we subject our 250 
results to four robustness checks: 251 

(1) We introduce linear time-varying fixed effects into the regression model (i.e., an 252 
additional term in equation (1) above) to allow for different trends in different groups; 253 

(2) We conduct randomized treatment tests to ensure that the effects we estimate are unique 254 
to the particular observed pattern of treatments, rather than a result of the structure of the 255 
model. Estimated effects are considered robust if they fall in the tails (>95%) of the 256 
distribution of randomized treatment-estimated effects;  257 

(3) We conduct leave-one-out tests to ensure that our estimates do not hinge on the data of 258 
any one state. Estimated effects are considered robust if they remain significant when 259 
systematically leaving each state out;  260 

                                                
v The supplemental information document is available from the authors upon request 
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(4) We conduct leave-multiple-out tests to ensure that our estimates do not hinge on outliers. 261 
Estimated effects are considered robust if they do not change in magnitude (i.e., 95% 262 
confidence intervals still overlap) or significance level;  263 

 264 
Additionally, we perform several sensitivity analyses appropriate for each case, including:  265 
(1) alternative dependent variable normalization (i.e., per licensed driver or per urban 266 

population),  267 
(2) alternative period of analysis (2009–2015),  268 
(3) alternative treatment encoding (annualizing between June and July instead of December 269 

and January), 270 
(4) additional control variables (indicators for Uber leasing/incentive programs, Lyft market 271 

entry, and transit), and 272 
(5) alternative specifications with lagged treatment (by one and two years). 273 

 274 

3.  DATA 275 
 We describe and identify data sources for dependent variables, treatment, and control 276 
variables in turn:  277 
 278 
3.1 Dependent Variables: 279 
State-Level Analysis 280 

• Vehicle registrations (measured): We use vehicle registration data for each state and for 281 
each year for light-duty passenger vehicles from Ward’s Automotive22. Ward’s data are 282 
based on data published in U.S. DOT’s State Statistical Abstracts and Highway Statistics 283 
Series,23,24 which is the set of official vehicle registration data published by state DOTs.  284 

• Gasoline consumption (measured): DOT’s State Statistical Abstracts and Highway 285 
Statistics Series also report Federal Highway Administration estimates of annual private 286 
and commercial vehicle state level on-highway motor fuel based on reports of aggregate 287 
motor fuel sales from state motor fuel tax agencies. 288 

• VMT (estimated): VMT data comes from DOT’s State Statistical Abstracts, which are 289 
tracked and reported annually as a function of figures reported by state agencies. State 290 
agencies estimate aggregate VMT based on vehicle count data measured on 291 
representative roadways and distributions of roadway type within the state (while DOT 292 
issues a Traffic Monitoring Guide, individual state methods may differ). VMT (table 293 
VM-2) has been published in DOT’s State Statistical Abstract series since 2008; earlier 294 
data are available in DOT’s Highway Statistics Series. Interpretation of statistical 295 
inference based on these VMT data is constrained by the representativeness of the 296 
underlying VMT estimation (rather than direct measurement) methods.  297 

• Emissions (estimated): State-level emissions data are published annually in the EPA’s 298 
State Average Emissions Trend report, which is informed by EPA’s National Emission 299 
Inventory, which, in turn, relies on EPA's Motor Vehicle Emission Simulator (MOVES) 300 
model. The MOVES model estimates vehicular emissions based on vehicle population 301 
and fleet characteristics, vehicle speed distributions, and relative hour- and day-type 302 
VMT distributions at the county level and aggregated. Emissions attributable to highway 303 
vehicles are estimated by the EPA annually25: 2008, 2011, and 2014 estimates were 304 
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developed in conjunction with the National Emissions Inventory for those years; 2005, 305 
2007, 2009 and 2010 estimates were updated using additional MOVES modeling; and 306 
2006, 2012, and 2013 were interpolated. EIA estimates an annual series of State Carbon 307 
Dioxide Emissions based on energy consumption data contained in the State Energy Data 308 
System (SEDS). Transportation sector estimates are published without highway or light-309 
duty vehicle detail after an approximately 2-year lag26. Interpretation of statistical 310 
inference based on these emissions data is limited to factors considered as part of 311 
emissions estimation modeling (rather than direct measurement). 312 
 313 

We divide each of the four quantities above by state population each year to compute per-capita 314 
values. Annual state-level population estimates are from DOT’s State Statistical Abstract and 315 
Highway Statistics series and, as such, they align with VMT data and are related to Ward’s 316 
Automotive vehicle registration data (the ultimate source for which is also these DOT 317 
publications). DOT population reports match U.S. Census statistics in census years and are no 318 
more than 0.6% different than Census Bureau’s annual estimates of the resident population in 319 
intercensal years27, which the Census calculates assuming geometric interpolation with some 320 
exceptions28. 321 
Urban-Area Analysis 322 

• Vehicle registrations (measured): IHS Markit (formerly Polk) collects and sells vehicle 323 
registration information from U.S. State agencies responsible for registration data29. We 324 
rely on a version of the dataset that reports, by ZIP Code, vehicle make, model, and 325 
engine size for the approximately 240 million light-duty vehicles registered in the U.S. 326 

• Air pollutant concentration (measured): U.S. EPA generates data tables for the 327 
measurements from the monitors at 20,000 sites around the U.S. that comprise its Air 328 
Quality System (AQS)30. We extract annual summary measures of several vehicle-329 
relevant pollutants: carbon monoxide, oxides of nitrogen, several species of volatile 330 
organic compounds (benzene, toluene, and xylene), and particulate matter. 331 

• Transit ridership (measured): U.S. DOT’s Federal Transit Administration (FTA) reports 332 
annual summary statistics on more than 660 transit providers receiving federal funding in 333 
the National Transit Database (NTD)31. We focus on transit providers that consistently 334 
report data for all years of this analysis and aggregate individual transit agencies by urban 335 
area, per classification in the database. 336 

 337 
3.2 Treatment Variables:  338 

• Uber and Lyft entry dates (state, urban area, and ZIP Code level analyses): We adopt 339 
data from previous sources that aggregated and published a time-series of Uber market 340 
entry dates. A 2014 Forbes article first aggregated Uber launch dates from 2010–201432 341 
by service area, as originally announced on Uber’s official blog (on a post no longer 342 
available) and/or in local media from each new service area. Forbes continued to update 343 
that dataset to reflect additional Uber markets launched through December 2015. Those 344 
dates are cross-referenced against Uber market launch date data that were independently 345 
gathered and published in two later studies16,32,33. Burtch et al. include a table of market 346 
launch dates for UberX—Uber’s lower-cost, on-demand service provided in the driver’s 347 
personal vehicle, which the authors compiled directly from the Uber Blog18. Lyft market 348 
launch dates were requested from and provided by Lyft34. A comparison of Uber and Lyft 349 
market launch date time-series is depicted by combined statistical area in Figure 1. 350 
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Because Lyft market entry years are the same or later than Uber market entry years in all 351 
cases, we use Uber entry dates in our analysis to represent on-demand mobility 352 
availability in the state. 353 

 354 
3.3 Control Variables 355 
State-Level Analysis: 356 

• State-level control variables: Our control variables include: (i) population, reported 357 
annually in DOT’s State Statistical Abstract and Highway Statistics series, (ii) percentage 358 
of a state’s population that is urbanized35, (iii) state average real personal income, 359 
reported annually by the Bureau of Economic Analysis36; (iv) state average gasoline price 360 
data, reported annually by the U.S. Energy Information Administration (EIA), and (v) an 361 
indicator for whether each state has adopted California’s more stringent vehicle 362 
emissions control requirements, pursuant to Section 177 of the Clean Air Act37. 363 
Additionally, recognizing that TNC market entry and use is primarily a city phenomenon, 364 
additional control variables are included for the largest city within each state, including: 365 
(vi) population38, (vii) population density38, and (viii) GDP39.  366 

Urban-Area Analysis: 367 
• Urban area- and ZIP Code-level control variables: Control variables at the urban area 368 

and ZIP Code level are 5-year American Community Survey (ACS) estimates reported by 369 
the U.S. Census and include: (i) population, (ii) portion of population over age 16 and 370 
over 65, (iii) population density, (iv) unemployment rate, (v) income, (vi) and percent of 371 
population commuting by transit. 372 

 373 
While these control variables are intended to help reduce bias, the possibility of omitted variable 374 
bias cannot be overlooked. Sensitivity analyses were conducted using several additional 375 
potentially relevant independent variables (number of licensed drivers, Lyft market entry, transit 376 
ridership, and Uber/Lyft leasing incentive programs), as well as two variations on Uber treatment 377 
encoding; none greatly affected the magnitude or the significance of effects reported as 378 
significant and robust. 379 

Variable encoding and summary statistics for each data source above are shown in Table 380 
1. On average, population steadily increases, criteria pollutant emissions steadily decrease, and 381 
vehicle registrations and income generally increase, except for a dip in 2009–2010 corresponding 382 
to the Great Recession. Gasoline price is volatile and non-monotonic.  383 
 384 
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Table 1  Variable encoding descriptions and associated summary statistics (U.S. totals, except 385 
where averages are shown, as noted) for 2005, 2010, and 2015. Monetary values are reported in 386 
current dollars (as indicated). 387 

 388 
 389 
  390 

Parameter Unit Description 2005 2010 2015
Population million persons Coded as log state population 296 309 321
Light-Duty 
Vehicles

million vehicles Coded as log light-duty vehicles per capita 234 232 241

Gasoline 
Use

billion gallons
Gasoline taxed by states as used by non-public, non-
exempt vehicles

133 131 130

VMT trillion miles Coded as log vehicle miles traveled per capita 2.99 2.97 3.10

CO million tons
Coded as per-capita highway carbon monoxide 
emissions 

42.4 28.3 19.7

NH3 million tons Coded as per-capita highway ammonia emissions 0.14 0.12 0.10
NOx million tons Coded as per-capita highway nitrous oxides emissions 8.30 5.70 4.12

PM10 million tons
Coded as per-capita highway particulate matter 
emissions

0.38 0.28 0.30

PM2.5 million tons
Coded as per-capita highway particulate matter 
emissions

0.31 0.20 0.15

SO2 million tons Coded as per-capita highway sulfur dioxide emissions 0.17 0.04 0.02

VOC million tons
Coded as per-capita highway carbon monoxide 
emissions

3.41 2.77 1.97

Income trillion $ (current $) Coded in regression as real personal income per capita 10.6 12.5 15.5

s177 binary
A state's Section 177 status (whether it has adopted 
California's more stringer mobile-source emissions 
regulations)

5 11 13

Katrina binary
Indicator for potential vehicle hurricane damage (2005 
only)

1 0 0

Sandy binary
Indicator for potential vehicle storm damage (2012 
only)

0 0 0

Clunkers
Number of vehicles 
scrapped

Number of participants in "Cash for Clunkers" vehicle 
scrappage program (2009 only)

0 0 0

Treat % states Uber indicator, binary 0% 2% 90%

Gas Price $/gal (current $) Average gasoline price 2.08 2.63 2.34

Pop_u % pop, state avg.
% of state population that is considered Ubran by the 
Census (coded relativel to the average % urbanization 
for 2005-2015, which is 74%)

73% 74% 75%

Citypop thousand persons
Population of center city in a state's largest 
metropolitan statistical area

652 703 714

Citydensity
persons per square 
mile

Population density of center city in a state's largest 
metropolitan statistical area

4120 4483 4539

CityGDP billion $ (current $) GDP of state's largest metropolitan statistical area 127 140 177

Treatpop % pop, state avg.
Uber indicator, weighed by % of state population with 
Uber access

0% 0% 21%

(For parameters below, values shown are averages across states)
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4.  RESULTS 391 
Table 2 summarizes results for the effect of TNC entry on several of our dependent 392 

variables at the state and urban area levels. The state model suggests that, on average, Uber 393 
market entry (in any portion of a state) decreases per-capita vehicle registrations by 3.1% (95% 394 
confidence interval: 0.7% to 5.5%) over the period examined (relative to per-capita registration 395 
had the TNC not been introduced). Conversely, the urban-area model suggests that, on average, 396 
Uber market entry increases per-capita vehicle registrations by 0.7% (95% confidence interval: 397 
0.1% to 1.3%) over the period examined (relative to per-capita registrations absent TNC entry). 398 
We interpret these results in the context of heterogeneous effects across urban areas later. The 399 
state model indicates a decline of 4.2% (95% confidence interval: 1.0% to 7.4%) in EPA-400 
estimated vehicular VOC emissions after Uber enters any portion of a state. All of the 401 
statistically significant findings here are robust when subjected to our robustness tests (details 402 
reported in SI Sections 4 and 5). 403 

 404 
Table 2  Weighted least-squares regression model treatment effect estimates for per-capita 405 
vehicle registrations, EV registration percentage, per-capita gasoline use, per-capita VMT, and 406 
per-capita transit trips. Coefficients estimated for control variables (state population, urban 407 
population percentage, income, gasoline price, emissions standards, and largest city population, 408 
density, and GDP, as well as indicators for Hurricane Katrina, Cash for Clunkers, and 409 
Superstorm Sandy and fixed effects for state and time at the state level and population, portion of 410 
population over age 16 and over 65, population density, unemployment rate, income, percent of 411 
population commuting by transit at the urban area level) are excluded from the table for brevity; 412 
weights are calculated as described in equation (2). 413 

 414 
 415 

Table 2 also shows the estimated effects of TNC entry on EV market penetration, 416 
gasoline consumption, VMT, and transit use, none of which are statistically significant. Not 417 
shown are estimated effects on EPA-estimated per-capita emissions of carbon monoxide, oxides 418 
of nitrogen, and particulate matter, as well as GHGs at the state level, as none were found to be 419 
significant. We also examined the effect on concentrations of CO, NOX, PM10, PM2.5, and several 420 
VOCs at nearby air quality monitors using an unweighted regression and found mixed results. 421 
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Additional research is needed to refine the air quality results to address the non-randomness of 422 
air quality monitor locations, so we do not present any preliminary results for air quality here. 423 

 424 
4.1 Robustness 425 

We subject our results to a variety of checks including a set of robustness checks, 426 
sensitivity analysis, event studies, and unweighted regression. We discuss each in turn. 427 
Robustness Checks and Sensitivity Analysis:  428 

The battery of robustness checks and sensitivity analyses that we apply support our 429 
findings. Both the estimated vehicle registration and VOC emission effects at the state level are 430 
robust (or “near-robust”, as slightly crossing the threshold for the level of significance of the 431 
vehicle registration or VOC emissions effect estimates is sensitive to whether Ohio or Indiana, 432 
respectively, are included in the sample) to randomized treatment, leave-one-out, alternative 433 
treatment encodings, and leave-multiple-out checks (all described previously in the Methods 434 
section), as is summarized in the SI. Furthermore, similar state-level effects are estimated even 435 
when regressions are specified to test potential sensitivity to alternative dependent variable 436 
normalization (i.e., per licensed driver or per urban population), timeframe (2009–2015), 437 
treatment encoding (annualizing between June and July instead of December and January) and 438 
additional control variables (indicators for Uber leasing/incentive programs, Lyft market entry, 439 
and transit); and, finally, a set of results examining the effect of lagged treatment (by one and 440 
two years) (details are included in the SI). Comparable robustness checks and sensitivity 441 
analyses at the urban-area level are still in process. 442 
 443 

Table 3  Summary of robustness checks results at the state level. 444 

 445 
 446 

Event Study: 447 
We conduct event studies to test whether or not effects estimated in our difference-in-448 

difference model can be observed without making the assumptions underlying the difference-in-449 
difference model. Figure 2 shows event studies at the state and urban area level, where time for 450 
each state or urban area is normalized relative to the year that Uber entered (time zero). At the 451 
state level (left) there is no statistically significant change in registrations in years prior to Uber 452 
entry, but we find a statistically significant decrease in registrations after Uber entry. This result 453 
provides additional evidence of the effect identified in the difference-in-difference model 454 
without assuming parallel trends. At the urban area level (right) there is no statistically 455 
significant change in registrations in years prior to Uber entry, but we find a statistically 456 
significant increase in registrations several years after Uber entry. This result provides additional 457 
evidence of the effect identified in the difference-in-difference model without assuming parallel 458 
trends; however, the continuous shape of the estimates offer weaker support than if a step change 459 
had been found. The event studies do not control for other time-varying factors and, as such, 460 
serve only as an additional look at the data without the parallel trends assumption. These results 461 

Coefficient RT LOO Enc LMO
Vehicle Registrations -3.1% ** ● � ● ●
VOC -4.2% ** ● � ● ●
Notes: RT - Randomized Treatment; LOO - Leave-one-out; Enc - Uber 
treatment alternative encodings; LMO - Leave-multiple-out; ● robust, 
�� “near-robust”, ○ not robust
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are consistent with our difference-in-difference estimates at the state and urban area level, 462 
respectively.  463 
 464 

 465 
Figure 2  Event study results at the state level (left) and urban-area level (right) showing both no 466 
evidence of significant pre-treatment changes in per-capita vehicle registrations and significant 467 
evidence of changes at some point in time after treatment. 468 

 469 
Unweighted OLS Results:  470 

In Table 4, we compare the IPTW results from Table 2 with the treatment effect 471 
estimated using ordinary least squares (OLS) with same model specification, i.e., equation (1), as 472 
well as the effect estimated after adding time-varying group fixed effects to equation (1).  473 

 474 
 𝑦"# = 𝛃&𝐱"# + 𝛂&𝐳"# + 𝛾" + 𝛿# + 𝜁"𝑡 + 𝜀"# (3) 475 

 476 
The first comparison against an OLS model is meant to demonstrate whether finding a 477 

significant effect is dependent on the weights used in the IPTW model, and the second 478 
comparison against an IPTW model with time trends is meant to indicate whether the results are 479 
robust after controlling for potentially different time trends in different locations. At the state 480 
level, the OLS and time-trends models result in estimates with the same sign, somewhat smaller 481 
magnitude, larger standard errors, and a resulting loss of statistical significance. At the urban 482 
area-level, OLS and time-trends models produce similar statistically significant estimates (p-483 
values increase from p=0.045 to p=0.062 and p=0.055). 484 
 485 
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Table 4  Comparison of regression models specified using weighted least-squares (using inverse 486 
probability of treatment weights), ordinary least-squares, and weighted least-squares with time 487 
trends (i.e., time-varying group fixed effects). 488 

 489 
 490 

 Figure 2 compares the treatment and control groups for both the state-level and urban 491 
area-level analyses before and after weighting along a set of parameters used to calculate 492 
propensity scoresi. At the state level, weighting is shown to reduce mean differences between the 493 
treatment and unweighted control group parameters by 70% to 100%. The differences between 494 
treated and untreated states are statistically significant when unweighted, but, as desired, become 495 
not statistically significant in the weighted sample (even at the p=0.10 level). Weighting is nearly 496 
as effective in the urban area case, and, while the algorithm fails to achieve a statistically 497 
indistinguishable unemployment rate in the weighted control group compared to the treatment 498 
group, the means for each group (8.1% for the weighted control group versus 7.9% for the 499 
treatment group) have comparable practical significance.  500 
 501 

 502 
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 503 

 504 
 505 

Figure 2  Effect size plot comparing the treatment states and control states (top) and urban areas 506 
(bottom) before and after weighting. Closed red circles indicate a statistically significant 507 
difference before weighting; open circles reflect no significant difference after weighting. 508 
 509 
4.2 State-vs.-Urban Area Comparison 510 

The effect of TNC entry on vehicle registrations estimated at the state level, a reduction 511 
of 3.1%, would correspond to a reduction in vehicle ownership of 4.1%, on average, across all 512 
urbanized areas if we assume no effect in rural areas (recognizing that TNC market entry and 513 
ridership is generally an urban phenomenon). A reduction in ownership is consistent with survey 514 
results from Hampshire et al (2017)40 and Clewlow and Mishra (2018)41, who find, respectively, 515 
a 9% increase in vehicle ownership among former Uber users after Uber left Austin, TX and a 516 
reduction in household vehicle ownership among 9% of households that use ride-hailing services 517 
in seven U.S. metro areas.  518 

income
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The effect of TNC entry on vehicle registrations estimated at the urban area level is an 519 
increase in 0.7%. An increase in ownership is consistent with the findings of Gong et al (2017) in 520 
China. 521 

It is not necessarily inconsistent that our results find a negative TNC market entry effect 522 
on vehicle registrations at the state level and a positive effect at the urban-area level. To verify 523 
that the different result is not an artifact of using a different data source, we replicate the state 524 
level analysis using urban area-level data by aggregating (or population-weighting) urban area 525 
data by state and re-specifying the state-level regression model. Table 5 compares the effect 526 
estimates from the state- and urban area-level analyses with the effect estimated using urban 527 
area-level data aggregated to the state level. We find that the urban area data produces a 528 
significant negative estimate when aggregated to the state level, consistent with the state-level 529 
analysis. This suggests that the different data source is not the cause of finding different results at 530 
the state versus urban area level. Rather, the different result when averaged across different units 531 
of observation suggests heterogeneity: If TNC entry has different effects in different cities, 532 
averaging effects across urban areas can yield different results than averaging effects across 533 
states. 534 
 535 
Table 5  Comparison of state-level analysis results and urban area-level analysis results and 536 
reproduction of state-level results using urban area data aggregated to the state level (i.e., 537 
arithmetic or population-weighted sums). 538 

 539 
 540 
4.3 Heterogeneous Effects 541 

We investigate heterogeneity of the TNC entry effect across urban areas using 1) 542 
regression models that interact treatment with selected urban area characteristics to determine 543 
whether these characteristics explain differences in TNC entry effects across urban areas, and 2) 544 
cluster analysis, which identifies clusters of similar cities and estimates of TNC entry effects for 545 
each. In future work we plan to also apply latent class / profile analysis as an alternative 546 
approach to characterizing heterogeneity. 547 

First, we specified a series of regression models identical to equation (1) but added 548 
interactions between treatment and one of  three urban area covariates: a continuous measure of 549 
population, population density, or unemployment rate. In no case did we find a statistically 550 
significant interaction effect. In future work we plan to investigate categorical representations of 551 
these attributes and to use results from clustering and latent class analysis to inform our selection 552 
of urban area covariates.  553 

Next, we use hierarchical clustering to identify groups of urban areas that are similar in 554 
terms of the covariates in our dataseti. We employ a divisive (rather than agglomerative) 555 
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algorithm, in hopes of finding larger groups of similar urban areas, and [dis]similarity across 556 
urban areas is computed using Euclidean distances and Ward’s minimum variance method42. For 557 
a given number of clusters, we re-specify our regression with an interaction between the 558 
treatment indicator and an urban-area cluster indicator. Doing so allows for the estimation of a 559 
baseline treatment effect for the first cluster and a series of interaction effects quantifying the 560 
difference between the effect in that baseline cluster and each other cluster. We sweep from two 561 
to nine clusters and estimate cluster-specific TNC entry effects as described. As Figure 3 shows, 562 
we confirm the presence of heterogeneous effects across urban areas. These effects range from  563 
–0.7% to 3.4%; though, only the clusters with positive effects that are large in magnitude (2.2% 564 
to 3.4%) are statistically significant.  565 
 566 

   567 
Figure 3   TNC treatment effect on the change in per-capita vehicle registrations varies by urban 568 
area typology, from as low as –0.7% to as high as 3.4%. Statistically significant effects are 569 
shown as shaded, and estimates that are not significant are open. In A (at left), the size of each 570 
circle reflects the number of urban areas in each cluster; whereas, in B (at right), the size of each 571 
circle reflects the total population in each cluster. Note that in the urban area-number plot, the 572 
average of effects is consistent at 0.7% across the number of clusters, which also aligns with the 573 
average estimate in Table 2. 574 

 575 
While Figure 3 shows a change in the TNC effect estimated as each of the first five urban 576 

area clusters are added, the pattern appears to stabilize beyond five clusters, and including more 577 
than five clusters results in a cluster that contains just one urban area. Accordingly, we explore 578 
the case of five clusters for illustrative detail in Table 6. For each of these five clusters, the 579 
estimated TNC market entry effect is presented alongside the mean value of the (scaled) 580 
characteristics of the urban areas that comprise each cluster; each cluster is identified by the 581 
name of the largest city in that cluster. Cluster 1, New York, NY-like urban areas, and cluster 3, 582 
Riverside, CA-like urban areas, are the two clusters for which TNC effects are estimated as 583 
significant and positive. Table 6 makes clear that one thing urban areas in both of these clusters 584 
share is a relatively low number of per-capita vehicle registrations. The first cluster has higher 585 
average population, population density, commuters by transit, income, electric vehicle 586 
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ownership, and trips by bus and rail as well as lower per-capita vehicle registrations than the 587 
other clusters. We refer to this cluster as “large dense cities”. The third cluster has higher average 588 
unemployment and percentage of households with children and lower vehicle registrations per 589 
capita than the other clusters and is primarily composed of small to medium sized cities in 590 
California and Texas. We refer to this cluster as “small family-focused cities”.  591 

In summary, it appears that TNC entry tends to increase vehicle ownership in large dense 592 
cities and small family-focused cities with low per-capita vehicle registrations, but the effect on 593 
other types of cities is not statistically significant in this clustering. In future work we aim to 594 
examine robustness of our heterogeneity characterization to alternative clustering approaches and 595 
latent class / profile analysis and to investigate whether the urban area attributes identified by 596 
clustering produce statistically significant interaction effects with treatment in the base model. 597 
 598 
Table 6  Mean values of regression covariates (scaled) and estimated TNC market entry effects 599 
for a five-urban-area-cluster case, sorted from largest-population cluster (New York, NY-like 600 
urban areas) to smallest-population (Tulsa, OK-like urban areas) 601 

 602 
 603 

5.  DISCUSSION 604 
 Our results suggest that access to TNC services is associated with a significant effect on 605 
per-capita vehicle registrations: a decrease when averaged across states and an increase when 606 
averaged across urban areas. The effect flips direction when averaged over different units of 607 
observation, in part, because of underlying heterogeneity of the effects of TNCs in different 608 
types of cities. Our cluster analysis suggests that TNC entry tends to increase per-capita vehicle 609 
registrations in large dense cities and in small family-focused cities with low per-capita vehicle 610 
registrations. Effects on our other clusters is not statistically significant in our cluster analysis, 611 
though additional research is needed to assess robustness of the characterization of heterogeneity 612 
to alternative approaches. We also find a negative effect of TNC entry on EPA-estimated 613 
emissions of volatile organic compounds from passenger vehicles in U.S. states.  614 

Interpreting these effects as causal relies on three key assumptions: 1) exogeneous 615 
intervention, 2) parallel trends, and 3) no spillover. Our event studies provide evidence 616 
supporting the exogeneous intervention and parallel trends assumptions both at the state level 617 
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and at the urban area level because they find no statistically significant effect before treatment 618 
and a statistically significant effect after treatment having the same sign as our difference-in-619 
difference results without assuming parallel trends. We also examine a model variant that 620 
includes different linear time trends for each group, relaxing the parallel trends assumption, and 621 
we find similar effect estimates (with a drop in statistical significance). Additionally, our 622 
application of IPTW successfully produces balanced or near-balanced treatment and control 623 
groups, mitigating conflation of treatment with group attributes. While this evidence is 624 
encouraging, trends are not strictly parallel across all states, even after applying our controls, so 625 
we do not eliminate the possibility of spurious results. Further, while our event studies do not 626 
indicate that changes in the dependent variable (registrations) preceded treatment, we cannot rule 627 
out the possibility that the decision to treat was influenced by changes in omitted variables. In 628 
future work we are seeking data on Google Trends that would allow us to control for one factor 629 
that we understand influenced Uber’s decision to enter urban areas: local web searches for Uber 630 
and Lyft. For the coefficients reported as significant findings, the application of several 631 
diagnostic methods—visual inspection of regression residual errors as well as randomized 632 
treatment, leave-one-out, TNC market launch encoding, or excluding-outlier robustness 633 
checks—yields no evidence of systematic error or potential misspecifications. We assume that 634 
spillover effects are negligible (e.g.: that residents in one city do not change vehicle ownership 635 
patterns in response to experiences with TNCs in other cities). 636 

Our results do not identify robust, statistically significant effects of TNC entry on 637 
gasoline consumption, vehicle miles traveled, or emissions other than VOCs, but this does not 638 
imply that TNCs have no effect on these outcomes. It is possible, for example, that TNCs have 639 
had substantial impact on these outcomes in particular U.S. cities (especially in light of the 640 
heterogeneous effects detected among the urban area clusters) without producing robust, 641 
statistically significant patterns across U.S. states or urban areas that are identified with our 642 
analysis. Further, our analysis does not capture the mix of trends that may lead to these net 643 
results, such as competing factors that act both to increase and to decrease VMT or changes in 644 
the fleet mix that result in fewer vehicle registrations overall but not necessarily fewer new 645 
vehicle purchases. 646 
 Our analysis focuses on net effects to overall outcomes after TNCs enter urban areas. We 647 
cannot identify changes to vehicle fleet mix with the available data, and there are potentially 648 
multiple alternative—and sometimes competing—narratives that might explain these trends. For 649 
example, it is possible that TNCs reduce VOC emissions primarily by shifting VMT away from 650 
older, less efficient personal vehicles toward newer, more efficient TNC vehicles that operate 651 
under hot steady-state conditions for a large portion of VMT, but it is also possible that the VOC 652 
emissions decline detected here results from the fewer vehicles (also detected here) used as an 653 
input to the models that EPA uses to produce published highway emissions data. Newer vehicles 654 
are associated with lower pollutant emissions: CO, NOx, VOC, and PM emissions in light-duty 655 
transportation have declined 30-50% over the past ten years43. The EPA emissions estimates we 656 
use do not account for potential changes in cold start vs. hot operation ratios induced by TNCs, 657 
so any signal captured by our linear models and data is potentially attributable to a vehicle fleet 658 
transition but not likely to drive-cycle changes. As another example, it is possible that TNCs 659 
increase VMT on a per-trip basis due to “deadheading”, or empty miles traveled between 660 
passenger trips, and trips induced from other travel modes and that TNCs simultaneously 661 
decrease the total number of trips traveled, since the perceived cost per trip is higher in a TNC 662 
than in a personal vehicle (where vehicle capital costs are “sunk”). Depending on their relative 663 
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magnitudes, these dynamics could yield a near-zero net effect. Additional study on the effect of 664 
TNC market entry on vehicle fleet composition and distribution of VMT across the fleet is 665 
needed for deeper insight about the mechanisms that produce these outcomes. 666 
 667 
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